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ABSTRACT
The theory of the continuous two-dimensional (2D) Fourier Transform in polar
coordinates has been recently developed but no discrete counterpart exists to date.
In the first part of this two-paper series, we proposed and evaluated the theory of
the 2D Discrete Fourier Transform (DFT) in polar coordinates. The theory of the
actual manipulated quantities was shown, including the standard set of shift,
modulation, multiplication, and convolution rules. In this second part of the
series, we address the computational aspects of the 2D DFT in polar coordinates.
Specifically, we demonstrate how the decomposition of the 2D DFT as a DFT,
Discrete Hankel Transform and inverse DFT sequence can be exploited for coding.
We also demonstrate how the proposed 2D DFT can be used to approximate the
continuous forward and inverse Fourier transform in polar coordinates in the same
manner that the 1D DFT can be used to approximate its continuous counterpart.

Subjects Algorithms and Analysis of Algorithms, Scientific Computing and Simulation, Theory
and Formal Methods
Keywords Fourier theory, DFT in polar coordinates, Polar coordinates, Multidimensional DFT,
Discrete Hankel Transform, Discrete Fourier Transform, Orthogonality

INTRODUCTION
The Fourier Transform (FT) is a powerful analytical tool and has proved to be invaluable
in many disciplines such as physics, mathematics and engineering. The development of the
Fast Fourier Transform (FFT) algorithm (Cooley & Tukey, 1965), which computes the
Discrete Fourier Transform (DFT) with a fast algorithm, firmly established the FT as a
practical tool in diverse areas, most notably signal and image processing.

In two dimensions, the FFT can still be used to compute the DFT in Cartesian
coordinates. However, in many applications such as photoacoustics (Xu, Feng & Wang,
2002) and tomography (Scott et al., 2012; Fahimian et al., 2013; Lee et al., 2008; Lewitt &
Matej, 2003), it is often necessary to compute the FT in polar coordinates. Moreover,
for functions that are naturally described in polar coordinates, a discrete version of the 2D
FT in polar coordinates is needed. There have been some attempts to calculate the FT in
polar coordinates, most notably through the Hankel transform, since the zeroth order
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Hankel transform is known to be a 2D FT in polar coordinates for rotationally
symmetric functions. However, prior work has focused on numerically approximating
the continuous transform. This stands in contrast to the FT, where the DFT can stand
alone as an orthogonal transform, independent of the existence of its continuous
counterpart.

The idea of a Polar FT has been previously investigated, where the spatial function is in
Cartesian coordinates but its FT is computed in polar coordinates (Averbuch et al., 2006;
Abbas, Sun & Foroosh, 2017; Fenn, Kunis & Potts, 2007). FTs have been proposed for
non-equispaced data, referred to as Unequally Spaced FFT (USFFT) or Non-Uniform FFT
(NUFFT) (Dutt & Rokhlin, 1993; Fourmont, 2003; Dutt & Rokhlin, 1995; Potts, Steidl &
Tasche, 2001; Fessler & Sutton, 2003). A recent book gives a unified treatment of
these topics (Plonka et al., 2018). Previous work has also considered the implications
of using a polar grid (Stark, 1979; Stark & Wengrovitz, 1983). Although the above
references demonstrate that the computation of a discrete 2D FT on a polar grid has
previously been considered in the literature, there is to date no discrete 2D FT in polar
coordinates that exists as a transform in its own right, with its own set of rules of the actual
manipulated quantities.

In part I of this two part series, we proposed an independent discrete 2D FT in polar
coordinates, which has been defined to be discrete from first principles (Baddour, 2019).
For a discrete transform, the values of the transform are only given as entries in a vector
or matrix and the transform manipulates a set of discrete values. To quote Bracewell
(Bracewell, 1999), “we often think of this as though an underlying function of a continuous
variable really exists and we are approximating it. From an operational viewpoint,
however, it is irrelevant to talk about the existence of values other than those given and
those computed (the input and output). Therefore, it is desirable to have a mathematical
theory of the actual quantities manipulated”. Hence, in our previous paper (Baddour,
2019), standard operational ‘rules’ of shift, modulation and convolution rules for this 2D
DFT in polar coordinates were demonstrated. The operational rules were demonstrated via
the key properties of the proposed discrete kernel of the transform. However, using the
discrete kernel may not be the most effective way to compute the transform. Furthermore,
while the 2D DFT in polar coordinates was demonstrated to have properties and rules as a
standalone transform independent of its relationship to any continuous transform, an
obvious application of the proposed discrete transform is to approximate its continuous
counterpart.

Hence, the goal of this second part of this two-part paper series is to propose
computational approaches to the computation of the previously proposed 2DDFT in polar
coordinates and also to validate its effectiveness to approximate the continuous 2D FT in
polar coordinates.

The outline of the paper is as follows. “Definition of the Discrete 2D FT in Polar
Coordinates” states the proposed definition of the discrete 2D FT in polar coordinates.
The motivation of this definition and the transform rules (multiplication, convolution,

Yao and Baddour (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.257 2/38

http://dx.doi.org/10.7717/peerj-cs.257
https://peerj.com/computer-science/


shift etc.) are given in the first part of this two-part paper. The transform exists in its
own right and manipulates discrete quantities that do not necessarily stem from sampling
an underlying continuous quantity. Nevertheless, the motivation for the definition of
the transform is based on an implied underlying discretization scheme. “Discrete
Transform to approximate the continuous transform” introduces the implied
underlying discretization scheme where we show the connection between discrete samples
of the continuous functions and the discrete transform, should it be desirable to interpret
the transform in this manner. Here, the connection between using the proposed 2D
DFT and sampled vales of the continuous functions is explained. The proposed 2D DFT
was motivated by a specific sampling scheme (Discrete Transform to approximate the
continuous transform) which can be plotted and analyzed for “grid coverage”—how
much of the 2D plane is covered and at which density. Thus, “Discretization Points and
Sampling Grid” analyzes the proposed discretization points and their implication on
the sampling grid for density and coverage of the grid. The insights gained from this
section will be useful in interpreting the results of approximating the continuous
transform with the discrete transform. “Numerical Computation of the Transform”

introduces numerical computation schemes whereby the interpretation of the proposed
2D transform as a sequence of 1D DFT, 1D Discrete Hankel Transform (DHT) and
1D inverse DFT (IDFT) is exploited. “Numerical Evaluation of the 2D DFT in
Polar Coordinates to Approximate the Continuous FT” then investigates the ability
of the proposed 2D DFT to approximate the continuous transform in terms of precision
and accuracy. Three test functions for which closed-form continuous transforms are
known are analyzed. Finally, “Summary and Conclusion” summarizes and concludes the
paper.

DEFINITION OF THE DISCRETE 2D FT IN POLAR
COORDINATES
The 2D-DFT in polar coordinates has been defined in the first part of this two-paper series
as the discrete transform that takes the matrix (or double-subscripted series) fpk to the
matrix (double-subscripted series) Fql such that fpk ! Fqm is given by

Fqm ¼ F fpk
� � ¼ XN1�1

k¼1

XM
p¼�M

fpkE
�
qm;pk (1)

where p; k; q;m; n, N1, and N2 are integers such that �M � n � M, where 2M þ 1 ¼ N2

1 � m; k;� N1 � 1 and �M � p; q � M. Unless otherwise stated, in the remainder of the
paper it shall be assumed that p; k; q;m; n, N1, and N2 are within these stated ranges.
Similarly, for the inverse transform we propose

fpk ¼ F�1 Fqm
� � ¼ XN1�1

m¼1

XM
q¼�M

FqmE
þ
qm;pk (2)
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In Eqs. (1) and (2), E�
qm;pk are the kernels of the transformation. These can be chosen as

the “non-symmetric” form given by

E�
qm;pk ¼

1
N2

XM
n¼�M

Jn
jnkjnm
jnN1

� �
j2nN1

J2nþ1 jnkð Þ 2i
�ne

�i
2pnp
N2 e

þi
2pnq
N2

Eþ
qm;pk ¼

1
N2

XM
n¼�M

Jn
jnmjnk
jnN1

� �
J2nþ1 jnmð Þ 2iþne

þi
2pnp
N2 e

�i
2pnq
N2

(3)

Here, Jn zð Þ is the nth order Bessel function of the first kind and jnk denotes the kth zero
of the nth Bessel function. The subscript (+ or −) indicated the sign on the i� and on
the exponent containing the p variable; the q variable exponent then takes the opposite
sign. From a matrix point of view, both fpk and Fql are N2 � N1 � 1ð Þ sized matrices.
The form of the kernel in Eq. (3) arises naturally from discretization of the continuous
transform, but does not lead to the expected Parseval relationship. A possible symmetric
kernel is discussed in the first part of this two-part paper and Parseval relationships are
discussed further there (Baddour, 2019).

