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ABSTRACT
Record linkage aims to identify records from multiple data sources that refer to the
same entity of the real world. It is a well known data quality process studied since the
second half of the last century, with an established pipeline and a rich literature of
case studies mainly covering census, administrative or health domains. In this paper,
a method to recognize matching records from real municipalities and banks through
multiple similarity criteria and a Neural Network classifier is proposed: starting from
a labeled subset of the available data, first several similarity measures are combined
and weighted to build a feature vector, then a Multi-Layer Perceptron (MLP) network
is trained and tested to find matching pairs. For validation, seven real datasets have
been used (three from banks and four from municipalities), purposely chosen in
the same geographical area to increase the probability of matches. The training only
involved two municipalities, while testing involved all sources (municipalities vs.
municipalities, banks vs banks and andmunicipalities vs. banks). The proposedmethod
scored remarkable results in terms of both precision and recall, clearly outperforming
threshold-based competitors.

Subjects Artificial Intelligence, Data Science, Databases
Keywords Record Linkage, Entity resolution, Neural networks, Feature extraction, Deduplication

INTRODUCTION
Record Linkage (RL from now on, also called entity resolution or entity matching ), is
the process of identifying records coming from different sources that refer to the same
real-world entity. Similarly, Record Deduplication (RD from now on) is the process of
identifying duplicate records, where the same entity of the real word has been entered
multiple times in the same database. The main difference between RL and RD is that
records coming from different sources may lack a common identifier and schema (please
refer to Christen (2012) and Zhang (2011) for a general discussion of related issues).

The pairing of records or the identification of duplicates is a statistically challenging
and computationally demanding problem: scarce data quality control results in errors,
noise, missing values, omissions, ambiguities and even lies in the data, that combined
with the differences in database schemas and regional conventions when the number of
nationalities grows, results in a daunting number of factors to be considered. The brute-
force comparison All Versus All (AVA) of the records from different sources to discover
occasional matches is unfeasible even for a modest volume of data. Notwithstanding these
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difficulties, RL is known and has been treated since the second half of the last century,
with a rich literature in different domains (surveys in the context of data warehousing and
for different phases can be found in Brizan & Tansel (2006) and Christen (2011)) and an
established implementation process (see ‘Phases of RL’).

While data quality is related to and borrows techniques from RL and RD, it acts as an
a priori filter, trying to prevent the insurgence of duplicate records with a proper control
process before the data consolidation. RL and RD, on the contrary, act as a posteriori filters,
trying to detect duplicate records and clean the data after consolidation. To the data analyst,
they represent a required pre-processing step when it is legitimate to assume that the data
to be analyzed are corrupted by consequence of a scarce quality control during acquisition,
or come from heterogeneous sources with respect to time, place or context (please refer
to Batini & Scannapieco (2006) for a general discussion of related issues).

The traditional approach to RL and RD is probabilistic, or rule-based, and only relatively
recently Machine Learning alternatives have emerged (see Zhao & Ram (2005)). The
probabilistic approach is grounded on the estimation of probabilities of match and on
thresholds for the similarity scores; the rule-based approach tries to explicitly model the
knowledge of domain experts; the Machine Learning approach, on the contrary, relies only
on data and can be cost-sensitive, supervised, unsupervised, or semi-supervised.

In the following amultiple-criteria feature vector and a supervised classifier are proposed
in the classification phase of the RL process, outperforming classic crude threshold-based
methods and producing remarkable results.

The paper is organized as follows: in ‘Background’ the phases of a traditional RL process
and the related literature on Neural Networks are sketched; in ‘Materials and Methods’ the
proposed method is presented in detail; in ‘Experiments’ the used data and the experiments
are fully described; finally, in ‘Conclusions’, main conclusions are drawn.

BACKGROUND
First the currently established phases of a RL process will be outlined, then the recent
literature on Neural Networks applied to RL will be summarized.

Phases of RL
The RL of two sources generally involves five independent phases, each exploiting different
techniques, criteria, and algorithms Christen (2012):
1. Data pre-processing : the two sources are cleaned and normalized to ensure that all the

data have the same format and are as much as possible error free;
2. Indexing : to save time, the record pairs that are evidently different are filtered out from

the comparisons through clustering, sorting or blocking. Record Linkage is exponential
in nature, as each record from the first source should be compared with all the records
from the other sources, hence indexing is critical for performance;

3. Comparison: only the record pairs within the same block (or cluster) are actually
compared one by one, using multiple similarity criteria that are conveyed into a
similarity vector;
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4. Classification: the similarity vector obtained from each pair of records within the same
block (or cluster) is classified into one of three groups:

• (M) –matches, that is pairs that do refer to the same entity of the real world;
• (NM) –non-matches, that is pairs that do not refer to the same entity of the real
world;
• (PM) –potential-matches or ambiguous pairs, that is pairs that can’t be classified
with sufficient precision or reliability;

5. Evaluation: the classified pairs are reviewed for final labeling. Specifically, the PM class
is subject to a clerical review, where domain experts decide for each ambiguous pair if
it is actually a match or not.

