Submitted 22 May 2019
Accepted 21 January 2020
Published 17 February 2020

Corresponding authors
Gayatri Kapil, gayatril258@gmail.com
Rajeev Kumar, rs0414@gmail.com

Academic editor
Shlomi Dolev

Additional Information and
Declarations can be found on
page 27

DOI 10.7717/peerj-cs.259

© Copyright
2020 Kapil et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Attribute based honey encryption
algorithm for securing big data: Hadoop
distributed file system perspective

Gayatri Kapil', Alka Agrawal', Abdulaziz Attaallah’, Abdullah Algarni’,
Rajeev Kumar' and Raees Ahmad Khan'

! Information Technology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
? Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia

ABSTRACT

Hadoop has become a promising platform to reliably process and store big data. It
provides flexible and low cost services to huge data through Hadoop Distributed File
System (HDEFS) storage. Unfortunately, absence of any inherent security mechanism
in Hadoop increases the possibility of malicious attacks on the data processed or
stored through Hadoop. In this scenario, securing the data stored in HDFS becomes
a challenging task. Hence, researchers and practitioners have intensified their efforts
in working on mechanisms that would protect user’s information collated in HDES.
This has led to the development of numerous encryption-decryption algorithms but
their performance decreases as the file size increases. In the present study, the authors
have enlisted a methodology to solve the issue of data security in Hadoop storage.
The authors have integrated Attribute Based Encryption with the honey encryption
on Hadoop, i.e., Attribute Based Honey Encryption (ABHE). This approach works on
files that are encoded inside the HDFS and decoded inside the Mapper. In addition,
the authors have evaluated the proposed ABHE algorithm by performing encryption-
decryption on different sizes of files and have compared the same with existing ones
including AES and AES with OTP algorithms. The ABHE algorithm shows considerable
improvement in performance during the encryption-decryption of files.

Subjects Cryptography, Security and Privacy
Keywords Big data, Data security, And encryption-decryption, HDFS, Hadoop, Cloud storage

INTRODUCTION

Data security has now become one of the top most concerns for any individual or
organization. Day by day, substantial amount of information is transferred through digital
applications which require heaps of extra storage space, processing assets and dynamic
framework execution. The exponential use of smart phones, social networking sites,
downloaded apps, web sensor are generating huge amount of data. This has led to several
issues in big data including storage customization, security, cost-effectiveness, smooth
performance, vendor lock-in, and compliance. All these issues have their importance in
Hadoop. However, big data security and privacy has become the burning issue for Hadoop
HDES data storage and distributed computing. This study essentially focuses on ensuring
security and privacy for big data at the storage level.

How to cite this article Kapil G, Agrawal A, Attaallah A, Algarni A, Kumar R, Khan RA. 2020. Attribute based honey encryption algo-
rithm for securing big data: Hadoop distributed file system perspective. Peer] Comput. Sci. 6:¢259 http://doi.org/10.7717/peerj-cs.259

https://peerj.com/computer-science
mailto:gayatri1258@gmail.com
mailto:rs0414@gmail.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.259
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.259

PeerJ Computer Science

When utilizing the Hadoop HDFS data storage service, clients have no compelling
reason to store information locally and thus convey it constantly. As is the usual norm, the
information is kept on the Hadoop HDFS storage server to ensure that clients can access a
given information as per their convenience, irrespective of the time and place they choose
to avail it from. The Hadoop HDFS storage server provides both hardware allocation and
information security assurance. As long as the clients are connected with the internet, they
get their information easily. Hadoop is an on-going innovation which is utilized as a system
for the huge information storage. It is an open source execution of the structure dependent
on java. Hadoop is utilized in a substantial bunch or as an open cloud administration. This
process is termed as the standard conveyance parallel processing framework (Polato et al.,
2014). The versatility of Hadoop is evident by its ubiquitious use, yet Hadoop is devoid of
effective mechanisms to ward off security breaches of the data stored in HDFS

As Hadoop provides no inherent security for the information stored in it, numerous
methods and approaches for securing the stored HDFS files have been explored by various
researchers and practitioners. Among all these efforts, encryption seems to be the most
promising answer for securing information in HDFS that is kept in DataNodes as well as
for securely exchanging datafrom one DataNode to another DataNode while executing
MapReduce jobs. Encryption techniques can considerably reduce the security breaches and
data infringement in Hadoop environment. However, the results obtained through various
encryption algorithms have demonstrated that the document sizes of the original files can
be extended to about one and a half. Further, the uploading as well as the downloading
time of a given file can also be increased. Hence, to adress these concerns, the researchers
of this study have propositioned a new encryption-decryption algorithm, i.e., the ABHE.
As per the simulation results, this technique has shown marked improvements over
encryption-decryption time in comparison with the already available algorithms including
the Advanced Encryption Standard (AES) and AES with OTP (Mahmoud, Hegazy &
Khafagy, 2018).

The main contributions of paper are:

e To carry out the in-depth study of big data processor, i.e., Hadoop and to assess its
strength and weakness in terms of security and privacy;

e To propose an ABHE, a secure and efficient algorithm executed on single and two
DataNodes in Hadoop. Also, it ensures the full security against all side channel attacks,
brute force attack and collusion attack;

e To conduct experiments on test data to prove the efficacy of our proposed approach
ABHE vs. other secure approches i.e., AES and AES-OTP;

e The performance of proposed ABHE has been calculated in terms of File size, Encryption
Time, Decryption Time, Throughput and Power Consumption;

e Theresult shows that ABHE improves the execution time (total time taken for encryption
and decryption of data) without affecting the size of original file.

The rest of the paper has been divided into the following sections:

e Section 2- enlists the pertinent research done in the domain of Big Data storage;

Kapil et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.259 2/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.259

PeerJ Computer Science

e Section 3- enunciates the suggested data encryption algorithm formulated on ABHE;

e Section 4- presents the integration of the suggested algorithm with Hadoop
environment. Furthermore, this section also provides a comparison between the efficacy
of the suggested encryption approach vis-a-vis the two already available encryption
algorithms namely; AES and AES with OTP with different sizes of text files ranging from
MBs to GBs (64 MB, 128 MB, 512 MB, and 1 GB);

e Section 5- underlines the significance of this research study;

e Section 6- concludes the study.

Related work
Hadoop security

Hadoop was created in 2008 with the intention to manage only huge amount of data
confined to a specific condition. Thus, security issues weren’t the topmost preference (Yalla
et al., 2016). For any data storage, Hadoop employs the user’s name. In the default node,
there is no encryption among Hadoop, the client host as well as the HDFS. All the records
are feeded into and constrained by a central server which is known as NameNode. Thus,
HDFEFS lacks in security system against capacity servers. Hence, all information stored in this
process is prone to be breached. Besides, a strong security model is also lacking between
Hadoop and HDFS. The correspondence among DataNodes and among the end users and
DataNodes remains encoded. It has no validation of clients or administration. Even after
Yahoo concentrated on including authentications in 2009, Hadoop still had constrained
approved abilities (Yalla et al., 2016). In 2013, the Apache Software Foundation defined
venture Rhino to include security highlights (Yalla et al., 2016).

Hadoop has the facility of data management that is scalable, rich in features and
cost-effective for the masses. It has been a data platform of storing secret information
for many organizations. The data stored in slots is saved but once it is brought together
and made accessible for organizations over the masses, new security challenges arise.
Big data in a Hadoop contains sensitive information related to financial data, corporate
information, personal information and many such confidential data of clients, customers
and employees. Hence, optimum protection of such data and ensuring that it remains free
from any encroachment or tampering is of utmost significance (Rerzi, Terzi ¢ Sagiroglu,
2015; Mehmood, Natgunanathan ¢ Xiang, 2016; Bardi et al., 2014; Scrinivasan ¢ Revthy,
2018; Derbeko et al., 2016; Gupta, Patwa & Sandhu, 2018).

Big data: hadoop security solutions
To elucidate the mentioned problems, a few activities have been appended to Hadoop to
keep up with the equivalent (Vormetric Data Security, 2016; Jam, Akbari & Khanli, 2014):
Perimeter Security: Network Security firewalls, Apache Knox gateway
Authentication: Kerberos
Authorization: E.g. HDFS permissions, HDFS ACL3s, MR ACLs
Data Protection: Encryption at rest and encryption in motion. To provide security for
data in HDEFS, few available mechanisms are:

Kapil et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.259 3/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.259

PeerJ Computer Science

Authentication

Authentication implies user’s identification. Authenticators are answerable for gathering
testimonials by the API (Application Programming Interface) consumers, authenticating
them and publicizing the success or failure status to the clients or chain providers. Because
of this primary check, uncertain users won’t be able to access the cluster network and
trusted network. Identification is regulated by the client host. For strong authentication,
Hadoop uses Kerberos (Vormetric Data Security, 2016; Jam, Akbari & Khanli, 2014), and
LDAP (Lightweight Directory Access), AD (Active Directory) integrated with Kerberos,
establishing a single point of truth.

Kerberos is a computer grid authentication protocol which generates “tickets” to allow
the nodes communicating over an unprotected network to prove their identity to one
another. The reliable server authentication key is placed in each node of the array to
achieve authenticity of the Hadoop cluster node communication which will develop the
HDES array. It can effectively prevent non-trusted machines posing as internal nodes
registered to the NameNode and then process data on HDFS. These components are used
throughout the cluster. Hence, from the storage point of view, the legitimacy of the nodes
in HDFS cluster could be guaranteed by Kerberos. It is completely entrusted by Hadoop for
authentication between the client and server. Hadoop 1.0.0 version includes the Kerberos
mechanism. Client requests an encrypted token of the authentication agent. A particular
service can be requested from the server by using this. Password guessing attacks remains
inoperative in Kerberos and thus multipart authentication is not provided (Zettaset, 2014).

Authorization

Authorization or restrict access is the method of securing the access within the data

by the users as per the corporate policies or service provider. Authorization provider
may also use an ACL (Access Control List) based authorization access called the Knox
gateway (Vormetric Data Security, 2016; Jam, Akbari & Khanli, 2014) which is based on the
evaluation of rules that comprises username, groups and IP (Internet Protocol) addresses.
The aim of Hadoop’s developer is to design an authorization plan for the Hadoop platform
to manage the authorization structure for Hadoop components.

