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ABSTRACT
Human pose estimation (HPE) is designed to detect and localize various parts of the
human body and represent them as a kinematic structure based on input data like
images and videos. Three-dimensional (3D) HPE involves determining the positions
of articulated joints in 3D space. Given its wide-ranging applications, HPE has
become one of the fastest-growing areas in computer vision and artificial intelligence.
This review highlights the latest advances in 3D deep-learning-based HPE models,
addressing the major challenges such as accuracy, real-time performance, and data
constraints. We assess the most widely used datasets and evaluation metrics,
providing a comparison of leading algorithms in terms of precision and
computational efficiency in tabular form. The review identifies key applications of
HPE in industries like healthcare, security, and entertainment. Our findings suggest
that while deep learning models have made significant strides, challenges in handling
occlusion, real-time estimation, and generalization remain. This study also outlines
future research directions, offering a roadmap for both new and experienced
researchers to further develop 3D HPE models using deep learning.

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning,
Multimedia, Neural Networks
Keywords Human pose estimation, Deep learning, 3D image, Survey, Neural network, Review

INTRODUCTION
Human pose estimation (HPE) means identifying the pose of human body segments and
key points or joints in images, videos, and real-time environments. It involves tracking,
detecting, and grouping the semantic key points of a given object for solving human
problems such as clinical and rehabilitation solutions among others. HPE offers geometric
and motion information about the human body which has been applied to a wide variety of
applications such as human-computer interaction, motion analysis, augmented reality
(AR), virtual reality (VR), healthcare, action recognition, animation, etc… and is used in
several areas of human endeavours which include gaming industries, movies industries,
entertainments, academic, professional research, etc. Different methods have been
proposed for 3D human pose estimation, including silhouette contours (Mondal, Ghosh &
Ghosh, 2013), edge-based histograms (Mori & Malik, 2002), pictorial structures (PS)
(Andriluka, Roth & Schiele, 2009; Dantone et al., 2013) and deformable part models
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(DPMs) (Felzenszwalb et al., 2010), continued to build appearance models for each key
points separately. Due to the features complexity of 3D human pose estimation such as
viewpoint invariant 3D feature maps (Haque et al., 2016), histograms of 3D joint locations,
multifractal spectrum, and volumetric attention models, traditional models (Barajas,
Dávalos-Viveros & Gordillo, 2013; Chan, Koh & Lee, 2013; Dinh et al., 2013; Handrich &
Al-Hamadi, 2013; Xul et al., 2013; Belagiannis et al., 2014; Jung & Kim, 2014; Liang et al.,
2014; Zhu et al., 2014) are not able to perform accurately in HPE research.

Despite the achievement in solving issues related to pose estimation, HPE methods are
facing challenges in detecting, capturing, and extracting the significant key points of the
human body. Such challenges include occlusion (self-occlusion, inter-person occlusion,
and out-of-frame occlusion), limited data (limited annotation, limited variation of pose,
limited number of pose), bad input data (blurry, low resolution, low light, low contrast,
small scale, noisy), domain gap, camera-centric, crowd scenes, speed, complex pose, etc.
HPE has recently attracted increasing attention in the computer vision community in
facing those challenges. A large number of deep learning-based models have been
developed by enhancing the existing model to deal with those challenges facing both 2D (Li
et al., 2021; Liu et al., 2022) and 3D (Saini et al., 2022;Wu et al., 2022) pose estimation. An
article review is one of the most significant and effective approaches for guiding future
researchers about the state-of-the-art of any scientific domain.

However, most of the existing surveys and literature reviews on human pose estimation
focused on 2D HPE (Jingtian et al., 2020; Munea et al., 2020; Ulku & Akagündüz, 2022)
while survey and literature reviews on 3D models HPE are limited. Out of the few surveys
and comprehensive literature reviews on 3D HPE (Ji et al., 2020; Wang et al., 2021;
Toshpulatov et al., 2022; Tian et al., 2023; Azam & Desai, 2024), none of these focus on the
progress of the state-of-the-art deep learning-based 3D human pose estimation models.
For example, Azam & Desai (2024) aim to estimate human body poses and develop body
representations from a first-person camera perspective, focusing solely on egocentric
human pose estimation and neglecting other 3D pose estimation issues. Ji et al. (2020)
concentrates on monocular 3D images, disregarding those captured using binocular or
stereo vision systems. Zhang et al. (2021) extensively reviews deep learning supervision
models but only covers research articles from 2013 to 2021, missing recent advancements.
A general survey of both 2D and 3D human pose estimation, including classical and deep
learning approaches, is presented (Dubey & Dixit, 2023), making it challenging for
researchers to find specific methodologies. Wang et al. (2021) published a review on 3D
deep learning-based human estimation, but it heavily emphasizes 3D pose estimation
datasets Furthermore, the literature reviews some existing 3D HPE researchers and
presents a description of their methods and model architectures.

RELATED WORK
Wang et al. (2023) reviews deep learning methods for 3D pose estimation, summarizes
their pros and cons, and examines benchmark datasets for comparison and analysis,
offering insights to guide future model and algorithm designs. A novel method to extract
3D information from 2D images without 3D pose supervision using 2D pose annotations
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and perspective knowledge to generate relative depth of joints was proposed (Qiu et al.,
2023). The authors introduced a 2D pose dataset (MCPC) and a weakly-supervised pre-
training (WSP) strategy for depth prediction. WSP improves depth prediction and
generalization for 3D human pose estimation, achieving state-of-the-art results on
benchmark datasets. In Pavlakos et al. (2019) a 3D model of body pose, hand pose and
facial expression from a single monocular image using Skinned Multi-Person Linear
(SMPL)-X was computed. The authors improved upon the SMPLify approach by detecting
2D features for the face, hands, and feet, training a new neural network pose prior, defining
a fast interpenetration penalty, and automatically detecting gender. Their newly
implemented SMPLify-X significantly speeds up fitting SMPL-X to images. Sun et al.
(2020) address the issue of monocular 3D human pose estimation with deep learning. To
overcome occlusion problems inherent in single-view methods, they proposed an end-to-
end network that generates multi-view 2D poses from single-view 2D poses, uses data
augmentation for multi-view 2D pose annotations, and employs a graph convolutional
network to infer 3D poses.