Related work
Being a possible consequence of both a poor data quality process than natural differences
in the data evolving over time, RL has been found in countless domains and tackled
using many techniques and approaches. The related literature can be broadly split into
census, administrative or health related applications, with a majority of works exploiting
probabilistic methods. Artificial Neural Networks (ANN from now on) as classifiers are
less in number and relatively recent.

Some of the main issues of administrative data linkage are privacy and confidentiality
requirements and to the absence of common identifiers (much like health data. Please refer
to Harron et al. (2017) for a discussion and to Vatsalan, Christen & Verykios (2013) for a
taxonomy). If from one side epidemiological studies linking census or administrative data
to diseases are pretty common, from the other side the specific case of linking census with
financial data at the individual level is rare, if not absent, in the RL literature. The reason is
that medical data are mostly held by public agencies that have a public interest in sharing
their data and supporting medical research, while banks are private companies that keep
their data safe and secure on their servers, having little interest in sharing their analysis.

Recent literature on Machine Learning applied to RL includes Aiken et al. (2019),
that compares probabilistic, stochastic and machine learning approaches, showing that
supervisedmethods outperform unsupervised ones;Dong & Rekatsinas (2018), that surveys
state-of-the-art data integration solutions based on Machine Learning with a discussion of
open research challenges;Kasai et al. (2019), that leverages Deep Learning in a combination
of Transfer and Active Learning aiming to save labeled data up to an order of magnitude;Di
Cicco et al. (2019), that presents an attempt of explainable Deep Learning exploiting LIME,
a popular tool for prediction explanations in classification;Hou et al. (2019), that propose a
paradigm called ‘‘gradual machine learning’’ where data are labeled automatically through
iterative factor graph inference, starting with the easiest instances and going up to the
hardest ones.

A survey of the state of the art is beyond the scope of this paper, so this section will focus
on ANN classifiers applied to classification in RL, in line with the recent explosion of ANN
related literature (please seeMaratea & Ferone, 2018).
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One of the first attempts is apparently due to Zhao & Ram (2005), that proposed
a set of ensemble learning methods combining multiple base classifiers, including a
backpropagation ANN. Records are compared through various similarity measures and
classifiers are merged through Bagging, Boosting, Stacking, Cascading or cross-validated
committees. Using 25,000 records (20,000 non-matching examples and 5,000 matching
examples) from an application service provider (ASP) for the airline industry, the authors
tried to identify the same customer that reserved different flights with different airline
companies, reaching over 99% of accuracy. Authors warn the reader on the limited
generalization of the experiments due to the ‘‘somewhat balanced’’ data used.

More recently, Wilson (2011) showed on the base of genealogical databases that the
results obtainable from the probabilistic RL are easily improvable through one of the
various available Machine Learning or ANN techniques, and that even a simple single
layer perceptron network tends to outclassify the probabilistic approaches, reaching 95%
of precision and 97.2% of recall compared to 72.5% precision and 91% recall of the
probabilistic methods.

A singular case is the work Siegert et al. (2016) in the linkage of epidemiological cancer
registries data previously pseudo-randomized through hashing and encrypted for privacy
reasons. Features are extracted from the obscured data and used as they were a new coding
of the records, then the classification is performed on these coded data. Similarly to Zhao &
Ram (2005), multiple classifiers and ensembles are tested, withmany aggregation functions.
Approximately 35,000 match pairs and 38,000 of not matches for a total of 73,000 pairs
of records were manually classified from the North Rhine-Westphalia cancer registry in
Germany and used as training-set for the supervised learning classifiers. The proposed
ANN is structured with a single hidden layer of 60 neurons and a sigmoidal activation
function. Among the three classifiers used, the one based on ANN provided better results
in both precision and recall terms, reaching a 95.2% precision and 94.1% recall. Even in
this case, data are artificially balanced.

Subitha & Punitha (2014) propose the use of Elman’s neural networks to pair the
medical records collected by hand from different hospitals and departments, achieving an
accuracy of 85% and a recall of 98% with respect to fuzzy decision trees (75% and 95%)
and decision trees (79% and 96%). The comparing phase was performed using only the
normalized Levenshtein distance as the similarity criteria. The Elman Neural Network
(ENN) is a particular type of neural network in which a layer of neurons called ‘‘context
units’’ connected with a fixed weight of 1.0 both to the input and to the output of the
hidden layer is added. In the context units, a copy of the last output of the hidden layer is
saved to be used for subsequent inputs. In this way the network can maintain a sort of state,
allowing tasks such as the prediction of sequences that go beyond the power of a standard
multilayer perceptron.

