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ABSTRACT

Temporal knowledge graphs (TKGs) are critical tools for capturing the dynamic
nature of facts that evolve over time, making them highly valuable in a broad
spectrum of intelligent applications. In the domain of temporal knowledge graph
extrapolation reasoning, the prediction of future occurrences is of great significance
and presents considerable obstacles. While current models consider the fact changes
over time and recognize that historical facts may recur, they often overlook the
influence of past events on future predictions. Motivated by these considerations, this
work introduces a novel temporal knowledge graph reasoning model, named
Temporal Reasoning with Recurrent Encoding and Contrastive Learning (TRCL),
which integrates recurrent encoding and contrastive learning techniques. The
proposed model has the ability to capture the evolution of historical facts, generating
representations of entities and relationships through recurrent encoding.
Additionally, TRCL incorporates a global historical matrix to account for repeated
historical occurrences and employs contrastive learning to alleviate the interference
of historical facts in predicting future events. The TKG reasoning outcomes are
subsequently derived through a time decoder. A quantity of experiments conducted
on four benchmark datasets demonstrate the exceptional performance of the
proposed TRCL model across a range of metrics, surpassing state-of-the-art TKG
reasoning models. When compared to the strong baseline Time-Guided Recurrent
Graph Network (TiRGN) model, the proposed TRCL achieves 1.03% improvements
on ICEWS14 using mean reciprocal rank (MRR) evaluation metric. This innovative
proposed method not only enhances the accuracy of TKG extrapolation, but also sets
a new standard for robustness in dynamic knowledge graph applications, paving the
way for future research and practical applications in predictive intelligence systems.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Sentiment Analysis, Neural
Networks
Keywords Temporal knowledge graph reasoning, Recurrent encoding, Contrastive learning

INTRODUCTION

Knowledge graphs (KGs) act as repositories of factual information within the human
world comprising a large array of data utilized throughout different intelligent
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applications. These applications extend from information retrieval (Gaur et al., 2022;
Liu et al., 2018; Wu et al., 2023a), recommendation systems (Wang et al., 2018, 2019;
Zhang et al., 2021, 2023), and question answering (Bakhshi et al., 2022; Zhang et al., 20220,
2022c). However, given the dynamic nature of facts, conventional KGs struggle to
accurately depict their evolution. To address this limitation, the notion of temporal
knowledge graphs (TKGs) has emerged. Temporal knowledge graphs are designed to
capture the temporal aspect of facts enabling the representation of evolving information
over time. Each event in TKGs can be expressed by a quadruple alongside a timestamp, i.e.,
(subject entity, relation, object entity, timestamp). For example, a quadruple (NBA,
champion, Golden State Warriors, 2017) represents the Golden State Warriors won the
NBA champion in 2017.

Although existing TKGs encompass a wealth of information, they often encounter issue
with incomplete data. This has led to the increasing trends of research in TKG reasoning.
Thus, TKG reasoning aims to fill these gaps by making predictions on missing entities. For
example, the TKG model is based on historical facts about NBA champions before 2018 to
complete query (NBA, champion, ?, 2018). TKG reasoning can be separated into two types
according to different reasoning timestamps, namely interpolation reasoning and
extrapolation reasoning (Jin et al., 2019). Given the temporal knowledge graph with
timestamps ranging from t1 to tn, the interpolation reasoning (Wu et al., 2022; Xu et al,
2020) objective is to infer lost facts that occurred at timestamp t, where t; < t < t,.
Unlike the interpolation reasoning objective, the extrapolation reasoning (Li ef al., 2021b;
Zhu et al., 2021) objective is to forecast facts that occur at future timestamp t, where
t < t,. Therefore, the extrapolation reasoning objective can predict events that happen in
the future, which is much more practical and challenging. Our work is to study TKG
reasoning based on extrapolation reasoning.

At present, a prevailing approach in temporal knowledge graphs extrapolation
reasoning involves structuring temporal knowledge graphs into graph representations.
This group entails representing the fact set corresponding to each timestamp as a snapshot
within a graph structure. Then, the graph convolution network (GCN) model is employed
to identify the graph structure representation of the KG snapshot corresponding to each
timestamp, while a double recurrent mechanism is utilized to seize temporal interactions
among diverse knowledge graph (KG) snapshots. This approach comprehensively
accounts for the evolution of historical facts. Elucidating dependency relationships among
them. Prominent models, such as recurrent event network (RE-NET) (Jin et al., 2019),
GCN-based Recurrent Evolution network (RE-GCN) (Li et al., 2021b), and Complex
Evolutional Network (CEN) (Li et al., 2022a) models exemplify this approach. Some
workers have also explored the influence of recurring historical data on TKG reasoning, as
evidenced by Temporal Copy-Generation Network (CyGNet) (Zhu et al., 2021) and
Contrastive Event Network (CENET) (Xu et al., 2023b) models. The CENET model,
incorporates contrastive learning aim to learn the correlation between historical and non-
historical facts, albeit overlooking the evolving nature of historical facts resulting in
unsatisfactory experimental outcomes. Meanwhile, the TiRGN (Li, Sun ¢ Zhao, 2022)

