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ABSTRACT
This article presents a new model, ALL-Net, for the detection of acute lymphoblastic
leukemia (ALL) using a custom convolutional neural network (CNN) architecture
and explainable Artificial Intelligence (XAI). A dataset consisting of 3,256 peripheral
blood smear (PBS) images belonging to four classes—benign (hematogones), and the
other three Early B, Pre-B, and Pro-B, which are subtypes of ALL, are utilized for
training and evaluation. The ALL-Net CNN is initially designed and trained on the
PBS image dataset, achieving an impressive test accuracy of 97.85%. However, data
augmentation techniques are applied to augment the benign class and address the
class imbalance challenge. The augmented dataset is then used to retrain the ALL-
Net, resulting in a notable improvement in test accuracy, reaching 99.32%. Along
with accuracy, we have considered other evaluation metrics and the results illustrate
the potential of ALLNet with an average precision of 99.35%, recall of 99.33%, and F1
score of 99.58%. Additionally, XAI techniques, specifically the Local Interpretable
Model-Agnostic Explanations (LIME) algorithm is employed to interpret the model’s
predictions, providing insights into the decision-making process of our ALL-Net
CNN. These findings highlight the effectiveness of CNNs in accurately detecting ALL
from PBS images and emphasize the importance of addressing data imbalance issues
through appropriate preprocessing techniques at the same time demonstrating the
usage of XAI in solving the black box approach of the deep learning models. The
proposed ALL-Net outperformed EfficientNet, MobileNetV3, VGG-19, Xception,
InceptionV3, ResNet50V2, VGG-16, and NASNetLarge except for DenseNet201
with a slight variation of 0.5%. Nevertheless, our ALL-Net model is much less
complex than DenseNet201, allowing it to provide faster results. This highlights the
need for a more customized and streamlined model, such as ALL-Net, specifically
designed for ALL classification. The entire source code of our proposed CNN is
publicly available at https://github.com/Abhiram014/ALL-Net-Detection-of-ALL-
using-CNN-and-XAI.
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INTRODUCTION
Leukemia is a group of cancers that starts in the bone marrow and affects the body’s blood-
forming tissues. It is caused by the unregulated buildup of atypical white blood cells, which
interferes with normal blood cell operations and results in different types of complications.
Frequent signs of leukemia include chills or fever, recurring or serious infections, reducing
weight naturally, swelling of the lymph nodes, spleen or liver enlargement, frequent
nosebleeds, petechiae, or little red dots on skin, persistent perspiration, particularly at
night, bone sensitivity or pain (Mayo Clinic, 2025). In 2021, according to data from the
Surveillance, Epidemiology, and End Results (SEER) database, there were approximately
61,090 projected new cases of leukemia, constituting 3.2% of all newly diagnosed cancer
cases. This places leukemia as the tenth most prevalent cancer in the United States
(Chennamadhavuni et al., 2023).

Acute lymphoblastic leukemia (ALL), a type of leukemia, is a fast-moving leukemia that
targets lymphoid cells, a subset of white blood cells that are part of the immune system.
This disease occurs mostly in children, but sometimes adults are also prone to it. There are
several ways to detect ALL (City of Hope, 2024). Some of them are:

. Blood tests: These tests comprise of peripheral blood smear (PBS) examination and a
complete blood count (CBC) to detect abnormalities in blood cell counts and
morphology.

. Bone marrow biopsy: A sample of bone marrow is obtained to confirm the diagnosis
and assess bone marrow involvement.

. Immunophenotyping: This technique analyzes surface proteins on leukemia cells to
differentiate between subtypes and confirm the diagnosis.

. Cytogenetic and molecular testing: These tests identify genetic abnormalities associated
with ALL, aiding in risk stratification and treatment planning.

. Lumbar puncture: Sometimes performed to assess leukemia spread to the central
nervous system.

. Imaging studies: X-rays, ultrasound, CT, or MRI may evaluate disease involvement in
other organs.