Mudgal et al. (2018) present a general framework for the application of Deep Neural
Networks (DNN from now on) to RL, stressing connections with Natural Language
Processing: three type of problems are highlighted: structured, textual and dirty RL. Their
goal is to illustrate the benefits and limitations of DL when applied to RL. An empirical
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Figure 1 Block diagram of the proposed method.
Full-size DOI: 10.7717/peerjcs.258/fig-1

evaluation based on 4 models and 11 datasets is presented to show when DNN outperform
traditional approaches, obtaining a relevant improvement in case of unstructured data.

Kooli, Allesiardo & Pigneul (2018) report a DNN application for RL using RelevantWord
Extraction and Word Embedding instead of the classic calculation of the similarity vector
from record pairs. Three architectures are compared: Multi-Layer Perceptron (MLP), Long
Short Term Memory networks (LSTM) and Convolutional Neural Networks (CNN) on
poorly structured scientific publications databases by getting very good results and showing
improvements compared to classical similarity-based approaches. The authors point out
that their approach is fully automatic unlike a previous job of Gottapu, Dagli & Ali (2016)
that also uses DNN but in a human/machine hybrid fashion, by facilitating the manual
categorization in a crowd-sourcing methodology, by proposing to the operator a list of
possible matches. Ebraheem et al. (2018) used unidirectional and bidirectional recurrent
neural networks (RNNs) with long short term memory (LSTM) hidden units to convert
each tuple to a distributed representation, which was the base for subsequent classification.
Experiments on 7 Datasets from different domains showed promising results.

MATERIALS AND METHODS
A block representation of the proposed method is depicted in Fig. 1: it involves the
comparing and classifying phases of RL (see ‘Phases of RL’): it takes as input pairs of
records and classifies them into ‘‘match’’ (M) or ‘‘non-match’’ (NM) through an ANN.
The features of each candidate record pair are extracted by comparing each corresponding
attribute with multiple similarity functions, resulting in a similarity vector (see below for
more details). It is this similarity vector that is used for the subsequent classification of the
candidate pair.

In order to have comparable tests, all preceding phases use the same methods and
parameters.

Data sources
Real data from separate municipal and banking databases have been gathered, chosen in
the same geographical area to increase the probability of match (see Table 1). For both
municipal and banking databases, each person is identified through the fiscal code (alias
social security number, alias insurance number). Being a natural key and a reliable field,
this common identifier was leveraged to create, through joins, a gold standard for training
and evaluation purposes: if in a pair, both records had the same value for the fiscal code,
they are considered a true-match.

The fiscal code is derivable from first name, last name, date and place of birth plus some
special codes. Surprisingly, clerical reviews showed that in rare cases even the fiscal code
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Table 1 Used databases flanked by their size.

Database name type Alias # record

ANAG_UNO Municipal registry A 42,698
ANAG_DUE Municipal registry B 45,100
ANAG_TRE Municipal registry C 42,559
ANAG_QUATTRO Municipal registry D 57,434
BCC_UNO Bank details X 1,052,737
BCC_DUE Bank details Y 101,651
BCC_TRE Bank details Z 93,179

Table 2 Attributes in common between banking andmunicipal databases.

Attribute Municipal column Bank column

SURNAME COGNOME INTESTAZIONE_A
NAME NOME INTESTAZIONE_B
SEX SESSO SESSO
BIRTH STATE STATO_NASCITA NAZIONALITA
BIRTH DATE DAT_NASCITA DATA_NASCITA
BIRTH PLACE COM_NAS DESCR_COM_NASC
BIRTH PROVINCE PROV_COM_NAS PROVINCIA_NASC

VIA_DOM
ADDRESS

NUMERO_CIVICO_DOM
VIA_RES

ZIP CODE CAP_DOM CAP_RES
PROVINCE PROV_COM_DOM PROV_RES
TELEPHONE TELEFONO NUMERO_TELEFONO

presents some errors, i.e., does not correspond to the value derivable from the other fields
of the record. This can lead to rare cases in which a pair of records is correctly classified as
a match by the classifier but results indeed a false positive for the evaluation metric. For
this reason, all the figures of merit presented hereafter have to be considered conservatively
estimated.

Relevant attributes
As a first step, it is necessary to select a subset of relevant and shared attributes between the
municipal and banking databases to be used in the RL process. The selected attributes are
shown in Table 2.

Special attention should be paid to attributes address, zip code and province because they
have a different meaning, representing the home address in municipalities databases and
the residence address in banking databases. These values are often the same but do not
always coincide.