DISCRETE TRANSFORM TO APPROXIMATE THE
CONTINUOUS TRANSFORM
In this section, relationships between discretely sampled values of the function and its
continuous 2D FT are presented in the case of a space-limited or band-limited function.
These relationships were derived in the first part of the paper and are repeated here to
demonstrate how they form the basis for the using the discrete transform to approximate
the continuous transform at specified sampling points.

Space-limited functions
Consider a function in the space domain f ðr; uÞ which is space limited to r 2 0;R½ �.
This implies that the function is zero outside of the circle bounded by r 2 0;R½ �. An
approximate relationship between sampled values of the continuous function and sampled
values of its continuous forward 2D transform F r;cð Þ has been derived in the first part
of the two-part paper as

F
jqm
R

;
2pq
N2

� �
�2pR2

XN1�1

k¼1

XM
p¼�M

f
jpkR

jpN1

;
2pp
N2

� �
1
N2

XM
n¼�M

2i�nJn
jnkjnm
jnN1

� �
j2nN1

J2nþ1 jnkð Þ e
�i

2pnp
N2 e

þi
2pnq
N2 (4)

Similarly, an approximate relationship between sampled values of the continuous
forward transform F r;cð Þ and sampled values of the continuous original function f ðr; uÞ
was shown to be given by

f
jpkR

jpN1

;
2pp
N2

� �
� 1
2pR2

XN1�1

m¼1

XM
q¼�M

F
jqm
R

;
2pq
N2

� �
1
N2

XM
n¼�M

2inJn
jnmjnk
jnN1

� �
J2nþ1 jnmð Þ e

þi
2pnp
N2 e

�i
2pnq
N2 (5)

Yao and Baddour (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.257 4/38

http://dx.doi.org/10.7717/peerj-cs.257
https://peerj.com/computer-science/


In Eqs. (4) and (5), f(r, θ) is the original function in 2D space and Fðr;cÞ is the 2D FT of
the function in polar coordinates.

To evaluate if the 2D DFT as proposed in Eqs. (1) and (2) can be used to approximate
sampled values of f(r, θ) and Fðr;cÞ, the process is as follows. For the forward transform,
we start with the continuous f(r, θ), evaluate it at the sampling points and then assign
this value to fpk via

fpk ¼ f
jpkR

jpN1
;
2pp
N2

� �
(6)

Then, Fqm is calculated from the 2D DFT scaled by 2pR2, Eq. (1), that is

Fqm ¼ 2pR2F fpk
� � ¼ 2pR2

XN1�1

k¼1

XM
p¼�M

fpkE
�
qm;pk (7)

The factor of 2pR2 is necessary so that the evaluation in Eq. (7) matches the expression
in Eq. (4). To evaluate if the proposed 2D DFT can be used to approximate the continuous
transform, the question becomes how well Fqm calculated from the 2D DFT in Eq. (7)
approximates F jqm

R ; 2pqN2

� �
—the values of the continuous 2D FT evaluated on the sampling

grid.
To evaluate the inverse 2D DFT, the process is similar. We start with the continuous

Fðr;cÞ, evaluate it at the sampling points and assign this value to Fqm via

Fqm ¼ F
jqm
R

;
2pq
N2

� �
(8)

Now, fpk is calculated from a scaled version of the inverse 2D DFT, Eq. (2) that is

fpk ¼ 1
2pR2

F�1 Fqm
� � ¼ 1

2pR2

XN1�1

m¼1

XM
q¼�M

FqmE
þ
qm;pk (9)

To evaluate if the proposed transform can approximate the continuous transform, the
question becomes how well fpk calculated from Eq. (9) approximates f jpkR

jpN1
; 2ppN2

� �
—the

values of the continuous function evaluated on the sampling grid.

Band-limited functions
The process for band-limited functions follows the same process as outlined in the
previous section, with the exception that the sampling points and scaling factors are
slightly different as they are now given in terms of the band limit rather than the space
limit. Now consider functions in the frequency domain F q;cð Þ with an effective band
limit r 2 0;Wr

� 	
. That is, we suppose that the 2D FT F r;cð Þ of f ðr; uÞ is band-limited,

meaning that F r;cð Þ is zero for r � Wr ¼ 2pW. The variable Wr is written in this form
since W would typically be quoted in units of Hz (cycles per second) if using temporal
units or cycles per meter if using spatial units. Therefore, the multiplication by 2p ensures
that the final units are in s�1 or m�1. The approximate relationship between sampled
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values of the continuous 2D FT F r;cð Þ and sampled values of the original continuous
function f r; uð Þ was derived in the first part of the paper and is given by

F
jqmWr

jqN1

;
2pq
N2

� �
� 2p
W2

r

XN1�1

k¼1

XM
p¼�M

f
jpk
Wr

;
2pp
N2

� �
1
N2

XM
n¼�M

2i�nJn
jnmjnk
jnN1

� �
J2nþ1 jnkð Þ e

�i
2pnp
N2 e

þi
2pnq
N2 (10)

Similarly, the inverse relationship between sampled values of F r;cð Þ and sampled
values of f ðr; uÞ was shown to be given by

f
jpk
Wr

;
2pp
N2

� �
�W2

r

2p

XN1�1

m¼1

XM
q¼�M

F
jqmWr

jqN1

;
2pq
N2

� �
1
N2

XM
n¼�M

2inJn
jnkjnm
jnN1

� �
j2nN1

J2nþ1 jnmð Þ e
�i

2pnq
N2 e

þi
2pnp
N2 (11)

The relationships in Eqs. (10) and (11) give relationships between the sampled values of
the original function and sampled values of its 2D FT.

To evaluate the forward 2D DFT, we start with f r; uð Þ, evaluate it at the (bandlimited
specific) sampling points and assign this value to fpk via

fpk ¼ f
jpk
Wr

;
2pp
N2

� �
(12)

Then, Fqm is calculated from the discrete transform scaled by 2p
W2

r
, Eq. (1), that is

Fqm ¼ 2p
W2

r

F fpk
� � ¼ 2p

W2
r

XN1�1

k¼1

XM
p¼�M

fpkE
�
qm;pk (13)

To evaluate if the proposed 2D DFT can be used to approximate the continuous
transform, the question is how well Fqm calculated from Eq. (13) approximates

F jqmWr

jqN1
; 2pqN2

� �
, which are the values of the continuous 2D FT, evaluated on the sampling

grid. The evaluation of the inverse transform for the band-limited function proceeds
similarly by comparing values obtained from the inverse 2D DFT to the values obtained by
sampling the continuous function directly.

The relationships given by Eqs. (4), (5), (10) and (11), were the motivating definition of
a 2D DFT in polar coordinates, defined in the first part of this two-part paper. In the
context of this second part of the two-part paper, they are also the relationships that
permit the use of the discrete transform to approximate the continuous transform at the
specified sampling points. They are also the relationships that permit the examination
of whether the discrete quantities fpk and Fqm calculated via the proposed 2D DFT are in
fact reasonable approximations to the sampled values of the continuous functions, as
stated in the objectives of the paper.

DISCRETIZATION POINTS AND SAMPLING GRID
The transforms defined in Eqs. (1) and (2) can be applied to any matrix fpk to yield its
forward transform Fqm, which can then be transformed backwards by using the inverse
transform. However, if these same discrete transforms are to be used for the purpose of
approximating a continuous 2D FT, then these transforms need to be applied to the
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specific sampled values of the continuous functions in both space and frequency domains,
as shown in Eqs. (6), (8) and (12). The relationships in Eqs. (4) and (10) define the
sampling points that need to be used and it is noted that the points are defined differently
based on whether we start with the assumption of a space or band limited function.
These specific sampling points imply a specific sampling grid for the function. In this
section, the sampling grid (its coverage and density in 2D) is analyzed.