Detecting ALL poses challenges because of the limitations of current diagnostic
methods. Invasive procedures like bone marrow aspiration and biopsy carry risks and can
yield inconclusive results. Bone marrow biopsy is largely expensive and can generate great
pain to the patients. It could not be suitable with some patients particularly children, in
whom the disease is more prevalent. Immunophenotyping and genetic testing provide
valuable insights but may not always distinguish between closely related subtypes or detect
all genetic abnormalities (Rezayi et al., 2021). Imaging studies and clinical assessments,
while informative, may miss early or atypical presentations of the disease. Overall, a
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multidisciplinary approach is essential to navigate the complexities of ALL diagnoses and
ensure accurate and timely identification of the disease. While current techniques such as
blood tests, bone marrow analysis, and imaging studies play vital roles in diagnosis, they
are prone to subjective interpretation, interobserver variability, and potential errors. For
blood tests and PBS images, the major disadvantage is that they require skilled experts to
manually examine microscopic images of blood or bone marrow samples, leading to
significant delays in the treatment process. These tests are also prone to error (Gehlot,
Gupta & Gupta, 2020). Moreover, these elaborate diagnostic approaches are typically not
employed for cases presenting with routine symptoms. Also, many diseases involve the
abrupt rise of lymphocytes which should not be confused with leukemia (McGrath, 2002).
These challenges call for an accurate, low cost and time-efficient, automated system of
diagnosis. The disease must be detected as early and fast as possible thereby providing the
patient more time for recovery and survival. The need for computer-aided diagnosis
(CAD) in detecting ALL arises from the complexities and challenges associated with
traditional diagnostic methods. CAD systems offer the potential to augment diagnostic
accuracy by leveraging advanced algorithms to analyze peripheral blood smear images,
immunophenotyping data, genetic profiles, and clinical information. Additionally, CAD
systems can handle large volumes of data proving to be time-efficient.

This study mainly focuses on distinguishing ALL and its subtypes—Early-B, Pre-B, Pro-
B from hematogones which are quite similar to ALL, using machine intelligence. In this
article, we use the terms Early-B as Early, Pre-B as Pre, and Pro-B as Pro interchangeably.
Hematogones also involve an abrupt rise of lymphocytes and mostly occur in infants and
young children. Unlike ALL, hematogones are not harmful and they often go away as the
children age. This visual similarity presents a challenge for accurate diagnosis, as both ALL
and hematogones exhibit overlapping features in PBS images. However, distinguishing
these cases is critical: hematogones are benign or harmless, whereas ALL requires
immediate treatment. In this work, we utilized the PBS image dataset sourced from Kaggle
(Aria et al., 2021). The PBS images of different subcategories of ALL can be seen in Fig. 1.
Differentiating benign cells from Early-B cells, as well as Pre-B from Pro-B cells, can be
difficult due to visual similarities. Therefore, the morphological characteristics of each
stage, focusing on specific features like chromatin pattern, nucleoli visibility, and
cytoplasmic granularity should be considered. This complexity necessitates the use of deep
neural networks (DNNs), which can detect intricate patterns and classify images
accordingly (Bodzas, Kodytek & Zidek, 2020).

The images underwent preprocessing including resizing and normalization. Then, to
mitigate data imbalance, we applied data augmentation specifically to the benign class.
Subsequently, the pre-processed images are inputted into our customized convolutional
neural network (CNN), ALL-Net. This model is designed to identify complex features
within the images and classify them into categories: benign (hematogones) and malignant
subtypes of acute lymphoblastic leukemia (ALL) such as Early-B, Pre-B, and Pro-B.
Finally, we evaluated the proposed CNN model on both augmented and unaugmented
image datasets and rigorously evaluated the proposed model performance using various
evaluation metrics. Additionally, to understand the mechanism behind the decision-
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making process of the CNN, we employed explainable Artificial Intelligence (XAI)
algorithms, specifically the Local Interpretable Model-Agnostic Explanations (LIME)
algorithm. This algorithm highlights the most significant regions in the image that
influenced the CNNmodel’s classification into its respective class. XAI is crucial in medical
diagnosis because it helps doctors understand how AI makes decisions, thereby building
trust in its use. XAI makes sure that the decisions are accurate and free from biases. This
transparency also helps find mistakes and makes it easier to explain medical decisions to
patients and regulators improving healthcare overall.

The main contributions of this work are:

1. We proposed a customized CNN model, ALL-Net, which is used to divide the PBS
images into classes of benign, which represents the hematogones, and the malignant
ALL subtypes—Early-B, Pre-B, Pro-B.

2. We used the PBS image dataset from Kaggle, and preprocessed them by resizing and
normalizing. Then, we performed the data augmentation on the images of the benign
class to solve the data imbalance problem.

3. To address the black-box nature of the ALL-Net model, we employed XAI, specifically
the LIME algorithm, to enhance the interpretability of the results.