Each attribute is cleaned, standardized and normalized through multiple transforma-
tions, turning everything lower case, removing special symbols, punctuation, repeated
spaces, non-alphabetic characters and finally normalizing accented letters.
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Indexing
Indexing is performed with multiple blocking indexing, combining the results obtained
from 3 blocking keys.
1. Blocking key 1: <SURNAME, NAME, B.DATE>, using the Double Metaphone phonetic

algorithm for the key comparison;
2. Blocking key 2:<B.DATE, B.PLACE, B.PROVINCE>, using theDouble Soundex phonetic

algorithm for the key comparison;
3. Blocking key 3: <SURNAME, NAME, SEX, B.DATE, B.PLACE, B.PROVINCE> using for the

key comparison: the last 3 character suffix for name and surname; the first 4 character
prefix for the birth place and province; and the year and month for the birth date.
These blocking criteria were determined through experimental test and chosen to

maximize the pair completeness as much as possible by keeping the number of candidate
record pairs generated low, to reduce the execution time in view of the numerous tests to
be performed.

Comparing
In the comparison phase, the similarity of each pair of records (A,B) is measured using
a set S of string-based similarity functions on the corresponding attributes (name of the
first record with name of the second record, surname of the first record with surname
of the second record and so on). Each comparison function has a normalized output in
the interval [0,1]. Where 0 indicates maximum dissimilarity and 1 indicates maximum
similarity (please see Navarro, 2001; Christen, 2012).

The set S of comparison functions used is listed below:
(a) Jaro–Winkler, (b) Levenshtein, (c) Cosine, (d) Jaccard, (e) Siresen-Dice, (f) Bigrams,

(g) Trigrams, (h) Exact.
Each one of the corresponding attributes pairs (ai,bi) is compared using all the function

in the set and the resulting values are then chained in a similarity vector s.

s= simS(a1,b1)⊕ simS(a2,b2)⊕ simS(a3,b3)⊕ ...

Figure 2 shows an example of this procedure. At the end, each pair of records will be
associated with a similarity vector to be used for classification.

Classifying
The ANN used for the classification is shown in the Fig. 3, it’s a fully connected MultiLayer
Perceptron network (MLP from now on), with two hidden layers in a pyramidal structure,
a ReLu activation function:

ReLu(x)= x+=max(0,x)

and a Softmax cross entropy loss function:

L(y,ŷ)=
∑
i

H (yi,ŷi)=
∑
i

yi · logŷi.

The optimal number of neurons and the size of the layers have been determined through
iterative optimization on experimental tests. The final architecture is:
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Figure 2 Example of the similarity vector obtained comparing two records using four similarity func-
tions (please see Table 2 for attribute mapping).

Full-size DOI: 10.7717/peerjcs.258/fig-2

• Input Layer : a layer of as many neurons as the components of the similarity vectors to
be classified;
• Hidden Layer : two layers to form a pyramidal structure, the first with 8 and the second
with 4 neurons;
• Output Layer : a layer of two neurons, one for the class of the matches (M) and the other
for the non-matches (NM).

For the initialization the glorot_uniform_initializer (aka Xavier uniform
initializer) was used. With this random initalization of the MLP parameters no relevant
changes in the performance were noted over different runs.

The network was trained using the Adam optimizer by applying a L1 regularization to
avoid overfitting.

Training data-set generation
The training data-set, in the format (feature,label) is generated based on the candidate
record pairs identified in the indexing phase between databases A and B, where:

• feature: is the similarity vector obtained comparing the records of the pair;
• label : is true-match (M) or true-not match (NM), according to the gold standard.

The built training data-set contains 10,876 samples, 1,567 of which are labeled as
true-match (M) and 9300 as true-non-match (NM).

Since non-matching record pairs are more than matching ones, the training data
are moderately imbalanced (they are in the same order of magnitude). Over-sampling
techniques like ADASYN (He et al., 2008) and based on SMOTE, such as SMOTENC
(Bowyer et al., 2011) SMOTENN (Batista, Prati & Monard, 2004), SMOTETomek (Batista,
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Figure 3 Used fully connectedMLP architetture for the classifyng phase.Where the input layer as
many neurons as the components of the similarity vectors to be classified. There are two hidden layers
one of size 8 and the other of 4 and the output layer is composed of two units, one for the class of the
matches (M) and the other for the non-matches (NM). The activation function used is the ReLu and the
loss function is the Softmax cross entropy. The weights are initalized with Xavier uniform initializer and
the training was performed using the Adam optimizer by applying a L1 regularization.

Full-size DOI: 10.7717/peerjcs.258/fig-3

Bazzan & Monard, 2003) have been tested, without any significant improvement, so
oversampling was skipped from final experiments.