Sampling points
For a space-limited function, we assume that the original function of interest is defined
over continuous r; uð Þ space where 0 � r � R and 0 � u � 2p. The discrete sampling
spaces used for radial and angular sampling points in regular~r space r; uð Þ and ~v

frequency r;cð Þ space are defined as

rpk ¼ jpkR

jpN1

up ¼ p2p
N2

(14)

and

rqm ¼ jqm
R

cq ¼
q2p
N2

(15)

For a band limited function, the function is assumed band-limited to 0 � r � Wr,
0 � c � 2p. The sampling space used for radial and angular sampling points in regular ~v
frequency space r;cð Þ and~r space r; uð Þ for a bandlimited function is defined as

rpk ¼ jpk
Wr

up ¼ p2p
N2

(16)

and

rqm ¼ jqmWr

jqN1

cq ¼
q2p
N2

(17)

Clearly, the density of the sampling points depends on the numbers of points chosen,
that is on N1 and N2. Also clear is the fact that the grid is not equispaced in the radial
variable. The sampling grid for a space-limited function are plotted below to enable
visualization. In the first instance, the polar grids are plotted for the case R ¼ 1, N1 ¼ 16
and N2 ¼ 15. These are shown in space (r space) and frequency (ρ space) in Figs. 1 and 2
respectively. It should be noted that although we refer the grids in this article as polar
grids, they are not true polar grids in the sense of equispaced sampling in the radial and
angular coordinates.

Clearly, the grids in Figs. 1 and 2 are fairly sparse, but the low values of N2 and N1 have
been chosen so that the structure of the sampling points can be easily seen. It can be
observed that there is a hole at the center area in both domains which is caused by the
special sampling points. For higher values of the N2 and N1, the grid becomes fairly dense,
obtaining good coverage of both spaces, but details are harder to observe. To demonstrate,
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the polar grids are plotted for the case R = 1, N1 ¼ 96 and N2 ¼ 95. These are shown in
Figs. 3 and 4 respectively.

From Figs. 3 and 4, by choosing higher values of N1 and N2, the sampling grid becomes
denser, however there is still a gap in the center area. The sampling grids for band-limited
functions are not plotted here since the sample grid for a band-limited function has
the same shape as with space limited function but the domains are reversed.

Sample grid analysis
From part I of the paper, it was shown that the 2D-FT can be interpreted as a DFT in
the angular direction, a DHT in the radial direction and then an IDFT in the angular
direction. Hence, the sample size in the angular direction could have been decided by the
Nyquist sampling theorem (Shannon, 1984), which states that

fs > 2fmax (18)

where fs is the sample frequency and fmax is the highest frequency or band limit.
In the radial direction, the necessary relationship for the DHT is given by Baddour &

Chouinard (2015)

WrR ¼ jnN1 (19)

Figure 1 Spatial sampling grid for a space-limited function with R = 1, N1 = 16 and N2 = 15.
Full-size DOI: 10.7717/peerj-cs.257/fig-1
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where Wr is the effective band-limit, R is the effective space limit and jnN is the Nth zero
of Jn rð Þ. For the 2D FT, since �M � p � M, the order of the Bessel zero ranges from
�M to M, the required relationship becomes

minðjpN1Þ � WrR (20)

The relationships jnN ¼ j�nN and j0N1 < j�1N1 < j�2N1 < … < j�MN1 are valid (Lozier,
2003), hence Eq. (20) can be written as

j0N1 � WrR (21)

It is pointed out in Baddour (2019) and Guizar-Sicairos & Gutiérrez-Vega (2004)
that the zeros of Jn zð Þ are almost evenly spaced at intervals of p and that the spacing
becomes exactly p in the limit as z ! 1. The reader unfamiliar with Bessel functions is
directed to references (Bracewell, 1999; Lozier, 2003). In fact, it is shown in Dutt & Rokhlin
(1993) that a simple asymptotic form for the Bessel function is given by

Jn zð Þ �
ffiffiffiffiffiffi
2
pz

r
cos z � nþ 1

2

� �
p

2

� �
(22)

Figure 2 Frequency space sampling grid for a space-limited function with R = 1, N1 = 16 and N2 = 15.
Full-size DOI: 10.7717/peerj-cs.257/fig-2
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Therefore, an approximation to the Bessel zero, jnk is given by

jnk � 2kþ n� 1
2

� �
p

2
(23)

Hence, Eq. (21) can be written to choose N1 approximately as

N1p � WrR ¼ 2pWR

) N1 � 2WR
(24)

where the reader is reminded that the units ofW is m−1 (the space equivalent of Hz). N1=R
is the spatial sampling frequency and we see that Eq. (24) effectively makes the
same statement as Eq. (18), as it should.

Intuitively, more sample points lead to more information captured, which gives an
expectation that increasing N1 or N2 individually will give a better sampling grid coverage.
However, it can be seen from Figs. 1–4 that there is a gap in the center of the sample
grid. From Eqs. (14) and (15), the area of the gap in the center is related to the ranges of
p and k, that is N2 and N1. In the sections below, it is assumed that the sampling theorems
are already satisfied (that is, an appropriate space and band limit is selected) and the
relationship between N2, N1 and the size of the gap will be discussed.

Figure 3 Spatial sampling grid for a space-limited function with R = 1, N1 = 96 and N2 = 95.
Full-size DOI: 10.7717/peerj-cs.257/fig-3
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Space-limited function
In this section, it is assumed that the function is a space limited function, defined in
r 2 ½0;R�. The sampling points are defined as Eq. (14) in the space domain and Eq. (15) in
the frequency domain. In the following, a relationship between N2, N1 and the area of the
gap in both domains is discussed.

Sample grid in the space domain

In the space domain, the effective limit in the space domain, R, is fixed. To analyze how the
values of N2 and N1 affect the coverage of the grid in space domain, consider the following
definition of ‘grid coverage’

Ar ¼ pR2 � p�r2

pR2
	 100 (25)

where �r denotes the average radius of the gap (the hole in the middle of the grid). Ar as
defined in Eq. (25) is a measure of the “grid coverage” since it gives a percentage of how
much of the original space limited domain area is captured by the discrete grid. For
example, if the average radius of the center gap is zero, then Ar would be 100%, that is,
complete coverage. Based on the observation of Figs. 1 and 3, the relationship

Figure 4 Frequency space sampling grid for a space-limited function with R = 1, N1 = 96 and N2 = 95.
Full-size DOI: 10.7717/peerj-cs.257/fig-4
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r01 < r�11 < r�21 < r�M1 is valid. Therefore, from Eq. (14), the average radius of the gap is
given by

�r ¼ ðr01 þ rM1Þ
2

¼ 1
2

j01
j0N1

Rþ jM1

jMN1

R

� �
(26)

Hence, Eq. (25) for grid coverage can be written as

Ar ¼ 1� 1
4

j01
j0N1

þ jM1

jMN1

� �2
" #

	 100 (27)

Table 1 shows the different values of grid coverageAr as the values ofN1 andN2 are changed.
From Table 1, it can be seen that increasingN1 (sample size in the radial direction) tends

to increase the grid coverage. Since the effective space limit R is fixed, from Eq. (21) it
follows that increasing N1 actually increases the effective band limit. However, increasing
N2 (sample size in angular direction) will result in a bigger gap in the center of the grid,
which then decreases the coverage.

Sample grid in the frequency domain

Similarly, coverage of the grid in the frequency domain is defined as

Ar ¼
pW2

r � p�r2

pW2
r

	 100 (28)

where �r denotes the average radius of the gap. Since

�r ¼ ðr01 þ rM1Þ
2

¼ ðj01 þ jM1Þ
2R

(29)

Then, it follows that Eq. (28) for frequency domain grid coverage can be written as

Ar ¼ 1� ðj01 þ jM1Þ2
4R2W2

r

" #
	 100% (30)

From Eq. (30), it can be observed that the sample grid coverage in the frequency domain
is affected by R,Wr andM. Since N2 ¼ 2M þ 1, in order to get a better grid coverage with
a fixed Wr, R and N2 can be adjusted. Table 2 shows the grid coverage Ar for different
values of R and N2.

From Table 2, the conclusion for the frequency domain is that when the effective band
limit is fixed, increasing R (effective space limit) tends to increase the coverage in the

Table 1 Spatial grid coverage, Ar, with respect to different values of N1 and N2 (R is fixed).

N2 N1

15 75 150 300

15 Ar = 98.48% Ar = 99.92% Ar = 99.98% Ar = 99.99%

75 Ar = 93.78% Ar = 99.36% Ar = 99.81% Ar = 99.95%

151 Ar = 90.14% Ar = 98.42% Ar = 99.46% Ar = 99.84%

301 Ar = 86.17% Ar = 96.58% Ar = 98.59% Ar = 99.51%
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frequency domain, while increasing N2 (sample size in the angular direction) decreases the
coverage. However, from Eq. (21) it should be noted that to satisfy the sampling theorem,
increasing R with fixed Wr requires an increase in N1 at the same time.