This article is structured to first explore existing research on leukemia detection,
followed by an examination of foundational concepts relevant to this study. It then delves
into a detailed description of the technique and application of the proposed ALL-Net

Figure 1 Benign and ALL sub-types. Full-size DOI: 10.7717/peerj-cs.2600/fig-1
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model. Subsequently, it presents the results generated by the ALL-Net model and their
interpretations. Finally, the article concludes by discussing future research directions.

LITERATURE REVIEW
Several studies have investigated the use of deep learning models—mostly CNN-based
architectures—for the automatic categorization and identification of leukemia and ALL
from various forms of data ranging from symptoms of the patient, and blood test reports to
images of blood smears in the last few years. Numerous publicly accessible datasets,
including the American Society of Hematology (ASH) Image Bank, ALL-IDB Acute
Lymphoblastic Leukemia Image Database for Image Processing (ALL-IDB) (Labati, Piuri
& Scotti, 2011), ALL Challenge, and locally gathered datasets from the IEEE International
Symposium on Biomedical Imaging (ISBI) 2019, have been used in the investigations.

One of the earliest studies in this domain was conducted by Arivuselvam & Sudha
(2022), who employed a Deep CNN (DCNN) classifier along with traditional machine
learning models like support vector machines, decision trees, naive bayes, and random
forests. They achieved impressive accuracies of 99.2% and 98.4% on the ASH Image Bank
and ALL-IDB datasets, respectively, using the DCNN model. However, their study is
limited to a binary classification of ALL vs. non-ALL cases. Subsequently, Al-Bashir,
Khnouf & Bany Issa (2024) compared the performance of different CNN-based algorithms,
including AlexNet, DenseNet, ResNet, and VGG16, on the same datasets. They reported
an accuracy of 94%, showcasing the potential of these pre-trained models for ALL
classification. Rahman et al. (2023) considered a more comprehensive approach by
addressing multiclass blood cancer classification using deep CNN models like VGG19,
ResNet50, InceptionV3, and Xception, along with traditional machine learning models.
They achieved an impressive accuracy of 99.84% on the ALL-IDB1 and ALL-IDB2
datasets, demonstrating the superiority of deep learning techniques for this task. Shafique
& Tehsin (2018) explored the use of ensemble approaches, combining pre-trained CNN
models such as ResNet50, VGG16, and InceptionV3. They reported an accuracy of 99.8%
on the ALL_IDB1 and ALL_IDB2 datasets using an ensemble of these models, highlighting
the potential of ensemble techniques for improving performance. Sampathila et al. (2022)
proposed a customized deep learning classifier called ALLNET, specifically designed for
ALL detection using the ALL Challenge dataset from ISBI 2019. With a 95.54% accuracy
rate, their model proved the usefulness of customized architectures for this kind of work.
While most studies focused on binary or multiclass classification, He et al. (2020) took a
different approach by using CNN models to predict leukemia-related transcription factor
binding sites from DNA sequence data, achieving an accuracy of 75%.

Some works were also executed in the field of medical image analysis using XAI. Van
der Velden et al. (2022) provide a comprehensive review of the current state and
developments in XAI techniques applied to medical image analysis. The survey categorizes
various XAI approaches and discusses their applications across different medical imaging
tasks such as chest, skin, kidney, cardiovascular, eye, etc. Special emphasis is placed on the
adaptation of computer vision-based XAI methods to medical imaging, highlighting the
inclusion of domain-specific knowledge. Regarding the works done on the diagnosis of
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leukemia using medical data and XAI, the authors of Islam, Assaduzzaman & Hasan
(2024) proposed an explainable supervised machine learning model designed to accurately
predict early-stage leukemia based solely on symptoms. A survey conducted with both
leukemia and non-leukemia patients identified sixteen essential features. The proposed
model, centered around a decision tree classifier, outperforms other algorithms by
generating transparent rules directly applicable in clinical settings. Employing the apriori
algorithm for generating these rules, the study conducts feature analysis and selection to
underscore individual feature strengths and enhance model performance. The model
demonstrated an impressive perfomance, achieving 97.45% accuracy, a Matthew’s
correlation coefficient of 0.63, and an area under the receiver operating characteristic curve
(ROC) of 0.783 on the test dataset. However, the data used in their study is tabular, unlike
the image-based data utilized in our research.

It is worth observing that the above mentioned works varied in terms of dataset size,
ranging from a few hundred to thousands of images, which could potentially impact the
generalizability of the results. Additionally, some studies utilized locally collected datasets,
which may introduce biases or variations in image quality and labeling. Eventually, the
analysis of the literature shows how much progress has been made in using deep learning
methods—in particular, CNN-based models—and XAI for medical image analysis.
Through this work, our objective is to develop a system that leverages interpretable AI
methods to enhance the interpretability of CNN-based image analysis. This approach not
only addresses issues such as dataset biases and scarce data availability but also aims to
utilize a large, diverse image dataset to improve the generalizability of the CNN model for
diagnostic purposes.