Data protection

Data protection is a process to protect the data at rest or store and during transmission
with the help of encryption and masking (Vormetric Data Security, 2016; Jam, Akbari &
Khanli, 2014). Encryption is a technique which acts as an added layer in security in which
data is encrypted (unreadable) during transmission or at rest. Hadoop employs the existing
capabilities of data protection by providing the solution for data at rest and data discovery
and masking. However, Hadoop’s security still needs some improvement. The work that has
already been done by the researchers and practitioners on Hadoop is highly commendable.
Several research studies have focussed on techniques to improvie the security of the data at
rest as well as during transmission. Some of the relevant approaches have been discussed
below:

Kapil et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.259 4/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.259

PeerJ Computer Science

Achieving secure, scalable and fine-grained data access control. The work combines
techniques of Attribute-Based Encryption (ABE), proxy re-encryption, and lazy re-
encryption (Yu et al., 2010b). This integrated method accomplishes fine grainedness,
scalability, and data confidentiality during data access control in cloud computing. In this
work, data files are encrypted using symmetric DEKs (symmetric data encryption key of
a data files) and later, encrypted DEKs with KP-ABE (public key cryptography primitive
for one-to-many communications). Such a dual encryption technique is called hybrid
encryption.

The KP-ABE technique is used for basic fuctions like the creation or deletion of files and
user allocation with fine-grained data access control mechanism. User allocation is a big
issue in this process and to achieve this, the author has combined proxy re-encryption with
KP-ABE and distributed some tedious computational tasks to cloud servers. The cloud
server stores secret key components and one dummy attribute corresponding to each user.
When data owner does some modifications in the set of attributes while user allocation,
the proxy re-encryption keys are generated and transferred to cloud servers. Later, cloud
servers update their secret key on the basis of new re-encryption keys and re-encrypt
the data files accordingly. Due to this, data owner is free from computation load during
user allocation and do not need to stay online, since the cloud servers have already taken
over this task after having the pre keys. Moreover, the burden of secret key updating and
re-encryption of data file tasks are merged as single task using lazy re-encryption technique
to save computation overhead of cloud servers during user revocation.

Secure data sharing by using certificate-less proxy re-encryption scheme. This study stated
that by using a public cloud, data can be shared securely. The research work presented
a concept wherein a Certificate-Less Proxy Re-Encryption scheme (CL-PRE) is
introduced (Xu, Wu ¢ Zhang, 2012). According to this concept, an identity based public
key is added to the proxy re-encryption technique. This removes the traditional identity
problem of key escrow. This scheme requires no certificates for the authenticity of the
public key. This scheme (CL-PRE) is used to decrease the figuring and correspondence
cost for information proprietor.

Fully homomorphic encryption. This research (Jam, Akbari & Khanli, 2014) proposed a
design of trusted file system by combining the authentication agent technology with the
cryptography fully homomorphic encryption technology.This is used for Hadoop which
provides reliability and security from data, hardware, users and operations. This enables
the user to prevent data breach along with enhanced efficiency of the application which is
possible due to the encrypted data in the homomorphic encryption technology. Authentic
agent technology also provides a range of techniques which are an integration of different
mechanisms such as privilege separation and security audit that provides security of data
in Hadoop system.

Fully homomorphic encryption technique gives the ability to various users to carry out
any operation on encrypted data with same results, provided the nature of the data remains

Kapil et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.259 5/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.259

PeerJ Computer Science

same, i.e., encrypted form throughout the operation. The data remains in encrypted form
when processed with map reduce technique and stored safely in HDFS.

A novel data encryption in HDFS. A new method for encrypting a file while uploading
in HDFS has been proposed in this research work (Nguyen et al., 2013). The upload
process is done along with the encryption process before uploading data on HDFS. In this
method (Nguyen et al., 2013), the user selects a file to upload and provides a unique secret
key for encryption of selected file. In this approach, user can feel the same experience when
uploading a normal (without encryption) file to HDFS since the encryption is done in a
fair manner. Also, this method utilises the characteristics of read/write operation to reduce
the total time in HDFS. As an experiment, the author applied this technique on 32 MB file
and observed that the encrypting upload and decrypting download process is usually 1.3 to
1.4 times faster than the conventional method. The major drawback of this approach is the
key management because the keys are increased with respect to the users and to deal with
them is quite challenging. Additionally, encrypting file sharing issue is also not possible
with this approach. This proposed approach is lagging due to these two major issues and
needs the dedicated attention of researchers and practitioners.

Secure hadoop with encrypted HDFS using AES Encryption/Decryption. Security in Hadoop
architecture is proposed in this paper by applying encryption and decryption techniques
in HDES (Park ¢ Lee, 2013). In Hadoop, it is achieved by adding AES encrypt/decrypt
function to Compression Codec. Experiments on Hadoop proved that the computation
overhead is reduced by less than 7% when representative MapReduce job is done on
encrypted HDFS.

Triple encryption scheme for hadoop-based data. Cloud computing has the distinctive
ability to provide users with customised, adaptable and trustworthy services at feasible costs.
Hence, more and more users are availing of cloud computing. Given the rising demand
of cloud appications, the protection of the cloud storage of data has become imperative.
A method called novel triple encryption has been introduced in this paper (Yang, Lin ¢
Liu, 2013) to achieve data protection at cloud storage. The Triple Encryption approach
uses DEA (Data Encryption Algorithm) for HDEFS files encryption, RSA for the data key
encryption and finally IDEA for encrypting the user’s RSA private key. In this approach,
DES and RSA based hybrid encryption technique is used to encrypt HDFS files and IDEA
(International Data Encryption Algorithm) to encrypt the RSA based user key. In Hybrid
encryption, DES algorithm is used to encrypt the files and get the Data key. This Data key is
again encrypted by using RSA algorithm to provide additional security. The Data key can be
decrypted by using private key only, therefore, it is always with the user. This method uses
both symmetrical and asymmetrical encryption techniques, so called as hybrid encryption.
This approach is tested and implemented in Hadoop based cloud data storage.

Attribute-group based data security access. Due to various security issues, development
and use of cloud storage has been decreased. To gain the confidence of user, author has
defined an Attribute Group based data security access scheme to protect the data during

Kapil et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.259 6/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.259

PeerJ Computer Science

network and data sharing features in cloud storage services. In this scheme (Zhou ¢ Wen,
2014), the data owner has limited user rights and re-encryption on the data node reduces
the computational cost along with the management of the clients. It also reduces the
complexity of property and rights management. Also, the author uses cipher text CP-ABE
encryption algorithm to secure the data at cloud storage. The centralised management of
key distribution and Name Node based CP-ABE algorithms have advantages like more
transparency for the user and easy managemnt of the user key as compared to the data
owner key distribution technique.

Towards a trusted HDFS storage platform. The mechanism for the protection of a Hadoop
infrastructure has been explained in this research (Cohen ¢ Acharya, 2014) to deal with
the concept of creating a reliable HDFS and safety hazards. Also, the researchers of
this paper figure out the relation between security mechanisms and their effect on its
performance (Cohen ¢ Acharya, 2014). In the discussion, the authors implemented trusted
computing concepts on a Hadoop considering a threat based environment. This framework
is based on the Trusted Platform Module (TPG) and implemented into a base environment.
Furthermore, the authors have utilized hardware key protections encryption scheme for
Hadoop and AES-NI for accelerating the encryption and compared results after their
implementation. In addition, the authors have claimed that there is 16% of the overhead
reduction on encryption and 11% overhead reduction while decryption during experiment
on simulated 128 MB block data with the AES-NI instructions. This approach provides a
concrete layered security design in Hadoop.

Security framework in G-Hadoop. An approach has been introduced where Hadoop’s
MapReduce task runs simultaneously on multiple clusters in a Grid environment
called G- Hadoop (Jam, Akbari & Khanli, 20145 Zhao et al., 2014). G-Hadoop reuses user
authentication and job submission mechanism of Hadoop in a Grid environment. But
initially, Hadoop’s user authentication and job submission mechanism have been designed
for a single cluster in a non-Grid environment. Therefore, G-Hadoop is an extended
version of Hadoop MapReduce task. It established a secure link for user and target cluster
by following the secure shell protocol. A single dedicated connection is allotted to each
participating user in a cluster and each user has to log on to only those clusters for which
they are authenticated. Unlike Hadoop, they have to design a new security framework
for G-Hadoop with various security solutions like public key cryptography and Globus
Security Infrastructure.

Concepts of proxy identity, user interface, and user instance, are embedded in this
security framework to give better functions in a Grid environment (Jam, Akbari ¢» Khanli,
20145 Zhao et al., 2014). This security framework introduced a single-sign on approach
during user authentication and job submission process of the G-Hadoop. Also, this security
approach protects the G-Hadoop system during threat environment, i.e., traditional
attacks, abusing and misusing. The model of security framework is based on Globus
Security Infrastructure (GSI). The utilization of SSL protocol for communication between
the master node and the CA (Certification Authority) is also the key factor in security.

Kapil et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.259 7/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.259

PeerJ Computer Science

GSI is based on single sign on process and uses asymmetric cryptography to provide a
secure communication. GSI is a standard grid security which adapts to various techniques
to provide necessary requirements in a Grid environment.This includes authentication,
integrity of the messages and delegation of the authority from one entity to another in

a grid environment. The user can only log-in into the master node after providing his
authentication in the form of user name and password and submit jobs to the cluster. SSL
handshaking is used in the security framework to establish a secure connection between
DataNode and a NameNode.

Elliptic curve cryptography based security scheme for hadoop distributed file system. This
paper (Jeong ¢ Kim, 2015) introduces a token based authentication scheme to protect
HDEFS stored data from security threats like breach and impersonation attacks. In this
scheme, HDFS client authentication is done by the Data Node through block access token
and functions as an extra layer of security along with the existing security, i.e., symmetric
key HDEFS authentication. Also, ECC encryption method is used for for authentication of
anonymous keys and provides protection against external threats like security breaches or
accidental exposures. This scheme adopts the hash chain of keys approach instead of a public
key exchange approach which is a very common HDFS authentication protocol. Apart
from providing protection to the sensitive HDFS data, it also improves the performance as
compared to the public key-based HDFS authentication protocols.