Clemente et al. (2024) explores the feasibility of a model for 3D HPE from monocular
2D videos (MediaPipe Pose) in a physiotherapy context, by comparing its performance to
ground truth measurements. MediaPipe Pose was investigated in eight exercises typically
performed in musculoskeletal physiotherapy sessions, where the range of motion (ROM)
of the human joints was the evaluated parameter. This model showed the best performance
for shoulder abduction, shoulder press, elbow flexion, and squat exercises. Results have
shown that their model has achieved a higher performance. He et al. (2024) proposed a
novel approach for telerehabilitation based on deep learning 3D human pose estimation.
Their approach aims to evaluate the effectiveness and practicality of the telerehabilitation
method over a 12-week experiment through a randomized controlled trial on older adults
with sarcopenia, this study compared the training effects of an AI-based remote training
group using deep learning-based 3D human pose estimation technology with those of a
face-to-face traditional training group and a general remote training group.

HUMAN BODY MODELLING
Because humans vary in their shapes and sizes, modelling the human body is a crucial
aspect of HPE. To determine the posture of an individual, their body needs to meet the
specific criteria necessary for a particular task to establish and describe the human body’s
pose. HPE frequently employs five distinct categories of human body models that include
the kinematic-base model, planner model, volumetric model, SMPL-based model and
Surface-based model (Wang et al., 2021; Salisu et al., 2023).

Skeletal-based model
This model is commonly referred to as a kinematic-based model or a stick figure,
characterized by its uncomplicated and adaptable representation of the human body’s
structure. It finds frequent application in both 2D (Cao et al., 2017) and 3D HPE (Mehta
et al., 2018). This model primarily captures the positions of joints and limb orientations to
depict the human body’s skeletal structure, facilitating the detection of connections
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between different body parts. This human skeleton model is conceptualized as a tree-like
structure, encompassing numerous key points in the human body. It establishes
connections between neighbouring joints through edges. The fusion of a convolutional
neural network pose regressor and kinematic skeletal fitting allows for the real-time
capture of a comprehensive 3D skeletal pose in a given environment using only a single
RGB camera (Terreran, Barcellona & Ghidoni, 2023). While the kinematic model offers
flexibility in graph representation, it has constraints in effectively representing texture and
shape information.

Contour-based model
The contour-model, also known as the planer model stands in contrast to the kinematic-
based model. In the contour-based model, essential points are approximated with
rectangular shapes or object boundaries. This model is primarily employed to represent the
outline and structure of the human body. The planar model is a common choice in
classical HPE methods (Jiang, 2010), such as those that utilize techniques like cardboard
(Freifeld et al., 2010) mode and active shape modelling to capture the human body’s
structure and silhouette distortions through principal component analysis (PCA). In this
model, researchers commonly depict body parts using rectangles that approximate the
contours of the human body.

Many scholars employ this model to address issues related to the relationships between
various human body parts. For instance, Toshpulatov et al. (2022) applied the planar model
to capture the connections between different body parts, and their findings indicate that
this model effectively represents the shape and appearance of the human body. Ju, Black &
Yacoob (1996) proposed that an individual can be portrayed as a collection of
interconnected planar patches. Their study demonstrated that limbs can be represented by
these planar patches, offering a useful approach for tracking human legs across extended
image sequences. Additionally, Black & Yacoob (1995) illustrated that a planar model can
accurately approximate the motion of a human head, providing a succinct depiction of
optical flow within a specific region.

SMPL-based model
The Skinned Multi-Person Linear (SMPL) model, as introduced by Loper et al. (2015),
serves as a tool for predicting 3D human body joint locations, as described by Bogo et al.
(2016). This model represents the human skin as a mesh with 6,890 vertices, which can be
adjusted through shape and pose parameters. Shape parameters are employed to capture
aspects like body proportions, height, and weight, while pose parameters account for the
specific deformations of the body. By learning and optimizing these shape and body
parameters, one can estimate the 3D positions of the body’s pose. Several researchers
attempted to address the issue of SMPL-based by utilising single or combined models.

Other researchers shifted their attention to an enhanced version of the SMPL model,
recognizing its limitations, such as computational complexity and the absence of facial and
hand landmarks. Some of these researchers sought to overcome these constraints. For
instance, Xiu et al. (2022) introduced an iterative refinement of SMPL parameters during
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3D reconstruction. Similarly, Lin, Wang & Liu (2021a, 2021b) put forward as methods for
reconstructing 3D human pose and mesh from a single image, without depending on any
parametric mesh model like SMPL.

Surface-based model
A more recent human body model known as DensePose proposed by Güler, Neverova &
Kokkinos (2018) has been introduced in response to the limitations of sparse image key
points in comprehensively describing the human body’s condition. To overcome this
limitation, a fresh dataset called DensePose-COCO has been created. This dataset
establishes detailed correspondences between image pixels and a surface-based
representation of the human body, enhancing the ability to capture the human
body’s state.

Volumetric model
Volume-based models are employed to depict the silhouette and pose of a three-
dimensional object using a geometric mesh. Traditional geometric meshes used for
modelling human body parts included shapes like cylinders and cones. In contrast,
modern volume-based models are recognised by their mesh representations derived from
3D scans. These models represent the body as a 3D volume, often using voxels (3D pixels)
or implicit functions to capture both the outer shape and potential internal structures.
Volumetric models give a complete spatial representation of the body (Salisu et al., 2023).
Among the most widely used volumetric models for 3D pose estimation are the Stitched
Puppet Model (SPM) and the Unified Deformation Model (UDM) (Trumble et al., 2017),
as well as models like Frankenstein & Adam and the Generic Human Model (GHUM)
along with the Low-Resolution Generic Human Model (GHUML) (Xu et al., 2020).

METHODOLOGY
On the topic of “3D human pose estimation using deep learning,” an extensive study was
conducted, investigating key research questions and systematically searching and
organizing the relevant literature. Our research methodology adopted the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol (Moher
et al., 2009) to outline the data sources, search strategies, and criteria for literature
inclusion.