Band-limited function
In this section, we suppose that the function is an effectively band limited function, defined
on r 2 ½0;Wp�. The sampling points are defined as in Eq. (16) in the space domain and
as in the frequency domain. In this subsection, the relationship between N2, N1 and the
area of the gap in both domains is discussed.

Sampling grid in the space domain

The same definition of grid coverage in the space domain will be used as in Eq. (25). Since
the sampling points of a band-limited function are given by Eqs. (16) and (17), the average
radius of the gap can be defined as

�r ¼ ðr01 þ rM1Þ
2

¼ 1
2

j01
Wr

þ jM1

Wr

� �
(31)

Therefore, the coverage of the grid in space domain can be written as

Ar¼ 1� ðj01 þ jM1Þ2
4W2

rR
2

" #
	 100 (32)

It can be observed that the grid coverage in the space domain of a band-limited function
is the same as the grid coverage in the frequency domain of space limited function.

Sample grid in frequency domain

The coverage of the grid in the frequency domain of a band limited function is defined by
Eq. (28). With sampling points defined in Eq. (17), the average radius of the gap can be
defined as

�r ¼ ðr01 þ rM1Þ
2

¼ 1
2

j01
j0N1

Wr þ jM1

jMN1

Wr

� �
(33)

The coverage of the grid in frequency domain can be written as

Ar ¼ 1� 1
4

j01
j0N1

þ jM1

jMN1

� �2
" #

	 100 (34)

It can be observed that the grid coverage in the frequency domain of a band-limited
function is the same as the grid coverage in the space domain of a space limited function.

Table 2 Frequency grid coverage, Aρ, with respect to different values of R and N2 (Wρ is fixed).

N2 R

15 75 150 300

15 Aρ = 99.80% Aρ = 99.99% Aρ = 100.00% Aρ = 100.00%

75 Aρ = 97.66% Aρ = 99.91% Aρ = 99.98% Aρ = 99.99%

151 Aρ = 91.88% Aρ = 99.68% Aρ = 99.92% Aρ = 99.98%

301 Aρ = 70.67% Aρ = 98.83% Aρ = 99.71% Aρ = 99.93%
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Conclusion
Based on the discussion above, the following conclusions can be made:

1. Increasing N2 (angular direction) tends to decrease the sampling grid coverage in both
domains. Increasing N1 (radial direction) tends to increase the sampling coverage in
the space domain for a space-limited function and in the frequency domain for a
frequency-limited function. So, if a signal changes sharply in the angular direction such
that large values of N2 are needed, a large value of N1 is also needed to compensate for
the effect of increasing N2 on the grid coverage.

2. For a space-limited function, if there is a lot of energy at the origin in the space domain,
a larger value of N1 will be required to ensure that the sampling grid gets as close to
the origin as possible in the space domain. If the function has a lot of energy at the origin
in the frequency domain, a large value for both N1 and R will be required to ensure
adequate grid coverage.

3. For a band-limited function, if there is a lot of energy at the origin in the frequency
domain, a large value of N1 will be needed to ensure that the sample grid gets as close to
the origin as possible in the frequency domain. If the function has a lot of energy at the
origin in the space domain, large values for both N1 and Wr are required.

NUMERICAL COMPUTATION OF THE TRANSFORM
We have already demonstrated in part I of the paper that the discrete 2D FT in polar
coordinates can be interpreted as a DFT, DHT and then IDFT. This interpretation is quite
helpful in coding the transform and in exploiting the speed of the FFT (Fast Fourier
Transform) in implementing the computations. In this section, we explain how the speed
of Matlab’s (Mathworks 2018) built-in code (or similar software) can be exploited to
implement the 2D DFT in polar coordinates.

Forward transform
The values fpk can be considered as the entries in a matrix. To transform fpk ! Fqm,
the operation is performed as a sequence of steps which are a 1D DFT (column-wise),
followed by a scaled 1D DHT (row-wise), finally followed by a 1D IDFT (column-wise).
The reader is reminded that the range of indices is given by m; k ¼ 1 . . .N1 � 1 and
n; p; q ¼ �M . . .M, where 2M þ 1 ¼ N2. These steps can be summarized succinctly by
rewriting Eq. (1) as

Fqm ¼ 1
N2

XM
n¼�M

2pR2i�n

jnN1

XN1�1

k¼1

YnN1
m;k

XM
p¼�M

fpke
�in

2pp
N2

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
1D DFT column‐wise

2
66664

3
77775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
scaled 1D DHT row‐wise

e
þin

2pq
N2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
inverse 1D DFT column‐wise

(35)
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where the DHT is defined in Baddour & Chouinard (2015) via the transformation matrix

YnN1
m;k ¼ 2

jnN1J
2
nþ1 jnkð Þ Jn

jnmjnk
jnN1

� �
1 � m; k � N1 � 1 (36)

Matlab code for the DHT is described in Baddour & Chouinard (2017). The inverse 2D
DFT can be similarly interpreted, as shown in “Inverse Transform”.

Inverse transform
The steps of the inverse 2D DFT are the reverse of the steps outlined above for the forward
2D DFT. For p ¼ �M . . .M and k ¼ 1 . . .N1 � 1, Eq. (2) this can be expressed as

fpk ¼ 1
N2

XM
n¼�M

jnN1 i
þn

2pR2

XN1�1

m¼1

YnN1
k;m

XM
q¼M

Fqme
�i

2pnq
N2

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
1D DFT ðcolumn‐wiseÞ

2
66664

3
77775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
scaled 1D DFT ðrow‐wiseÞ

e
þi

2pnp
N2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
inverse 1D DFT ðcolumn‐wiseÞ

(37)

This parallels the steps taken for the continuous case, with each continuous
operation (Fourier series, Hankel transform) replaced by its discrete counterpart
(DFT, DHT).

Therefore, for both forward and inverse 2D-DFT, the sequence of operations is a DFT of
each column of the starting matrix, followed by a DHT of each row, a term-by-term
scaling, followed by an IDFT of each column. This is a significant computational
improvement because by interpreting the transform this way, the Fast Fourier Transform
(FFT) can be used, which reduces the computational time quite significantly in comparison
with a direct implementation of the summation definitions in Eqs. (1) and (2).

Interpretation of the sampled forward transform in Matlab terms
To use the built-in Matlab function fft, a few operations are required. First, we define
Matlab-friendly indices p0 ¼ pþ ðM þ 1Þ and n0 ¼ nþ ðM þ 1Þ so that p; n ¼ �M . . .M
become p0; n0 ¼ 1 . . . 2M þ 1 ¼ 1 . . .N2 (since 2M þ 1 ¼ N2). That is, the primed
variables range from 1 . . . 2M þ 1 rather than �M . . .M. Hence, if the matrix f with
entries fp0k is defined, where p0 ¼ 1 . . .N2; k ¼ 1 . . .N1 � 1, then the first step in which is
a column-wise DFT can be written as the Matlab-defined DFT as

�fn0k ¼
XN2

p0¼1

fpke
�2piðp0�1�MÞðn0�1�MÞ

N2 (38)

The overbar denotes a DFT. The definition of DFT in Matlab is actually given by the
relationship

�fn0k ¼
XN2

p0¼1

fp0ke
�2piðp0�1Þðn0�1Þ

N2 (39)
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Since the relationship
PN2

p0¼1 fp0ke
�2piðp0�1Þðn0�1�MÞ

N2 ¼ PN2
p0¼1 fpke

�2piðp0�1�MÞðn0�1�MÞ
N2 is

valid, we can sample the original function to obtain the discrete fpk values, put them in the
matrix fp0k then shift the matrix fp0k by M þ 1 along the column direction. In Matlab, the
function circshift A;K; dimð Þ can be used, which circularly shifts the values in array A
by K positions along dimension dim. Inputs K and dim must be scalars. Specifically,
dim ¼ 1 indicates the columns of matrix A and dim ¼ 2 indicates the rows of matrix A.
Hence, Eq. (38) can be written as

�fn0k ¼ fft circshift fp0k;M þ 1; 1
� �

;N2; 1
� �

(40)

In matrix operations, this is equivalent to stating that each column of fp0k is DFT’ed to
yield �fn0k.

The second step in Eq. (35) is a DHT of order n, transforming �fn0k ! �̂f n0l so that the k
subscript is Hankel transformed to the l subscript. The overhat denotes a DHT. In order
to relate the order n to the index n0, we need to shift �fn0k by �ðM þ 1Þ along column
direction so that the order ranges from –M to M.