PRELIMINARY CONCEPTS
In this section, a brief introduction to CNN, data augmentation, and XAI, the concepts
that are used in this article is given.

Convolutional neural networks
A CNN (O’shea & Nash, 2015) is a deep learning algorithm specifically made for image
processing and analysis. CNNs draw inspiration from the structure of the visual cortex in
the human brain and have brought significant changes in fields like computer vision and
image recognition. CNNs are made up of several layers, each of which has a distinct
function throughout the picture analysis process. Here’s a brief overview of the main types
of layers in a typical CNN as follows:

1. Convolutional layer: The basic component of a CNN is the convolutional layer. The
input image is subjected to convolution operations with the aid of filters, commonly
referred to as kernels. These filters or kernels, move across the input image to pick up
characteristics like edges and patterns. The output of this layer is a feature map that
includes all of the image’s significant features.

2. Activation layer (ReLU): To add non-linearity to the network, a non-linear activation
function is added following each convolutional operation. In order to aid the network in
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learning intricate patterns and features, the Rectified Linear Unit (ReLU) activation
function (Agarap, 2018) substitutes zero for negative pixel values.

3. Pooling layer: The feature maps produced by the convolutional layers are made smaller
in size by the pooling layer. It uses procedures like max pooling and average pooling to
combine data from nearby pixels. This layer contributes to reducing the network’s
computational complexity.

4. Fully connected layer (dense layer): Classification is performed by the fully connected
layer, utilizing features extracted by preceding layers. The network can learn intricate
correlations among these features and generate predictions based on the input data due
to its connectivity, linking each neuron in one layer with every neuron in the layer
above. In image classification tasks, softmax activation units (Kouretas & Paliouras,
2019) in the output layer produce probability scores for each class.

Typically, these layers are placed one after the other to construct the CNN’s
architecture. As data moves through these layers, the network gains the ability to extract
progressively more abstract properties from the input image, which eventually helps it to
make precise predictions or classifications. In summary, CNNs are effective tools for
applications like object detection, image recognition, and medical image analysis because
they automatically learn information about the image through the use of convolutional,
activation, pooling, and fully connected layers.

DATA AUGMENTATION
Data augmentation is a technique used in machine learning and deep learning, particularly
in tasks involving images, where the original dataset is enhanced by applying various
changes to the images, such as rotation, translation, flipping, and color adjustments. By
creating these modified versions of the original images, the training dataset effectively
expands, which helps the model learn to generalize better to different variations and
conditions it might encounter during deployment. This technique is crucial for improving
model performance and robustness, especially when the available training data is limited
or when dealing with diverse real-world scenarios. In data augmentation for image
processing, several operations can be performed to generate variations of the original
images. Some common operations can be seen in Table 1. The process of data
augmentation can be understood visually in Fig. 2. The input image, displayed on the left
side of the figure, is a benign PBS image. The data augmentation techniques are applied to
enhance the CNN model’s ability to learn and generalize from the image.

Explainable AI
XAI refers to a set of algorithms and methods developed to ensure that the workings of
artificial intelligence (AI) systems can be understood by humans. The primary goal of XAI
is to make AI systems more transparent and their decision-making processes more
accessible and comprehensible to users, stakeholders, and regulators. This is particularly
important in applications where AI decisions have significant impacts, such as in
healthcare, finance, and criminal justice. XAI techniques are broadly classified into two

Thiriveedhi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2600 7/25

http://dx.doi.org/10.7717/peerj-cs.2600
https://peerj.com/computer-science/


categories: model-agnostic and model-specific. Model-agnostic techniques can be
deployed on any ML or CNN model regardless of their internal structure. Some of these
include LIME (Local Interpretable Model-agnostic Explanations) and SHAP (SHapley

Figure 2 Data augmentation example on a benign class image. Full-size DOI: 10.7717/peerj-cs.2600/fig-2

Table 1 Data augmentation operations.

