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ABSTRACT

In a multi-goal reinforcement learning environment, an agent learns a policy to perform
tasks with multiple goals from experiences gained through exploration. In environ-
ments with sparse binary rewards, the replay buffer contains few successful experiences,
posing a challenge for sampling efficiency. To address this, Hindsight Experience
Replay (HER) generates successful experiences, named hindsight experiences, from
unsuccessful ones. However, uniform sampling of experiences for the process of HER
can lead to inefficient scenarios of generating hindsight experience. In this paper, a
novel method called Failed goal Aware HER (FAHER) is proposed to enhance sampling
efficiency. This method considers the properties of achieved goals with respect to failed
goals during sampling. To account for these properties, a cluster model is used to cluster
episodes in the replay buffer, and experiences are subsequently sampled in the manner
of HER. The proposed method is validated through experiments on three robotic
control tasks from the OpenAl Gym. The experimental results demonstrate that the
proposed method is more sample-efficient and achieves improved performance over
baseline approaches.

Subjects Artificial Intelligence, Robotics

Keywords Multi-goal reinforcement learning, Hindsight experience replay, Cluster model,
Robotics

INTRODUCTION

Reinforcement learning (RL) is a powerful learning approach, a branch of machine
learning, where an agent learns sequential actions to complete a specific task, particularly
in environments with uncertain or delayed rewards. Within the RL approach, the agent
learns to take actions that maximize cumulative rewards. The actions executed by the agent
are outputs of a policy function, with the state serving as the input. The use of deep neural
networks for approximating policy functions has catalyzed remarkable progress in RL,
enabling its application across various domains, such as video games (Mnih et al., 2015;
Vinyals et al., 2019; Perolat et al., 2022), smart manufacturing (Dittrich ¢ Fohlmeister,
2020 Liu et al., 2023), autonomous vehicle (Folkers, Rick ¢ Biiskens, 2019; Jung ¢ Oh,
2022; Carrasco & Sequeira, 2023), and robotics (Seo et al., 2019; Lépez-Lozada et al., 2021
Kim et al., 2021; Gu et al., 2023).
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Real-world tasks often involve multiple goals. For example, when walking, an agent
navigates to various target destinations. Similarly, in an object placement task, the agent
positions an object at different locations on a table surface. To address such tasks with
multiple goals, the RL framework is extended to multi-goal RL (MGRL) (Plappert et al.,
2018). The key difference from general RL is that the policy is conditioned on the goal.
This policy is termed a goal-conditioned policy, leading to the alternate terminology of
goal-conditioned RL for MGRL.

In both general RL and MGRL, the training dataset is experiences obtained from
the exploration, which means the trial-and-error interactions of the agent within the
environment. Each experience is comprised of the state, goal (in the MGRL case), action,
reward, and next state. Since the loss function for training is based on the reward, properly
setting the reward is a crucial problem. The reward must be carefully designed and shaped
in accordance with the characteristics of the environment, which requires domain expertise
and carries the risk of inaccuracies. Reward design is such a critical issue that it constitutes
its own research area (Hadfield-Menell et al., 2017; Silver et al., 2021). To circumvent these
risks and the need for domain expertise, the ideal approach is to train the agent using
binary rewards. In the binary reward setting, the agent receives a reward of 0 for succeeding
at the task and -1 for failing.

Since the agent takes random actions throughout most of the exploration, valuable
experiences are scarcely obtained in environments with binary rewards. It is inefficient
for these rare valuable experiences to be used only once as training data. This can lead
to prolonged training times or even failure to learn the task. To address this issue, the
experience replay (ER) technique is proposed by Lin (1992). The ER technique stores
the experiences obtained through exploration in a database called a replay buffer.
During training, a mini-batch consisting of the experiences sampled from the replay
buffer is utilized to train the policy. A crucial consideration is that experiences generated
consecutively can exhibit strong correlations when the agent learns from them in sequence.
For instance, if the agent takes similar actions across successive states, this can induce bias
in the learning process. The ER technique serves to alleviate such bias by breaking the
temporal coherence among the experiences used for training.

In environments with huge state spaces, such as 3D robotic control tasks, the use of
binary rewards often leads to sparse reward signals. This sparseness of rewards is particularly
pronounced in the MGRL framework, exacerbating the learning difficulty. Due to the
sparsity of rewards, the number of successful experiences is typically low, resulting in a low
proportion of successful experiences within the replay buffer. Consequently, mini-batches
containing a few successful experiences are created and used for training. To address
this issue, the Hindsight Experience Replay (HER) technique (Andrychowicz et al., 2017)
generates successful experiences, termed hindsight experiences (HEs), from the experiences
in the replay buffer, thereby increasing the sampling efficiency. HER operates at the episode
level, where an episode refers to a sequence of experiences until the agent achieves a goal
or fails. An HE is generated by substituting the original goal of an episode with an achieved
goal (AG) during that episode. The AG differs from the original goal and refers to an
outcome or state reached by the agent during an episode, regardless of whether the episode
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Figure 1 Illustration depicting the motivation behind the proposed method. On the left side, three sce-
narios of generating HEs are depicted. The green arrows indicate the transformation of experiences in the
replay buffer into the HEs. The question marks suggest that inefficiency is present in each scenario. On the
right side, an example of the second scenario is illustrated. The task involves moving an object to the goal.
In the illustration, the black dot represents the object and the grey line depicts the trajectory of the object.
The red dot and the green dot denote the original goal and the AG at the last timestep of the episode, re-
spectively.

Full-size ] DOI: 10.7717/peerjcs.2588/fig-1

is successful or unsuccessful. When combined with off-policy RL algorithms such as Deep
Q-Network (Mnih et al., 2015), Deep Deterministic Policy Gradient (DDPG) (Lillicrap et
al., 2015), and Soft Actor-Critic (Haarnoja et al., 2018), HER enables learning complex
tasks with sparse binary rewards. HER can be integrated with a variety of methodologies,
as demonstrated in Vecchietti, Seo ¢» Har (2020); Zhao & Tresp (2018); Yang et al. (2023);
Huang ¢ Ren (2023); Sanchez et al. (2024), to enhance performance.