Liu et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2595 2/21


http://dx.doi.org/10.7717/peerj-cs.2595
https://peerj.com/computer-science/

PeerJ Computer Science

model uses the GCN and the gated recurrent unit to obtain the dependency relationship of
historical facts, and this model also considers the impact of repeated history facts on future
entity prediction. However, this model ignores the potential interference of repeated
history facts on future fact prediction. According to the aforesaid issues, this work put
forward a original TKG reasoning model, termed Temporal Reasoning with Recurrent
Encoding and Contrastive Learning (TRCL). This model employs recurrent encoding to
capture the dynamic relationships among facts, generating representations of entities and
relationships. Then, the model integrates a global historical matrix to account for the
influence of repeated historical facts on entity prediction. In addition, leveraging
contrastive learning, TRCL mitigates the interference of historical facts on future entity
prediction. Finally, the model obtains the results of TKG inference tasks through a time
decoder. Therefore, the primary contributions of this article are as described below:

e A TRCL model for TKG reasoning is proposed, which not only captures the dependency
relationship among historical facts but also addresses the positive and negative
influences of repeated historical facts on entity prediction.

e A recurrent encoder is developed using the graph convolution network and the double
recurrent mechanism. This encoder effectively captures the dependency relationships
among historical facts. Additionally, this work proposes a historical matrix that
comprehensively accounts for repeated historical facts. In addition, the TRCL model
integrates contrastive learning to alleviate the impact of irrelevant historical data on
entity prediction. Finally, the developed model uses a decoder containing periodic time
vectors to derive TKG reasoning outcomes.

e Extensive testing was performed on multiple public datasets to strengthen the validity
and generalizability of the TRCL model providing robust evidence on its effectiveness
across diverse scenarios.

RELATED WORK

Temporal knowledge graph reasoning

TKG reasoning is segmented into interpolation reasoning and extrapolation reasoning
based on different timestamps. Interpolation reasoning refers to inferring facts that are
missing in historical timestamp. For example, Temporal TransE (TTransE) (Leblay ¢
Chekol, 2018) incorporates timestamp vectors to represent temporal transformations
between entities. Hyperplane-based Temporally aware knowledge graph Embedding
(HyTE) introduced by Dasgupta, Ray ¢ Talukdar (2018) represents time as a hyperplane
projects entities and relationships onto it to encode temporal information. TNTComplEx
(Lacroix, Obozinski ¢» Usunier, 2020) employed tensor factorization, to model events with
added temporal information as fourth-order tensors. However, these methods have poor
ability to capture the evolution of facts and are not suitable for predicting entities in future
timestamps, thus prompting research into extrapolation reasoning. The objective of
extrapolation reasoning is to forecast facts in future timestamps. Know-Evolve by Trivedi
et al. (2017) models events using time point processes and predicts future occurrences
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based on the conditional probabilities. RE-NET (Jin et al., 2019) uses neighborhood
aggregators and recurrent event encoders to encode historical facts. RE-NET uses graph
structure information but this model only considers local structures. xERTE (Han et al.,
2020) establishes an interpretable prediction model based on subgraph search. CyGNet
(Zhu et al., 2021) applies repeated facts in historical sets to predict high-frequency entities.
TANGO (Han et al., 2021) models the temporal knowledge graph using neural ordinary
differential equations with continuous-time reasoning capabilities. TIme Traveler (TITer)
by Sun et al. (2021) utilizes reinforcement learning techniques to predict target entities
based on path search. Similar to TITer, Clue Searching and Temporal Reasoning
(CluSTeR) (Li et al., 2021a) also uses reinforcement learning to search for possible target
entities. RE-GCN (Li ef al.,, 2021b) and its extended CEN (Li et al., 2022a) model the
evolution of entities and relationships at each timestamp to obtain local historical
dependencies, and they introduce static attributes to improve prediction results. However,
they do not fully utilize long-term information. EvoExplor (Zhang et al., 2022a) achieves
entity prediction by capturing complex evolutionary theories and community structures of
historical facts. Graph Hawkes Transformer (GHT) (Sun et al., 2022) proposes a
Transformer based point-to-point process model for capturing structural and temporal
information. TLogic (Liu et al., 2022) and TLmod (Bai et al., 2023) use temporal logic
regulations collected from temporal knowledge graphs to predict entities. HiSMatch