Secure multi sharing in big data storage. A method of privacy preserving security by using
different mechanisms, i.e., anonymity, multiple receiver and conditional sharing is
explained in this paper (Maheswari, Revathy ¢ Tamilarasi, 2016). In this approach, to
get the maximum security, Advanced Encryption Standard (AES) with Message Digest
(MD5) & Data Encryption Standard (DES) have been employed to encrypt the data and
authentication of data has been done using the DSA. Also, security and privacy preserving
approaches have been used for the big data processing in the proposed framework. In this
approach, owner uploads the data in cloud storage and after encryption, data is stored in
HDEFS. Thereafter, the data is shared among the multiple receivers. Cipher text is used to
hide the identity of the sender and receiver whereas Anonymization mechanism is used to
hide information of a particular receiver. A mechanism based on user and their received
data category called conditional sharing starts working after receiving the receiver’s details.
And, if the user’s category is matched with receiver’s data category, then the receiver gets
authenticated and the transmission is started. Once the conditional sharing is complete,
receiver retrieves the cipher text. The big data is shared with the cloud only if the result is
secured. This proposed algorithm is verified for small data sets only.

Towards best data security. In this paper, the author has described about the enormous
information and its safety issues (Tian, 2017). Also, he has described about the existing ways
to improve the security of enormous information like security hardening methodology
with attributes relation graph, attribute selection methodology, content based access
control model and a scalable multidimensional anonymization approach. The author of
this paper (Tian, 2017) has proposed an intelligent security approach based on real time

Kapil et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.259 8/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.259

PeerJ Computer Science

data collection and threat analytics to detect the threat before the security breach takes
place.

HDEFS data encryption based on ARIA algorithm. In this paper (Song et al., 2017), the
author has presented an encryption scheme based on South Korea’s ARIA encryption
scheme to protect the HDFS data in Hadoop. The ARIA algorithm uses 128-bit block for
data encryption. In this approach, variable length data (not necessarily the 128-bit data) is
divided into HDFS blocks. The proposed ARIA based algorithm provides the same level
of data security at cost of only 23% performance degradation (during query processing)
compared to AES algorithm. In addition, the researchers explained the future of ARIA
based encryption scheme in genuine word applications like area based administrations and
financial related data handling.

Chaos-based simultaneous compression and encryption for hadoop. This paper (Usama ¢
Zakari, 2017) introduced a framework based on a masking pseudorandom key stream to
increase the encryption quality and provide robust encryption security & compression
during read and write operation when integrated in HDFS. Also, the researchers have
proposed a scheme for Hadoop using simultaneous compression and encryption to
solve the implementation issues. The enhancement consequently improves the speed and
efficiency of the algorithm. The proposed algorithm is highly compatible with Hadoop
and provides efficient encryption security and compression during storage of data. Various
experimental results concluded that the performance of the cluster in Hadoop gets reduced
when compression and encryption operations are done separately because they need a
significant volume of data for both the operations. This proposed algorithm can compress
and encrypt the data simultaneously during MapReduce which reduces the required
data space with minimum network resources. The proposed algorithm has passed edits
security analysis test with a 99% confidence interval. Further, all NIST SP800-22 assays are
successfully passed on cipher text generated from the plaintext.

Data encryption based on AES and OTP. This research paper (Mahmoud, Hegazy ¢
Khafagy, 2018) has highlighted a method to improve the upload and download time
with reduction of encrypted file size by AES and OTP algorithms in HDFS. The authors
performed encryption and decryption by two different ways which are based on AES and
AES-OTP algorithms. The researchers chose cipher block chaining with the ECB mode of
AES algorithm for handling HDFS blocks and OTP algorithm is used as a stream cipher.
This keeps length of the plaintext same. For decryption, a private key is required which is
always in the custody of user. In this method, when client has mentioned to transfer a record
to HDEFS, the application server creates an arbitrary key which is then separated into 2 keys
for doing multi encoding and unscrambling by utilizing AES-OTP algorithm.Moreover, the
authors have compared the file encryption time among Generic HDFES, encrypted HDES
by AES and HDFS encrypted file by AES with OTP. The results show that the AES with
OTP algorithm increased the encrypted file size by 20% of the original file. The researchers
also executed parallel decryption processing in Map Task to improve performance.

Kapil et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.259 9/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.259

PeerJ Computer Science

Two-layer selective encryption using key derivation method. In this paper (Vimercati ef al.,
2007), the authors have explained the use of two-layer selective encryption technique
based on key derivation method to implement the authorization policy (Atallah, Frikken
¢ Blanton, 2005). In this method, the user assigns a secret key corresponding to each file
which is encrypted using a symmetric key. The owner creates public tokens by using his
secret key to allow any user further. Later, these public tokens along with token distribution
task are transferred to the semi-trusted server. To derive the decryption key for a file, a
minimal number of secret key per user and a minimal number of encryption key are
required since the server cannot derive decryption key of any file with the available public
tokens. The file creation and user grant/revocation operation gets complex as the number
of users increases. This makes the suggested method unscalable (Yu et al., 2010a). Also, the
user access privilege accountability is not supported in this method.

Security and privacy aspects in mapreduce on clouds. Hadoop uses the filters in Vigiles (Ulu-
soy et al., 2014) for a fine grained access control framework. These filters are coded in Java
by security administrators and handled authorization by means of per-user assignment
lists. On the other hand, in GuardMR, filters are allocated with limited roles on the basis
of subject and a formal specification approach for the definition of filters is proposed.
GuardMR and Vigiles rely on platform specific features for regulating the execution of a
MapReduce task such as the Hadoop APIs and the Hadoop control flow and do not need
the Hadoop source code customization. Vigiles and GuardMR have observed apractically
low implementation overhead which means that they do not provide any support for
context aware access control policies (Colombo ¢ Ferrari, 2018). In (Derbeko et al., 2016)
authors considered security and privacy challenges and urgent requirements in the scope
of MapReduce and reviewed the existing security and privacy protocols for MapReduce
including AccountableMR and TrustMR. The study also provides a comparison of several
security algorithms, protocols and frameworks for MapReduce framework.

Hybrid storage architecture and efficient mapreduce processing for unstructured data. In this
paper (Lu et al., 2017), a technique called Hybrid Storage Architecture is proposed. With
this technique, different kinds of data stores are integrated to the model and it also
enables the strorage and process of the unstructured data.To execute MapReduce-based
batch-processing jobs, various partitioning techniques are applied which are based on
the said technique. The paper also demonstrates the utilization of the characteristics

of different data stores for building a smart and an efficient system. The partitioning
techniques leverages the unified storage system thus reducing the I/O cost and improves
the large-scale data processing efficiency marginally.

Towards privacy for mapreduce on hybrid clouds using information dispersal algorithm.

In Cheikh, Abbes & Fedak (2014), to ensure privacy for MR in a hybrid computing
environment based on the Grid’5000 platform, an algorithm known as information
dispersal algorithm is required which comprises both untrusted infrastructures (such as,
desktop grids and public clouds) and trusted infrastructures (such as, private clouds).

Kapil et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.259 10/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.259

PeerJ Computer Science

SEMROD: secure and efficient mapreduce over hybrid clouds. SEMROD (Oktay et al., 2015)
firstly segregate the data into sensitive and non-sensitive data groups and then send the
non-sensitive data to public clouds. Private and public clouds execute the map phase.
However, the private cloud pulls all the outputs includng outputs of the map phase
containing sensitive keys. Also, it executes the reduce phase operation only on record
associated with sensitive keys andignores the non-sensitive keys. On the other hand, a
public cloud execute the reduce phase on all outputs without knowing the sensitive keys.
Finally, a sensitive key is generated by removing the duplicate entries with the help of
filtering step.

MtMR: ensuring mapreduce computation integrity with merkle tree-based verification.
Proposed MtMR (Wang et al., 2015) is a method based on Merkle tree based verification
to ensure the high integrity of the MapReduce tasks. It performs two rounds of Merkle tree
based verification for the pre-reduction and restoration phases and covers MapReduce in
a hybrid cloud environment. In each round, MtMR samples a small portion of reduces
task input/output records on the private cloud and then applies the Merkle tree-based
verification. The authors believe that MtMr can significantly improve the results while
producing moderate performance overhead.

Security threats to hadoop: data leakage attacks and investigation. This article (Fu et al,
2017) presents an automatic analysis method to find any data leakage attacks in Hadoop.
It also presents a forensic framework including an on-demand data collection method in
which it collects data from the machines in the Hadoop cluster on the forensic server and
then analyzes the same. It can detect suspicious data leakage behaviors and give warnings
and evidence to users using its automatic detection algorithm. And, collected evidences
can help to find out the attackers and reconstruct the attack scenarios. The authors of the
paper have also talked about the security concerns of HDFS (or Hadoop) and presented
some possible data leakage attacks in it.

VC3 and M2R in mapreduce computation. VC3 (Schuster et al., 2015) uses SGX to achieve
confidentiality and integrity as part of the MapReduce programming model and requires a
trusted hardware to perform computation. VC3 is not allowed to perform system calls but
works and follows the executor interface of Hadoop. On the other hand, M2R (Dinh et al.,
2015) offer mechanisms for dropping network traffic analysis leakage for MapReduce jobs.

Preserving secret shared computations using mapreduce. The main reason of cloud
insecurity is the loss of control over the data which can cause serious harm to the
confidentiality of customer using cloud-computing. This problem can be overcome

by providing secure computing environment and data storage (Sudhakar, Farquad &
Narshimha, 2019). Also, techniques like encrypted representation and secret sharing
techniques have emerged that offer verified security along with relatively efficient processing
but are limited to only computing selection queries (Dolev et al., 2018).

Kapil et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.259 11/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.259

PeerJ Computer Science

Privacy preservation techniques in big data analytics. In this paper (Mohan Rao, Krishna ¢
Kumar, 2018), authors have described about the various privacy threats and preservation
techniques and models along with their limitations. The authors also proposed a Data
lake based method for privacy preservation of unstructured data. Data lake is a repository
to store raw format of the data either structured or unstructured, coming from different
sources. Apache Flume is used for data ingestion from different sources and for their
processing; data is transformed to HIVE tables. Also, Hadoop MapReduce using machine
learning or vertically distributed can be applied to classify sensitive attributes of data
whereas tokenization is used to map the vertically distributed data.