HER generates HEs by uniform sampling from the replay buffer containing both
successful and unsuccessful experiences. However, generating HEs without considering
the characteristics of the experiences in the replay buffer is inefficient. As illustrated in
Fig. 1, the process of generating HEs can be categorized into three scenarios: (1) generating
HEs from successful experiences, (2) generating HEs from unsuccessful ones that match
past experiences, and (3) generating HEs from unsuccessful ones that do not match past
ones. The past experiences mean experiences that the current RL policy has gained. In the
first scenario, the generated HEs are identical to the past successful experiences, resulting
in an inefficient use of computing resources. The second scenario involves HEs that are
also identical to the past ones. In this case, similar experiences are repeatedly used in the
learning process, reducing data diversity and increasing the risk of overfitting. The third
scenario represents the complement of the previous two. It generates new HEs that succeed
in achieving goals where the current RL policy has failed. Consequently, the third scenario
is more efficient compared to the others.

This paper demonstrates that considering the properties of the AG regarding failed goals
(FGs) when sampling experiences can improve the efficiency of HER. The FG is defined
as the original goal of an unsuccessful episode. From this perspective, the Failed goal
Aware Hindsight Experience Replay (FAHER) is proposed. In FAHER, a cluster model is
employed to consider the properties of the AGs regarding the FGs. The uniform sampling
of the original HER is combined with the cluster model. By the cluster model, the replay
buffer is divided into partitions called clustered buffers, followed by uniform sampling
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from each clustered buffer to generate HEs. The cluster model, whose parameters are fit
to the FGs, assigns a cluster index to the AG of each episode. Episodes in the replay buffer
are allocated into cluster buffers based on their assigned indices. The core idea of driving
this episode clustering is to empower the agent to extract richer insights from unsuccessful
episodes, particularly where the AGs closely align with the FGs. The main contributions of
this paper are as follows.

1. A clustering-based extension of HER is proposed. The key feature is the integration
of episode clustering into the HER process. The episode clustering is based on the
properties of the AGs regarding the FGs. During the creation of mini-batches, episodes
with AGs that closely resemble goals currently challenging for the RL policy to achieve
are sampled more frequently.

2. A method to utilize a cluster model on the experiences stored within the replay buffer to
enhance HER is presented. This method involves fitting the cluster model parameters
to the FGs and clustering the AGs. The concept of using FGs is to reduce the sampling
of successful experiences during the generation of HEs.

3. The proposed method is evaluated on the Fetch environments of OpenAl Gym
(Brockman et al., 2016) to demonstrate the performance improvement of HER by
utilizing the cluster model with AGs and FGs. To conduct additional experiments,
three variations of the Slide task are constructed.

4. An analysis is presented for comparative experiments and ablation studies. The
comparative experiments encompass experiments to show the compatibility with other
sampling algorithms. The ablation studies aimed at demonstrating characteristics of
the key methodological components of the proposed method.

The remainder of this paper is structured as follows. ‘System Modeling’ describes the
concepts of RL and MGRL, HER, variants of HER, K-means, and terminology clarification.
In ‘Proposed Method’, the proposed method is introduced in detail. In ‘Experiments’,
experimental environments and the results of comparison experiments and ablation
studies are presented. ‘Conclusion’ concludes this paper.

SYSTEM MODELING

In this section, the concepts of RL and MGRL, HER, variants of HER, K-means clustering
algorithm, and terminology clarification are presented.

Reinforcement learning

Reinforcement learning (RL) is a framework where an agent learns to make decisions by
interacting with an environment to maximize cumulative rewards. At each timestep t, the
agent observes a state s; € S and selects an action a; € A according to a policy 7 : S— A. The
environment responds to this action by transitioning to a new state s, based on a state
transition probability p(s;+11s:,a;) and provides a reward r; =r(s;,a;). The agent’s goal is
to learn a policy 7 that maximizes the expected sum of future rewards, often referred to as
the return.
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The agent’s learning process is guided by experiences e, = (s;,a;,7,5,41), which are
stored in a replay buffer for training. This approach allows the agent to use past experiences
for training, improving the sample efficiency of learning.

Multi-goal reinforcement learning

Multi-goal reinforcement learning (MGRL) extends the RL framework by introducing
goals that the agent aims to achieve within a given task. The policy takes both the state and
the goal information as input, being referred to as a goal-conditioned policy (Schaul et al.,
2015). The reward function is a function of the state, goal, and action.

At the beginning of each episode, the environment provides an initial state sp € S and a
goal g € G, with the goal g remaining fixed throughout the episode. The state comprises
the observation o and the AG ag. In environments with an object, the AG represents the
state of the object. At each timestep ¢, the agent takes an action a, € A according to the
policy 7w : S x G — A, given the current state s; and the goal g as input. The environment is
affected by the action a, and returns a reward r, =r(s;,g,a;) and the next state s;1;. The
next state is determined by the state transition probability p(s;+1|s¢,a;). The interaction of
the agent with the environment continues until a terminal state is reached. The experiences
e; obtained through exploration are represented as a 5-tuple (s;,g,ar, ¢, St+1)-

Hindsight experience replay
Hindsight Experience Replay (HER) (Andrychowicz et al., 2017) addresses the issue of
sparse rewards commonly encountered in MGRL. When positive reward experiences are
rare, HER improves sample efficiency by reinterpreting unsuccessful episodes as successful
ones, thereby enabling the agent to learn from its failures.

HER generates an HE by replacing the original goal g with a hindsight goal g", which
is an AG from the same episode. By recalculating the reward with respect to g", i.e,
rth =r(s, gh, a;), the original experience e; = (s;,g,a;,7¢,5.+1) is transformed into a new
hindsight experience ef = (s, gh, as, rth,StJ,_l). This process allows the agent to learn from
outcomes it was able to achieve, rather than solely focusing on the initially specified goal,
thus improving learning efficiency in environments with sparse rewards.

Variants of hindsight experience replay

Several variations of HER have been proposed to address its limitations, particularly in
improving sample efficiency within environments with sparse rewards. These variants
introduce different mechanisms to enhance HER’s ability to handle complex tasks more
effectively. This subsection summarizes the key approaches of 4 variants.