�̂f n0l ¼
XN1�1

k¼1

2Jn
jnkjnl
jnN1

� �
jnN1

J2nþ1 jnkð Þ circshift
�f n0k;�ðMþ1Þ;1� � for n0 ¼ 1 . . .N2; l¼ 1 . . .N1�1

where n¼ n0 � Mþ1ð Þ
�

(41)

By using the Hankel transform matrix defined in Baddour & Chouinard (2015), Eq. (41)
can be rewritten as

�̂f n0l ¼ circshift �f n0k;�ðM þ 1Þ; 1� �
YnN1
l;k

� �T for n0 ¼ 1 . . .N2; l ¼ 1 . . .N1 � 1
where n ¼ n0 �M � 1

�
(42)

In matrix operations, this states that each row of �fn0k is DHT’ed to yield �̂f n0l. These
are now scaled to give the Fourier coefficients of the 2D DFT �̂f n0l ! �Fn0l. In order to
proceed to an IDFT in the next step, it is necessary to shift the matrix by M þ 1 along the
column direction after scaling

�Fn0l ¼ circshift
2pR2

jnN1

i�n�̂f n0l;M þ 1; 1

� �
for n0 ¼ 1 . . .N2; l ¼ 1 . . .N1 � 1

where n ¼ n0 � M þ 1ð Þ
�

(43)

This last step is a 1D IDFT for each column of �Fn0l to obtain Fql. Using 2M þ 1 ¼ N2,
and q0 ¼ qþ 1þM, this can be written as

Fq0l ¼ 1
N2

XN2

n0¼1

�Fnle
þi n0�M�1ð Þ 2p q0�1�Mð Þ

N2 for q0 ¼ 1 ::N2; l ¼ 1 ::N1 � 1

¼ 1
N2

XN2

n0¼1

�Fn0le
þiðn0�1Þ 2p q0�1�Mð Þ

N2

¼ circshift ifft �Fn0l;N2; 1ð Þ;� M þ 1ð Þ; 1ð Þ

(44)
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Interpretation of the sampled inverse transform in Matlab terms
Similar to the forward transform, matlab-friendly indices q0 ¼ qþ ðM þ 1Þ and
n0 ¼ nþ ðM þ 1Þ are also defined. Hence, if the matrix F with entries Fq0l is defined, where

q0 ¼ 1 . . .N2; l ¼ 1 . . .N1 � 1, it then follows that the first 1D DFT step in Eq. (37) can be

written as the Matlab-defined DFT as

�Fn0 l ¼
XN2

q0¼1

Fqle
�iðn0�M�1Þ 2pðq

0�1�MÞ
N2 for n0 ¼ 1 . . .N2; l ¼ 1 . . .N1 � 1

¼
XN2

q0¼1

Fq0le
�iðn0�M�1Þ 2pðq

0�1Þ
N2

(45)

If the original function can be sampled as Fql and then put into matrix Fq0l, then we need
an circshift operation. So Eq. (45) can be written as

�Fn0l ¼ fft circshiftðFq0l;M þ 1; 1Þ;N2; 1
� �

(46)

Subsequently, a DHT of order n is required, transforming �Fn0l ! �̂Fn0l so that the l
subscript is Hankel transformed to the k subscript. To achieve this, circshift is also needed
here.

�̂Fn0k ¼ circshift �Fn0l;�ðM þ 1Þ; 1ð Þ YnN1
k;l

� �T for n0 ¼ 1 . . .N2; l ¼ 1 . . .N1 � 1
where n ¼ n0 �M � 1

�
(47)

This is followed by a scaling operation to obtain �̂Fn0k ! �fn0k and then a circshift by
ðM þ 1Þ so that

�fn0k ¼ circshift
jnN1

2pR2
iþn �̂Fn0k; ðM þ 1Þ; 1

� �
for n0 ¼ 1 . . .N2; k ¼ 1 . . .N1 � 1

where n ¼ n0 � M þ 1ð Þ
�

(48)

This last step is a 1D IDFT for each column of �fn0k to get fp0k. Using 2M þ 1 ¼ N2, and
p0 ¼ pþ 1, Eq. (37) can be written as

fp0k ¼ 1
N2

XN2

n0¼1

�f nke
þi n0�M�1ð Þ 2p p0�1�Mð Þ

N2 for p0 ¼ 1 . . .N2; k ¼ 1 . . .N1 � 1

¼ 1
N2

XN2

n0¼1

�f n0ke
þi

2p n0�1ð Þ p0�1�Mð Þ
N2

¼ circshift ifft �f n0k;N2; 1
� �

;�ðM þ 1Þ; 1� �
(49)

In conclusion, in this section, by using the interpretation of the kernel as sequential
DFT, DHT and IDFT operations, Matlab (or similar software) built-in code can be used to
efficiently implement the 2D DFT algorithm in polar coordinates.

NUMERICAL EVALUATION OF THE 2D DFT IN POLAR
COORDINATES TO APPROXIMATE THE CONTINUOUS FT
In this section, the 2D DFT is evaluated for its ability to estimate the continuous FT at the
selected special sampling points in the spatial and frequency domains.

Yao and Baddour (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.257 17/38

http://dx.doi.org/10.7717/peerj-cs.257
https://peerj.com/computer-science/


Method for testing the algorithm
Accuracy
In order to test accuracy of the 2D-DFT and 2D-IDFT to calculate approximate the
continuous counterpart, the dynamic error is proposed as a metric. The dynamic error is
defined as Guizar-Sicairos & Gutiérrez-Vega (2004)

EðvÞ ¼ 20 log10
CðvÞ � DðvÞj j
max DðvÞj j

� �
(50)

where CðvÞ is the continuous forward or inverse 2D-FT and DðvÞ is the value obtained
from the discrete counterpart. The dynamic error is defined as the ratio of the absolute
error to the maximum amplitude of the discrete function, calculated on a log scale.
Therefore, a large negative value represents an accurate discrete transform. The dynamic
error is used instead of the percentage error in order to avoid division by zero.

Precision
The precision of the algorithm is an important evaluation criterion, which is tested by
sequentially performing a pair of forward and inverse transforms and comparing the result
to the original function. High precision indicates that numerical evaluation of the
transform does not add much error. An average of the absolute error between the original
function and the calculated counterpart at each sample point is used to measure the
precision. It is given by

e ¼ 1
N1 � 1ð Þ 	 N2

XN1�1ð Þ	N2

n¼1

f � f 
j j (51)

where f is the original function and f 
 is the value obtained after sequentially performing a
forward and then inverse transform. An ideal precision would result in the absolute error
being zero.

Test functions
In this section, three test functions are chosen to evaluate the ability of the discrete
transform to approximate the continuous counterpart. The first test case is the circularly
symmetric Gaussian function. Given that it is circularly symmetric and that the Gaussian
is continuous and smooth, the proposed DFT is expected to perform well. The second
test case is “Four-term sinusoid and Sinc” function, which is not symmetric in the angular
direction and suffers a discontinuity in the radial direction. The third test function presents
a more challenging test function, the “Four-term sinusoid and Modified exponential”
function. In this case, the test function is not circularly symmetric and it explodes at the
origin (approaches infinity at the origin). Given that as shown above, the sampling
grid cannot cover the area around the origin very well, a function that explodes at the
origin should give more error and should provide a reasonable test case for evaluating the
performance of the discrete transform. The test functions are chosen to test specific
aspects of the performance of the discrete transform but also because a closed-form
expression for both the function and its transform are available. This then allows a
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numerical evaluation of the error between the quantities computed with the 2D DFT and
the quantities obtained by evaluating (sampling) the continuous (forward or inverse)
transform at the grid points.

Gaussian
The first function chosen for evaluation is a circular symmetric function which is Gaussian
in the radial direction. Specifically, the function in the space domain is given by

f ðr; uÞ ¼ e�a2r2 (52)

where a is some real constant. Since the function is circularly symmetric, the 2D-DFT is a
zeroth-order Hankel Transform (Poularikas, 2010) and is given by

Fðr;cÞ ¼ p

a2
e
�r2

4a2 (53)

The graphs for the original function and its continuous 2D-DFT (which is also a
Gaussian) are plotted with a ¼ 1 and shown in Fig. 5. From Fig. 5, the function is circular
symmetric and fairly smooth in the radial direction. Moreover, the function can be
considered as either an effectively space-limited function or an effectively band-limited
function. For the purposes of testing it, it shall be considered as a space-limited function
and Eqs. (14) and (15) will be used to proceed with the forward and inverse transform in
sequence.