Operation Description

Rotation Rotating the image by a certain angle

Translation Shifting the image horizontally or vertically

Scaling Resizing the image while maintaining its aspect ratio

Shearing Tilting the image along a certain axis

Flipping Mirroring the image horizontally or vertically

Color jittering Adjusting contrast, brightness, saturation

Noise injection Adding random noise to the image

Crop and pad Cropping or padding the image to a specific size

Elastic deformation Distorting the image using elastic transformations

Random erasing Randomly erasing parts of the image
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Additive exPlanations) (Lundberg & Lee, 2017). Model-specific techniques are designed for
specific types of models and leverage their unique characteristics for explainability. These
include decision trees and Grad-CAM (Selvaraju et al., 2016). In this work, we used LIME
to interpret the results generated by the proposed ALL-Net model.

LIME

LIME explains individual predictions made by complex image classification models by
approximating the model’s behavior locally (Ribeiro, Singh & Guestrin, 2018). For image
classification, LIME first segments the image into superpixels, which are contiguous
regions with similar characteristics. It then generates a set of perturbed images by
randomly altering these superpixels, such as turning some regions on and off. The original
model is queried to obtain prediction probabilities for each perturbed image. These
perturbed instances are weighted based on their similarity to the original image. Finally,
LIME trains an interpretable surrogate model, such as a linear model, on these weighted
instances to approximate the original model’s decision-making process. The coefficients of
the surrogate model reveal the importance of each superpixel, providing a visual and
understandable explanation of the original model’s prediction.

Mathematically, LIME approximates the local behavior of the CNN by fitting a linear
surrogate model to these perturbed instances. Let f be the original complex model, and x
be the input image. For each perturbed version x0 of the input x, LIME computes the
prediction f ðx0Þ and assigns a weight pðx; x0Þ that measures the similarity between the
original and the perturbed instance. The goal is to solve:

argming2G
X

x0
pðx; x0Þðf ðx0Þ � gðx0ÞÞ2 þ xðgÞ (1)

where g is the linear surrogate model, G represents the class of interpretable models, and
xðgÞ is a regularization term for ensuring simplicity in g. The surrogate model g
approximates the decision boundary of the original CNN model in the local
neighbourhood of x. The coefficients of g reveal the importance of each superpixel, visually
highlighting the most influential regions in the original image, offering an interpretable
explanation for the model’s prediction.

METHODOLOGY
This section describes our proposed work which is arranged as follows: (a) Data collection.
(b) Pre-processing of the dataset. (c) Training the proposed ALL-Net model to detect ALL.
(d) Using the LIME algorithm to interpret the result output by ALL-Net. The entire
process can be visualized in Fig. 3.

Data collection
For this study, we considered the dataset consisting of 3,256 PBS images from 89 suspected
ALL patients from Kaggle (Aria et al., 2021). The Taleqani Hospital’s bone marrow
laboratory produced the images for this dataset (Tehran, Iran). This dataset comprises two
classes benign and malignant. The distribution of images can be seen in the Table 2. The

Thiriveedhi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2600 9/25

http://dx.doi.org/10.7717/peerj-cs.2600
https://peerj.com/computer-science/


benign class consists of hematogones PBS images which are quite similar to ALL. The
malignant class consists of PBS images of ALL subtypes: Early-B, Pre-B, and Pro-B ALL.
The DOI for the dataset repository is 10.34740/KAGGLE/DSV/2175623.

Figure 3 Flow of the proposed ALL-Net model with data augmentation. Full-size DOI: 10.7717/peerj-cs.2600/fig-3

Table 2 Distribution of PBS images.

Type Subtypes Number of images

Benign Hematogones 504

Malignant (ALL) Early-B 985

Pre-B 963

Pro-B 804

Total 3,256
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Preprocessing of dataset
All the images in the dataset are resized to dimensions of 224 × 224 pixels with three color
channels (RGB), resulting in a shape of 224 × 224 × 3. This resizing ensures uniformity
across the dataset, facilitating consistent input dimensions for the neural network.
Additionally, the pixel values of each image are normalized to a range between 0 and 1.
This normalization is achieved by dividing each pixel value by 255, as 255 is the maximum
possible value for a pixel in an eight-bit image. The normalization process can be expressed
mathematically by the Eq. (2). This normalization step is crucial as it helps to improve the
convergence speed and stability of the neural network during training, ensuring that the
model learns more efficiently by keeping the input data within a consistent and
manageable range.

Normalized pixel value ¼ Pixel value
255

: (2)

The distribution of blood cell images of each class can be observed in Table 2. From
table, it is clear that there are fewer images in the benign class than in the other classes. This
may create a data imbalance problem (Singamsetty et al., 2024) in which a model does not
learn much about a class with fewer images compared to the other classes with more
images. To overcome and tackle the data imbalance problem, images are added to the
benign class using the data augmentation technique. For this dataset, we applied the image
or data augmentation only on the benign class images with the parameters mentioned in
Table 3. Before and after performing data augmentation, the distribution of images for
each class can be seen in Fig. 4. All four classes now have images in a similar range. The
proposed ALL-Net model is then processed on both augmented and unaugmented datasets
in the following sections, and the resulting outcomes are examined in the results and
discussions section.