EXPERIMENTS
For each test the same set of attributes, pre-processing and indexing techniques have been
used in order to focus on the comparing and classifying phases.

Figure 4 shows the starting condition for the tests in order to have a reference on the
number of true-match and of pairs identified by the indexing between the various coupled
databases.

Since there are seven different databases available, grouped in municipalities (four) and
banks (three), 21 executions will be performed for each test, pairing databases between
groups and excluding deduplication (that is the match of a database against itself). Only
the pair (A, B) is used as training-set.

The chosen figure of merits are precision and recall, preferred to plain accuracy due
to the moderate imbalance, as explained by Christen & Goiser (2007). Their average and
standard deviation over the 21 runs are reported in the following.
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Figure 4 Tests starting conditions after the indexing phase, for all the possible pairs of databases. (A)
Number of candidate record pairs to be classified, obtained from the indexing phase. (B) Number of True-
Match record pair in the gold standard. (C) Pair completeness, i.e., percentage of true match retrieved in
the indexing phase with respect to the gold standard.

Full-size DOI: 10.7717/peerjcs.258/fig-4

Figure 5 Exact matching results. (A) Precision; (B) recall.
Full-size DOI: 10.7717/peerjcs.258/fig-5

Exact matching
In the very first test, RL has been performed with an Exact Match goal, where the candidate
record pairs are classified as match only if all the respective fields are perfectly equal. This
test has been carried out only to show how much two databases, while containing the same
information, actually differ in the values of their attributes.

As expected (Fig. 5), the precision is extremely high, but the number of matches is
extremely low, as shown by the recall. In fact, in some cases no pair have been identified,
with amaximumof only 4matches, by consequence of errors, noise, and random variations
in the corresponding data.
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Figure 6 Results for Levenshtein normalized distance with threshold θ= 0.7. (A) Precision; (B) recall.
Full-size DOI: 10.7717/peerjcs.258/fig-6

Threshold based classification
In the next test an optimal binary threshold classifier was used. The threshold value was
determined through a PR graph (precision–recall) generated on the training data-set. As
threshold, the value having coordinates closest to the ideal point (1.0,1.0) was chosen (see
Figs. A1–A3).

Levenshtein threshold
in this test, the only similarity criterion was the Levenshtein normalized distance
(Levenshtein, 1966)—one of the most widely used comparison metrics.

• Comparing : Levenshtein normalized distance.
• Classifying : binary threshold with θ = 0.7 as optimal value, applied to the weighted
sum of the similarity vector.
• Weighting : each attribute has the same importance and weight.

Figure 6 shows the results obtained on the 21 executions. The average precision is
69,63% and the average recall is 77,04%, although with high variability.

Multiple criteria threshold
In this test, multiple comparison criteria for each attribute were used, with the underlying
idea that different criteria measure different facets of the similarity between them. Recall
actually improved.

• Comparing : each attribute is compared using the following metrics: (a) Jaro–Winkler,
(b) Levenshtein, (c) Cosine, (d) Jaccard, (e) Siresen-Dice, (f) Bigrams, (g) Trigrams,
(h) Exact.
• Classifying : binary threshold with θ = 0.63 as optimal value applied to the weighted
sum of the similarity vector.
• Weighting : each attribute has the same importance and weight.

Figure 7 shows the results of the 21 executions: the average precision is 71,93% and the
average recall is 85,85%, although with high variability.
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Figure 7 Results for multiple criteria similarity with threshold θ = 0.63, unweighted. (A) Precision;
(B) recall.

Full-size DOI: 10.7717/peerjcs.258/fig-7

Weighted multiple criteria threshold
In this test, the previous results were improved by varying the importance of the various
fields through an appropriate weighing. The weights, for each attribute, were automatically
determined based on their distinct values distribution, and normalized in such a way that
their sum is equal to 1.0 (see Fig. A4).

Among the various possibilities of normalization (linear, max, quadratic, exp ...) that
logarithmic seems to give the best results for both overall precision and recall maintaining
low variance (see Fig. A4).

• Comparing : each attribute is compared using the following metrics:
(a) Jaro–Winkler,
(b) Levenshtein,
(c) Cosine,
(d) Jaccard,
(e) Siresen-Dice,
(f) Bigrams,
(g) Trigrams,
(h) Exact.
• Classifying : binary threshold with θ = 0.63 as optimal value applied to the weighted
sum of the similarity vector.
• Weighting : the weights of the various attributes are estimated according to the
distribution of their distinct values and normalized using a logarithmic function.
The associated weight is directly proportional to the number of distinct values over the
totals.

Figure 8 shows the results of the 21 executions: the average precision is 89,37% and the
average recall is 94,74%, with low variability.