(Li et al., 2022b) incorporated two structural encoders to compute representations of
query-related history and candidate-related history, and integrates background knowledge
into entity representations. TEemporal logiCal grapH networkS (TECHS) (Lin et al., 2023)
introduces a temporal graph encoder and a logical decoder for TKG reasoning, and puts
forward a forward message-passing mechanism. The Pre-trained Language Model with
Prompts for temporal Knowledge graph completion (PPT) (Xu et al., 2023a) transforms
the quadruple into input for the pre-trained model and converts the time intervals between
different timestamps into prompts to constituting coherent sentences with semantic
information. Lee et al. (2023) proposes a model to use in-context learning with large
language models for TKG reasoning. The proposed model transformed relevant historical
facts into prompts and earned prediction results through token probabilities. GenTKG
(Liao et al., 2024) capitalizes on a retrieval tactic on the ground of temporal logic rules and
valid fine-tuning with few-shot parameters for TKG reasoning. TiRGN (Li, Sun ¢ Zhao,
2022) considers the sequential, reduplicative and periodic patterns of historical facts.
TiRGN fully recognizes local and global history information. But TiRGN ignores the
interference of repeated history on entity prediction. CENET (Xu et al., 2023b) utilizes the
frequency of historical events and contrastive learning to obtain correlations between
historical and unhistorical events in order to predict matching entities. However CENET
does not consider the evolution of historical facts, resulting in poor performance.

Contrastive learning

Contrastive learning has been broadly utilized across several territories, such as
computer vision (Feng et al., 2023; Lin et al., 2023; Wu et al., 2023b), muti-modal learning
(Xie et al., 2023), audio processing (Hu et al., 2023) and natural language processing
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(Rethmeier & Augenstein, 2023; Zhao et al., 2023). Recently, contrastive learning has been
applied in static knowledge graph reasoning. SImKGC model (Wang et al., 2022)
introduced three types of negative samples for improving the efficiency of contrastive
learning. SimRE (Zhang et al., 2024) employed comparative learning to mimic the head
and body of rules, and incorporates rule features into the model through simple addition.
However contrastive learning has been less applied in TKG reasoning. The CENET model
is an example of using contrastive learning for TKG reasoning. This model utilizes
contrastive learning to recognize historical and non-historical facts, reducing the
interference of historical facts on entity prediction.

PRELIMINARIES

Relational graph convolutional network

To adapt GCNss for relational data, the relational graph convolutional network (R-GCN)
was developed. R-GCN effectively aggregate local neighborhood information with effect. It
is a model that can be used for message passing.

R-GCN was initially applied to static knowledge graph reasoning to predict missing
information in the knowledge graph. The node features of each layer in R-GCN are
calculated from the node features of the previous layer and the relationships between
nodes, and so as to hold on to the information of the nodes themselves, R-GCN also
incorporates self-connection.

I+1 1 I D, (1l
W — o[ S5 L WO+ wh )
reR jeNT b7
where NI denotes neighboring nodes with r-type edges connected to node i. ¢, is a
constant and it is broadly used to represent the in degree of node i. WY and W((]l) are
learnable parameters. | denotes the number of layers. hi(l) denotes the embedding

representation of node i in layer 1. W(()l)hi(l) denotes self-connection.

Contrastive learning

The learning framework of contrastive learning is based on discriminative representation
of contrastive thinking, primarily used for unsupervised or self-supervised representation
learning. The notion of contrastive learning is to compare a given sample with similar
positive samples and dissimilar negative samples (Chen et al., 2020). The use of contrastive
learning model and loss function, representations corresponding to positive samples are
closer in the representation space, whereas representations corresponding to negative
samples are further away in the representation space. In contrastive learning, a small batch
of randomly selected N samples is used to obtain enhanced samples. Given a pair of
positive samples (i, j), optimize the following loss function using the original and
augmented samples.

exp(zizj/7)
N

>, exp(zizi/T)

k=1 ki
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where 2N is the sum of the number of the original and augmented samples. z; is the
projection embedding of the sample i and T is a temperature parameter facilitating the
model learn from hard negatives, and - is dot product that is utilized for calculating the
similarity of samples between different views.

Temporal knowledge graph preliminaries
A TKG G is formalized as a sequence of KG snapshots, i.e., G = {G1,G,, ...,Gr}. Each
snapshot G, = (€, R, F;) can be seen as a directed multi-relational graph at timestamp t.
A fact in F, is denoted as a quadruple (s, 1, 0, t), where s, 0 € £ and r € R. It indicates that
there is a relationship r between s and o at time t.

The intention of TKG extrapolation is to forecast missing subject entity or object entity
in given query (s, 1, ¢, t) or (%, 1, o, t) according to previous historical KG snapshot
{G1,Ga, ..., Gi—1}. For simplicity, this article adds the quadruple of the inverse relation

(o, 1!

, s, t) in TKG. Therefore the extrapolation task is simplified to predict the object
entity. For each prediction task (s, r, ?, t) at time t, We employ the TKG snapshot sequence

of m timestamps before time t as G;_m.t—1.