Major findings from the literature
After a cautious and focused study of various methodologies/approaches on big data and
Hadoop security, the following observations have been made:

e Hadoop stores the data on multiple nodes in a distributed manner while metadata and
edit logs are stored on name nodes. The communication of data happens between client
node and data node. Hence, multiple nodes are used in the Hadoop framework. The
data is vulnerable to the hacks during the transmission, as it is not encrypted by default.
Various communication protocols are used for internode communication. The available
approaches or solutions for securing the data transmission include Kerberos, Simple
Authentication and Security Layer (SASL), etc. However, these traditional approaches
are not effective and sufficient enough to secure big data.

e Data that is stored in fixed storage is known as data at rest or at storage level. Initially
the stored data is prone to security attacks being not encrypted. Since, Hadoop
works on the principal of spreading data across multiple nodes, consequently it is
exposed to all insecure entry points. There are numerous methods available for data
encryption in Hadoop. As Hadoop deals with large volume of data, it takes time in the
encryption/decryption process. In order to maintain the performance, it is important
to use an encryption technique that is fast enough to encrypt/decrypt. According to
the studies, the encrypted data increases in the size almost by one and half time of the
original data so the file upload time also gets affected.

e Cloud providers need to design a cost-effective infrastructure that understands
customers’ needs at all levels. To meet the requirements, it is needed to share the
storage devices amongst the multiple users, which is known as multi-tendency. But
sharing of resources results in security vulnerability. If proper security measures are not
implemented, then the attacker is able to get easy access to the customer’s data, more so
in the case of using the same physical device.

e Companies would never know if the data is being used by someone else or not,
because they don’t have direct control over their data. The lack of resource monitoring
mechanisms creates many security issues.

e Customers have to rely upon trust mechanism as an alternate security measure in which
they have to control data and their resources. Cloud providers also provide certificates of
operations of a secure provider to the customers. The certificates are well authenticated
with established standards.

Kapil et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.259 12/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.259

PeerJ Computer Science

e The security capabilities which are for “non big data” are needed for big data also to
ensure client verification, management of data masking and encryption.

MATERIALS & METHODS
Data Encryption based on Attribute Based Honey Encryption (ABHE)

In Hadoop, the inherent security feature is simple file permission and access control
mechanisms. In such context, encryption is the best technology applied for securing HDFS
files that are stored in DataNodes. Further, while processing MapReduce transferring
files among DataNodes, encryption is the best solution. We can use cryptography for
data protection in Hadoop, solution to data confidentiality and data integrity can be
achieved using encryption technique. Cryptography keys can be categorised into: secret
key cryptography and public key cryptography. Public key is known as asymmetric key
cryptography (Dyer et al., 2013) while secret key is symmetric secret key cryptography
which is used in stream ciphers for generation of password based encryption (Vinayak ¢
Nahala, 2015).

Encryption is mainly used to ensure secrecy. Encryption actually means secret writing
which was initially used by ancient humans desiring to store secrets. In the past, encryption
was available only to Generals and Emperors, but today it is used by nearly everyone,
every day, every time whenever a credit card transaction, data storage and node to node
communication is done, phone call is made, secure website is used; encryption techniques
are used. Efficacy of an encryption algorithm depends on the key length (Ebrahim, Khan ¢
Khalid, 2013). However, the available encryption algorithms are considered to be secure. But
depending on the time and computing power, they are also susceptible to intrusions (Vin,
Iska & Zhou, 2017). The present encryption techniques are also beset with vulnerabilities,
for instance, when decrypting with a wrongly guessed key, they yield an invalid looking
plaintext message, while decrypting with the right key, they give a valid-looking plaintext
message, confirming that the cipher-text message is correctly decrypted (Yin, Iska ¢ Zhou,
2017).

In the same row, the honey encryption has been proposed by Jules and Ristenpart (Juels
¢ Ristenpart, 2014). It is a concept which addresses vulnerability discussed in the previous
paragraph and makes the password based encryption (PBE) more difficult to be broken by
brute-force. Traditional encryption methods would show random text with no meaning
at all when decrypting is done with wrong key and hence confirming its invalidity. On the
contrary, honey encryption shows plausible looking text even when the key is wrong so
the attacker won’t know if the guessed key is the right one. This unique approach slows
down the attacker by fooling him and increases the complexity of password guessing as
well as cracking process. There are few other technologies that share same term “honey”.
For example, Honeywords (Juels ¢ Ristenpart, 2014) are a password that are used as decoy
and generates an alert and notifies the administrator if used. Honeypots (Owezarski, 2015),
Honeynet (Kim ¢ Kim, 2012), and Honeyfarm (Jain ¢» Sardana, 2012) are some other
examples of luring systems. Honey encryption is related to Format-Preserving-Encryption
(FPE) (Bellare et al., 2009) and Format-Transforming-Encryption (FTE) (Dyer et al., 2013).

Kapil et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.259 13/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.259

PeerJ Computer Science

In the FPE, both the plaintext and cipher-text message are same whereas it is not the case
in FTE.

In Honey Encryption, the messages are stored to a seed range in the seed space. Seed
space and message space are different, so the cipher-text message space is different from
the message space. Vinayak ¢ Nahala (2015) used the HE scheme in MANETS to secure
Ad-hoc networks against brute force attacks. Tyagi et al. (2015) applied HE technique to
protect simplified text messages and credit card number that are susceptible to brute force
attacks. Choi, Nam & Hur (2017) proposed schemes to solve human typo problems with
message recovery security. Legitimate user may get confused seeing the different result
than expected if there was some mistake in typing the password correctly. Edwin Mok
et al. (Tan & Samsudin, 2018) came up with an eXtended Honey Encryption (XHE) by
adding additional security measures on the encrypted data. However, Honey Encryption
is still difficult to be applied in certain applications. For example, if the attacker has some
clue about the data which is encrypted, suppose he has a part of the original data, he can
easily tell which result is bogus and which is the correct data by matching the data with the
decrypted result. However, it is possible to brute force honey encryption if the attacker has
crib that must match with it to confirm its legitimacy (Wikipedia, 2019). It is still vulnerable
and susceptible and further researches are going on. To overcome its limitations it must be
expanded further by bringing out new security methods.

This persuades the authors of this paper to develop an in-depth understanding of data
security and privacy to solve issues related to Honey encryption. This paper aims to focus
on fixing the vulnerabilities in Honey encryption and making it more secure. The authors
have designed and implemented the attributed based Honey encryption as an extension of
the public key encryption. This would enable the users to encrypt and decrypt messages
based on users’ attributes. Only if the user matches the predefined attributes will the user
be able to decrypt the message. It will help to keep the attacker away by blacklisting them.

Proposed encryption algorithm
The proposed encryption algorithm is a more secure version of honey encryption. The
encryption algorithm provides two tier securities so that it can overcome the limitations
prevailing in existing encryption techniques. The proposed algorithm is termed as Attribute-
Based Honey Encryption (ABHE). Its 128/256 bits encryption algorithm will perform two
layers of encryption in order to enhance security and effectiveness. The use of Cipher
text Policy- Attribute Based Encryption (CP-ABE) (Zhao, Wei ¢» Zhang, 2016; Varsha ¢
Suryateja, 20145 Shobha ¢ Nickolas, 2017) has been proposed in the algorithm. In the
algorithm user’s private-key is superimposed with an access policy over a set of attributes
within the system. A user can decrypt a cipher text only if his attributes satisfy the set of
rules of the respective cipher-text.

Firstly, a set of attributes are chosen from the file to be encrypted; then a set of
rules/policies are created for these attributes. On the basis of these rules, the given file
is encrypted. Further, for more security the encrypted file is again protected by password.
As this password is based on honey encryption, it creates a set of honey words. The
encrypted file is passed on and may be received by different users. Now according to the

Kapil et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.259 14/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.259

PeerJ Computer Science

proposed algorithm, only the user having the desired set of attributes or the password
would be able to decrypt the data. If someone wants to decrypt the encrypted file, he/she
will have to enter the correct password. If password does not match, the user will be treated
as intruder and previously set honey words will be displayed to him. If the password
matches, the genuine user has to enter the private key which has been already created while
encrypting the file. Again, if private key does not match, the user will not be allowed to
access the file. On matching, the user will be able to successfully decrypt the file. The overall
process will provide better security for files.

ABHE algorithm for data security

Input: Plain Text file

Output: Encrypted file

Step 01: Generate Private Key

Step Ol.a: Set of attributes is specified that describe the key.

Step 01.b: Output private key ‘q’

Step 02: Encryption:(The algorithm encrypts File ‘F’ with policy ‘P’ and outputs
the cipher-text)

Step 02.a: Selects the file to be encrypted and set of attributes.

Step 02.b: Encrypt a file F using a set of attributes occurring in the policy ‘P’

Step 03.c: Generate cipher-text CT

Step03: Encrypted file (in step-02) is protected again by the password

Step 04: Generate honey words and present it to user.

Step 05: Decryption: (Decryption algorithm gets as input an encrypted file

which is protected by the password. Cipher-text CT is produced by
the encrypted algorithm, an access policy ‘P’ under which CT was

encrypted.)

Step 05.a: Input is encrypted file

Step 05.b: Enter the password; if password matches, the cipher text CT is
decrypted, otherwise intruder is detected.

Step 05.c: User applies y number of attributes to compute private key

Step 05.d: If key matches, file is decrypted and output the corresponding original

file ‘F’, otherwise it outputs NULL.

Authors have introduced a method to enhance the security level in which the data
encryption and key management server are put together and provided a unique key for
each application or cluster with HDES encryption. When HDES encrypted file entering
into the Apache Hadoop environment, it remains in encrypted form at storage after
processing. The results including intermediate results are always stored in encrypted form
within the cluster in a file system having non HDES form. At client level, data has been
divided into smaller chunks by using parallel computing technique and stored at HDFS in
encrypted form. Also, the Map Reduce tasks can be done on encrypted data directly and
decrypt before processing after importing the corresponding decryption library. Input to
a MapReduce job is divided into fixed-size pieces. These are the input splits which is a
chunk of the input that is consumed by a single map. At Map function, the input data is

Kapil et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.259 15/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.259

PeerJ Computer Science

processed in decrypted form and stored output data in encrypted form into the HDFS. The
Reduce function is executed on the intermediate results of Map function after decryption
and the stored final output data in again encrypted form into the HDFS and provided
access to the authorized clients only. Decryption process is replica of encryption process
and both these methods are simple, cost-effective and scalable without deteriorating the
performance, scalability or functionality. So, they are easy to recommend and effectively
address the security deficiencies with big data clusters.