MLP based classification
To allow a fair comparison, the tests using MLP classifier have followed the same schema
of the the previous ones.
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Figure 8 Results for multiple criteria similarity with threshold θ = 0.63, weighted. (A) Precision; (B)
recall.

Full-size DOI: 10.7717/peerjcs.258/fig-8

Figure 9 Results of the Levenshtein test withMLP classifier. (A) Precision; (B) recall.
Full-size DOI: 10.7717/peerjcs.258/fig-9

MLP Levenshtein
In this test, only the normalized Levenshtein distance was used, likewise the homonym
test with the threshold classifier. As can be seen, the results clearly outperform all previous
ones.

• Comparing : Levenshtein normalized distance only.
• Classifying : MLP based classifier.

Figure 9 shows the results of the 21 executions: the average precision is 95,04% and the
average recall is 97,71%, with very low variability.

MLP with multiple criteria
In this test, multiple comparison criteria for each attributes have been used, likewise the
homonym test with the threshold classifier. The results are almost perfect, especially for
recall. In addition, the high precision allowed the manual control of the ‘‘false-positive’’
pairs, many of which are actually correct, but due to errors have a different fiscal code in
the gold standard (see Data sources). Considering these fixes, precision reaches 100% in
some cases.

• Comparing : Each attribute is compared using the following comparators:
(a) Jaro–Winkler,
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Figure 10 Results of test #2 for MLP classification. (A) Precision; (B) recall.
Full-size DOI: 10.7717/peerjcs.258/fig-10

Table 3 Experimental results Summary: summarized results obtained through the mean values and
standard deviation of the 21 executions for each test.

Classifier Comparators %Precision %Recall

Threshold Levenshtein 69,63%±17,76% 70,04%±16,66%
Threshold All 71,93%±17,51% 85,85%±11,61%
Weighted Threshold All 89,37%± 4,98% 94,74%± 6,12%
Multilayer Perceptron Levenshtein 95,04%± 2,28% 97,71%± 1,78%
Multilayer Perceptron All 97,58%± 0,99% 99,39%± 0,55%

(b) Levenshtein,
(c) Cosine,
(d) Jaccard,
(e) Siresen-Dice,
(f) Bigrams,
(g) Trigrams,
(h) Exact.
• Classifying : MLP based classifier.

Figure 10 shows the results of the 21 executions: the average precision is 97,58% and the
average recall is 99,39%, with very low variability.

Summary results
In Table 3, a comprehensive view of the obtained results through the mean values and
standard deviation of the 21 executions is reported.

CONCLUSIONS
First the various stages of the classic Record Linkage (RL) process have been presented,
then a classifier based on multiple criteria and Neural Networks has been proposed in
the classification stage of RL. Specifically, the chaining of different similarity measures on
different fields has been used as feature vector for the subsequent classification of record
pairs based on Multi-Layer Perceptron (MLP). The proposed feature vector plus MLP
classifier has been tested on several real-world datasets belonging to geographically close
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Figure A1 Levenshtein threshold. (A) The precision–recall curve generated on the training-set in experi-
ment #1; The optimal threshold is tr = 0.7. (B) The F1-score when the threshold changes.

Full-size DOI: 10.7717/peerjcs.258/fig-11

banks andmunicipalities, scoring remarkably (please see Table 3) and clearly outperforming
the threshold-based methods. Neural Networks, even with a shallow architecture and few
nodes, proved to be effective classifiers and should be seriously considered for RL when
even a modest amount of labeled data is available.
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APPENDIX
Precision recall curve
In this section are shown in Figs. A1–A3, for each threshold-based test, the precision–recall
curve generated on the training-set database pair (A, B). These curveswere used to determine
the optimal threshold value for classifiers.

Weight vector estimation
In this section, the methodology used in experiment 3 for the weights estimation is
described. The weight vector has as many components as there are attributes selected for
the RL each of which is calculated as:

wi=
log‖suppai‖

log‖ai‖
·
log‖suppbi‖

log‖bi‖
(1)

where ai and bi are the multi-set values of the corresponding i-th attribute of the first and
second table respectively. The notation supp· indicate the support, i.e., the set of unique
items in multi-set and ‖·‖ denotes the cardinality.
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Figure A2 Multiple criteria threshold. (A) The precision–recall curve generated on the training-set in
experiment #2; the optimal threshold is tr = 0.63. (B) The F1-score when the threshold changes.

Full-size DOI: 10.7717/peerjcs.258/fig-12

Figure A3 Weighted multiple criteria threshold. (A) The precision–recall curve generated on the
training-set in experiment #3; the optimal threshold is tr = 0.56. (B) The F1-score when the threshold
changes.