THE PROPOSED METHODOLOGY

The prevailing focus in contemporary research on temporal knowledge graph reasoning
lies in extrapolation knowledge graph reasoning, aimed at forecasting future events in the
ground of historical occurrences. The proposed TRCL model addresses the task of
extrapolation relationship reasoning. To facilitate comprehension, this work introduces
the key notations, followed by a systematic presentation of each component of the model.
The flow chart of the proposed TRCL framework is displayed in Fig. 1.

Model overview of the proposed TRLC model

The TRLC model proposed in this article consists of four modules. The first module takes
the sequential information of k snapshots before the current timestamp t as input to the
recurrent encoder, obtaining the embedding of entities and relations. The second module
is to establish a global historical matrix, with the aim of integrating all repeated historical
information into knowledge graph reasoning. The third module is to use the loss function
of contrastive learning to diminish the effect of irrelevant historical information on the
model’s prediction of future events. The fourth module uses a time decoder to capture
periodic information, and ultimately this module can obtain the predicted results for each
entity. The entire framework of the proposed TRLC model is shown in Fig. 2.

Recurrent encoder

Many models, such as RE-GCN (Li et al., 2021b) CEN (Li et al., 2022a), and TiRGN (Li,
Sun & Zhao, 2022), have certified the excellent performance of the R-GCN model in
obtaining representations of entities and relations. Unlike RE-GCN, which simply adds
representations of entities and relations, TiRGN uses one-dimensional convolution to
better combine the representations of entities and relations. We apply the one-dimensional
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Figure 1 The flow chart of the proposed TRCL framework. The red box is the major contribution of
this work. Full-size Ka] DOT: 10.7717/peerj-cs.2595/fig-1
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(33
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Figure 2 The entire architecture of TRCL, consists of four modules: recurrent encoder module,

history matrix, contrastive learning module and time decoder module.
Full-size K&l DOT: 10.7717/peerj-cs.2595/fig-2

convolutional R-GCN introduced by TiRGN to encode entities and relationships at each
timestamp. The specific aggregation formula is as follows:

Wt =p (= S0 wh(e(Hon)) +wh, @

(s,r,oe]-'t)
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hl

where B! , bl |

<> h, , and r; denote the embedding representation of entities s, 0, and relation r in

the I™ layer at time t. w} and w} are learnable parameters for aggregating features and self-
loop in the I™ layer. f(-) means the Relu activation function. ¢(-) denotes the one-
dimensional convolution operator. ¢y represents the in-degree of entity o, it is a
normalizing constant. It is worth noting that when an entity has no relation with other
entities in a snapshot, a self-loop edge is still needed to update the representation of that
entity.

In order to insure that each query can contain the sequential dependencies of snapshots
at the previous timestamp, this article employs the gated recurrent unit (GRU) to gradually
renew the representations of entities and relations for each query, ultimately obtaining
entity and relation representations that incorporate temporal information from different
snapshots. The formula for updating the embeddings of entities in sequence of the
snapshots is as follows:

Ht = GRU(Ht—I, HF,GlCN) (4)

where Hy, H,_; ¢ RFF* are the d-dimensional entity embedding matrices at timestamp t
and t — 1, HRSEN ¢ R js the entity embedding matrix after encoding on the KG
snapshots at t — 1. H, is obtained by calculating H,_; and H*®N using the GRU model.

Resemble the formula for updating the embeddings of entities, the formula for updating
the embeddings of relations in sequence of the snapshots is as follows:

r; = [pooling(He_1, Vyy);1] o
R, = GRU(R,_1,R)) N

where V, ; represents the embedding matrices of entities correlated with relationship r at t.

R} is composed of all relations . R, R,_; € R®I*4denote the embedding matrices of
relations at timestamp t and t — 1. R, is gained by calculating R,_; and R} using the GRU
model.

Historical matrix

Considering that certain historical events occur repeatedly, this article establish a historical
matrix of entity sets to record whether the current query has appeared in history, in order
to provide historical constraints for contrastive learning and time decoder. Specifically, for
each query (s, 1, %, t), traverse all snapshots Gy._; before t to obtain the corresponding
historical entity matrix M, € RIEXIRI<IE 1f query (s, 1, ?, t) has appeared before t, the
value of the corresponding position in the matrix is 1, or else it is 0. We disregard the
frequency of quadruples occurrence here, focusing solely on the presence or absence of
historical events. This is because events that have repeated numerous times in the past may
not necessarily recure in the future. For example, Michael Jordan led the Chicago Bulls to
win 6 championships, and when Jordan withdrew from the Chicago Bulls, their chances of
winning the NBA championship decreased.