Evaluation of performance of the proposed algorithm has also been done. The
performance parameter includes encryption—decryption time (rate of encryption is given
by encryption time and rate of decryption is given by decryption time), throughput of
encryption-decryption where throughput is calculated as the size of plain text (in MB
or GB) is divided by the total time during encryption-decryption. The speed and power
conumption of encryption-decryption process are mainly dependent on the throughput of
the encryption-decryption scheme, as it defines the speed of encryption-decryption. In case
of encryption-decryption, as the throughput increases, power consumption decreases. Also,
authors have compared results with the exsisting HDFS encryption algorithms namely AES
and AES-OTP with different file sizes (varies from MB to GB). The performance parameters
results have shown that the proposed ABHE scheme with Hadoop environment is a
considerable improvement over AES, AES with OTP (Integrating with Hadoop). Also,
the proposed algorithm provides the security for data stored at HDFS and distributed
computing against all side channel attacks, brute force attacks and collusion attacks.
Detailed description is given in the next section.

RESULTS

Implementation

AES is propositioned to be better than the other secure approaches that address the secure
data processing using Hadoop HDFS and MapReduce job in context of data encryption.
To support this claim, the performance of proposed ABHE algorithm has been evaluated
in this section and performance of the proposed ABHE algorithm has been compared with
the existing algorithms, i.e., AES and AES-OTP, while doing the same experiment in a
standard Hadoop setup. The performance is evaluated in terms of throughput and power
ponsumption by doing the encryption-decryption techniques on different sizes of files
(size varies from MB to GB).

Implementation environment

The implementations and experiments are based on Hadoop cluster. The Hadoop cluster
consists of one host which runs on laptop with Intel core i3-2330M processor 2.20 GHz
with Turbo Boost upto 2.93 GHz and 4GB RAM. In this, one of the host is tagged as
NameNode and other is used as a DataNode. NameNode playsa role of centre point in
cluster and all information about the stored data is saved on it. For simplicity, there is only
one NameNode and one DataNode in a Hadoop cluster with one run. DataNode provides
the physical space for storing data. The operating system of the host is Linux with CentOS
6.4, Ubuntu-14.04 (GNU/ Linux 3.13.0-24-generic x86-64). On top of the operating

Kapil et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.259 16/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.259

PeerJ Computer Science

system is Hadoop with version 2.7.3. Single node architecture of Hadoop is used in which
all components of the Hadoop are on the same node. Implementation and stand-alone
applications are written in Java. As Hadoop requires JDK for its working so, Java Open
Java Development Kit (JDK) is installed on the system using the <apt-get>command.
The running component of the Hadoop can be checked using the <jps>command. HDFS
distribution process overcomes outages, acts as a backup while maximising the availability
of the services.

Results of the experiment

In this section, we present the results and analysis of our proposed algorithm versus the
available securing approaches. In the proposed encryption technique, at first, we apply the
attribute based encryption which is based on cipher text policy based attribute encryption.
The proposed approach uses a specific type of encrypted access control wherein user’s
private-key is super imposed with an access policy over a set of attributes within the
system. A user can decrypt a cipher text only if his attributes satisfy the set of rules of the
respective cipher-text. An enhance security to ensure full safety against all side channel &
brute force attack, the proposed algorithm is combined with Honey encryption algorithm.
The combination of these two algorithms, i.e., the ABHE provides a stronger security
against confidentially & brute force attack and all side channel as well as collusion attacks
as encryption is not easy to break and get the actual data.

The performance of ABHE has been calculated in terms of file size, encryption time,
decryption time and power consumption and compared with two existing encryption
algorithms namely; AES and AES with OTP applying on different sizes of text files. The
working of the proposed algorithm has been demonstrated in Figs. 1 and 2.

File size

The proposed encryption algorithm reduces the encryption-decryption time without
affecting the size of original file. Here, the file named 2048MB.txt is of size 1.12 GB and
contains 9 blocks starting from 0 to 8. The size of block 0 to block 7 is remains unchanged
after encryption while size of block 8 is changed from 125449781 bytes to 125449792 byte
which is insignificant and shown in Figs. 3—6. Also, the output file size when encrypted a
file of size 1 GB using AES, AES-OTP and the proposed approach is compared which is
shown in Table 1.

Encryption time using ABHE
This is the time taken by encryption algorithm to produce a cipher-text from plain-text.
Encryption is performed while writing the file on Hadoop so that the stored data can be
saved from various attacks. This process involves a number of steps which has been shown
as follows:

i. HDES client interacts with NameNode by calling the create() function on Distributed

file system (DES).
ii. DFS sends a request to NameNode to create a new file.

Kapil et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.259 17/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.259

PeerJ Computer Science

aashish@hadoopphd: ~/Desktop/Hadoop/ubuntu/Hadoop_Java/src/HadoopConn <) 207PM {if

File stored in Hadoop... Encryption program starting......
Enter Attributes for Private Key:

B
Enter Password:
tmﬂu@aasu
Encryption Program Starting
F o[18#1u@445u253, L8#1u@445u221, 18# U445y, I8#LUR445U, 18#u@445u23 , I8#LUR445U265,]
lAlgo takes1483milli second
File successfully encrypted and stored in hadoop
[#rkxruirixspttribute Based + Honey Encryptiont*asssiiss
HO600C0C0000 Encrypt a file
eeee....Decrypt a file
3. Quit

-
A
78
Enter Password:

i8#lu@a4su

[Plese enter attributes:
India

Lucknow

Bbau

£ Algo takesossmilli seconds
. +axxxanxsrspttribute Based + Honey Encryptions*arassssss

HNooococoooo Encrypt a file
... ...Decrypt a file
\@ Epoacocaood Quit
| Enter your choice:
2

Figure 1 Working of the proposed ABHE encryption algorithm when attribute and password are en-

tered for 64 MB file size (for both encryption and decryption).
Full-size Gal DOI: 10.7717/peerjcs.259/fig-1

2.07PM it

aashish@hadoopphd: ~/Desktop/Hadoop/ubuntu/Hadoop_Java/src/HadoopConn ﬁ < m B) (69%)
File stored in Hadoop... Encryption program starting......

Mtnter Attributes for Private Key:

India
—llLucknow

=

Enter Password:
fis#lugadsu
Encryption Program Starting

[18#1lu@445u253, 18#1UR445u221, 18#Lu@445u, IB#LU@445U, 18HLU@445U23 , IBHLU@445U265,]
|Algo takes1483milli second

File successfully encrypted and stored in hadoop

*xxxrsrkrrxAttribute Based + Honey Encryption#saiisisis

Encrypt a file

Decrypt a file

i8#1u@a45u
Plese enter attributes:

The file was successfully decrypted. You can view it in: DecryptedFiles/decrypte
lldFile

|Algo takes9ssmilli seconds

xxxxxxsunsxAttribute Based + Honey Encryptionsssasswsss

1.ea ...Encrypt a file

2. Decrypt a file

+..Quit
Enter your choice:

Enter Password:
lygy7889

Wrong Password
[« xxkxxrrxAttribute Based + Honey Encryptionssssssisss
1... ...Encrypt a file

Decrypt a file

3. ...Quit
Enter your choice:

Figure 2 Working of proposed ABHE encryption algorithm when right and wrong password are en-

tered for 64 MB file size.
Full-size Gal DOI: 10.7717/peerjcs.259/fig-2

iii. NameNodes provide address of the DataNode, i.e., Slave which is based on the
availability of space and capacity in DataNode on which HDFS client is going to start
writing encrypted data.

iv. The HDEFS client starts entering the attributes to encrypt the file. After that for more
security, it applies the password which is based on Honey encryption. Now the HDFS
client starts writing data though FS Data OutputStream to specific slave for a specified
block.

Kapil et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.259 18/31

https://peerj.com
https://doi.org/10.7717/peerjcs.259/fig-1
https://doi.org/10.7717/peerjcs.259/fig-2
http://dx.doi.org/10.7717/peerj-cs.259

PeerJ Computer Science

Browsing HDFS - Mozilla Firefox
"Wl Browsing HDFS

€ [@ hadoopphd:50070/explorer.htm user « @] [B~ coogle

File information - 2048MB.ixt_

Download

Block information -

Block ID: 1073742020
Block Pool ID: BP-2073830440-192.168.1.11-1532882384787
Generation Stamp: 1196
Size: 134217728
Availability:
» hadoopphd

&
E
)
.
=
L
=
e

Figure 3 Size Block one before encryption.
Full-size Gal DOI: 10.7717/peerjcs.259/fig-3

v. The slave starts copying the block to another slave when HDEFS client has finished
writing the blocks.

vi. During the block copying and replication process, metadata of the file is updated in
the NameNode by Datanode. (DataNode provides the periodically heartbeat signal to
the NameNode).

vii. After the successful completion of write operation,DataNode sends the acknowledge-
ment to HDEFS client through DFS.
viii. After that HDFS client closes the process.
ix. Write operation is closed after receiving the acknowledgement from HDEFS client.
The complete operation (with above steps i.e., i, ii, iii.. .) is explained in Fig. 7. As shown
in Table 1, it took 12.9751 min for the encrypted HDFS using AES algorithm, whereas it
took 11.2511 min for the encrypted HDFS using AES with OTP algorithm. On the other

hand, the proposed approach took only 6.08 min to encrypt 1GB file in HDFES as shown in
Table 2.

Data Decryption Time using ABHE
It is the time taken by decryption approach ABHE to produce the plain-text from cipher-
text. With our proposed cryptographic scheme, whenever a node will try to read a file
on HDES it will first have to decrypt the file. Then only it will be allowed to perform
reads operation. This has been done in the proposed approach to filter out the intruders
or unauthorized access. Following is the step-by-step process on how Read operation is
performed in HDFS with the proposed approach:

i. First of all HDFS client interacts with NameNode by calling the read function on

Distributed File System (DES).