Proposed convolution neural network
Next, with an 80:20 ratio, the pre-processed image dataset is split into two subsets: the
training set and the testing set. This choice guarantees the model access to a significant
volume of data for parameter adjustment and learning, which could result in improved

Table 3 Data augmentation parameters applied on the PBS image dataset.

Operation Value

Rotation range 10

Horizontal flip True

Height shift range 0.1

Shear range 0.2

Vertical flip False

Width shift range 0.1

Fill mode nearest

Zoom range 0.2
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training and better performance on unknown data during testing. The entire proposed
architecture of the proposed ALL-Net model can be visualized in Fig. 5. The ALL-Net model
commences with an input layer accommodating pictures of dimensions 224 × 224 × 3.
Three blocks are then routed across the input image. Each block comprises a max-pooling
layer and a convolution layer with a ReLU activation (Lundberg & Lee, 2017) function. To
lower spatial dimensions and computational complexity, the first block includes a max
pooling layer with a size of 2 × 2 and a convolution layer with 64 filters and a 3 × 3 filter size.
The second block consists of a max pooling layer with dimensions of 2 × 2 and a
convolution layer with 128 filters of 3 × 3 size. The final component of the third block is the
max pooling layer, which is 2 × 2, and the third convolution layer, which has 256 filters of
size 3 × 3. A global average pooling layer is used after the blocks to combine spatial
information from different feature maps and enable efficient feature representation. The 2D
feature maps are then converted into a 1D vector using a flatten layer. To understand
intricate patterns and relationships found in the data, the flattened feature vector is
subsequently fed through a succession of densely or fully connected layers, each consisting
of a particular number of neurons. The initial dense layer consists of 256 neurons followed
by a ReLu layer. Then, 512 neurons in a second dense layer are used, and ReLU activation
occurs once more. The final dense layer has 1,024 neurons. To avoid overfitting, a dropout
layer is added with a rate of 0.2 after the three fully connected layers, randomly dropping a
fraction of 20 percent of neurons during training. The network concludes with a dense layer
comprising a number of neurons equal to the output classes, which in this case is four. The
softmax activation function is utilized to compute the probability distribution across the

Figure 4 Distribution of images before data augmentation. Full-size DOI: 10.7717/peerj-cs.2600/fig-4
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classes, with each neuron in this layer corresponding to one class. After designing the
architecture, we optimized the model using the Adam optimizer, which facilitates efficient
convergence. For the loss function, we employed sparse categorical cross-entropy, well-
suited for multi-class classification. The sparse categorical cross-entropy loss is defined as:

Loss ¼ � 1
N

XN

i¼1

logðŷi;trueÞ (3)

where ŷi;true is the predicted probability of the true class for sample i.
Next, with a batch size of 32 and the number of epochs equal to 50, ALL-Net is trained

on both augmented and unaugmented image datasets. Ultimately, the performance of the
trained ALL-Net model is assessed using common evaluation measures, including
precision, f1 score, recall, and accuracy on an independent test set.

The code for this program is written in Python with Jupyter as an Integrated
Development Environment (IDE). The entire project is simulated on a DELL XPS 13
computer with the following specifications: Intel i5 processor, 8GB RAM, and 64-bit OS,
x64-based processor.

RESULTS AND DISCUSSION
In this section, we discuss the performance of our proposed ALL-Net model on the PBS
image dataset and compare the results with some existing works. We used the following
metrics to evaluate our model.

Figure 5 Architecture of the proposed CNN. Full-size DOI: 10.7717/peerj-cs.2600/fig-5
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1. Accuracy: Accuracy is the ratio of correctly classified samples to the total number of
samples. Its mathematical formula is:

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

: (4)

2. Precision: Precision is the ratio of the number of true positive samples to all positive
predictions made by the model. Its mathematical formula is:

Precision ¼ TP
TP þ FP

: (5)

3. Recall or sensitivity: Recall is the ratio of true positive predictions to all actual positive
samples in the dataset. Its mathematical formula is:

Recall ¼ TP
TP þ FN

: (6)

4. F1 score: F1 score is the harmonic mean of precision and recall. It provides a balance
between precision and recall. Its mathematical formula is:

F1 ¼ 2 � Precision � Recall
Precisionþ Recall

: (7)

In the above equations:

. TP–True positives: The predicted class is the same as the actual class

. TN–True negatives: The predicted class is the same as the actual class

. FP–False positives: The model predicted positive even though the actual sample is
negative

. FN–False negatives: The model predicted the result as negative even though the actual
sample is positive

For both the unaugmented and augmented image datasets, the results of training and
testing data on the ALL-Net model are detailed in Tables 4, and 5. We used recall,
accuracy, precision, and F1-score to evaluate the model. For the unaugmented dataset, the
testing accuracy is 97.85% and the training accuracy is 98.42%. Figures 6 and 7 illustrate
the epochs vs. loss and epochs vs. accuracy graphs for this dataset, where it can be observed
that the accuracy curve shows an upward trend, and the loss curve shows a downward
trend. For the augmented image dataset, the testing accuracy improved to 99.32%, and the
training accuracy increased to 99.59%. Figures 8 and 9 depict the epochs vs. loss and
epochs vs. accuracy graphs for this dataset. Similar to the unaugmented dataset, the
accuracy curve for the augmented dataset shows an upward trend, and the loss curve
displays a downward trend. These trends for graphs of both datasets further confirm that
our proposed model is fitting correctly, demonstrating robustness and effectiveness in
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Table 4 Training and testing data results for unaugmented image dataset.

Category Precision Recall F1-Score Accuracy

Training Benign 99% 100% 99% 98.42%

Early 100% 99% 100%

Pre 100% 100% 100%

Pro 100% 100% 100%

Testing Benign 93% 97% 95% 97.85%

Early 98% 95% 97%

Pre 100% 99% 100%

Pro 99% 100% 100%

Table 5 Training and testing data results for augmented image dataset.

Category Precision Recall F1-Score Accuracy

Training Benign 100% 100% 100% 99.59%

Early 100% 100% 100%

Pre 100% 99% 100%

Pro 99% 100% 99%

Testing Benign 100% 100% 100% 99.32%

Early 98% 100% 99%

Pre 100% 98% 99%

Pro 99% 100% 100%

Figure 6 Epochs vs. Loss graph for unaugmented data. Full-size DOI: 10.7717/peerj-cs.2600/fig-6
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learning from both unaugmented and augmented image data. This comprehensive
evaluation highlights the model’s capability to generalize well across different types of
datasets.

In addition to accuracy, the other metrics of the model’s performance are as follows. For
the unaugmented training dataset, the model achieved mean values of 99.75% for

Figure 7 Epoch vs. Accuracy graph for unaugmented data.
Full-size DOI: 10.7717/peerj-cs.2600/fig-7

Figure 8 Accuracy vs. Epoch graph for augmented data. Full-size DOI: 10.7717/peerj-cs.2600/fig-8
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precision, recall, and F1 score. On the unaugmented testing set, these metrics were 97.5%,
97.75%, and 98.0%, respectively. For the augmented training dataset, the precision, recall,
and F1 score remained consistent at 99.75%. However, on the augmented test set, the
model achieved a precision of 99.25%, with recall and F1 score both reaching 99.5%.

The confusion matrix in Fig. 10 for the ALL-Net model applied to the unaugmented
dataset reveals that a significant number of images in the benign class are misclassified.
This misclassification indicates that the model struggled to accurately distinguish benign
images from other classes due to the class imbalance problem. However, after applying
data augmentation techniques to the dataset, there is a notable improvement in the
model’s performance. The updated confusion matrix, shown in Fig. 11, demonstrates that
the number of misclassified images in the benign class is reduced to zero. This reduction
highlights the effectiveness of data augmentation in enhancing the model’s ability to
correctly classify benign images, thereby improving the overall accuracy and robustness of
our customized CNN ALL-Net model.

Our proposed ALL-Net model, when fine-tuned on the target dataset with data
augmentation, demonstrates superior performance compared to many pretrained models
which are also fine-tuned on the same augmented dataset. Table 6 compares the testing
data results of ALL-Net with various pretrained CNNs used as feature extractors by
Ghaderzadeh et al. (2022). Our ALL-Net outperformed all pretrained CNN models except
for DenseNet201, which achieved a slightly higher accuracy of 99.85% compared to ALL-
Net’s 99.32%. Despite this slight difference in accuracy, ALL-Net is significantly less
complex than DenseNet201, which comprises numerous layers. A reduced number of
layers implies that our model can operate faster than those with more layers. The results

Figure 9 Loss vs. Epoch graph for Augmented data. Full-size DOI: 10.7717/peerj-cs.2600/fig-9
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align with our main objective: highlighting the need for a more customized and less
complex model, such as ALL-Net, specifically designed for ALL classification.