Contrastive learning
The CENET model as proposed in Xu et al. (2023b) uses statistical frequency of historical
events and contrastive learning to achieve knowledge graph reasoning. Through
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contrastive learning, it distinguishes whether the entity to be predicted by the query is a
historical entity or a unhistorical entity. This work draws inspiration from the CENET
model. Firstly, there are two types of queries. The first type is the entity to be predicted by
the query is a historical entity while the second type is the query is predicting non-
historical entities. By minimizing the loss function of contrastive learning to distinguish
different types of queries, the same type of query representation is more similar, while
different types of query representations are more different. Therefore, minimizing the loss
function of contrastive learning can avoid interfering with the prediction results of queries
due to irrelevant historical events. Note that the proposed TRCL model differs from the
CENET model whereby the module only considers the representation of entities and
relations, without considering the frequency of historical events.

The perspective in distinguishing queries is whether the lost entities belong to historical
or non-historical entities for each query. This work uses contrastive learning to separate
the representations of each query as much as possible. Assume that the embedding
representation of q is given:

vy = MLP(h®r). (7)

The queried information is encoded by MLP, where h denotes the embedding of entities
and r denotes the embedding of relations. The size of the training batches used in this
article is divided by timestamps, with each timestamp corresponding to quadruples being a
batch. The embedding of entities and relationships stems from the timestamp t
corresponding to the current query, so the embedding representation of the query does not
need to include time information.

In addition, let I, represent whether the missing object in query q has appeared in
history. If it has appeared, I, is 1, otherwise I, is 0. In detail, assuming the predicted result
of query q is o, if 0 has appeared before timestamp t, then I, = 1; otherwise, I, = 0.

Q)= U {mlla=1) ®)

At last, the loss function for contrastive learning is as follows:

exp (vgvie/T)
log )
Z Z ZaEM\{q} (vgva/T)

qu keQ(q

where M denotes the size of the batch. T denotes the temperature parameter. Referring to
the CENET model, we set it to 1. Q (q) represents the query m corresponding to the value
of I in the set M, except for query q. The aim of L, is to make the query representations of
the same variety closer.

Time decoder

The periodic and non-periodic events

Considering that some events occur periodically, for example, the NBA game is held once a
year; And some events are non-periodic, such as a certain player will not participate in
NBA games after retiring. Therefore, this article take into account the periodicity and
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aperiodicity of historical facts. The periodic and aperiodic time-dependent vectors are
designed according to Eqs. (9) and (10) by utilizing Time2Vec (Kazemi et al., 2019)

encoder.
T! = sin(wpt + ©p) (10)
T{P = Wapt + oy (11)

where Tf and T? P are d-dimensional periodic and aperiodic time vectors, wy, Pp> Whp and
¢y are learnable parameters.

Time decoder

After obtaining the representation of entity ki, and relationship r, as well as the periodic
representation of time T} and the non periodic representation of time T,*, we use the
convolution operation introduced in TiRGN to fuse the four representations mentioned
above. The specific formula is as follows:

K-1
m!' = ZWC(T,O)I’ISJ(H—FT) +we(7,0) 7 (n4+7) +we(1,0)TF (n47) +w (£,0) T} (n+7)(12)
7=0

M, = {m|i€[0,d— 1]} (13)

where c represents the amount of convolutional kernels, n denotes the entries in the output
vector ranging from 0 to d — 1. K denotes the kernel width. w, is learnable kernel
parameters. In addition, padding is applied ks, 1, Tf and T{" to get by, 7, T, TIP,
respectively. Each convolution kernel can be represented by a vector M, which can further
aligned to obtain the matrix O.

Conv-TransE (Shang et al., 2019) engineers a extraordinary convolution that
deformalizes ConvE without compromising prediction performance. Conv-TransE also
sustains the translational properties of entities and relationships. Therefore, this work
adopts Time ConvTransE as a time dependent decoder to calculate the scores of events, the
formula is as described below (Li, Sun ¢» Zhao, 2022; Shang et al., 2019):

¥ (hso i, T, TY) = ReLu(map(Or)W)Hy .
ph = softmaX(llJ (hs,tu T, TF’ T{))) (15)

where map denotes a feature map operator, and W € R°*¢ denotes a matrix for linear
transformation. Hy is the embedding of entity.

Training objective
Because different queries can be duplicate facts or newly occurring facts, we have set a
hyper-parameter to equilibrate the values of p" and p™. The formula is as described below:

p=axp"+(1—a)xp™ (16)

where hyper-parameters o € [0, 1].

The loss function L4 based on time decoder for entity prediction is formalized as
follows: where p(ols, r, t) is the entity prediction probability calculated by Eq. (16), y§ is the
label vector, which is 1 if the corresponding fact exists, or else it is 0.
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The ultimate loss function £ is as described below:

L= £td + £cl (17)

Note that the loss function £ of contrastive learning and the loss function L4 of entity
prediction are trained simultaneously.