Kapil et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.259 19/31

https://peerj.com
https://doi.org/10.7717/peerjcs.259/fig-3
http://dx.doi.org/10.7717/peerj-cs.259

PeerJ Computer Science

Browsing HDFS - Mozilla Firefox
] Browsing HDFS
€ @ hadoopphd:50070/explorer.html#/user/hduser + @) [@~ Google

File information - encryptedFile

Download

Block information -

Block ID: 1073742029
Block Pool ID: BP-2073830440-192.168.1.11-1532882384787
Generation Stamp: 1205
Size: 134217728
Availability:
» hadoopphd

<)
E
™=
.
B
[
.
M

Figure 4 Size of Block one after Encryption.
Full-size Gal DOI: 10.7717/peerjcs.259/fig-4

[

BaedaBodmne;

} Browsing HDFS
€ [@ hadoopphd

File information - 2048MB.txt

Download

slock information - B L]

8lock ID: 1073742027

Block Pool ID: BP-2073830440-192.168.1.11-1532882384787
Generation Stamp: 1203

Size: 125449781

Availability:

* hadoopphd

Figure 5 Size of Block eight before encryption.
Full-size Gal DOI: 10.7717/peerjcs.259/fig-5

ii. DEFS sends a request to NameNode for reading a file.

iii. NameNode provides address of the DataNode, i.e., Slave on which HDFS client will
start reading the data.

iv. For HDFS client to start reading data through FS Data InputStream from specified slave
and from a specified block, firstly it has to enter the correct password. If password does
not match, the user will be treated as an intruder. If the password matches, the genuine
user has to enter the private key which has already been created while encrypting the
file. Again, if private key does not match, the user will not be allowed to access the file.
On matching, the user will be able to successfully decrypt the file.

Kapil et al. (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.259 20/31

https://peerj.com
https://doi.org/10.7717/peerjcs.259/fig-4
https://doi.org/10.7717/peerjcs.259/fig-5
http://dx.doi.org/10.7717/peerj-cs.259

PeerJ Computer Science

Browsing HDFS - Mozilla Firefox
{J Browsing HDFS
(@ hadoopphd

File information - encryptedFile

Download

Block information -- I:INE:]

Block ID: 1073742036

Block Pool ID: BP-2073830440-192.168.1.11-1532882384787
Generation Stamp: 1212

Size: 125449792

Availability:

« hadoopphd

&
—
&)
.
=
*
[}
’

Figure 6 Size of Block eight after encryption.
Full-size Gal DOI: 10.7717/peerjcs.259/fig-6

Table 1 File size comparison among AES and AES with OTP algorithms and the proposed ABHE algo-

rithm.

File AES algorithm AES with OTP Proposed ABHE
size (MB) (MB) algorithm (MB) algorithm (MB)
64 96.0 74.7 64

128 192.8 149.3 128

256 384.0 298.7 256

512 768.0 597.3 512

1,024 1,536 1,228.3 1,024

v. After a successful completion of read operation, HDFS client terminates read operation.
vi. Read operation is closed after receiving the acknowledgement from HDES client.
vii. As it has been shown in step 4, the proposed approach provides dual layer security to
the data stored in HDFS. Step-wise demonstration of decryption operation is shown
in Fig. 8.

When using the proposed approach for decryption of 1GB file on Mapper job, it
took 6.73 min. On the other hand, the existing algorithms, i.e., AES and AES with OTP
respectively to 14.0841 and 12.2115, respectively for decrypting 1 GB file as shown in
Table 3.

The values for each criterion was logged and graphically plotted to represent the results
as shown in Figs. 9 and 10. Further, these figures show the comparative time taken (in
minutes) during the encryption and decryption process by different algorithms i.e., AES,
AES with OTP and Proposed Algorithm (ABHE). From Figs. 9 and 10, it is clear that the

Kapil et al. (2020), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.259 21/31

https://peerj.com
https://doi.org/10.7717/peerjcs.259/fig-6
http://dx.doi.org/10.7717/peerj-cs.259

PeerJ Computer Science

HDFS Distributed File System Secondary
Client Node
Proposed Encryption Technique Master Node Backup Node
ABHE
Variable Length
Data Processing
Data Encrypt I
FSData OutputStream
Client JVM
Client Node
6
Encrypted Encryped Ecoypted ‘Encrypted Encrypted
Block 2 Block 2 Block 4 Block 1 Block 2 Block 4
Encrypted Encrypted Encrypted e Encrypted E
Block 1 Block 4 EEEE e <7Copy > TR T
Data Node 1 Data Node 2 Data Node 3 Data Node 4 Data Node 5
Rack 1 Rack 2

Figure 7 Writing a file with encryption in HDFS.
Full-size Gal DOI: 10.7717/peerjcs.259/fig-7

Table 2 File encryption performance comparison among AES and AES with OTP algorithms and the

proposed ABHE algorithm.

File AES algorithm AES with OTP Proposed ABHE

size (MB) (Minutes) algorithm algorithm
(Minutes) (Minutes)

64 0.8704 0.7311 0.026

128 1.8216 1.3820 0.168

256 2.7396 2.5484 0.45

512 6.6682 4.8780 1.35

1,024 12.9751 11.2511 6.08

Total Encryption Time 25.0749 20.7906 8.074

Throughput of Encryption 79.12 95.42 245.72

(MB/Minutes)

proposed algorithm is taking less time for encryption and decryption as compared to other
existing algorithms in Hadoop environment.

When the proposed ABHE algorithm is integrated with Hadoop, it showed better
performance than the previously available cryptographic algorithm. From the results of
Tables 1-3, it is clear that:

e The proposed algorithm ABHE is taking less time to encrypt and decrypt text files than
the AES, AES with OTP algorithms.

e The throughput of ABHE is very high as compared to the AES, AES with OTP algorithms.

e As the throughput increases, the power consumption decreases, hence the power
consumption of ABHE is low than that of the AES, AES with OTP.

Kapil et al. (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.259

22/31

https://peerj.com
https://doi.org/10.7717/peerjcs.259/fig-7
http://dx.doi.org/10.7717/peerj-cs.259

PeerJ Computer Science

HDFS 1
Client .

Distributed File System

Proposed Encryption Technique
ABHE

Secondary
Node

Master Node

Backup Node

Variable Length
Data Processing

Data Decrypt I

FSData InputStream

Client IVM
Client Node
Encrypted Encrypted Encrypted Encrypted
Block 2 Block 2 Block 4 Block 1 Eiil Block 4
Encrypted Encrypted Encrypted od
k1 ks moks || R e B3 s
Copy
Data Node 1 Data Node 2 Data Node 3 Data Node 4 Data Node 5
Rack 1 Rack 2

Figure 8 Reading a File with Decryption in HDEFS.

Full-size Gal DOI: 10.7717/peerjcs.259/fig-8

Table 3 File decryption performance comparison among AES and AES with OTP algorithm and the

proposed ABHE algorithm.
File size (MB) AES algorithm AES with OTP Proposed
(Minutes) algorithm ABHE algorithm

(Minutes) (Minutes)

64 1.3056 1.0950 0.03065

128 2.1859 1.6560 0.168

256 2.8641 2.6554 0.45

512 8.9494 6.5361 1.35

1,024 14.0841 12.2115 6.73

Total decryption time 29.3891 24.154 8.72865

Throughput of decryption 67.50 82.13 227.29

(MB/Minutes)

Furthermore, for analyzing the performance of the proposed encryption technique with

sharing data between two different DataNodes in Hadoop environment, the same has
been simulated with random text file size 712 MB (in terms of block size) before and after
encryption shown in Figs. 11 and 12. Also, the Browse directory show that encrypted file

and abc.txt non-encrypted file HDEFS in Fig. 13.

DISCUSSION

The proposed study has been able to successfully solve the weaknesses present in the

security approaches available for big data security. The significance of the proposed work

is as follows:

Kapil et al. (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.259

23/31

https://peerj.com
https://doi.org/10.7717/peerjcs.259/fig-8
http://dx.doi.org/10.7717/peerj-cs.259

PeerJ Computer Science

14 1200

12
1000

10

800

600

400

200

| m = o

1 2 3 4 5

I File Size (MB) e AES Algorithm (Minutes) s AES With OTP Algorithm (Minutes) Proposed ABHE Algorithm (Minutes)

Figure 9 Encryption Time (minutes) of AES, AES with OTP and Proposed ABHE Algorithm.
Full-size & DOI: 10.7717/peerjcs.259/fig-9

16 1200

14
1000

12
800

10

600
400

200

. —_—

1 2 3 4 5

s File Size (MB) e AES Algorithm (Minutes) e AES with OTP Algorithm (Minutes) Proposed ABHE Algorithm (Minutes)

Figure 10 Decryption Time (minutes) of AES, AES with OTP and Proposed ABHE Algorithm.
Full-size & DOI: 10.7717/peerjcs.259/fig-10

e Proposed encryption technique which uses the concept of Attributes Based Honey
Encryption (ABHE) may help to securing sensitive information stored at HDFS in
insecure environment such as the internet and cloud storages.

e Proposed technique provides both HDFS and Map Reduce computation in the Hadoop
as well as cloud environment to secure and preserve the integrity of data during execution

Kapil et al. (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.259 24/31

https://peerj.com
https://doi.org/10.7717/peerjcs.259/fig-9
https://doi.org/10.7717/peerjcs.259/fig-10
http://dx.doi.org/10.7717/peerj-cs.259

PeerJ Computer Science

Browsing HOFS

<« ce D 192.168.1.10

File information - abe.txt

Block ID: 1073741866

Block Pool ID: BP-1359554990-192 168.1.10-1567682186693
Generation Stamp: 1042

Size: 74777360

Availability

« datanode?
« datanodel

5

Y
B
A

i
=
L
B
°

EEmsEEEEEEREEREOIBVANS s

Figure 11 Size of Block five before Encryption.
Full-size G4l DOI: 10.7717/peerjcs.259/fig-11

D 192.168.1.10:50070/explorer.htmi# /user/hduser

File information - encryptedFile

Download
Block information - [[ETEERERR

Block ID: 1073741872

Block Pool ID: BP-1359554990-192.168.1.10-1567682186693
Generation Stamp: 1048

Size: 74777376

Availability:

« datanode2
+ datanodel

Figure 12 Size of Block five after Encryption.
Full-size Gal DOI: 10.7717/peerjcs.259/fig-12

or at rest. Therefore, we have directed our efforts in securing the data transfer and
computation paradigm in Hadoop environment by using chipper text policy attributes
based honey encryption and Honey encryption for secret share of tuple of data and sent
them to the cloud in a secure manner.

e The chipper text policy attributes based encryption makes the application secure and
has a high performance when compared with the rest of the encryption techniques. Also,
it provides the secure data transfer to all cloud applications.