Research questions
The survey articles aim to address the following questions

RQ1 How 3D human pose estimation evolved and developed.
RQ2 How are neural networks applied to different 3D pose estimation task.
RQ3 What areas of human endeavour where human pose estimation is applicable.
RQ4 What are the current challenges of 3D HPE.
RQ5 What are the future research directions for 3D human pose estimation.
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Research strategy and data sources
This review utilized automatic and manual search methods to ensure optimal outcomes.
Four databases (Scopus, Web of Science, Google Scholar, and IEEE) were employed to
locate pertinent articles or research within the 3D human pose estimation (3DHPE)
domain and its applications. Specific search queries, comprising various keywords and
their combinations were employed to identify relevant publications from 2014 to 2024.
These queries included terms such as “3D human pose estimation,” “3D human body
model,” “3D datasets and evaluation metrics,” “3D HPE application,” and “deep-learning
based 3DHPE.” To ensure impartial coverage, identical queries were executed across all
four databases.

Inclusion/exclusion criteria
Given the objective of conducting a comprehensive review tailored to the study’s
requirements, slight variations in search strategies were adopted, considering the unique
search capabilities of each selected database. Initially, title and abstract searches were
conducted in IEEE and Scopus, whereas full-text searches were performed in Web of
Science and Google Scholar. Retrieved articles underwent scrutiny based on their abstracts
and titles to determine inclusion or exclusion eligibility. Articles lacking sufficient or
relevant information were excluded.

Subsequently, the full text of screened papers was meticulously examined to ascertain
their relevance for inclusion or exclusion. Additionally, references cited within selected
articles were identified and utilized to retrieve additional relevant papers for the study. To
ensure the generation of clean and standardized documents, devoid of noise and
duplicates, supplementary selection and rejection criteria were applied. These criteria
stipulated that articles must be written in English, and published in English journals or
conferences between the years 2014-2024. Furthermore, the articles were required to
employ deep-learning techniques rather than classical methods.

RESULTS
The literature search identified 601 articles on 3D human pose estimation. After removing
299 duplicates, 302 unique articles remained. Screening the titles and abstracts reduced this
number to 97. Following a full-text review, 67 additional articles were excluded, leaving 30
relevant studies for inclusion in the review. Figure 1 illustrates the stages of the search from
the input query, the inclusion and exclusion criteria to the final inclusion stage. A total of
three studies (n = 3) were published in 2024, and eight studies (n = 8) were published in
2023. The remaining studies were distributed as follows: seven (n = 7) in 2022, six (n = 6)
in 2021, three (n = 3) in 2020, two (n = 2) in 2019, and one (n = 1) in 2017. Figure 2
illustrates the growing research interest in the field of 3D human pose estimation
(3DHPE). A critical evaluation was conducted on all 30 contributions that met the
filtering criteria. In 3DHPE research, the choice of dataset plays a crucial role. Some
researchers used benchmark datasets (Yin, Lv & Shao, 2023), while others employed
self-prepared datasets (Niu et al., 2024; Yan et al., 2024) or a combination of both
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(Xi et al., 2024). Human 3.6M emerged as the most frequently used dataset among the
identified studies. A summary of the critical evaluation of all 30 contributions is
presented in Table 1.

RQ1: HOW 3D HUMAN POSE ESTIMATION EVOLVED AND DEVELOPED
The fundamental process of HPE comprises three main phases. Firstly, it involves

identifying key points/joints in the human body, such as the knee, ankle, shoulder, head,
arms, and hands. This initial stage is crucial for pinpointing the specific locations of these
key points. The choice of human pose dataset format plays a significant role in gathering
and recognizing key points stored in selected 2D datasets. It is important to note that the

Figure 1 Article selection process using PRISMA protocol. Direct component sources. https://
creativecommons.org/licenses/by/4.0/. Full-size DOI: 10.7717/peerj-cs.2574/fig-1
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Figure 2 The number of published articles from 2017 to 2024. The growing research interest in the
field of 3D human pose estimation (3DHPE). Full-size DOI: 10.7717/peerj-cs.2574/fig-2

Table 1 The summary of the current deep learning-based article from Scopus. Summarizes the literature of 30 of the most recently published
articles in Scopus, illustrating the study, the model utilized, the type of dataset and a summary of the aim, achievement made and the limitation of
each study.

Study Model Dataset Comments

Xi et al. (2024) TCN, T-MHSA Human 3.6M and MPI-
INF-3DHP

Aim: to enhance the precision of pose estimation.

Achievement: effectiveness in handling real-time and complex sports
scenarios.

Limitation: scalability, the robustness of the approach across various sports.

Zhang et al. (2023c) P2P-MeshNet Self-prepared
(FreeMocap)

Aim: to estimate the body joint rotations directly

Achievement: potential application prospects of the method

Limitation: Could be further evaluated on different datasets for
generalisation.

Yan et al. (2024) IP +DL + EA Self-prepared Aim: Provide a reliable and efficient solution for 3D human pose estimation
and awkward posture detection in a construction environment.

Achievement: Contributes to the proactive management of worker health
and safety.

Limitation: Not applicable to health care monitoring data

Martini et al.
(2022)

MAEVE platform MSCOCO Aim: Implement a low-cost, real-time and usable platform for 3DPE that
guarantees accuracy.

Achievement: Real-time performance and higher accuracy.

Limitation: Future improvements could focus on enhancing adaptability
across various HPE scenarios and patient populations to strengthen its
clinical utility

Ran et al. (2023) De-occlusion
multi-task learning
network

3DPW, 3DPW-OCC,
3DOH, and Human
3.6 M

Aim: To de-noise the feature for mesh parameter regression

Achievement: Competitive performance on a non-occlusion dataset

Limitation: Real-world applicability and processing speed remain potential
areas for future work
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Table 1 (continued)

Study Model Dataset Comments

Vukicevic et al.
(2021)

VIBE Self-prepared Aim: To utilize IoT force sensors and IP cameras to detect unsafe P&P acts
timely and objectively.

Achievement: Excellent covenant with motion sensors and a high potential
for checking and improving the safety of the P&P workplace.

Limitation: Not applicable to P&P datasets

Bigalke et al. (2023) Domain adaptation Self-prepared and SLP
dataset

Aim: Implement a model from a labeled source to a shifted unlabeled target
domain

Achievement: Outperformed the SOTA method (baseline and gap)

Limitation: Tested on SLP and MVIBP datasets only

Yin, Lv & Shao
(2023)

COG Human 3.6M Aim: To design a multi-branch network based on the human center of
gravity

Achievement: higher efficiency and validity

Limitation: Need further exploration into integrating additional contextual
features

Xu et al. (2022) RSC-Net Human 3.6M and MPI-
INF-3DHP

Aim: To implement a method that can deal with the issues of low-resolution
input images or video.