Zhao & Tresp (2018) introduces energy-based prioritization (EBP) to HER, which
incorporates a trajectory energy function to evaluate the difficulty of tasks based on the
physical energy of the agentads interactions. This variant prioritizes trajectories with higher
energy levels, focusing learning on more challenging but achievable tasks. Multi-step HER
(Yang et al., 2023) addresses the inherent bias in standard HER by relabeling multiple
consecutive transitions within a trajectory rather than individual transitions. This multi-
step relabeling increases the number of non-negative learning signals, thereby improving
the learning process in sparse reward settings. Robust Model-based HER (Huang ¢ Ren,
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2023) extends HER with a predictive dynamics model that forecasts future states. This
approach introduces foresight relabeling, where the predicted future states are treated
as achieved goals. Sanchez et al. (2024) proposes Q-switch Mixture of Primitives HER,
which improves sample efficiency by leveraging previously learned primitive behaviors
from simpler tasks. These primitive policies are reused when tackling more complex tasks,
reducing exploration time and allowing the agent to transfer knowledge across tasks.

In contrast to these existing approaches, the proposed method addresses the problem
of inefficient sampling in HER by focusing on the properties of FGs and AGs. This paper
introduces a clustering-based framework that groups experiences. This approach differs
from the above variants by explicitly using the characteristics of unsuccessful episodes.
Through experiments integrating the proposed clustering approach with HER-EBP, this
paper shows that the proposed method can work alongside existing HER variants to further
enhance sample efficiency.

K-means clustering

The K-means clustering (McQueen, 1967) is a widely adopted unsupervised clustering
algorithm. It partitions the input data into k distinct clusters. The number of clusters, k, is
a user-specified parameter. The algorithm is initialized by randomly selecting k centroids,
the centers of the clusters. Each data point is assigned to its nearest centroid. The centroids
are subsequently updated to minimize the average squared distance between the data points
and their assigned centroids. This process of assigning data points and updating centroids
is performed iteratively until the centroids converge, at which point there are no further
transitions. K-means clustering is suitable for general-purpose applications and scenarios
involving a relatively small number of clusters. Therefore, in this paper, it is utilized to fit
the cluster model parameters to FGs for clustering episodes in the replay buffer.

Terminology clarification

This paper uses several key terms to describe different aspects of experiences and goals in
HER. An illustrative example of HER is first provided, which will be referenced throughout
the following explanations.

lllustrative example

Consider a scenario in which a robot is tasked with placing an object at a target point A
and ends up placing it at point B. If points A and B are identical/close, the experience is
considered successful. However, if they differ significantly, the experience is considered
unsuccessful. In such cases, HER reinterprets it by assuming that the point B was the
intended target from the outset, thus transforming it into an HE.

Key terms

e Hindsight experiences (HEs) refer to successful experiences created by HER from the
experiences stored in the replay buffer.

e Past experiences refer to experiences gained by the current RL policy, representing
experiences where the current policy can successfully achieve the goal. The proposed
method aims to avoid generating hindsight experiences that are similar to past
experiences, as this can reduce the efficiency of learning.
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e Original goal represents the target that the agent was tasked with achieving, which in
the example is point A.

e Achieved goal (AG) is the state or outcome the agent reaches based on its actions. In
the example, the AG is point B, the location where the object was placed.

e Failed goal (FG) refers to the original goal in an unsuccessful experience, where the
agent did not achieve its target. In the example, when the points differ, point A becomes
the FG, representing a goal that the current RL policy was unable to achieve. The
proposed method focuses on sampling experiences where the AG (point B) is similar to
the FG.

PROPOSED METHOD

This section details the proposed FAHER method. It employs a cluster model to enhance
the sampling efficiency of HER. The cluster model clusters the episodes in the replay buffer
when sampling experiences to create mini-batches.

For MGRL settings with sparse binary rewards, HER allows the agent to gain valuable
positive feedback from unsuccessful experiences by generating HEs. An HE is generated
by selecting one AG from the AGs of an episode as the hindsight goal and recomputing
the rewards accordingly. However, as mentioned in the ‘Introduction’, the generation of
HEs can be categorized into three scenarios, with the first two being less sample-efficient
compared to the third one.

A method is proposed to increase the occurrence of the third scenario. The unsuccessful
episodes of the third scenario are termed Potential-insights Episodes (PiEs). The PiEs are
defined as episodes where the AGs, if set as the original goals, would be difficult to achieve
under the current RL policy. In other words, PiEs hold the potential insights to generate
HEs that represent successful experiences the current RL policy cannot produce itself. The
AGs of PiEs are characterized by their proximity to past FGs. The proposed method focuses
on the PiEs by making HER aware of the FGs and aims to improve HER.

The core idea of the proposed method is to introduce a clustering procedure into
the original HER framework. The original HER framework consists of three uniform
sampling processes: the first samples episodes from the replay buffer; the second samples
an experience from each sampled episode; and the third samples experiences to be converted
into HEs among the sampled experiences, as shown in the upper part of Fig. 2.

The first sampling process of HER can be redesigned such that PiEs are sampled more
frequently, thereby enhancing the effectiveness of HER. To realize this concept, FAHER
replaces the first sampling process with a sequential process of two procedures: clustering
of episodes using a cluster model; and uniform sampling of episodes from the clustered
episodes, as depicted in the lower part of Fig. 2.

The clustering procedure relies on a cluster model. As shown in Fig. 3, the cluster model
parameters are fit to the FGs stored in the failed goal buffer (FGB). These FGs are collected
during the training of the RL policy. Once the cluster model is fit, it assigns each episode
in the replay buffer to a cluster based on its last AG, which is the AG at the end of the
episode. The last AG is used because the success or failure is determined by comparing the
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Figure 2 Frameworks of HER and FAHER. The upper row depicts the process of generating HEs.

Episodes, which consist of experiences for sequential timesteps, are uniformly sampled three times to

create a mini-batch. In contrast, the bottom row shows the enhanced process using a cluster model

applied to FGs stored in the failed goal buffer. The episodes are first grouped into clustered buffers

and sampled from each clustered buffer. This results in generating diverse and meaningful hindsight

experiences. Annotations of R; and k represent ith clustered buffer and the number of the clusters.
Full-size &l DOI: 10.7717/peerjcs.2588/fig-2

last AG with the original goal. Based on these cluster indices, the episodes are clustered
into clustered buffers. The clustered buffers R; are subsets of the replay buffer, and their
number thereof is equal to the number of clusters k.