Kapil et al. (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.259 25/31

https://peerj.com
https://doi.org/10.7717/peerjcs.259/fig-11
https://doi.org/10.7717/peerjcs.259/fig-12
http://dx.doi.org/10.7717/peerj-cs.259

PeerJ Computer Science

< c @ D 192.168.1.10

Hadoop

TWer---

WA

Browse Directory

Juser/hduser

Permission

Hadoop, 2016.

o O I o =

Overview Datanodes Snapshot Startup Progress Utilities

Owner Group Size Last Modified Replication Block Size Name
hadoop supergroup 711.31 MB 9/25/2019, 5:41:32 PM 2 128 MB abc.txt

hadoop supergroup 711.31 MB 9/25/2019, 5:45:36 PM 2 128 MB encryptedFile

Figure 13 Browse directory show that encrypted file and abc.txt non-encrypted file HDFS.

Full-size Gl DOI: 10.7717/peerjcs.259/fig-13

e In the proposed algorithm, we have assured the data security by using simplified chipper
text policy attribute based encryption with Honey encryption which is difficult to decrypt
by any unauthorized access.

e The user authorization access is based on the user define policy which reflects the overall
organizational structure and also, depends upon a set of attributes within the system.

e With the proposed algorithm, the security of data is not only dependent on the secrecy
of encryption algorithm but also on the security of the key. This provides dual layer
security for the data.

CONCLUSION

In this proposed approach, we mainly concentrated on protection of big data stored in
HDFS by integrating the proposed ABHE algorithm with Hadoop key management server.
In a nutshell, for ensuring data security in Hadoop environment through the proposed
encryption technique, HDEFS files are encrypted by using attribute based honey encryption
through the proposed ABHE algorithm. For evaluating the suggested technique, we carried
out some experiments using two data nodes. Our objective was to experiment and gauge
the effectiveness of ABHE algorithm. For accuracy in sharing secret key, data sharing
between different clients and speed with which each file stored in HDEFS. As the proposed
ABHE algorithm, execution time (a function of encryption time) is less as compared to
the other available approaches. This proves that the proposed technique is fast enough to
secure the data without adding delay. Also, the proposed ABHE algorithm has a higher
throughput which proves its applicability on big data. It provides a feasible solution
for secure communication between one DataNode to other DataNode. The proposed
encryption technique does not increase the file size therefore it saves the memory and
bandwidth, and hence reduces traffic in a network. Also, it has an ability to encrypt

Kapil et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.259 26/31

https://peerj.com
https://doi.org/10.7717/peerjcs.259/fig-13
http://dx.doi.org/10.7717/peerj-cs.259

PeerJ Computer Science

structured as well as unstructured data under a single platform. Only HDFS client can
encrypt or decrypt data with accurate attributes and password. The Proposed technique
provides a dual layer security for all DataNode as data is not confined to a specific device
and clients can access the system and data from anywhere. This encryption approach may
be reckoned as a premise for visualizing and designing even more robust approaches to
ensure optimum security of big data.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work is sponsored by Council of Science & Technology, Uttar Pradesh, India under
F. No. CST/D-2408. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Council of Science & Technology, Uttar Pradesh, India.

Competing Interests
The authors declare there are no competing interests.

Author Contributions

e Gayatri Kapil conceived and designed the experiments, performed the experiments,
performed the computation work, prepared figures and/or tables, authored or reviewed
drafts of the paper, and approved the final draft.

e Alka Agrawal conceived and designed the experiments, performed the experiments,
analyzed the data, authored or reviewed drafts of the paper, and approved the final draft.

e Abdulaziz Attaallah conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, authored or reviewed drafts of the paper, and approved the final
draft.

e Abdullah Algarni performed the experiments, performed the computation work,
authored or reviewed drafts of the paper, and approved the final draft.

e Rajeev Kumar and Raees Ahmad Khan conceived and designed the experiments,
performed the experiments, analyzed the data, prepared figures and/or tables, authored
or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:
Code is available as a Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.259#supplemental-information.

Kapil et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.259 27/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.259#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.259#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.259#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.259

PeerJ Computer Science

REFERENCES

Atallah M, Frikken K, Blanton M. 2005. Dynamic and efficient key management for
access hierarchies. In: Proc. of CCS’05.

Bardi M, Xianwei Z, Shuai L, Fuhong L. 2014. Big data security and privacy: a review.
China Communication 11(14):135-145 DOI 10.1109/cc.2014.7085614.

Bellare M, Ristenpart T, Rogaway T, Stegers P. 2009. Format-preserving encryption. In:
International workshop on selected areas in cryptography. 295-312.

Cheikh AB, Abbes H, Fedak G. 2014. Towards privacy for MapReduce on hybrid clouds
using information dispersal algorithm. In: Data management in cloud, Grid and P2P
systems—7th international conference, Globe 2014, Munich, Germany, September 2-3.
Proceedings, Munich, Germany, 2014. 37—48.

Choi H, Nam H, Hur J. 2017. Password typos resilience in honey encryption. In: IEEE
international conference in information networking (ICOIN). 593-598.

Cohen JC, Acharya S. 2014. Toward a trusted HDFS storage platform: mitigating threats
to Hadoop infrastructure using hardware-accelerated encryption with TPM-rooted
key protection. Journal of Information Security and Applications 19(3):224-244.

Colombo P, Ferrari E. 2018. Access control in the era of big data: state of the art and
research directions. In: Blue sky session: innovation in access control and privacy-aware
data management for big data and IoT, SACMAT’18, June 13-15.

Derbeko P, Dolev S, Gudes E, Sharm S. 2016. Security and privacy aspects in mapre-
duce on clouds: a survey. Journal Computer Science Review 20(no. c):1-28
DOI10.1016/j.cosrev.2016.05.001.

Dinh TTA, Saxena P, Cang E-C, Ooi BC, Zhang C. 2015. M2R: enabling stronger privacy
in MapReduce computation. In: Proceedings of the 24th USENIX security symposium
(Security). Washington, DC.

Dolev S, Gupta P, Li Y, Mehrotra S, Sharma S. 2018. Privacy-preserving secret shared
computations using mapreduce. Available at hitps://arxiv.org/abs/1801.10323.

Dyer KP, Coull SE, Ristenpart T, Shrimpton T. 2013. Protocol misidentification made
easy with format-transforming encryption. In: Proceedings of the ACM SIGSAC
conference on computer and communications security. ACM, 61-72.

Ebrahim M, Khan S, Khalid UB. 2013. Khalid UB Symmetric algorithm survey: a
comparative analysis. International Journal of Computer Applications 61(20):12—19.

FuX, GaoY, Luo B, Du X, Guizani M. 2017. Security threats to hadoop: data leakage
attacks and investigation. IEEE Network 31(2):67-71
DOI 10.1109/MNET.2017.1500095NM.

Gupta M, Patwa F, Sandhu R. 2018. Attribute-based access control model for secure big
data processing in hadoop ecosystem. In: Processing’s of the third acm workshop on
attribute-based access control-ABAC-18. 13-24 DOI 10.1145/3180457.3180463.

Jain P, Sardana A. 2012. Defending against internet worms using honey farm. In: ACM
in proceedings of the CUBE international information technology conference. New York:
ACM, 795-800.

Kapil et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.259 28/31

https://peerj.com
http://dx.doi.org/10.1109/cc.2014.7085614
http://dx.doi.org/10.1016/j.cosrev.2016.05.001
https://arxiv.org/abs/1801.10323
http://dx.doi.org/10.1109/MNET.2017.1500095NM
http://dx.doi.org/10.1145/3180457.3180463
http://dx.doi.org/10.7717/peerj-cs.259

PeerJ Computer Science

Jam MR, Akbari MK, Khanli LM. 2014. A survey on security of hadoop. In: 4th interna-
tional conference on computer and knowledge engineering (ICCKE). 716-721.

Jeong YS, Kim YT. 2015. A token-based authentication security scheme for hadoop
distributed file system using elliptic curve cryptography. Journal of Computer
Virology and Hacking Techniques 11:137-142 DOT 10.1007/s11416-014-0236-5.

Juels A, Ristenpart T. 2014. Honey encryption: security beyond the brute-force bound.
In: Advances in Cryptology-EUROCRYPT2014. 293-310.

Kim IS, Kim MH. 2012. Agent-based honey net framework for protecting servers in cam-
pus networks. IET Information Security 6(3):202-211 DOT 10.1049/iet-ifs.2011.0154.

Lu W, Wang Y, JuangJ, Liu J, Shen Y, Wei B. 2017. Hybrid storage architecture and
efficient MapReduce processing for unstructured data. Parallel Computing 69:63—77
DOI10.1016/j.parco.2017.08.008.

Maheswari MI, Revathy S, Tamilarasi R. 2016. Secure data transmission for multi
sharing in big data storage. Indian Journal of Science and Technology 9(21)

DOI 10.17485/ijst/2016/v9i21/95164.

Mahmoud H, Hegazy A, Khafagy MH. 2018. An approach for big data security based on
hadoop distributed file system. In: International conference on innovative trends in
computer engineering (ITCE). DOI 10.1109/ITCE.2018.8316608.

Mehmood A, Natgunanathan I, Xiang Y. 2016. Protection of big data privacy. In: IEEE
protection of big data privacy, in IEEE access, vol. 4. Piscataway: IEEE, 1821-1834
DOI 10.1109/ACCESS.2016.2558446.

Mohan Rao PR, Krishna SM, Kumar APS. 2018. Privacy preservation techniques in big
data analytics: a survey. Journal of Big Data 5:Article 33
DOI'10.1186/540537-018-0141-8.