Achievement: Accurate learning of 3D body pose and shape across different
resolutions with one single model.

Limitation: Future work might focus on further refining the robustness of
cross-view matching in complex real-world settings.

Mehta et al. (2017) VNect MPI-INF-3DHP and
Human 3.6M

Aim: To develop a real-time model that captures the full body 3D skeletal
human pose in a steady, temporally reliable manner using a single RGB
camera.

Achievement: Better applicability than RGB-D solutions.

Limitation: Not capable of estimating 3D poses from different camera views

Li et al. (2020a) Dual–Stage pipeline 3D human pose datasets,
Human 3.6M and MPI
INF-3DHP.

Aim: To develop a self-supervised model to avoid manual annotations of 3D
poses.

Achievement:more effectiveness compared to the current weekly-supervised
model.

Limitation: Relying on the completeness of the shape prior provided by
RGBD-PIFu.

Saini et al. (2022) UAVs + AirPose Self-prepared Aim: To develop a new model that estimates human pose and shape using
images captured by multiple irrelevantly uncelebrated flying cameras

Achievement: 3D HPE system for unstructured, uncontrolled and outdoor
environments

Limitation: Not robust to various lighting conditions and diversifying
training data.

Yang et al. (2022) PoseMoNet Human 3.6M and
HumanEva-I

Aim: To develop an elf-projection mechanism that cogently conserves
human motion kinematics.

Achievement: A competitive advantage compared to SOTA

Limitation: Limited mechanisms to handle more varied and complex
motions.

Gao, Yang & Li
(2022)

GroupPoseNet InterHands2.6M Aim: To develop a 3D PE model that can differentiate between two hand
shapes and poses from a single RGB image.

Achievement: Higher efficiency in the overall result.

Limitation: Lack of generalization capabilities for the real-world
environment.

(Continued)
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Table 1 (continued)

Study Model Dataset Comments

Kourbane & Genc
(2022)

Two-stage GCN-
based

STB and RHD Aim: To develop a model that learns per-pose relationship constraints in
estimating 3D hand pose.

Achievement: Outperforms SOTA in terms of accurate 3D hand pose
estimation.

Limitation: Future research could explore optimizing computational
demands and validating model generalizability across more diverse, real-
world scenarios.

Pavlakos et al.
(2019)

SMPLify-X EHF and SMPL+H Aim: Simplify the analysis of human actions and emotions estimation.

Achievement: Higher speed than the SOTA methods.

Limitation: lack of a dataset of in-the-wild SMPL-X fits, which restricts the
current ability to learn a regressor that can directly estimate SMPL-X
parameters from RGB images.

Mehrizi et al.
(2019)

DNN + Hourglass
network

Self-prepared Aim: This study aims to develop and validate a DNN-based model for 3D
pose estimation during lifting

Achievement: Higher accuracy even with the shortcomings of marker-based
motion systems.

Limitation: The number and position of cameras were not explored, the
study focused on lifting tasks only and markers on the body may alter the
natural appearance of the body.

Zhu et al. (2023) MHPT MoVi Aim: To develop a deep-learning human pose technique for clinical gait
analysis.

Achievement: pose estimations have been improved significantly.

Limitation: The system needs further validation across diverse patient
groups and conditions to assess its reliability fully in clinical practice.

Kong & Kang
(2021)

3DMPPE Human 3.6M Aim: To develop a model to reduce computation cost and processing time.

Achievement: Reducing the processing time and the performance of the
model.

Limitation: Lack of optimisation and adaptability to diverse scenarios.

Zou et al. (2021) EventHPE Self-prepared and DHP19 Aim: To develop a stage deep learning model for accurate pose estimation.

Achievement: Effectiveness of the new model.

Limitation: Could enhance its real-time performance and adaptability to
diverse environments.

Šajina & Ivašić-Kos
(2022)

Tracking Self-prepared Aim: To develop a new model, that will enhance the 3D sequences of poses
generated from the designed testing model.

Achievement: Revealing the drawbacks of other methods in the field of HPE.

Limitation: Lacks of advanced occlusion handling techniques to improve
reliability across various sports contexts.

Zhang et al.
(2023a)

PoseAug Human 3.6M Aim: To develop a model that will cater for the variation of 2D and 3D pose
pairs.

Achievement: higher improvement on both frame and video-based 3D HPE.

Limitation: The model needs Further testing to confirm its generalizability.

Zhou, Dong & EI
Saddik (2020)

DGCNN ITOP and EVAL Aim: To develop a model that will solve the issues of 3DHPE using depth
images.

Achievement: Higher accuracy than SOTA models

Limitation: Not applicable to a fast and occluded movement.
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output of body key points from the same image may differ based on the dataset format and
platform employed.

Moving on to the second stage, pose estimation entails grouping the localized key points
to form valid human pose configurations, thereby determining pairs of organs in the
human body. Various researchers have experimented with different techniques for
connecting key point candidates in this stage.

The third and final stage involves estimating a 3D pose based on the previously
determined 2D key points. This is achieved by combining sample 2D frames captured at

Table 1 (continued)

Study Model Dataset Comments

Retsinas,
Efthymiou &
Maragos (2023)

Template mushroom
model

Self-prepared Aim: To develop a deep learning model that solves the annotation problem
and estimates their pose on 3D data.

Achievement: more effectiveness compared to SOTA models.

Limitation: Further research could enhance the approach’s robustness
through domain adaptation and extensive testing on real-world data.

Ding et al. (2021) Kinematic
Constrained
Learning

Self-prepared Aim: To develop a learning model for predicting skeletal key points from
observed radar data.

Achievement: The fusion of kinematic constraints with the learning of 3D
skeletal reconstruction.

Limitation: The model’s performance should be validated in varied
environments

Ying & Zhao (2021) 3D learning module MHAD and SURREAL Aim: To develop a model that can estimate 3D human pose from RGB-D
images.

Achievement: SOTA performance on the stated datasets.

Limitation: further validation in diverse settings and improvements in
computational efficiency would be necessary for broader real-world
applicability.