From each clustered buffer, batch_size /k episodes are uniformly sampled to form an
episode batch containing batch_size episodes. This sequential process of clustering and
sampling is referred to as a clustering-based sampling strategy. With the episode batch, the
second and third uniform samplings are performed in the manner of HER.

The clustering model needs to be periodically updated to remain effective. This periodic
update is a crucial feature of the proposed method, as using a cluster model fitted to
outdated FGs can hinder the training of the RL policy. The cluster model is updated when
the FGB is fully replenished with new FGs. Once the cluster model is updated, it reassigns
cluster indices to all the episodes in the replay buffer. Episodes stored after the cluster
model update are individually assigned cluster indices.

The key parameters for the periodic update of the cluster model are the number of FGs
used for fitting and the update cycle. The first parameter is equivalent to the size of the FGB.
These two parameters must be carefully determined. A small FGB size may not adequately
represent the FGs of the current RL policy. A large FGB size increases computational costs
and causes the use of outdated FGs from the past RL policy. In the case of a short update
cycle, the frequently changing cluster model may not provide sufficient time for the RL
policy to learn the current FGs. A long cycle can lead to wasted time after the RL policy has
fully learned the current FGs. In the following section, ablation studies of these important
parameters are presented.
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Algorithm 1 Clustering-based sampling strategy

Given: a replay buffer R, a cluster model C

1:
2:

Initialize a episode buffer B
Define A as a set of the last achieved goals agr of episodes in R

3: Assign the cluster index to each agr in A by using C
4 fori=0,k-1do

5
6:
7
8

Define a clustered buffer R; containing the episodes whose cluster index is

Sample w episodes from R;

Store sampled episodes to B

: end for

Algorithm 2 Failed goal Aware Hindsight Experience Replay (FAHER)

Given: an off-policy RL algorithm A, a cluster model C, a clustering-based sampling strat-

egy S, a strategy Sy for sampling goals for replay, a reward functionr : SxAx G— R

1:
2:
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

26:

Initialize neural networks A, a cluster model C, replay buffer R, and failed goal buffer

F

for epoch = 1, K do
for episode = 1, M do

Sample a goal g and initial state sy

fort=0,T—1do
Select an action a, using the behavior policy from A: a; < 7 (s;,¢) + N
Execute the action g, and observe a new state s;; and ry =7(s;,a;,9)
Store the experience (s;,g,d;,1;,5:4+1) temporarily

end for

Store the experiences as an episode in R

if The episode is unsuccessful then
Store the last achieved goal in F

end if

FitCto F

fori=1,Ndo
Sample a set B of episodes from R with S,
Sample a mini-batch B, a set of experiences, from B
Sample a set of achieved goals G with S,
for g" € G do

rth = r(st,at,gh)
Substitute ¢ and r, in the experience by g" and r/

end for
Perform one step of optimization using A and B

end for

end for
end for
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In short, the clustering process, which is the key idea of the proposed method, aims to
increase the sampling probability of episodes whose last AGs are close to difficult-to-achieve
FGs during training. A goal is considered an FG if the last AG in an episode differs from
the original goal, indicating an unsuccessful episode. These FGs are stored in the FGB and
are later used to fit the cluster model, which clusters the episodes in the replay buffer. The
main concept of the proposed method can be expressed by introducing a cluster model C
and a clustering-based sampling strategy S, to HER. The pseudo-code for the clustering
and sampling procedures of episodes and the proposed FAHER method are presented in
Algorithm 1 and Algorithm 2, respectively.

EXPERIMENTS

In this section, the experiment environment is described the experimental results of
comparative evaluations, ablation studies, and three variations of the Slide task are provided.

Experiment environment

Experiments are conducted on the continuous control tasks of the multi-goal environment
used in Plappert et al. (2018). The Fetch environment is developed by the OpenAl Gym
(Brockman et al., 2016) using the MuJoCo physics engine (Todorov, Erez ¢ Tassa, 2012).
The performance of the proposed method is evaluated on three tasks within the Fetch
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Figure 4 Illustrations of three tasks considered in experiments: Push, PickAndPlace, and Slide tasks.
Full-size Gal DOI: 10.7717/peerjcs.2588/fig-4

environment, involving a seven-degree-of-freedom robotic arm and an object placed on a
table, as illustrated in Fig. 4. The three tasks are described as follows:

e Push task (FetchPush-v1): A goal location, a small red sphere in the figure, is randomly
chosen in the 0.3 m x 0.3 m 2D space on the table surface within reach of the robot.
The robot arm pushes the object (a box) to the goal location.

e Pick and Place task (FetchPickAndPlace-v1): A goal location is randomly chosen in the
0.3 m x 0.3 m x 0.45 m 3D space above the table. The robot arm picks the object (a
box) with the gripper and places it at the goal location.

e Slide task (FetchSlide-v1): A goal location is randomly chosen in the 0.6 m x 0.6 m 2D
space on the table surface in front of the robot, but out of reach of the robot. The robot

arm slides the object (a puck) to the goal location.

In the three tasks, each episode consists of 50 timesteps. The episode is considered
successful under the condition that the distance between the goal location and the object
is less than a threshold value, five cm, in the last timestep.

For the experiments, DDPG is employed, where the actor and critic networks utilize
a multi-layer perceptron architecture with rectified linear unit (Nair ¢> Hinton, 2010)
activation functions. The ADAM optimizer (Kingma ¢» Ba, 2014) is used for the back-
propagation algorithm to train both networks. The hyperparameters used in experiments
are adopted from a paper presenting the experimental environment of HER (Andrychowicz
etal., 2017).

Experimental results

This subsection presents the experimental results of FAHER. The performance of the
proposed method is evaluated in terms of the success rate during training and/or the final
success rate after training. The figures illustrate the success rate during training, while
the tables present the final success rate after training. The success rate during training

is evaluated based on 20 test episodes, across a total of 200 training epochs. To ensure
the robustness and reliability of the reported results, the entire sequence of training and
evaluation is repeated using five different random seeds, and the results are averaged. The
use of multiple random seeds helps in averaging out any potential fluctuations caused
by random initializations and environment dynamics, thereby providing a more reliable

measure of the performance.
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In the figures, a solid line represents the average of the five success rates for each epoch,
while the lower and upper boundary lines of the shaded area indicate the minimum
and maximum success rates, respectively. To mitigate the granularity of the epoch-wise
experimental results, the moving average of the past 20 success rates is calculated and
plotted in the figures. The final success rate after training is calculated over 1000 test
episodes using the model obtained after completing the 200 training epochs. The values
reported in the tables for the final success rate are the averages calculated using five models
trained with different random seeds, each evaluated over 1000 test episodes spanning 10
different random seeds.