Full-size DOI: 10.7717/peerjcs.258/fig-13

Thismeasure takes into account both the number of distinct values and the size difference
of the two tables.

Weight vector normalization
In this section are shown, the vector normalization technique and then, for each
normalization base function, in Fig. A4, the precision–recall curve generated on the
training-set database pair (A,B). These curves were used to select the best type of
normalization.
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Figure A4 (A) The precision–recall curves generated on the training-set in experiment #3 for each of
the normalization techniques; (B) a zoomed view of the same curves. The relative winner, in terms of
precision and recall, was the quadratic normalization, but results of higher quality and lower variance were
obtained using a logarithmic function.

Full-size DOI: 10.7717/peerjcs.258/fig-14

Normalization
To alter the contribution of the various attributes during the classificationwhilemaintaining
unchanged the weighted sum of the components of the similarity vector, a normalization
of the weight vector is necessary.

Given a weight vectorw= (w1,w2,...,wn) and same base function f a normalized vector
ŵ= (ŵ1,ŵ2,...,ŵn) can be obtained simply by applying element-wise the equation:

ŵi=
f (wi)∑n
j=1 f (wj)

(2)

i.e., applying the function f to each element of the input vector wi and normalizing these
values by dividing by the sum of all these values; this normalization ensures that the sum
of the components of the output vector ŵ is 1.

The tested base function f are listed below:

linear: f (x)= x quadratic: f (x)= x2

cubic: f (x)= x3 logaritmic: f (x)= log(1+x)
softmax: f (x)= ex inverse: f (x)= x−1

Precision–recall curves
Results for both overall precision and recall among the various possibilities of
normalization: linear, max, quadratic, exp ... logarithmic.

Maratea et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.258 17/20

https://peerj.com
https://doi.org/10.7717/peerjcs.258/fig-14
http://dx.doi.org/10.7717/peerj-cs.258


ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Antonio Maratea conceived and designed the experiments, analyzed the data, authored
or reviewed drafts of the paper, and approved the final draft.
• Angelo Ciaramella analyzed the data, authored or reviewed drafts of the paper, and
approved the final draft.
• Giuseppe Pio Cianci performed the experiments, authored or reviewed drafts of the
paper, performed the computation work, prepared figures and/or tables, and approved
the final draft.

Data Availability
The following information was supplied regarding data availability:

The data, code, and a readme file are available in the Supplementary Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.258#supplemental-information.

REFERENCES
Aiken VCF, Dórea JRR, Acedo JS, De Sousa FG, Dias FG, DeMagalhães Rosa GJ. 2019.

Record linkage for farm-level data analytics: comparison of deterministic, stochastic
and machine learning methods. Computers and Electronics in Agriculture 163:104857
DOI 10.1016/j.compag.2019.104857.

Batini C, ScannapiecoM. 2006.Data quality: concepts, methodologies and techniques.
Berlin: Springer.

Batista GEAPA, Bazzan ALC, MonardMC. 2003. Balancing training data for automated
annotation of keywords: a case study.

Batista GEAPA, Prati RC, MonardMC. 2004. A study of the behavior of several methods
for balancing machine learning training data. ACM SIGKDD Explorations Newsletter
6(1):20–29 DOI 10.1145/1007730.1007735.

Bowyer KW, Chawla NV, Hall LO, KegelmeyerWP. 2011. SMOTE: synthetic minority
over-sampling technique. Journal of Artificial Intelligence Research 16:321–357
DOI 10.1613/jair.953.

Brizan DG, Tansel AU. 2006. A. survey of entity resolution and record linkage method-
ologies. Communications of the IIMA 6(3):5.

Maratea et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.258 18/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.258#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.258#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.258#supplemental-information
http://dx.doi.org/10.1016/j.compag.2019.104857
http://dx.doi.org/10.1145/1007730.1007735
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.7717/peerj-cs.258


Christen P. 2011. A survey of indexing techniques for scalable record linkage and dedu-
plication. IEEE Transactions on Knowledge and Data Engineering 24(9):1537–1555.

Christen P. 2012.Data matching: concepts and techniques for record linkage, entity
resolution, and duplicate detection. Berlin, Heidelberg: Springer-Verlag.

Christen P, Goiser K. 2007. Quality and complexity measures for data linkage and dedu-
plication. In: Quality measures in data mining. Studies in computational intelligence,
Berlin, Heidelberg: Springer-Verlag, 127–151.

Di Cicco V, Firmani D, Koudas N, Merialdo P, Srivastava D. 2019. Interpreting
deep learning models for entity resolution: an experience report using LIME.
In: Proceedings of the second international workshop on exploiting artificial intel-
ligence techniques for data management, aiDM ’19. New York: ACM, 8:1–8:4
DOI 10.1145/3329859.3329878.