Niu et al. (2024) SPCT+TRP Self-prepared Aim: To attack the intrinsic difficulties of the classical model

Achievement: Improves accuracy and robustness in challenging conditions.

Limitation: Lack of broader testing and validation across different settings

Rapczyński et al.
(2021)

Scale normalization+
OpenPose

HumanEva-I, Human
3.6M, and Panoptic
Studio,

Aim: To develop a model that will tackle the issue of both cross and dataset
generalisation.

Achievement: Improvements in cross-dataset and in-dataset generalisation.

Limitation: Manual parameterisation for each new dataset.

Manesco, Berretti
& Marana (2023)

Domain Unified
Approach

SURREAL and Human
3.6M

Aim: solving pose misalignment problems on a cross-dataset scenario.

Achievement: showing significant improvements in cross-domain accuracy
by leveraging the domain adaptation technique

Limitation: Future directions might involve testing across more diverse
datasets and addressing computational efficiency for real-time use

Sun et al. (2020) End-to-end 3DPEN Human 3.6M Aim: to address the issue of not using single-view images directly in multi-
view methods.

Achievement: higher effectiveness and performance improvement

Limitation: Not validated on complex poses and diverse datasets.
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different times through a temporal procedure known as a temporal convolution neural
network.

3D human pose estimation
In recent years, machine learning approaches have significantly transformed pose
estimation, with deep learning (DL) methods making notable strides in enhancing its
performance. While substantial progress has been made in 2D HPE, the task of 3D HPE
remains challenging. Many existing studies address 3D HPE using monocular images or
videos, presenting an ill-posed and inverse problem due to the loss of one dimension in the
projection from 2D to 3D. However, when multiple views or additional sensors like Inertial
Measuring Units (IMU) are utilized, 3D HPE becomes a well-posed problem that can
benefit from information fusion techniques. Below is the description of 3D HPE using
various sensors, including camera sensors, IMU sensors, point cloud and depth sensors,
and radiofrequency device sensors.

3D HPE from digital RGB images and videos
3DHPE using deep learning from digital RGB images and video can be classified into three
categories: single-view single-person 3D HPE, single-view multi-person 3D HPE, and
multi-view 3D HPE.

A single-view single-person 3D HPE: Methods for single-person 3D HPE can be
categorized into two groups, namely, skeleton-only and human mesh recovery (HMR).
This classification is based on whether the goal is to reconstruct a 3D human skeleton or to
recover a 3D human mesh using a human body model.

Skeleton-only: Methods falling into the skeleton-only category produce 3D human joint
estimates as their ultimate output. These approaches do not utilize human body models for
reconstructing a 3D human mesh representation. Within this category, these methods can
be further subcategorized into direct estimation approaches and 2D to 3D lifting
approaches.

Regression-based estimation

Regression-based estimation methods deduce the 3D human pose directly from 2D
images, without the need for an intermediate step of estimating a 2D pose representation.
This study (Liang, Sun & Wei, 2018) introduced a regression approach that considers the
data’s structure. Instead of relying on a joint-based representation, they opted for a more
stable bone-based description. They defined a compositional loss by leveraging the 3D
bone structure, using the bone-based description to encode long-range relations between
the bones. A volumetric approach to transform the challenging non-linear 3D coordinate
regression task into a handier form within a discretized space was presented (Pavlakos
et al., 2017; Pavlakos, Zhou & Daniilidis, 2018). A convolutional network was employed to
predict voxel likelihoods for each joint in the volume. They utilized ordinal depth relations
of human joints to mitigate the requirement for precise 3D ground truth pose information.
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2D to 3Dlifting

Inspired by the recent achievements in 2D human pose estimation (HPE), the popularity
of 2D to 3D lifting approaches has risen. These methods involve inferring the 3D human
pose from an interim estimation of the 2D human pose. During the initial phase, pre-
existing 2D HPE models are utilized to predict the 2D pose. Subsequently, in the second
stage, the process of 2D to 3D lifting is applied to derive a 3D pose. A fully connected
residual network for the regression of 3D joint locations, relying on the provided 2D joint
locations was introduced by Tralic et al. (2013). While this method achieved state-of-the-
art results during its time, its susceptibility to failure stemmed from the reconstruction
ambiguity resulting from excessive dependence on the 2D pose detector. The most optimal
3D pose was identified in Jahangiri & Yuille (2017), Li & Lee (2019), Sharma et al. (2019)
by initially producing various 3D pose possibilities and subsequently utilising ranking
networks to optimise the output.

Human body recovery
Human body recovery (HBR) methods also known as human mesh recovery integrate
parametric body models, as outlined in Section 2 (human body modelling), to reconstruct
the human mesh. The 3D pose is then acquired by utilizing the joint regression matrix
defined by the model. Common examples of HBR are SMPL-based volumetric-based and
surface-based models.

Single-view multi-person 3D HPE
Multi-person 3D HPE from monocular RGB images or videos has a more compound and
demanding challenge, involving the identification of the number of individuals, their
positions, and poses, followed by the grouping of their localized body key points and finally
estimating the 3D pose. To address these challenges, multi-person pose estimation can be
categorized into two techniques: Top-down and Bottom-up.

Top-down techniques

Top-down approaches in 3D multi-person HPE initially engage in human detection to
identify each person. Subsequently, for every detected individual, the absolute root
coordinate and 3D root-relative pose are estimated through 3D pose networks. This
process involves inputting the image into the human detection network, cropping the
detected humans, aligning them to the world coordinate, and finally estimating the 3D
root-relative pose.

Some researchers like Zou et al. (2023) introduce Snipper, a cohesive framework
designed to execute multi-person 3D pose estimation, tracking, and motion forecasting
concomitantly within a single stage. Their approach incorporates a proficient yet robust
deformable attention mechanism, enabling the aggregation of spatiotemporal information
from the video snippet. Leveraging this deformable attention mechanism, they train a
video transformer to capture spatiotemporal features from the multi-frame snippet and
generate informative pose features for multi-person pose queries. Ultimately, these pose
queries are processed to predict both multi-person pose trajectories and future motions in
a single shot.
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Bottom-up techniques

Differing from top-down strategies, bottom-up approaches initially generate the locations
of all body joints and depth maps. Subsequently, these methods associate body parts with
each individual based on the root depth and relative depth of each part. Grouping the
human body joints belonging to each person is one of the major challenges of the bottom-
up technique. For example, Xiao et al. (2023) presented a refined method for body
representation and a streamlined single-stage multi-person pose regression network
named AdaptivePose++. The innovative body representation can adequately capture
diverse pose information and efficiently model the connection between a human instance
and its associated key points within a single forward pass.