To fit the cluster model to the FGs, K-means clustering algorithm is employed with the
predefined number of clusters k set to 8. The parameters governing the size of the FGB
and the clustering cycle are both configured as 150. Whenever 150 new failed goals are
accumulated in the FGB, the cluster model is updated. The implementation utilizes the
scikit-learn library (Pedregosa et al., 2011), leveraging its built-in fit() function to fit/update
the cluster model and the predict() function to assign clusters to AGs. The hindsight
experience rate during sampling is set to 0.8 for all experiments.

Following the introduction of the clustering step for FAHER, a computational cost
analysis is conducted to compare the training times between FAHER and traditional
HER. Over 200 epochs, HER required approximately 94 min on a standard personal
computer, whereas FAHER took around 112 min. However, this trade-off is balanced by
the improvements in sample efficiency and success rates achieved through the clustering-
based sampling strategy in FAHER. The following sections present detailed experimental
results and analysis.

Comparative evaluations
In the upper part of Fig. 5, the performance comparison between HER and FAHER is
presented for three tasks. The lower part compares the performance of HER+EBP and
FAHER+EBP. The “+EBP” notation indicates that the EBP algorithm, an existing algorithm
designed to enhance sampling efficiency for HER, is used in conjunction. EBP is applied
during the first uniform sampling step in Fig. 2, which involves sampling episodes from
the replay buffer in the case of HER, and from the clustered episodes in the case of FAHER.
In order to further understand the effectiveness of the proposed clustering-based sampling
strategy, the increase in the ratio of PiE among sampled episodes is analyzed during training
for both HER and FAHER. Throughout the training process, the sampled episodes are
stored and evaluated. Since a key characteristic of PiE is that their AGs, if set as the original
goals, are not achievable by the current RL policy, each AG of PiE is evaluated based on the
current policy. The results showed that, on average, the ratio of PiEs increased by 9.82%,
94.61%, and 2.17% in the Push, PickAndPlace, and Slide environments, respectively.
These increases contributed to the observed improvements in performance across tasks,
highlighting the effectiveness of the clustering-based sampling strategy.

Figures 5A—5E demonstrate that the proposed method enhances the performance of
both HER and HER+EBP. For the Push task, the proposed method reduces the number of
epochs required to converge from 125 to 75 with HER and from 55 to 50 with HER+EBP.

Kim et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2588 12/20


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2588

PeerJ Computer Science

Push PickAndPlace Slide

Success Rate

0 25 50 75 00 125 150 175 200 o 25 50 75 00 125 150 175 200 0 25 50 75 100 125 150 175 200

Epoch Epoch Epoch
(a) (b) (c)
10 10 10
w08 08 o o8
2 2 2
© © ©
4 0.6 4 0.6 -4 0.6
@ @ @
0 oa 8 oa 8 oa
o = o
> =3 =3
v o2 Vo, Vo,
00 00 00
o 20 M a0 a0 100 o 2 s 75 10 s 0 w5 20 o 2 s 75 10 s 0 5 20
Epoch Epoch Epoch
(d) (e) (f)
—— HER —— FAHER —— HER+EBP —— FAHER+EBP

Figure 5 Success rates obtained while training HER, FAHER, HER+EBP, and FAHER+EBP: (A-C)
compare the performance of HER and FAHER; (D-F) compare the performance of HER+EBP and FA-
HER-+EBP.

Full-size & DOI: 10.7717/peerjcs.2588/fig-5

Table 1 The final success rates of HER, FAHER, HER+EBP, and FAHER+EBP.

Method Push PickAndPlace Slide

HER 99.27 £+ 0.19% 91.97 £ 1.63% 56.92 + 2.15%
FAHER 99.27 + 0.37% 97.00 + 0.66% 59.10 + 2.18%
HER+EBP 99.34 4+ 0.33% 93.64 + 0.98% 56.04 4+ 1.95%
FAHER+EBP 99.52 +0.17% 95.61 + 0.87% 58.38 + 3.24%

For the PickAndPlace task, the proposed method increases the maximum success rate
during training by 4.48% and 3.29% compared to HER and HER+EBP, respectively.
Specifically, Figs. 5D and 5E demonstrate that the proposed algorithm is suitable for use
in conjunction with existing sampling algorithms. Table 1 shows the final success rates of
HER, FAHER, HER+EBP, and FAHER+EBP. The proposed method improves the final
success rate by up to 5.03% compared to that of the original method.

As shown in Figs. 5C and 5F, all four algorithms exhibit comparable performance,
indicating the inherent difficulty of the Slide task itself. Due to the inherent difficulty of
the Slide task, performance comparisons are not clearly visible. To address this, additional
experiments are provided in ‘Variations of Slide Task’.

Ablation studies
The ablation study consists of experiments on the key methodological components of
FAHER, which are the value of k for the K-means algorithm, the size of the FGB, the
inclusion or exclusion of FGs, and the clustering cycle.

In FAHER, the k value for the K-means algorithm is set to 8. To evaluate the
appropriateness of the k value, experiments are conducted with k values of 4, 8, and
16. In the proposed algorithm, batch_size /k episodes are sampled from each clustered
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Figure 6 Success rates obtained while training HER, and FAHER with different k.
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Figure 7 Success rates obtained while training HER, and FAHER with different sizes of FGB.
Full-size Gal DOI: 10.7717/peerjcs.2588/fig-7

buffer. Since batch_size is typically a power of 2, the test values for k are chosen as powers
of 2. Figure 6 compares the performance of HER and FAHER with different k values.
FAHER_ i denotes k = i. For the Push and PickAndPlace tasks, FAHER_8 outperforms
both FAHER_4 and FAHER_16. This result indicates that if k is too small or too large, the
sampling approach becomes similar to uniform sampling over the entire replay buffer.