RESULTS AND DISCUSSIONS

Experimental setup

This article uses four datasets to appraise the TRCL models on entity forecast task,
including ICEWS14, ICEWS18, ICEWS05-15 (Lautenschlager, Shellman ¢» Ward, 2015)
and GDELT (Leetaru & Schrodt, 2013). These four datasets are widely used for TKG
extrapolation. ICEWS14, ICEWS18, and ICEWS05-15 are three subsets of Integrated
Crisis Early Warning System (ICEWS). ICEWS contains a large number of political events
with timestamps. GDELT is a sub-class of the Global Database of Events, Language
datasets, which is also an event set containing temporal information.

Similar to the partitioning methods used in literature REGCN (Li ef al., 2021b) and Re-
Net (Jin et al., 2019), we divided all datasets into training, validation, and testing sets in a
rate of 0.8, 01, and 0.1. The statistical information of the four datasets is shown in Table 1.

This work applied two evaluation metrics that are extensively used in knowledge graph
reasoning, namely mean reciprocal rank (MRR) and H@k (k = 1, 3, 10). MRR represents
the average reciprocal values of the ranks of the true entity for all queries, and Hits@k
denotes the scale of times that the true entity occur in the top k of the ranked candidates.

Several researches (Han et al., 2021; Sun et al., 2021) points out that the traditional static
filtering setting previously used is not appropriate for extrapolation on temporal
knowledge graph reasoning, as only simultaneous facts need to be filtered. Therefore, this
work presents the results of the experiment using the recently widely used time aware
filtering setting, which only separates out quadruples that occur during query time.

For all datasets, the embedding size d is selected as 200. The amount of one-dimensional
convolution-based GCN layers is selected as 2 and the dropout rate for each layer is
selected as 0.2. The parameters of TRCL are optimized by using adam (Kingma ¢ Ba,
2014) during training, and the learning rate is selected as 0.001. The batch size is selected as
the amount of quadruples in each timestamp. During training, the optimal local historical
KG snapshot sequence lengths for Integrated Crisis Early Warning System (ICEWS) 14,
ICEWSO05-15, ICEWS18, and Global Database of Events, Language, and Tone (GDELT)
are selected as 12, 19, 17 and 10, respectively. During testing, the optimal local historical
KG snapshot sequence lengths for ICEWS14, ICEWS05-15, ICEWS18 and GDELT are
selected as 13, 21, 20 and 11, respectively. Like RE-GCN and TiRGN, this article added
static KG information to datasets ICEWS14, ICEWS05-15 and ICEWS18. For time-guided
decoders, the amount of channels is selected as 50 and the kernel size is selected as 4 x 3.
This article attempted numerous a values from 0 to 1 and ultimately determined a = 0.3 as
the history weight for all the datasets.
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Table 1 Statistics of the TKG datasets.

Dataset Entities Relations Training Validation Test Timestamps Time interval

ICEWS14 6,869 230 74,845 8,514 7,371 365 24h

ICEWS05-15 23,033 251 368,868 46,302 46,159 4,017 24h

ICEWS18 10,094 256 373,018 45,995 49,545 365 24 h

GDELT 7,691 240 1,734,399 238,765 305,241 2,975 15 min
Results

The proposed TRCL is compared to eight up-to-date TKG reasoning methods, all of which
are typical extrapolated temporal knowledge graph reasoning. These methods include
RGCRN (Seo et al., 2018), RE-NET (Jin et al., 2019), CyGNet (Zhu et al., 2021), xERTE
(Han et al., 2020), TITer (Sun et al, 2021), RE-GCN (Li et al., 2021b), CEN (Li et al.,
2022a), TiRGN (Li, Sun ¢ Zhao, 2022) and CENET (Xu et al., 2023b). The experimental
results of the TRCL model and nine baselines on four benchmark datasets are shown in
Tables 2 and 3.

Discussions

According to experimental results, it can be concluded that the proposed TRCL model
consistently outperforms RGCRN, RE-NET, RE-GCN, CEN, CyGNet, xERTE, and TITer
models. Specifically, although the RGCRN, RE-NET, xERTE, RE-GCN, and CEN models
consider adjacent timestamps, the RGCN and GRU models with one-dimensional
convolution in the TRCL enhances its ability to recognize structural features and historical
correlations more effectively. Therefore, the TRCL model outperforms the RGCRN, RE-
NET, RE-GCN, and CEN models. Similar to CyGNet, TRCL also considers repeated
historical facts. TRCL’s superior performance over CyGNet stems from its comprehensive
consideration of the dependency relationships among historical facts and temporal
periodicity of facts. Furthermore, the TRCL model outperforms the XERTE and TITer
models due to their reliance on subgraph based search and path based search to predict
target entities respectively. These methods often face limitations in utilizing long-term
information, restricting their ability to recognize complex temporal dependencies. In
contrast, TRCL’s approach takes into consideration a more nuanced understanding of
temporal relationships, resulting in enhanced predictive accuracy.