Multi-view multi-person 3D HPE
Multi-view 3D HPE encounters difficulties in handling partial occlusion when operating in
a single-view setting. A viable approach to address this challenge involves estimating the
3D human pose from various viewpoints. This is because the obscured portions in one
view might be visible in other views. To achieve 3D pose reconstruction from multiple
perspectives, it is crucial to resolve the association of corresponding locations across
different cameras. Many researchers attempted to overcome the issue of partial occlusion
associated with single-view 3DHPE (Wang et al., 2021b; Liu, Wu &He, 2022; Xu & Kitani,
2022; Gerats, Wolterink & Broeders, 2023; Silva et al., 2023). Generally, multi-view settings
are primarily employed for multi-person pose estimation.

3D HPE from digital image with imu sensors
Among the renounced sensors capable of tracking the orientation and acceleration of the
human body, Wearable inertial measurement units (IMUs) have proven to be among the
best. It can monitor the orientation and acceleration of various human body parts by
capturing movements without being hindered by object occlusions or clothing
obstructions. Many researchers (Huang et al., 2020b; Zhang et al., 2020; Liao et al., 2023a,
2023b; Zhao et al., 2023a) proposed IMU-based pipelines to reconstruct 3D human poses
to improve pose accuracy.

Cloud and depth sensors
One of the hurdles encountered in 3D human pose estimation is the ambiguity related to
depth. In recent years, there has been an increasing interest among computer vision
researchers in employing depth sensors due to their precision and cost-effectiveness.
Numerous studies have suggested using depth images for the estimation of 3D human
poses (Yu et al., 2018; Xiong et al., 2019; Zhou, Bhatnagar & Pons-Moll, 2020;Wang et al.,
2023). Additionally, research indicates that utilizing points can exhibit excellent
performance in recovering 3D humanmesh and other models of human pose (Jiang, Cai &
Zheng, 2019; Wang et al., 2020; Gu et al., 2022; Hermes, Bigalke & Heinrich, 2023).
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Radio frequency sensors
Radiofrequency sensing devices have demonstrated an efficient and promising result in
estimating 3D human poses. Researchers like Zhao et al. (2019), and Xie et al. (2023)
utilised radio frequency techniques in their work and promising output was obtained. The
significant advantage of employing an RF-based sensing system lies in its capacity to move
through walls and rebound off human bodies within the WiFi range without the need for
carrying wireless transmitters. This approach provides a major benefit. Additionally,
privacy can be maintained as the data is non-visual. However, it is worth noting that RF
signals exhibit a relatively lower spatial resolution when compared to visual camera
images, and RF systems have been demonstrated to yield coarse 3D pose estimations (Zhao
et al., 2018; Xie et al., 2022, 2023).

Datasets for 3D human pose estimation
There are many datasets for 3D human pose estimation. For this article, only the most
widely used deep learning–based 3D human pose estimation datasets are included.

Human 3.6M is the most widely used indoor dataset for 3D HPE from monocular
images and videos. This dataset contains 3.6 million 3D human poses with 3D ground
truth annotation captured by an accurate marker-based motion capture system. The
training and testing images are categorized into subjects S1, S5, S6, and S7 for training, and
images of subjects S9 and S11 for testing. Several researchers (Reddy et al., 2021; Zhu et al.,
2022; Chun, Park & Chang, 2023b, 2023a; Shan et al., 2023) utilised the Human 3.6M
dataset for estimating the human pose.

MuPoTS-3D is another 3D dataset in which 3D poses were captured by a multi-
view marker-less motion capture system containing 20 real-world scenes. This
dataset contains many images with occlusions, drastic illumination changes, and lens
flares. A total of 8,000 frames were collected in the 20 sequences by eight subjects. There
are many more datasets for 3D human pose estimation that are not covered due to several
reasons including page limitation. Many researchers utilised this dataset in their work. In
another research performed by Haque et al. (2016), Sun et al. (2023), Xing (2023), this
dataset is also utilized.

3D Poses in the Wild dataset (3DPW) is the first unconstrained dataset in the wild
with accurate 3D poses for evaluation. This dataset consists of about 60 video sequences,
3D body scans, and 3D object models out of which 18D models are different clothing.
Among all the 3D benchmark datasets, 3DPW is reported to be the first dataset that
contains video footage covered by a mobile phone camera. Its unique peculiarities inspired
many researchers (Cho et al., 2023;Ma et al., 2023; Nam et al., 2023; Oreshkin, 2023; Zhang
et al., 2023b) in the field of computer vision.

MPI-INF-3DHP, More than 1.3 million frames from 14 cameras were recorded in a
green screen studio which allows automatic segmentation and augmentation. The dataset
contains many human activities including walking, sitting, complex exercise poses, and
dynamic actions. Other 3D HPE datasets consist of either outdoor or indoor scenes but
MPI-INF-3DHP is reported to accommodate both complex outdoor and controlled indoor
scenes respectively. This dataset is one of the top datasets utilized by many researchers
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including (Jiang et al., 2023; Mehraban, Adeli & Taati, 2023; Yu et al., 2023; Zhao et al.,
2023b).

Evaluation metrics for 3D human pose estimation
Evaluating the performances of 3D human pose estimation is quite challenging because
there are many features and equipment that need to be considered. Therefore, unlike like
in 2D human pose estimation, there limited number of evaluation matric covered in this
review.

Mean per joint position error

It is the most frequently used metric to evaluate the performance of 3D HPE. Mean per
joint position error (MPJPE) is calculated using the Euclidean distance between the
projected 3D joints and the ground truth locations. Some researchers (Güler, Neverova &
Kokkinos, 2018; Wandt et al., 2021) applied this metric to evaluate the performances of
their models

Mean average precision
This metric is used to measure the performance of predictions in the 3D dataset. Detection
is successful when the predicted 3D body landmark falls within a distance less than the
assigned mAP (mean average precision) value from the ground truth. The mAP is utilised
as the evaluation metric to determine the unique rate of sample points (Wang, Chen & Fu,
2022).