The size of FGB is set to 150. To check the validity of 150 as the size of the FGB,
experiments with different sizes of the FGB are conducted. FAHER with the FGB of size
150, 15, and 500 are named FAHER 150, FAHER 15, and FAHER_500, respectively.
FAHER_150 is the same as FAHER used in other experiments. As shown in Fig. 7,
FAHER_150 outperforms FAHER_15 and FAHER_500. This result suggests that the
150-size FGB is optimal for the cluster model of the proposed method. In contrast, the
15-size FGB is not sufficiently representative of the FGs for the RL model, and the 500-size
FGB slows down the training of the RL model because it includes FGs from past RL policies.

The ablation studies on the number of clusters k and the size of the FGB demonstrate
that FAHER consistently outperforms HER, regardless of the hyperparameter values.
This indicates that the proposed method enhances the performance of HER. As shown in
the graphs, the success rates vary with different hyperparameter values, highlighting the
importance of selecting appropriate values to achieve optimal performance.

The cluster model is fit to FGs obtained from the exploration of the RL policy. To assess
the significance of the inclusion of FGs, experiments are conducted with HER using the
clustering procedure without FGs (FAHER_woFG). In FAHER_woFG, the cluster model
is fit to AGs in the replay buffer and assigns a cluster index to each episode. Across all three
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Table 2 The final success rates of HER, FAHER, FAHER_woFG, and FAHER _e.

Method Push PickAndPlace Slide

HER 99.27 £ 0.19% 91.97 £+ 1.63% 56.92 + 2.15%
FAHER 99.27 + 0.37% 97.00 + 0.66% 59.10 + 2.18%
FAHER_woFG 99.15 £ 0.26% 55.66 + 2.51% 49.47 £+ 4.92%
FAHER e 99.15 + 0.25% 95.32 + 1.00% 57.85 + 1.31%

tasks, the results of FAHER_woFG are inferior to FAHER and even worse than HER, as
indicated in Fig. 8 and Table 2. This outcome is attributed to the fact that when sampling the
same number of episodes from each clustered buffer and one buffer has fewer experiences,
the limited and worthless experiences are repeatedly sampled in FAHER_woFG.

The clustering cycle is set to 150, consistent with the size of the FGB, enabling the update
of the cluster model with entirely new FGs. To evaluate the importance of this setting, an
extreme case of using a short clustering cycle is compared with the proposed method using
a cycle of 150. This extreme case involves setting the cycle to 1, meaning that the update
of the cluster model and the procedure of clustering the episodes in the replay buffer are
conducted in every episode (FAHER__e). Across all three tasks, as shown in Fig. 8 and Table
2, it is observed that the results of FAHER_e are either better or similar to HER but inferior
to FAHER.

Variations of slide task

In this section, three new variation tasks are defined, and the performance of HER and
FAHER is compared for each task. Variation tasks are defined by modifying the goal space
of the original Slide task, as depicted in Fig. 9. The distribution of red dots in the figure
represents the goal space. The variation tasks are as follows: CloseSlide, which has a goal
space with relatively close positions; FarSlide, which has a goal space with relatively far
positions; and FarNarrowSlide, which has a narrow goal space located at a far position. In
Fig. 10 and Table 3, the performance comparison between HER and FAHER is presented
for three variation tasks. The proposed method improves the final success rate by 3.80%,
22.58%, and 7.09% compared to that of the original method for the CloseSlide, FarSlide,
and FarNarrowSlide tasks, respectively. The variation tasks pose significant challenges due
to the sparsity of successful experiences and narrow goal space. The low performance of

Kim et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2588 15/20


https://peerj.com
https://doi.org/10.7717/peerjcs.2588/fig-8
http://dx.doi.org/10.7717/peerj-cs.2588

PeerJ Computer Science

Slide CloseSlide FarSlide FarNarrowSlide

Figure 9 Illustration of the original Slide task and the three variations of the Slide task. The black dot
represents the initial positions of the object across 1,000 episodes, while the red dot indicates the goals for

those episodes.
Full-size Gl DOI: 10.7717/peerjcs.2588/fig-9
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Figure 10  Success rates obtained while training HER and FAHER.
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Table 3 The final success rates of HER and FAHER for variation tasks.

Method CloseSlide FarSlide FarNarrowSlide
HER 43.68 +£9.17% 14.26 + 5.08% 39.67 & 6.92%
FAHER 57.48 + 2.02% 36.84 +11.95% 46.76 + 4.50%

HER highlights the inherent difficulty of the task and serves as a rigorous test case for
evaluating the effectiveness of the proposed method. The considerable improvements
achieved by the proposed method in these tasks demonstrate its capability to enhance
learning performance in the slide domain.

CONCLUSION

This paper introduced Failed goal Aware Hindsight Experience Replay (FAHER), which
improves HER by clustering episodes based on failed goals to increase the sampling

of Potential-insights Episodes (PiEs). Experiments on robotic control tasks, including
variation tasks, demonstrate that the proposed method can enhance sampling efficiency.
In the Push task, FAHER reduces the number of epochs required to converge from 125
to 75 compared to HER. In the PickAndPlace task, it increases the final success rate by
5.03%. Notably, in the tasks related to the slide domain, the proposed method achieves
an improvement of up to 22.58% in the final success rate. Additional ablation studies
highlight the significance of the methodological components: the number of clusters, the
size of the failed goal buffer(FGB), the inclusion of failed goals, and the clustering cycle.

Kim et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2588 16/20


https://peerj.com
https://doi.org/10.7717/peerjcs.2588/fig-9
https://doi.org/10.7717/peerjcs.2588/fig-10
http://dx.doi.org/10.7717/peerj-cs.2588

PeerJ Computer Science

Despite the promising results, the proposed method has several limitations. First,
the performance of the proposed method is sensitive to hyperparameters, such as the
number of clusters and the size of the FGB. These parameters were chosen based on
preliminary ablation studies, which helped establish a solid baseline for comparison.
Second, the K-means algorithm is used for the cluster model due to its simplicity and
computational efficiency. Third, the lack of a direct comparison with recent HER-based
methods is a limitation. While we attempted to implement these methods, achieving
consistent performance proved challenging without stable publicly available code. Lastly,
the experiments were conducted in relatively simple single-object environments to validate
the fundamental principles of FAHER. Applying the method in multi-object or more
complex scenarios could require additional complementary algorithms or sophisticated
strategies, which were beyond the current scope due to implementation challenges.