For interpretation of the results generated by ALL-Net, we utilized the XAI technique
LIME. It allows us to highlight the regions in each image that contribute most significantly
to the model’s classification decision for a given class. For instance, consider the image
displayed in Fig. 12, which belongs to the “Pre” class. ALL-Net correctly classifies this
image as “Pre”. LIME is then applied by perturbing the input image 1,000 times (a default

Figure 10 Confusion matrix for CNN on unaugmented PBS images.
Full-size DOI: 10.7717/peerj-cs.2600/fig-10

Figure 11 Confusion matrix for CNN on augmented PBS images.
Full-size DOI: 10.7717/peerj-cs.2600/fig-11
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value) and observing how these perturbations affect the model’s predictions. This process
allows us to identify the areas that most influence the model’s decision by generating the
explanations. As shown in Fig. 13, we overlay a mask on the image to indicate the top five
most influential regions for the ALL-Net model’s classification. Figure 14 further isolates

Table 6 A comparison of the testing accuracy of our proposed ALL-Net model vs. other pre-trained
networks that are used as feature extractors on the augmented dataset.

Network used Accuracy

EfficientNet 28.22%

MobileNetV3 50.15%

VGG-19 96.32%

Xception 96.70%

InceptionV3 96.93%

ResNet50V2 97.85%

VGG-16 98.01%

NASNetLarge 98.16%

DenseNet201 (Ghaderzadeh et al., 2022) 99.85%

Proposed ALL-Net 99.32%

Figure 12 Pre-B ALL image. Full-size DOI: 10.7717/peerj-cs.2600/fig-12
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Figure 13 Full image with regions contributing the most.
Full-size DOI: 10.7717/peerj-cs.2600/fig-13

Figure 14 Image with only the regions contributing the most.
Full-size DOI: 10.7717/peerj-cs.2600/fig-14
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Figure 15 Comparison of LIME mask and heatmaps on random PBS images. Full-size DOI: 10.7717/peerj-cs.2600/fig-15
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these regions, focusing solely on the areas that were most critical for the model’s
classification.

Figure 15 image further demonstrates the application of the LIME to interpret model
predictions for classifying different types of blood cells. Each row corresponds to a distinct
class (Benign, Early-B, Pre-B, and Pro-B), showing three columns: the input image, the
LIME mask, and a heatmap of contributing regions. The input image provides the original
cell sample, while the LIME mask highlights the top five regions that contributed most to
the model’s classification, outlined in black. In the heatmap column, the contributing
regions are color-coded to indicate their influence, with red representing areas that
positively contribute to the model’s classification and blue representing areas with negative
contributions. This visualization helps reveal the specific areas the model focuses on for
each classification, enabling a more interpretable understanding of how the model
differentiates between the various cell types. For benign class images, though the model
predicts the images correctly, the LIME mask and the heatmap are not generated for that
class because there are no regions in the image to classify that the image belongs to a
malignant or cancerous class. This approach provides valuable insight into the specific
image features ALL-Net relies on to make its predictions, enhancing the interpretability
and transparency of the model’s decision-making process.

CONCLUSION AND FUTURE WORK
To conclude, our work demonstrates the potential of ALL-Net in detecting ALL from PBS
images. Using a dataset comprising 3,256 PBS images across four classes of Benign, Early,
Pre and Pro, our ALL-Net model attained an accuracy of 97.85%. Additionally, we
addressed the class imbalance challenge through data augmentation techniques,
particularly the benign class. This showed a substantial improvement in accuracy, reaching
99.32%. Overall, this work shows the capability of deep learning in transforming medical
diagnoses and enhancing patient care, and it adds to the expanding body of literature on
CNN-based approaches for leukemia identification. We can take advantage of cutting-edge
technology and creative approaches to further the area of medical image analysis and
eventually improve patient outcomes globally.

Moving forward, further research could explore additional techniques to enhance model
performance, such as fine-tuning model architectures, optimizing hyperparameters, and
exploring advanced data augmentation strategies. Also, to make predictions more accurate
and help the models learn, enormous volumes of data are required. However, there is
currently limited medical data available. In addition, patients must feel certain that their
information will not be altered or exploited before providing it. Therefore, adding a
security feature to this model will be quite beneficial.
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