To perform the transform, the following variables need to be chosen: N2, R and N1. In
the angular direction, since the function in the spatial domain is circularly symmetric, N2

can be chosen to be small. Thus, N2 ¼ 15 is chosen.
In the radial direction, from plotting the function, it can be seen that the effective space

limit can be taken to be R ¼ 5 and the effective band limit can be taken to be Wr ¼ 10.
From Eq. (21), j0N1 � R 	Wr ¼ 50. Therefore, N1 ¼ 17 is chosen (we could also have
obtained a rough estimate of N1 from Eq. (24)). However, most of the energy of the

Figure 5 (A) Original function (Gaussian) and (B) its continuous 2D-DFT (which is also a
Gaussian). Full-size DOI: 10.7717/peerj-cs.257/fig-5
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function in both the space and frequency domains is located in the center near the origin.
Based on the discussion in “Conclusion”, relatively large values of R and Wr are needed.
The effective space limit R ¼ 40 and effective band-limit Wp ¼ 30 are thus chosen,
which gives j0N1 � R 	Wr ¼ 1200. Therefore N1 ¼ 383 is chosen in order to satisfy this
constraint. Both cases discussed here (N1 ¼ 17 and N1 ¼ 383) are tested in following.

Forward transform

Test results with R ¼ 5, N1 ¼ 17 are shown in Figs. 6 and 7. Figure 6 shows the sampled
continuous forward transform and the discrete forward transform. Figure 7 shows the
error between the sampled values of the continuous transform and the discretely calculated
values.

From Fig. 7, it can be observed that the error gets bigger at the center, which is as
expected because the sampling grid shows that the sampling points can never attain the
origin. The maximum value of the error is Emax ¼ �0:9115 dB and this occurs at the
center. The average error is Eavg: ¼ �30:4446 dB.

Error test results with R ¼ 40, N1 ¼ 383 are shown in Fig. 8. Similar to the previous
case, the error gets larger at the center, as expected. However, the maximum value of the
error is Emax ¼ �8:3842 dB and this occurs at the center. The average value of the error is
Eavg: ¼ �63:8031 dB. Clearly, the test with R ¼ 40, N1 ¼ 383 gives a better

approximation, which verifies the discussion in “Conclusion”.
With R ¼ 40, Table 3 shows the errors (max and average error) with respect to

different value of N1 and N2. The trends as functions of N1 and N2 are shown as plots in
Figs. 9 and 10.

From Fig. 9, it can be seen that when N1 individually (N2 is fixed at N2 ¼ 15) is less than
the minimum of 383 obtained from the sampling theorem, increasing N1 will lead to
smaller errors, as expected. When N1 is bigger than the sampling-theorem threshold

Figure 6 (A) sampled continuous transform and (B) discrete forward transform for a Gaussian
function with R = 5 and N1 = 17. Full-size DOI: 10.7717/peerj-cs.257/fig-6
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of 383, increasing N1 still decreases the error which verifies the discussion about
sample grid coverage in “Conclusion”. Increasing N1 tends to increase the sample grid
coverage and capture more information at the center area and thus leads to
smaller errors.

From Fig. 10, increasing N2 alone (i.e., without a corresponding increase in N1) leads to
larger errors, both Errormax and Erroraverage. Although at first counterintuitive, this
result is actually reasonable because the function is radially symmetric which implies that
N2 ¼ 1 should be sufficient based on the sampling theorem for the angular direction.

Figure 7 Error between the sampled values of the continuous transform and the discretely calculated
values for a Gaussian function with R = 5 and N1 = 17. Full-size DOI: 10.7717/peerj-cs.257/fig-7

Figure 8 Error between the sampled values of the continuous transform and the discretely calculated
values for a Gaussian function with R = 40 and N1 = 383.Full-size DOI: 10.7717/peerj-cs.257/fig-8
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Therefore, increasing N2 will not lead to a better approximation. Moreover, from the
discussion of the sample grid coverage in “Conclusion”, the sampling grid coverage in
both domains gets worse when N2 gets bigger because more information from the center is
lost. This problem can be solved by increasing N1 at the same time, but it could be
computationally time consuming. Therefore, choosing N2 properly is very important from
the standpoint of accuracy and computational efficiency.

Figure 9 Error trend between the sampled values of the continuous transform and the discretely
calculated values for a Gaussian function, as a function of N1.

Full-size DOI: 10.7717/peerj-cs.257/fig-9

Table 3 Error (dB) of forward transform of Gaussian function with R = 40, different value of N1

and N2.

N2 N1

283 333 383 433 483

3 Emax. = −21.6 Emax. = −23.0 Emax. = −24.3 Emax. = −25.4 Emax. = −26.3

Eavg. = −71.3 Eavg. = −76.9 Eavg. = −81.8 Eavg. = −86.0 Eavg. = −89.8

7 Emax. = −12.9 Emax. = −14.4 Emax. = −15.7 Emax. = −16.9 Emax. = −17.8

Eavg. = −62.6 Eavg. = −68.3 Eavg. = −73.2 Eavg. = −77.5 Eavg. = −81.4

15 Emax. = −5.4 Emax. = −7.0 Emax. = −8.4 Emax. = −9.6 Emax. = −10.6

Eavg. = −53.1 Eavg. = −58.9 Eavg. = −63.8 Eavg. = −68.1 Eavg. = −72.0

31 Emax. = 2.3 Emax. = 0.5 Emax. = −1.0 Emax. = −2.3 Emax. = −3.4

Eavg. = −42.0 Eavg. = −47.6 Eavg. = −52.5 Eavg. = −56.9 Eavg. = −60.7

61 Emax. = 9.7 Emax. = 7.9 Emax. = 6.4 Emax. = 5.0 Emax. = 3.8

Eavg. = −32.5 Eavg. = −37.5 Eavg. = −42.0 Eavg. = −46.1 Eavg. = −49.8
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Inverse transform

Test results for the inverse transform with R ¼ 5, N1 ¼ 17 are shown in Figs. 11 and 12.
Figure 11 shows the sampled continuous inverse transform and discrete inverse transform
and Fig. 12 shows the error between the sampled continuous and discretely calculated
values.

Figure 11 (A) sampled continuous inverse transform and (B) discrete inverse transform for the
Gaussian function for R = 5 and N1 = 17. Full-size DOI: 10.7717/peerj-cs.257/fig-11

Figure 10 Error trend between the sampled values of the continuous transform and the discretely
calculated values for a Gaussian function, as a function of N2.

Full-size DOI: 10.7717/peerj-cs.257/fig-10
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Similar to the case for the forward transform, the error gets larger at the center, which is
as expected because the sampling grid shows that the sampling points never attain the
center. The maximum value of the error is Emax ¼ 3:1954 dB and this occurs at the center.
The average of the error is Eavg: ¼ �25:7799 dB.

Error test results for the inverse transform with R ¼ 40, N1 ¼ 383 are shown in Fig. 13.
In this case, the maximum value of the error is Emax ¼ �12:2602 dB and this occurs at the
center. The average of the error is Eavg: ¼ �98:0316 dB. Table 4 shows the errors with
respect to different value of N1 and N2, from which Figs. 14 and 15 demonstrate the trend.

Figure 13 Error between the sampled continuous inverse transform and discrete inverse transform
for the Gaussian function for R = 40 and N1 = 383. Full-size DOI: 10.7717/peerj-cs.257/fig-13

Figure 12 Error between the sampled continuous inverse transform and discrete inverse transform
for the Gaussian function for R = 5 and N1 = 17. Full-size DOI: 10.7717/peerj-cs.257/fig-12
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From Fig. 15 it can be observed that increasing N1 tends to improve the result but not
significantly. This could be explained by the discussion for R ¼ 40, N1 ¼ 383 that with
fixed R andWr, increasing N1 will not allow the sampling grid in the frequency domain to
get any closer to the origin to capture more information. From Fig. 15, increasing N2

(with fixed N1 ¼ 383) leads to a worse approximation which verifies the discussion for
R ¼ 40, N1 ¼ 383.

Figure 14 Error trend between the sampled values of the continuous inverse transform and the
discretely calculated values for a Gaussian function, as a function of N1.

Full-size DOI: 10.7717/peerj-cs.257/fig-14

Table 4 Error (dB) of inverse transform of Gaussian function with R = 40, different value of N1 and
N2.