To address these limitations, future research could explore adaptive mechanisms for
dynamically adjusting the hyperparameters based on the learning progress of the RL
policy. Additionally, investigating alternative clustering algorithms, such as density-based
(Ester et al., 1996) or hierarchical clustering (Murtagh ¢ Contreras, 2012), may help better
capture the complexities of diverse environments. Simultaneously, future studies should
aim to refine the implementation and conjunction of more recent HER-based methods to
establish a broader comparison framework. This would allow for a more comprehensive
understanding of the advancements in HER-based approaches. Further, evaluating FAHER
in more complex multi-object environments would provide insights into its scalability
and generalizability in real-world applications. To achieve this, combining FAHER with
other complementary algorithms or strategic frameworks may be necessary to tackle the
increased complexity of such tasks effectively.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by the Korea Institute of Energy Technology Evaluation and
Planning (KETEP) grant funded by the Korea government (MOTIE) (N0.20222020800190,
Development and empirical study of a 600kW automatic charging system for customer
convenience-based parking towers of 50 units capable of simultaneously charging 8 units
for carbon-neutral acceleration). The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

The Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded
by the Korea government (MOTIE): No. 20222020800190.

Development and empirical study of a 600kW automatic charging system.

Competing Interests
The authors declare there are no competing interests.

Kim et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2588 17/20


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2588

PeerJ Computer Science

Author Contributions

e Taeyoung Kim conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

e Taemin Kang performed the experiments, performed the computation work, prepared
figures and/or tables, authored or reviewed drafts of the article, and approved the final
draft.

e Haechan Jeong performed the experiments, analyzed the data, performed the
computation work, prepared figures and/or tables, and approved the final draft.

e Dongsoo Har analyzed the data, authored or reviewed drafts of the article, and approved
the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available at GitHub and Zenodo:

- https:/github.com/ngng9957/Clustering-based- Failed-Goal- Aware- Hindsight-
Experience-Replay

- Taeyoung Kim. (2024). ngng9957/Clustering-based-Failed-Goal-Aware-Hindsight-
Experience-Replay: Clustering-based-Failed-Goal-Aware-Hindsight-Experience-Replay
(FAHER). Zenodo. https:/doi.org/10.5281/zenodo.14013517.

Supplemental Information
Supplemental information for this article can be found online at http:/dx.doi.org/10.7717/
peerj-cs.2588#supplemental-information.

REFERENCES

Andrychowicz M, Wolski F, Ray A, Schneider J, Fong R, Welinder P, McGrew B, Tobin
J, Pieter Abbeel O, Zaremba W. 2017. Hindsight experience replay. Advances in
Neural Information Processing Systems 30:5048—5058.

Brockman G, Cheung V, Pettersson L, Schneider J, Schulman J, Tang J, Zaremba W.
2016. Openai gym. ArXiv arXiv:1606.01540.

Carrasco AV, Sequeira JS. 2023. Tuning path tracking controllers for autonomous cars
using reinforcement learning. Peer] Computer Science 9:€1550
DOI 10.7717/peerj-cs.1550.

Dittrich M-A, Fohlmeister S. 2020. Cooperative multi-agent system for pro-
duction control using reinforcement learning. CIRP Annals 69(1):389-392
DOI 10.1016/j.cirp.2020.04.005.

Ester M, Kriegel H-P, Sander J, Xu X. 1996. Density-based spatial clustering of applica-
tions with noise. In: International conference of knowledge discovery and data mining,
volume 240(6).

Folkers A, Rick M, Biiskens C. 2019. Controlling an autonomous vehicle with deep
reinforcement learning. In: 2019 IEEE intelligent vehicles symposium (IV). Piscataway:
IEEE, 2025-2031.

Kim et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2588 18/20


https://peerj.com
https://github.com/ngng9957/Clustering-based-Failed-Goal-Aware-Hindsight-Experience-Replay
https://github.com/ngng9957/Clustering-based-Failed-Goal-Aware-Hindsight-Experience-Replay
https://doi.org/10.5281/zenodo.14013517
http://dx.doi.org/10.7717/peerj-cs.2588#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2588#supplemental-information
http://arXiv.org/abs/1606.01540
http://dx.doi.org/10.7717/peerj-cs.1550
http://dx.doi.org/10.1016/j.cirp.2020.04.005
http://dx.doi.org/10.7717/peerj-cs.2588

PeerJ Computer Science

Gu S, KubaJG, Chen Y, DuY, Yang L, Knoll A, Yang Y. 2023. Safe multi-agent re-
inforcement learning for multi-robot control. Artificial Intelligence 319:103905
DOI10.1016/j.artint.2023.103905.

Haarnoja T, Zhou A, Abbeel P, Levine S. 2018. Soft actor-critic: off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In: International
conference on machine learning. Westminster: PMLR, 1861-1870.

Hadfield-Menell D, Milli S, Abbeel P, Russell SJ, Dragan A. 2017. Inverse reward design.
Advances in Neural Information Processing Systems 30:6765—6774.

Huang Y, Ren B. 2023. RoMo-HER: robust model-based hindsight experience replay.
ArXiv arXiv:2306.16061.

Jung M, Oh H. 2022. Heterogeneous mission planning for a single unmanned aerial
vehicle (UAV) with attention-based deep reinforcement learning. Peer] Computer
Science 8:e1119 DOI 10.7717/peerj-cs.1119.

Kim T, Vecchietti LF, Choi K, Sariel S, Har D. 2021. Two-stage training algorithm for Al
robot soccer. Peer] Computer Science 7:718 DOT 10.7717/peerj-cs.718.

Kingma DP, BaJ. 2014. Adam: a method for stochastic optimization. ArXiv
arXiv:1412.6980.

Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D. 2015.
Continuous control with deep reinforcement learning. ArXiv arXiv:1509.02971.

Lin L-J. 1992. Self-improving reactive agents based on reinforcement learning, planning
and teaching. Machine Learning 8(3):293-321.