Nguyen TC, Shen W, Jiang J, Xu W. 2013. A novel data encryption in HDFS, 2013
IEEE international conference on green computing and communications and IEEE
internet of things and IEEE cyber. Physical and Social Computing 2013:2183-2187
DOI 10.1109/GreenCom-iThings-CPSCom.2013.4.

Oktay Y, Mehrotra S, Khadilkar V, Kantarcioglu M. 2015. SEMROD: secure and
efficient MapReduce over hybrid clouds. In: Proceedings of the 2015 ACM SIGMOD
international conference on management of data, Melbourne, Victoria, Australia, May
31—June 4, 2015. 153-166.

Owezarski P. 2015. A near real-time algorithm for autonomous identification and
characterization of honey pot attacks. In: Proceedings of the 10th ACM symposium
on information, computer and communications security. 531-542.

Park S, Lee Y. 2013. Secure hadoop with encrypted HDFS. In: Park JJ, Arabnia
HR, Kim C, Shi W, Gil JM, eds. Grid and pervasive computing. GPC 2013.

Lecture notes in computer science, vol. 7861. Berlin, Heidelberg: Springer
DOI10.1007/978-3-642-38027-3_14.

Polato I, Re R, Goldmn A, Kon F. 2014. A comprehensive view of hadoopreseach—a
systematic literature review. Journal of Network and Computer Applications 46:1-25
DOI10.1016/j.jnca.2014.07.022.

Kapil et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.259 29/31

https://peerj.com
http://dx.doi.org/10.1007/s11416-014-0236-5
http://dx.doi.org/10.1049/iet-ifs.2011.0154
http://dx.doi.org/10.1016/j.parco.2017.08.008
http://dx.doi.org/10.17485/ijst/2016/v9i21/95164
http://dx.doi.org/10.1109/ITCE.2018.8316608
http://dx.doi.org/10.1109/ACCESS.2016.2558446
http://dx.doi.org/10.1186/s40537-018-0141-8
http://dx.doi.org/10.1109/GreenCom-iThings-CPSCom.2013.4
http://dx.doi.org/10.1007/978-3-642-38027-3_14
http://dx.doi.org/10.1016/j.jnca.2014.07.022
http://dx.doi.org/10.7717/peerj-cs.259

PeerJ Computer Science

Rerzi DS, Terzi R, Sagiroglu S. 2015. A survey on security and privacy issues in big
data. In: 10th international conference for internet technology and secured transactions
(ICITST). 202-207 DOI 10.1109/jicitst.2015.7412089.

Schuster F, Costa M, Fournet C, Gkantsidis C, Peinado M, Mainar-Ruiz G, Russinovich
M. 2015. VC3: trustworthy data analytics in the cloud using SGX. In: Proceedings of
the 36th IEEE symposium on security and privacy (Oakland). 38-54.

Scrinivasan MK, Revthy P. 2018. State-of-the-art big data security taxonomies.

In: Proceeding of the 11th innovation in software engineering conference—ISEC.
DOI10.1145/31728771.317288.

Shobha K, Nickolas S. 2017. Time domain attribute based encryption for big data access
control in cloud environment. ACCENTS Transactions on Information Security
2(7):73-77 DOI 10.19101/T1S.2017.27003.

Song Y, Shin YS, Jang M, Chang JW. 2017. Design and implementation of HDEFS data
encryption scheme using ARIA algorithm on Hadoop. In: IEEE international confer-
ence on big data and smart computing (BigComp)

DOI 10.1109/BIGCOMP.2017.7881720.

Sudhakar K, Farquad MAH, Narshimha G. 2019. Effective convolution method for
privacy preserving in cloud over big data using map reduce framework. IET Software
13:187-194 DOI 10.1049/iet-sen.2018.5258.

Tan SF, Samsudin A. 2018. Enhanced security of internet banking authentication with
extended honey encryption (XHE) scheme. In: Zelinka I, Vasant P, Duy V, Dao T,
eds. Innovative computing, optimization and its applications. Studies in computational
intelligence, vol. 741. Cham: Springer DOI 10.1007/978-3-319-66984-7_12.

Tian Y. 2017. Towards the development of best data security for big data. Communication
and Network 9:291-301 DOI 10.4236/cn.2017.94020.

Tyagi N, Wang J, Wen K, Zuo D. 2015. Honey encryption applications. Network Security
2015:1-16.

Ulusoy H, Kantarcioglu M, Pattuk E, Hamlen K. 2014. Vigiles: fine-grained access
control for MapReduce systems. In: 2014 IEEE international congress on big data
Anchorage, AK, 2014, 40-47 DOI 10.1109/BigData.Congress.2014.16.

Usama M, Zakaria N. 2018. Chaos-based simultaneous compression and encryption for
Hadoop. PLOS ONE 13(3):e0195420 DOI 10.1371/journal.pone.0195420.

Varsha BS, Suryateja PS. 2014. Using attribute- based encryption with advanced
encryption standard for secure and scalable sharing of personal health records
in cloud. International Journal of Computer Science and Information Technologies
5(5):6395-6399.

Vimercati SDC, Foresti S, Jajodia S, Paraboschi S, Samarati P. 2007. Over-encryption:
management of access control evolution on outsourced data. In: Proc. of VLDB’07.

Vinayak PP, Nahala MA. 2015. Avoiding brute force attack in manet using honey
encryption. International Journal of Science and Research 4(3):83-85.

Vormetric Data Security. 2016. Hadoop: security recommendation for Hadoop
environments. Available at hitps://securosis.com/ assets/ library/ reports/ Securing
Hadoop_Final_V2.pdf.

Kapil et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.259 30/31

https://peerj.com
http://dx.doi.org/10.1109/jicitst.2015.7412089
http://dx.doi.org/10.1145/31728771.317288
http://dx.doi.org/10.19101/TIS.2017.27003
http://dx.doi.org/10.1109/BIGCOMP.2017.7881720
http://dx.doi.org/10.1049/iet-sen.2018.5258
http://dx.doi.org/10.1007/978-3-319-66984-7_12
http://dx.doi.org/10.4236/cn.2017.94020
http://dx.doi.org/10.1109/BigData.Congress.2014.16
http://dx.doi.org/10.1371/journal.pone.0195420
https://securosis.com/assets/library/reports/Securing_Hadoop_Final_V2.pdf
https://securosis.com/assets/library/reports/Securing_Hadoop_Final_V2.pdf
http://dx.doi.org/10.7717/peerj-cs.259

PeerJ Computer Science

Wang Y, Shen Y, Wang H, Cao J, Jiang X. 2015. MtMR: ensuring MapReduce compu-
tation integrity with merkle tree-based verifications. IEEE Transactions on Big Data
4(3):418-431 DOI 10.1109/TBDATA.2016.2599928.

Wikipedia. 2019. Honey encryption. Available at https://en.m.wikipedia.org/ wiki/ Honey
encryption.

Xu L, WuX, Zhang X. 2012. CL-PRE: a certificate less proxy re-encryption scheme for
secure data sharing with public cloud. In: ACM symposium on information, computer
and communications security (ASIACCS’12). New York: ACM, 87-88.

Yalla C, Gill A, Gupta M, Mohankumar H, McCloskey T, Minas L, Ngo N, Tolentino S,
Watson D. 2016. Big Data: security Intel IT’s apache hadoop platform. White paper,
Intel. Available at https:// www.intel.com/ content/ www/ us/ en/ it-management/ intel-
it-best-practices/ big- data- securing-intel-it-apache-hadoop- platform-paper.html.

Yang C, Lin W, Liu M. 2013. A novel triple encryption scheme for hadoop-based cloud
data security. In: Emerging intelligent data and web technologies (EIDWT), Fourth
international conference. 437—442.

Yin W, Iska JI, Zhou H. 2017. Protecting private data by honey encryption. Hindawi Se-
curity and Communication Networks 2017:Article 6760532 DOT 10.1155/2017/6760532.

Yu S, Wang C, Ren K, Lou W. 2010a. Achieving secure, scalable, and fine-grained access
control in cloud computing. In: Proc. of IEEE INFOCOM’10. San Diego.

Yu S, Wang C, Ren K, Lou W. 2010b. Achieving secure, scalable, and fine-grained data
access control in cloud computing. Communications Society IEEE INFOCOM.

Zettaset. 2014. The big data security gap: protecting the Hadoop cluster. White Paper.
Available at https:// www.zettaset.com/wp-content/ uploads/ 2014/ 04/ zettaset_wp_
security_0413.pdf .

Zhao J, Wang L, Tao J, Chen J, Sun W, Ranjan R, Kolodziej J, Streit A, Georgakopoulos
D. 2014. A security framework in G-Hadoop for big data computing across dis-
tributed Cloud data centres. Journal of Computer and System Sciences 80:994—1007
DOI 10.1016/j.jcss.2014.02.006.

Zhao T, Wei L, Zhang C. 2016. Attribute- based encryption scheme based on SIFF. In:
IEEE ICC 2016 communication and information system security symposium.

Zhou H, Wen Q. 2014. Data security accessing for hdfs based on attribute-group in cloud
computing. In: International conference on logistics engineering, management and
computer science. 1142—1145.

Kapil et al. (2020), Peerd Comput. Sci., DOI 10.7717/peerj-cs.259 31/31

https://peerj.com
http://dx.doi.org/10.1109/TBDATA.2016.2599928
https://en.m.wikipedia.org/wiki/Honey_encryption
https://en.m.wikipedia.org/wiki/Honey_encryption
https://www.intel.com/content/www/us/en/it-management/intel-it-best-practices/big-data-securing-intel-it-apache-hadoop-platform-paper.html
https://www.intel.com/content/www/us/en/it-management/intel-it-best-practices/big-data-securing-intel-it-apache-hadoop-platform-paper.html
http://dx.doi.org/10.1155/2017/6760532
https://www.zettaset.com/wp-content/uploads/2014/04/zettaset_wp_security_0413.pdf
https://www.zettaset.com/wp-content/uploads/2014/04/zettaset_wp_security_0413.pdf
http://dx.doi.org/10.1016/j.jcss.2014.02.006
http://dx.doi.org/10.7717/peerj-cs.259