3DPCK
It is a 3D extended version of the percentage of correct keypoints (PCK) metric used in 2D
HPE evaluation. An estimated joint is said to be correct if the distance between the
estimation and the ground truth is within a certain threshold. Generally, the threshold is
set to 150 m. This metric is applied by Pavlakos et al. (2019) to evaluate the performance of
their model.

Euler angle error
It is a standard practice used to measure the error of 3D pose prediction in the Human
3.5 M dataset the evaluation is done by computing the Euclidean norm predictions and the
ground truth Euler angle representations. The metric was applied in the Simulation
experiments to verify the effectiveness of the proposed model (Li et al., 2018).

RQ2: HOW ARE NEURAL NETWORKS APPLIED TO DIFFERENT 3D POSE
ESTIMATION TASK

Research on 3B human pose estimation is gaining more popularity today. Many articles
have been published in different journals and book chapters. Some of these articles
published in Scopus are reviewed and summarized in this study as follows.

In Yu et al. (2023) an effective model known as Global-local Adaptive Graph
Convolutional Network (GLA-GCN) was proposed to improve the 3D human pose lifting
via ground truth data to improve the quality of estimated pose data. Three benchmark
datasets were used in the experiments and the output shows that the proposed model
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performed better than the state-of-the-art model. A spatial-temporal mesh attention
convolution (MAC) was developed (Wang et al., 2020) to predict the 3D coordinates of
mesh vertices at the high resolution based on the estimated 3D coordinates and features at
the low resolution. The framework was generalised to the real data of human bodies with a
weakly supervised fine-tuning method. The developed model achieves higher accuracy in
recovering the 3D body model sequence from a sequence of point clouds.

To tackle the shortcomings of estimating the pose and shape of human bodies (Wang
et al., 2023) developed a hybrid pipeline that put together the strength of both DL-based
and sensor-based models. After performing the experiments with four benchmark datasets
which include the DFAUST dataset, SURREAL, and some parts of AMASS dataset, the
outcome of the experiments shows that this hybrid approach enables us to enhance pose
and shape estimation compared to using DL or model fitting separately. The hybrid model
is presented in Fig. 3.

A novel human pose generator was developed (Guan et al., 2023) to generate diverse 3D
human poses. The performance of the proposed model known as PoseGU was evaluated

Figure 3 The architecture of the proposed hybrid mode to predict 3D human pose and shape (Wang
et al., 2023). Direct License. https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=cef4c52c-cb41-
4996-9ed0-5b42de22dfc5. Full-size DOI: 10.7717/peerj-cs.2574/fig-3

Figure 4 3D human pose generator (Guan et al., 2023). Full-size DOI: 10.7717/peerj-cs.2574/fig-4
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with three different benchmark datasets and the experimental analysis shows that it
generates 3D poses with improved data diversity and better generalization ability. The
framework of the developed module is shown in Fig. 4.

Estimating the 3D pose of humans in a clinical setting requires a simple and accurate
system. The current method is attached to many devices which makes it difficult in a
clinical environment. A model that attempts to reduce the number of devices and maintain
its accuracy is developed by Zhao et al. (2023a). A semantic convolution-based neural
network known as Occ-Corrector is developed to deal with occlusion issues that might
arise during the estimation of 3D poses from a single camera by integrating with IMU’s
sensors. Occ-Corrector is presented in Fig. 5.

The summary of the current deep learning-based article from Scopus is shown in
Table 1. Table 1, summarizes the literature of 30 of the most recently published articles in
Scopus, illustrating the Study, the model utilized, the type of dataset and a summary of the
aim achievement made and the limitation of each study.

RQ3 WHAT AREAS OF HUMAN ENDEAVOUR WHERE HUMAN POSE
ESTIMATION IS APPLICABLE

Area of application
In terms of real-world applications, 3D human pose estimation provides numerous
applications in human endeavours. Here some popular applications of 3D HPE are
reviewed and presented.

Business activities
Human pose estimation has proven valuable in both real-world and virtual business
settings. The influence of e-commerce trends, particularly in areas like face masks and
clothing purchases, has been noteworthy. Traditional depictions of clothing items in

Figure 5 Occ-Corrector framework (Zhao et al., 2023a). Full-size DOI: 10.7717/peerj-cs.2574/fig-5
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images are no longer sufficient to meet customer expectations. Consumers now desire a
more dependable representation, wanting to visualize how selected clothes will look on
them. Through 3D human pose estimation (3D HPE), it becomes feasible to generate
realistic representations of human body regions for virtual fitting rooms, specifically for
clothes and face mask analysis. This is achieved through techniques such as clothes parsing
(Saito et al., 2019; Yu et al., 2019) and pose transfer (Li, Huang & Loy, 2019), which infer
the three-dimensional appearance of an individual wearing specific garments.

Entertainment

In the gaming, film, and animation sectors, 3D HPE plays a pivotal role. While motion
capture systems serve as the foundation for these industries, addressing the intricate
movements of actors, 3D HPE is increasingly employed as a cost-effective alternative to
high-priced motion capture devices. With the help of 3D pose estimation and humanmesh
recovery, 3D character animation from a single photo is developed by Weng, Curless &
Kemelmacher-Shlizerman (2019).

Healthcare
Human pose estimation finds practical application in the fields of human rehabilitation
and physiotherapy. It involves tracking human activities during rehabilitation exercises by
precisely identifying key points of the patient’s movements for effective treatment. Gu et al.
(2019) proposed a physiotherapy system designed to assess and guide patients at home.
Additionally,Weiming Chen, Guo & Ni (2020) utilized HPE algorithms for monitoring fall
detection, enabling prompt assistance. Consequently, 3D pose estimation techniques have
the potential to develop a system for correcting sitting postures. Such a system could
monitor user status, provide quantitative human motion information, aid in diagnosing
complex diseases, formulate rehabilitation training, and facilitate physical therapy under
the guidance of physicians.