LiuY, Ping Y, Zhang L, Wang L, Xu X. 2023. Scheduling of decentralized robot services
in cloud manufacturing with deep reinforcement learning. Robotics and Computer-
Integrated Manufacturing 80:102454 DOI 10.1016/j.rcim.2022.102454.

Lépez-Lozada E, Rubio-Espino E, Sossa-Azuela JH, Ponce-Ponce VH. 2021. Reactive
navigation under a fuzzy rules-based scheme and reinforcement learning for mobile
robots. Peer] Computer Science 7:e556 DOI 10.7717/peerj-cs.556.

McQueen J. 1967. Some methods for classification and analysis of multivariate obser-
vations. In: Proceedings of the 5th Berkeley symposium on mathematical statistics and
probability, 1967. 281-297.

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves
A, Riedmiller M, Fidjeland AK, Ostrovski G, Petersen S, Beattie C, Sadik A,
Antonoglou I, King H, Kumaran D, Wierstra D, Legg S, Hassabis D. 2015. Human-
level control through deep reinforcement learning. Nature 518(7540):529-533
DOI 10.1038/nature14236.

Murtagh F, Contreras P. 2012. Algorithms for hierarchical clustering: an overview. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2(1):86-97.

Nair V, Hinton GE. 2010. Rectified linear units improve restricted boltzmann machines.
In: ICML.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D,
Brucher M, Perrot M, Duchesnay E. 2011. Scikit-learn: machine learning in Python.
The Journal of Machine Learning Research 12(85):2825-2830.

Kim et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2588 19/20


https://peerj.com
http://dx.doi.org/10.1016/j.artint.2023.103905
http://arXiv.org/abs/2306.16061
http://dx.doi.org/10.7717/peerj-cs.1119
http://dx.doi.org/10.7717/peerj-cs.718
http://arXiv.org/abs/1412.6980
http://arXiv.org/abs/1509.02971
http://dx.doi.org/10.1016/j.rcim.2022.102454
http://dx.doi.org/10.7717/peerj-cs.556
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.7717/peerj-cs.2588

PeerJ Computer Science

Perolat J, De Vylder B, Hennes D, Tarassov E, Strub F, de Boer V, Muller P, Connor JT,
Burch N, Anthony T, McAleer S, Elie R, Cen SH, Wang Z, Gruslys A, Malysheva
A, Khan M, Ozair S, Timbers F, Pohlen T, Eccles T, Rowland M, Lanctot M,
Lespiau J-B, Piot B, Omidshafiei S, Lockhart E, Sifre L, Beauguerlange N, Munos
R, Silver D, Singh S, Hassabis D, Tuyls K. 2022. Mastering the game of stratego
with model-free multiagent reinforcement learning. Science 378(6623):990-996
DOI 10.1126/science.add4679.

Plappert M, Andrychowicz M, Ray A, McGrew B, Baker B, Powell G, Schneider J, Tobin
J, Chociej M, Welinder P, Kumar V, Zaremba W. 2018. Multi-goal reinforcement
learning: challenging robotics environments and request for research. ArXiv
arXiv:1802.09464.

Sanchez FR, Wang Q, Bulens DC, McGuinness K, Redmond SJ, O’Connor NE. 2024.
Learning and reusing primitive behaviours to improve Hindsight Experience Replay
sample efficiency. In: 2024 10th International conference on automation, robotics and
applications (ICARA). Piscataway: IEEE, 328-333.

Schaul T, Horgan D, Gregor K, Silver D. 2015. Universal value function approximators.
In: International conference on machine learning. PMLR, 1312-1320.

Seo M, Vecchietti LF, Lee S, Har D. 2019. Rewards prediction-based credit as-
signment for reinforcement learning with sparse binary rewards. IEEE Access
7:118776—-118791 DOI 10.1109/ACCESS.2019.2936863.

Silver D, Singh S, Precup D, Sutton RS. 2021. Reward is enough. Artificial Intelligence
299:103535 DOI 10.1016/j.artint.2021.103535.

Todorov E, Erez T, Tassa Y. 2012. Mujoco: a physics engine for model-based control. In:
2012 IEEE/RS] international conference on intelligent robots and systems. Piscataway:
IEEE, 5026-5033.

Vecchietti LF, Seo M, Har D. 2020. Sampling rate decay in hindsight experience
replay for robot control. IEEE Transactions on Cybernetics 52(3):1515-1526
DOI 10.1109/TCYB.2020.2990722.

Vinyals O, Babuschkin I, Czarnecki WM, Mathieu M, Dudzik A, Chung J, Choi DH,
Powell R, Ewalds T, Georgiev P, Oh J, Horgan D, Kroiss M, Danihelka I, Huang
A, Sifre L, Cai T, Agapiou JP, Jaderberg M, Vezhnevets AS, Leblond R, Pohlen
T, Dalibard V, Budden D, Sulsky Y, Molloy J, Paine TL, Gulcehre C, Wang Z,
Pfaff T, Wu Y, Ring R, Yogatama D, Wiinsch D, McKinney K, Smith O, Schaul T,
Lillicrap T, Kavukcuoglu K, Hassabis D, Apps C, Silver D. 2019. Grandmaster level
in StarCraft II using multi-agent reinforcement learning. Nature 575(7782):350-354
DOI 10.1038/s41586-019-1724-z.

Yang Y, Yang R, LyuJ, Yan J, Luo F, Luo D, Li X, Li L. 2023. Multi-step hindsight
experience replay with bias reduction for efficient multi-goal reinforcement learning.
In: 2023 International conference on frontiers of robotics and software engineering
(FRSE). Piscataway: IEEE, 144-156.

Zhao R, Tresp V. 2018. Energy-based hindsight experience prioritization. In: Conference
on robot learning. Westminster: PMLR, 113-122.

Kim et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2588 20/20


https://peerj.com
http://dx.doi.org/10.1126/science.add4679
http://arXiv.org/abs/1802.09464
http://dx.doi.org/10.1109/ACCESS.2019.2936863
http://dx.doi.org/10.1016/j.artint.2021.103535
http://dx.doi.org/10.1109/TCYB.2020.2990722
http://dx.doi.org/10.1038/s41586-019-1724-z
http://dx.doi.org/10.7717/peerj-cs.2588