N2 N1

283 333 383 433 483

3 Emax. = −25.9 Emax. = −27.5 Emax. = −28.9 Emax. = −30.2 Emax. = −31.3

Eavg. = −115.3 Eavg. = −115.4 Eavg. = −115.4 Eavg. = −115.5 Eavg. = −115.5

7 Emax. = −16.5 Emax. = −18.1 Emax. = −19.4 Emax. = −20.5 Emax. = −21.6

Eavg. = −107.0 Eavg. = −107.1 Eavg. = −107.2 Eavg. = −107.2 Eavg. = −107.2

15 Emax. = −9.7 Emax. = −11.0 Emax. = −12.3 Emax. = −13.4 Emax. = −14.4

Eavg. = −97.9 Eavg. = −98.0 Eavg. = −98.0 Eavg. = −98.1 Eavg. = −98.1

34 Emax. = −4.4 Emax. = −5.5 Emax. = −6.5 Emax. = −7.5 Emax. = −8.3

Eavg. = −86.9 Eavg. = −86.9 Eavg. = −87.0 Eavg. = −87.0 Eavg. = −87.0

61 Emax. = −1.1 Emax. = −1.7 Emax. = −2.4 Emax. = −3.0 Emax. = −3.7

Eavg. = −75.6 Eavg. = −75.6 Eavg. = −75.6 Eavg. = −75.6 Eavg. = −75.7
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Performing sequential 2D-DFT and 2D-IDFT results in e ¼ 4:1656� e�17 where e is
calculated with Eq. (51). Therefore, performing sequential forward and inverse transforms
does not add much error.

Four-term sinusoid & Sinc function

The second function chosen for evaluation is given by

f ðr; uÞ ¼ sinðarÞ
ar

½3 sinðuÞ þ sinð3uÞ þ 4 cosð10uÞ þ 12 sinð15uÞ� (54)

which is a sinc function in the radial direction and a four-term sinusoid in the angular
direction. The graphs for the original function and the magnitude of its continuous 2D-FT
with a ¼ 5 are shown in Fig. 16. From Fig. 16, the function can be considered as a band-
limited function. Therefore Eqs. (16) and (17) were used to implement the forward and
inverse transform.

The continuous 2D-FT can be calculated from Baddour (2011)

Fðr;cÞ ¼
X1

n¼�1
2pi�neinc

Z1
0

fnðrÞJnðrrÞrdr (55)

where fnðrÞ is the Fourier series of f ðr; uÞ and can be written as

fnðrÞ ¼ 1
2p

Zp
�p

f ðr; uÞe�inudu (56)

Figure 15 Error trend between the sampled values of the continuous inverse transform and the
discretely calculated values for a Gaussian function, as a function of N2.

Full-size DOI: 10.7717/peerj-cs.257/fig-15
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From the sampling theorem for the angular direction, the highest angular frequency in
Eq. (54) results in N2 being at least 31 required to reconstruct the signal. Therefore, at least
31 terms are required to calculate the continuous 2D-FT, which can be written as

Fðr;cÞ¼
8pcosð10cÞr10

a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�r2

p ðaþ ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�r2

p Þ10
; r, a

� 6pisinðcÞ
ar

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þa2

p þ
2pisin 3arcsin

a
r

� �� �
sinð3cÞffiffiffiffiffiffiffiffiffiffiffiffiffi

r2þa2
p �

8psin 10arcsin
a
r

� �� �
cosð10cÞffiffiffiffiffiffiffiffiffiffiffiffiffi

r2þa2
p

þ
24pisin 15arcsin

a
r

� �� �
sinð15cÞffiffiffiffiffiffiffiffiffiffiffiffiffi

r2þa2
p ; r.a

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(57)

In the angular direction, the highest frequency term in the function in the space domain
is 12sinð15uÞ. From the sampling theorem, the sampling frequency should be at least
twice that of the highest frequency present in the signal. Thus, N2 ¼ 41 is chosen in order
to go a little past the minimum requirement of 31. In the radial direction, from the graphs
of the original function and its 2D-FT, it can be assumed that f ðr; uÞ is space-limited
at R ¼ 15 and band-limited at Wr ¼ 30. However, since most of the energy in the space
domain is located at the origin, a relatively large band limit should be chosen based on the
discussion in “Conclusion”. Therefore, Wr ¼ 90, N1 ¼ 430 are chosen.

Forward transform

The error results for the forward 2D-DFT of Four-term sinusoid & Sinc function with
Wr ¼ 90, N1 ¼ 430 are shown in Fig. 17. The discrete transform does not approximate

the continuous transform very well. This is expected because the function in the
frequency domain is discontinuous and the sampling points close to the discontinuity
will result in a very large error. The maximum value of the error is Errormax ¼ 10:6535 dB

Figure 16 Plots of the (A) original function (four-term sinusoid and sinc) and (B) the magnitude
of its continuous forward 2D Fourier transform with a = 5.

Full-size DOI: 10.7717/peerj-cs.257/fig-16
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and this occurs where the discontinuities are located. The average of the error is
Erroraverage ¼ �38:7831 dB.

WithWr ¼ 90, N1 ¼ 430, Table 5 shows the errors with respect to different value of N1

and N2, from which Figs. 18 and 19 show the trend. From Fig. 18, increasing N1 alone
tends improve the average error. The maximum error does not change with N1, which is
reasonable because of the discontinuity of the function in the frequency domain.

From Fig. 19, increasing N2 leads to Errormax and Erroraverage first improving and then
worsening. This is reasonable because when N2 is less than the minimum requirement
of 31 from sampling theorem, the test result is actually affected by both sampling point
density (from the sampling theorem) and grid coverage (discussed in “Conclusion”).

Figure 17 Error results for the forward 2D Fourier transform of the Four-term sinusoid & Sinc
function for Wp = 90 and N1 = 430. Full-size DOI: 10.7717/peerj-cs.257/fig-17

Table 5 Error (dB) of the forward transform of ‘four-term sinusoid & Sinc’ function with different
value of N1 and N2 of forward transform.

N2 N1

330 380 430 480 530

11 Emax. = 4.6 Emax. = 7.1 Emax. = 3.4 Emax. = 9.0 Emax. = 2.8

Eavg. = −33.6 Eavg. = −33.4 Eavg. = −33.5 Eavg. = −35.1 Eavg. = −35.5

21 Emax. = 6.7 Emax. = 10.5 Emax. = 3.2 Emax. = 6.9 Emax. = 3.6

Eavg. = −33.9 Eavg. = −34.6 Eavg. = −37.2 Eavg. = −38.0 Eavg. = −38.1

41 Emax. = 8.5 Emax. = 35.1 Emax. = 10.7 Emax. = 14.6 Emax. = 11.1

Eavg. = −38.7 Eavg. = −38.9 Eavg. = −38.8 Eavg. = −39.8 Eavg. = −41.3

81 Emax. = 9.7 Emax. = 32.7 Emax. = 14.8 Emax. = 22.6 Emax. = 14.5

Eavg. = −34.3 Eavg. = 35.5 Eavg. = −36.2 Eavg. = −37.3 Eavg. = −37.5

161 Emax. = 19.9 Emax. = 30.2 Emax. = 22.5 Emax. = 22.5 Emax. = 16.1

Eavg. = −29.4 Eavg. = −30.7 Eavg. = −31.1 Eavg. = −32.2 Eavg. = −32.8
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IncreasingN2 should give better results from the point of view of the sampling theorem but
worse grid coverage. The result from the combined effects is dependent on the function
properties. In the specific case of this function, when N2 is bigger than 31, thereby

Figure 18 Error trend between the sampled values of the continuous forward transform and the
discretely calculated values for a four-term sinusoid and sinc as a function of N1.

Full-size DOI: 10.7717/peerj-cs.257/fig-18

Figure 19 Error trend between the sampled values of the continuous forward transform and the
discretely calculated values for a four-term sinusoid and sinc as a function of N2.

Full-size DOI: 10.7717/peerj-cs.257/fig-19

Yao and Baddour (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.257 29/38

http://dx.doi.org/10.7717/peerj-cs.257/fig-18
http://dx.doi.org/10.7717/peerj-cs.257/fig-19
http://dx.doi.org/10.7717/peerj-cs.257
https://peerj.com/computer-science/


implying that the angular sampling theorem has been satisfied—the results get worse with
increasing N2.