On the other hand, when compared with the TiRGN model, except for the H@1 metric
in dataset ICEWS05-15, the experimental results of the proposed TRCL model attained the
best results, indicating that incorporating contrastive learning is profitable for enhancing
the performance of our model. Through in-depth analysis of the experimental results of
models TRCL and TiRGN, we found that the experimental effect is the best in ICEWS14,
the experimental results in ICEWS18 and GDELT were second in effectiveness, the
experimental effect is the worst in ICEWS05-15. Through analyzing the dataset, it was
found that the dataset of ICEWS14 is the simplest. When comparing with ICEWS14,
although the number of timestamps is the same in ICEWS18, this dataset has more entities
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Table 2 Performance (in percentage) for entity prediction task on ICEWS14 and ICEWSI18 with
time-aware metrics. The best performance is highlighted in bold.

Model ICEWS14 ICEWS18

MRR He@1l H@3 H@10 MRR Ha@l H@3 H@10

RGCRN (2018) 38.48 28.52 42.85 58.10 28.02 18.62 31.59 46.44
RE-NET (2020) 39.86 30.11 44.04 58.21 29.78 19.73 32.55 48.46
CyGNet (2021) 37.65 27.43 42.63 57.90 27.12 17.21 30.97 46.85
xERTE (2021) 40.79 32.70 45.67 57.30 29.31 21.03 33.51 46.48
TITer (2021) 41.73 32.74 46.46 58.44 29.98 22.05 33.46 44.83
RE-GCN (2021) 42.00 31.63 47.20 61.65 30.58 21.01 34.34 48.75
CEN (2022) 42.20 32.08 47.46 61.31 31.50 21.79 35.44 50.59
TiRGN (2022) 44.04 33.83 48.95 63.84 33.66 23.19 37.99 54.22
CENET (2023) 3242 24.56 3541 48.13 26.40 17.68 29.37 43.79

The proposed TRCL 45.07 34.71 50.22 65.37 33.78 23.26 38.20 54.39

Table 3 Performance (in percentage) for entity prediction task on ICEWS05-15 and GDELT with
time-aware metrics. The best performance is highlighted in bold.

Model ICEWS05-15 GDELT

MRR He@1l H@3 H@10 MRR Ha@l H@3 H@10

RGCRN (2018) 44.56 34.16 50.06 64.51 19.37 12.24 20.57 33.32
RE-NET (2020) 43.67 33.55 48.83 62.72 19.55 12.38 20.80 34.00
CyGNet (2021) 40.42 29.44 46.06 61.60 20.22 12.35 21.66 35.82
xERTE (2021) 46.62 37.84 52.31 63.92 19.45 11.92 20.84 34.18
TITer (2021) 47.60 38.29 52.74 64.86 18.19 11.52 19.20 31.00
RE-GCN (2021) 48.03 37.33 53.90 68.51 19.69 12.46 20.93 33.81
CEN (2022) 46.84 36.38 52.45 67.01 20.39 12.96 21.77 34.97
TiRGN (2022) 50.04 39.25 56.13 70.71 21.67 13.63 23.27 37.60
CENET (2023) 39.10 29.02 43.81 58.43 20.23 12.69 21.70 34.92

The proposed TRCL 50.12 39.08 56.39 70.87 21.85 13.68 23.55 38.10

and data. The experimental effect of ICEWS18 is also not as good as ICEWS14, indicating
that contrastive learning is not effective in dealing with complex datasets. The ICEWS05-
15 dataset has the highest number of entities and timestamps, but the amount of data is not
the largest. In contrast, GDELT has a relatively large number of timestamps but not many
entities, and there is extensive training data in GDELT, which enables the model to receive
sufficient training. The experimental results of GDELT are much better than those in
ICEWSO05-15 dataset, indicating that comparative learning with many experimental data
can improve classification performance. Moreover, the proposed TRCL model
outperforms the CENET model. Specifically, the CENET model takes into account the
frequency of contrastive learning and historical facts, however does not incorporate the
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Table 4 The ablation study results on ICEWS14 and ICEWS18 datasets.

Model ICEWS14s ICEWS18

MRR H@3 MRR H@3
TRCL 45.07 50.22 33.78 38.20
TRCL-h 42.76 47.73 32.60 36.65
TRCL-nh 36.72 40.92 26.93 30.81
TRCL-cl 44.38 49.82 3341 37.84

model of factual evolution. Therefore, the proposed TRCL model is much higher than the
CENET model.