Sport activities
In sports, coaches and trainers analyse and monitor athletes’ performance. The
advancements in 3D HPE have enabled Artificial Intelligence (AI) trainers to provide
precise coaching through action detection techniques using just a few camera settings.
Hwang, Park & Kwak (2017) developed a system, leveraging 3D poses extracted from
videos, for performance analysis, rapid response, and improvement. Zecha et al. (2018)
employed human pose estimation techniques to precisely track and assess athletes’
performance in swimming exercises, ensuring accurate metrics at any given time. Wang
et al. (2019) developed an AI coaching system incorporating a pose estimation module,
offering personalised assistance for athletic training.

Security/safety
3D human pose estimation finds application in surveillance, involving the estimation and
analysis of a person’s poses or activities in a surveillance environment. Many advanced
shopping malls and stores have implemented cashier-less systems to identify customers
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engaging in suspicious behaviour. These establishments aim to identify any irregularities
among their customers by employing a hybrid computer vision system that combines
camera sensor networks and Internet of Things (IoT) devices with HPE. Human pose
estimation plays a crucial role in scenarios where the actual contact between the customer
and the product is not visible to the camera. In such cases, the HPE model analyses the
positions of customers’ hands and heads to determine whether they have taken a product
from the shelf or left it in place. This system utilizes pose information for action
recognition, tracking, prediction, and detection. Researchers like Angelini et al. (2018) have
proposed real-time action recognition methods using pose-based algorithms, while human
action detection in videos has also been explored (Cao et al., 2020).

RQ4: WHAT ARE THE CURRENT CHALLENGES OF 3D HPE

Challenges
No doubt about how powerful deep leaning-based models are, in dealing with different
types of computer vision problems specifically human pose estimation. Unlike 2D HPE,
3D HPE models are facing different challenges in the implementation of deep learning–
based pipelines.

Occlusion
Is one of the main challenges facing the estimation of 3D human pose in a deep learning-
based approach. The act of occluding the target object is done by covering the required key
points of that object which automatically affects the accuracy of 3D pose estimation.
Occlusion may be self-occlusion, inter-person-occlusion, out-of-frame occlusion, etc.

Inadequate data
One of the requirements of any deep learning model to enable accurate learning is the
availability of data. Researchers in this field are facing the serious challenge of limited data
with limited poses, inadequate pose variations, and inadequate annotation. Deep learning
models are data-driven models that require large data with different poses for training and
calibration. Thus inadequate data will affect the performance of any deep learning model.

Tampered input data
Data that is being tampered with may affect the accuracy of estimation despite the
efficiency of the deep learning model. Some data are tampered with by adding noise,
blurring, low or high contrast, and resolution which seriously affect the estimation
accuracy.

Complex scene
The complexity of an image particularly in multi-person pose estimation can affect the 2D
pose estimation and also the 3D pose estimation. When the 2D estimation is not accurate,
estimating the 3D can be affected since the 3D pipeline estimates the 2D key points first
before estimating the 3D joints. An example of this is heavy crowd, football games and
so on.
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RQ5: WHAT ARE THE FUTURE RESEARCH DIRECTIONS FOR 3D HUMAN
POSE ESTIMATION

Multi-person reconstruction
In every community setting, individuals frequently engage in activities such as walking,
talking, or collaborating in groups, such as families or teams. A compelling avenue for
future exploration involves reconstructing groups of people across both spatial and
temporal dimensions, thereby unveiling relationships and activities within the targeted
group. Additionally, when addressing person matching across various cameras or
extended temporal sequences, leveraging the relationships among individuals within a
group offers a more stable context that can be utilized to address challenges like occlusions
or detection failures. This task can also be integrated with person tracking (Rajasegaran
et al., 2021) and re-identification (Lisanti et al., 2017) to enhance the robustness of
reconstruction, especially in crowded scenarios.

Physical constraints
Many current approaches overlook the interaction between humans and 3D scenes. There
exist significant constraints in the relationship between humans and scenes, such as the
inability of a human subject to occupy the same locations as other objects in the scene
simultaneously. By exploring these physical constraints alongside semantic cues, it is
possible to enhance the reliability and realism of 3D HPE.

Full body reconstruction
Parametric models such as SMPL and SMPL-X are limited to representing individuals with
minimal clothing. To surpass the representational limitations of parametric models, the
research community must explore alternative models that offer greater flexibility. Previous
studies have employed meshes, point clouds (Ma et al., 2021), and implicit fields (Li et al.,
2020b) to capture detailed clothing deformation. While these approaches can yield
reasonable outcomes, the reconstructed surfaces often appear overly smoothed and lack
robustness when confronted with novel poses. Addressing these issues involves
incorporating diverse types of representations (Shao et al., 2022) to harness the modeling
capabilities of varied approaches.

Adaptation of HPE domain
In certain scenarios, like the estimation of human pose from images of infants (Huang
et al., 2021) or collections of artwork (Madhu et al., 2022), there is a scarcity of training
data accompanied by accurate ground truth annotations. Additionally, the data for these
applications showcase distributions distinct from those found in standard pose datasets.
HPE methods trained on conventional datasets might struggle to generalize effectively
across diverse domains. A recent approach to mitigate this domain gap involves the use of
generative adversarial network (GAN)-based learning techniques. However, the effective
transfer of human pose knowledge to bridge these domain gaps remains an unexplored
challenge.
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Generalized metrics
3D human pose estimation finds applications in visual tracking and analysis. Current
methods for reconstructing 3D human pose and shape from videos lack smooth and
continuous results. One contributing factor is that evaluation metrics like MPJPE do not
assess smoothness and the level of realism adequately. There is a need to develop suitable
frame-level evaluation metrics that specifically address temporal consistency and motion
smoothness.

CONCLUSIONS
This article explores recent advancements in deep learning-based 3D human pose
estimation models. First, we provide a brief introduction to human pose estimation and its
various types, followed by an in-depth discussion of the evolution, and achievements of
these models. Second, we review studies that apply 3D pose estimation models to different
tasks, such as hand pose, full-body pose, and human activities, highlighting the main
challenges in the field. Third, we explain the diverse applications of 3D human pose
estimation across various domains and list all potential neural network modules for
addressing 3D HPE problems. Fourth, we offer readers a comprehensive understanding of
existing approaches and outline detailed future directions for deep learning-based 3D
human pose estimation. Lastly, our review aims to serve as a comprehensive guide for both
industry and academic practitioners, providing a significant and rich understanding of
various aspects of estimating three-dimensional human poses while advocating for
continued advancements in the field.
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