Dong XL, Rekatsinas T. 2018. Data integration and machine learning: a natural synergy.
In: Proceedings of the 2018 international conference on management of data. New York:
ACM, 1645–1650.

EbraheemM, Thirumuruganathan S, Joty SR, Ouzzani M, Tang N. 2018. Distributed
representations of tuples for entity resolution. PVLDB 11:1454–1467.

Gottapu RD, Dagli C, Ali B. 2016. Entity resolution using convolutional neural network.
Procedia Computer Science 95:153–158 DOI 10.1016/j.procs.2016.09.306.

Harron K, Dibben C, Boyd J, Hjern A, AzimaeeM, Barreto ML, Goldstein H.
2017. Challenges in administrative data linkage for research. Big Data & Society
4(2):2053951717745678.

HeH, Bai Y, Garcia EA, Li S. 2008. ADASYN: adaptive synthetic sampling approach for
imbalanced learning. In: IEEE international joint conference on neural networks (IEEE
world congress on computational intelligence), IJCNN 2008. 1322–1328.

Hou B, Chen Q, Shen J, Liu X, Zhong P,Wang Y, Chen Z, Li Z. 2019. Gradual machine
learning for entity resolution. In: The world wide web conference, WWW ’19. New
York: ACM, 3526–3530 DOI 10.1145/3308558.3314121.

Kasai J, Qian K, Gurajada S, Li Y, Popa L. 2019. Low-resource deep entity resolution
with transfer and active learning. CoRR abs/1906.08042.

Kooli N, Allesiardo R, Pigneul E. 2018. Deep learning based approach for entity
resolution in databases. In: Intelligent information and database systems. Cham:
Springer International Publishing, 3–12.

Levenshtein VI. 1966. Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics Doklady 10(8):707–710. Doklady Akademii Nauk SSSR, V163
No4 845-848 1965.

Maratea A, Ferone A. 2018. Deep neural networks and explainable machine learn-
ing. In: Fuzzy logic and applications—12th international workshop, WILF
2018, Genoa, Italy, September 6–7, 2018, Revised Selected Papers. 253–256
DOI 10.1007/978-3-030-12544-8_23.

Mudgal S, Li H, Rekatsinas T, Doan A, Park Y, Krishnan G, Deep R, Arcaute E,
Raghavendra V. 2018. Deep learning for entity matching: a design space exploration.

Maratea et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.258 19/20

https://peerj.com
http://dx.doi.org/10.1145/3329859.3329878
http://dx.doi.org/10.1016/j.procs.2016.09.306
http://dx.doi.org/10.1145/3308558.3314121
http://dx.doi.org/10.1007/978-3-030-12544-8_23
http://dx.doi.org/10.7717/peerj-cs.258


In: Proceedings of the 2018 international conference on management of data, SIGMOD
’18. New York: ACM, 19–34 DOI 10.1145/3183713.3196926.

Navarro G. 2001. A guided tour to approximate string matching. ACM Computing
Surveys 33(1):31–88 DOI 10.1145/375360.375365.

Siegert Y, Jiang X, Krieg V, Bartholomäus S. 2016. Classification-based record linkage
with pseudonymized data for epidemiological cancer registries. IEEE Transactions on
Multimedia 18(10):1929–1941 DOI 10.1109/TMM.2016.2598482.

Subitha S, Punitha SC. 2014. An effective method for matching patient records from
multiple databases using neural network. International Journal of Computer Appli-
cations 104(12):17–21.

Vatsalan D, Christen P, Verykios VS. 2013. A taxonomy of privacy-preserving record
linkage techniques. Information Systems 38(6):946–969 DOI 10.1016/j.is.2012.11.005.

Wilson DR. 2011. Beyond probabilistic record linkage: using neural networks and
complex features to improve genealogical record linkage. In: The 2011 international
joint conference on neural networks. 9–14 DOI 10.1109/IJCNN.2011.6033192.

Zhang LQ. 2011. Record linkage methodology and applications. In: Handbook of data
intensive computing. New York: Springer New York, 377–413.

Zhao H, Ram S. 2005. Entity identification for heterogeneous database integration—a
multiple classifier system approach and empirical evaluation. Information Systems
30(2):119–132 DOI 10.1016/j.is.2003.11.001.

Maratea et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.258 20/20

https://peerj.com
http://dx.doi.org/10.1145/3183713.3196926
http://dx.doi.org/10.1145/375360.375365
http://dx.doi.org/10.1109/TMM.2016.2598482
http://dx.doi.org/10.1016/j.is.2012.11.005
http://dx.doi.org/10.1109/IJCNN.2011.6033192
http://dx.doi.org/10.1016/j.is.2003.11.001
http://dx.doi.org/10.7717/peerj-cs.258