Ablation study

To investigate the effects of repetitive historical information, recurrent encoder, and
contrastive learning on the model TRCL, this work compared different variants of TRCL
according to MRR and H@3 metrics: the variant TRCL-h removes repetitive historical
information based on the TRCL model; the variant TRCL-nh removed the current encoder
from the TRCL model; the variant TRCL-cl has removed contrastive learning from the
TRCL model. We have shown the results of the variant model on datasets ICEWS14 and
ICEWSI18 in Table 4. The results illustrate that the TRCL model surpasses TRCL-h, TRCL-
nh, and TRCL-cl in all metrics, which proves that the model can efficiently improve the
capability of entity prediction tasks by integrating repetitive historical information,
recurrent encoder, and contrastive learning. Specifically, as shown in Table 4.

From the perspective of MRR indicators, TRCL improved by approximately 2.3% on
dataset ICEWSI14 and 1.2% on dataset ICEWS18 compared to TRCL-h; From the H@3
indicator, TRCL improved by approximately 2.5% on dataset ICEWS14 and 1.6% on
dataset ICEWS18 compared to TRCL-h. This indicates that incorporating repetitive
historical information into TRCL can improve entity prediction tasks; From the
perspective of MRR indicators, TRCL improved by approximately 8.3% on dataset
ICEWS14 and 6.8% on dataset ICEWS18 compared to TRCL-nh; From the H @ 3 metric,
TRCL improved by approximately 9.1% on dataset ICEWS14 and 7.4% on dataset
ICEWS18 compared to TRCL-nh. This indicates that incorporating the current encoder
into the TRCL model can effectively identify sequence information of facts.

Meanwhile, from the perspective of MRR indicators, the proposed TRCL model has
improved by approximately 0.7% on dataset ICEWS14 and by approximately 0.4% on
dataset ICEWS18 compared to TRCL-cl; From the H@3 metric, TRCL improved by
approximately 0.4% on dataset ICEWS14 and approximately 0.4% on dataset ICEWS18
compared to TRCL-cl. This indicates that incorporating contrastive learning into TRCL
can avoid the interference of repeated historical information on entity prediction tasks.

Sensitivity analysis
To investigate the influence of repeated historical facts on entity forecast tasks, this work
conducted sensitivity analysis on hyper-parameter a in formula 16 on datasets ICEWS14
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Figure 3 The sensitivity analysis results of hyper-parameter a on ICEWS14.
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Figure 4 The sensitivity analysis results of hyper-parameter a on ICEWS18.
Full-size k&l DOI: 10.7717/peerj-cs.2595/fig-4

and ICEWS18. The value of a ranges from 0 to 1. The results are shown in Figs. 3 and 4. It
can be seen that repeated historical facts have both positive and negative effects on entity
prediction tasks. Specifically, on datasets ICEWS14 and ICEWS18, whether it is the MRR
metric or the H@3 metric, the performance of entity prediction tasks is optimal when a =
0.3. This indicates that repetitive historical facts contribute to entity prediction tasks, but
when this work overly focus on repetitive historical facts, it actually reduces the
effectiveness of entity prediction. Our conclusion is also realistic, as historical events that
occurred in the past may not necessarily occur in the future.

To investigate the influence of learning rate on entity forecast tasks, this work
conducted sensitivity analysis on the learning rate on datasets ICEWS14 and ICEWS18.
The values of learning rate are {0.1, 0.01, 0.05, 0.001, 0.005, 0.0001}. The results are shown
in Figs. 5 and 6. It can be seen that on datasets ICEWS14 and ICEWSI18, the performance
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Figure 5 The sensitivity analysis results of learning rate on ICEWS14.
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Figure 6 The sensitivity analysis results of learning rate on ICEWS18.
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of entity prediction tasks is optimal when the learning rate is 0.001, for both the MRR
metric and the H@3 metric. This indicates that suitable learning rate contributed to good
performance in entity prediction tasks.

CONCLUSION AND FUTURE WORK

This article put forward a new TKG reasoning model, namely TRCL. The TRCL model
captures the dependency relationships of historical facts through a recurrent encoder.
Afterwards, the model considers the positive impact of repeated historical facts on entity
prediction through a global historical matrix. In addition, the model also avoids
interference from irrelevant historical facts on entity prediction by incorporating
contrastive learning. Finally, the TKG reasoning results are obtained through a time
decoder. Substantial experiments conducted on four benchmark datasets have shown that
the TRCL model is better than existing methods in most metrics. In the future, this work
will study the reasoning ability of models towards emerging facts.
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Despite the overall efficacy, TRCL’s performance on the ICEWS05-15 dataset highlights
the challenge of handling complex data with limited training samples. This requires
future enhancements in data efficiency. Future directions include reducing the
model’s dependence on extensive data, potentially through pre-trained model
integration, and broadening its capabilities to relationship prediction tasks within TKG
reasoning. These explorations can further solidify TRCL’s adaptability and effectiveness
in diverse applications, setting a promising path for ongoing research in temporal
knowledge graphs.
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