Inverse transform

The error results for the 2D-IDFT of Four-term sinusoid & Sinc function with
Wr ¼ 90, N1 ¼ 430 are shown in Fig. 20. The maximum value of the error is

Errormax ¼ �8:6734 dB. The average of the error is Erroraverage ¼ �37:8119 dB. With

Wr ¼ 90, N1 ¼ 430, Table 6 shows the errors with respect to different value of N1 and N2,

from which Figs. 21 and 22 show the trend.

Figure 20 Error results for the 2D inverse discrete Fourier transform of the four-term sinusoid and
sinc function for Wp = 90 and N1 = 430. Full-size DOI: 10.7717/peerj-cs.257/fig-20

Table 6 Error (dB) of inverse transform of ‘four-term sinusoid & Sinc’ function with different value
of N1 and N2.

N2 N1

330 380 430 480 530

11 Emax. = 0.1 Emax. = 0.1 Emax. = 0.1 Emax. = 0.1 Emax. = 0.1

Eavg. = −43.7 Eavg. = −43.7 Eavg. = −46.6 Eavg. = −45.6 Eavg. = −48.1

21 Emax. = 0.7 Emax. = 0.7 Emax. = 0.6 Emax. = 0.6 Emax. = 0.7

Eavg. = −38.3 Eavg. = −38.0 Eavg. = −40.4 Eavg. = −40.6 Eavg. = −42.2

41 Emax. = −9.0 Emax. = −8.5 Emax. = −8.7 Emax. = −8.8 Emax. = −8.6

Eavg. = −35.9 Eavg. = −24.7 Eavg. = −37.8 Eavg. = −38.2 Eavg. = −39.0

81 Emax. = −4.5 Emax. = −4.7 Emax. = −4.5 Emax. = −4.6 Emax. = −4.5

Eavg. = −35.7 Eavg. = −26.5 Eavg. = −37.5 Eavg. = −36.2 Eavg. = −39.0

161 Emax. = 0.8 Emax. = 0.7 Emax. = 0.7 Emax. = 0.7 Emax. = 0.7

Eavg. = −35.6 Eavg. = −32.5 Eavg. = −36.6 Eavg. = −37.2 Eavg. = −39.2
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From Fig. 21, it can be observed that the increasing N1 alone improves the average error,
as was expected. However, N1 ¼ 380 gives an apparently worse average error than the
other points. This could be caused by the discontinuity of the function in the frequency

Figure 21 Error trend between the sampled values of the continuous inverse transform and the
discretely calculated values for a four-term sinusoid and sinc function, as a function of N1.

Full-size DOI: 10.7717/peerj-cs.257/fig-21

Figure 22 Error trend between the sampled values of the continuous inverse transform and the
discretely calculated values for a four-term sinusoid and sinc function, as a function of N2.

Full-size DOI: 10.7717/peerj-cs.257/fig-22
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domain. Changing to N1 ¼ 381, the average error becomes −37.0 dB which proves that the
large error is caused by the discontinuity.

From Fig. 22, increasing N2 does not lead to worse results, which is different from
previous cases. However, from Fig. 16 it can be seen that the function in the frequency
domain does not have much information in the center area. So, even though increasing
N2 causes a larger hole in the center as discussed in “Conclusion”, it does not lead to
losing much energy which explains why Fig. 22 shows a different trend from the previous
cases.

Performing 2D-DFT and 2D-IDFT sequentially results in e ¼ 1:3117� e�12 where e is
calculated by Eq. (51).

Four-term sinusoid and modified exponential
For the next test function, the function is given by

f ðr; uÞ ¼ e�ar

r
½3 sinðuÞ þ sinð3uÞ þ 4 cosð10uÞ þ 12 sinð15uÞ� (58)

Its continuous 2D-FT can be calculated as

Fðr;cÞ ¼ �6pi sinðcÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p � a

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p þ 2pi sinð3cÞ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p � aÞ3

r3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
� 8p cosð10cÞ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p � aÞ10

r10
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p þ 24pi sinð15cÞ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p � aÞ15

r15
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
(59)

The graphs for the original function and the magnitude of its continuous 2D-FT
with a = 0.1 are shown in Fig. 23. From Fig. 23, it can be observed that the function has a
spike in both domains, which is a more difficult scenario based on the discussion in
“Conclusion”. In this case, the function can be assumed as space-limited or band-limited.
This function will be tested as being space-limited.

Figure 23 Plots for (A) the original function and (B) the magnitude of its continuous 2D discrete
Fourier transform with a = 0.1 for a four-term sinusoid and modified exponential function.

Full-size DOI: 10.7717/peerj-cs.257/fig-23
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From graph of the original function and its 2D-DFT, it can be assumed that f ðr; uÞ is
effectively space-limited with R ¼ 20, and Fðr;cÞ is effectively band-limited with
Wr ¼ 15, which gives j0N1 � 300. This results in N1 ¼ 96: However, since the function

explodes at the center area in both domains, relatively large values of R andWr should give
a better approximation. Therefore, another case with R ¼ 40, Wr ¼ 30 is tested. In this
case, N1 ¼ 383 is chosen.

In the angular direction, the highest frequency term is 12 sinð15uÞ. From the sampling
theorem, the sampling frequency should be at least twice of the highest frequency of signal.
Thus, N2 ¼ 41 is chosen.

Forward transform

Here, the function is tested as a space limited function and Eqs. (14) and (15) are used to
proceed with the forward and inverse transform in sequence. The error results with
R ¼ 40; Wr ¼ 30; N1 ¼ 383 are shown in Fig. 24. The maximum value of the error is

Errormax ¼ �10:1535 dB and this occurs at the center area. The average of the error is
Erroraverage ¼ �32:7619 dB. This demonstrates that the discrete function approximates

the sampled values of the continuous function quite well.

Inverse transform

The error results with R ¼ 40; Wr ¼ 30; N1 ¼ 383 are shown in Fig. 25.
The maximum value of the error is Errormax ¼ 0:5579 dB and this occurs at the center.

The average of the error isErroraverage ¼ �68:7317 dB.
Performing 2D-DFT and 2D-IDFT results in e ¼ 1:421� e�12, where e is calculated by

Eq. (51).

Figure 24 Error between the sampled values of the continuous forward transform and the discretely
calculated values for the four-term sinusoid and modified exponential function with R = 40,Wp = 30
and N1 = 383. Full-size DOI: 10.7717/peerj-cs.257/fig-24
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It can be observed that even for functions with the worst properties, the proposed
transform can still be used to approximate the continuous FT with fairly small errors, as
long as the function is sampled properly.

SUMMARY AND CONCLUSION
Accuracy and precision of the transform
The proposed discrete 2D-FT in polar coordinates demonstrates an acceptable accuracy in
providing discrete estimates to the continuous FT in polar coordinates. In Baddour &
Chouinard (2015),Guizar-Sicairos & Gutiérrez-Vega (2004) andHiggins &Munson (1987),
the one dimensional Hankel transform of a sinc function showed similar dynamic
error, which could be used as a comparative measure. Since the DHT is one step of the
proposed discrete 2D-FT, and the definition of the Hankel transform is based on Abbas,
Sun & Foroosh (2017), a similar dynamic error should be expected.

The test cases showed that the transform introduced very small errors
(e ¼ 1:4004� e�12 for worst case) by performing a forward transform and an inverse

Figure 25 Error between the sampled values of the continuous inverse transform and the discretely
calculated values for the four-term sinusoid and modified exponential function with R = 40,Wp = 30
and N1 = 383. Full-size DOI: 10.7717/peerj-cs.257/fig-25

Table 7 Computing time of three cases: Case1: Run the transform as matrixes in matrix without
pre-calculating the Bessel zeros; Case2: Run the transform as DFT, DHT and IDFT in sequence
without pre-calculating the Bessel zeros; Case3: Run the transform as DFT, DHT.

Test cases Total computing time (s)

Case 1 3,346.5

Case 2 321.1

Case 3 14.3
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transform sequentially, which demonstrates that the discrete transform shows good
precision.

Guidelines of choosing sample size
As discussed in “Conclusion” and proved by test cases, the sample size N1 (sample size in
the radial direction) and N2 (sample size in the angular direction) do not have to be of
the same order. For functions with different properties, sample size in the different
directions could be very different. To approximate the continuous FT properly, sample size
should be chosen based on the discussion in “Conclusion”.

Interpretation of the transform
By interpreting the transform as a 1DDFT, 1D DHT and 1D IDFT, the computing time of
the transform is improved to a useful level since the FFT can be used to compute the DFT.

APPENDIX: IMPROVING THE COMPUTING TIME OF THE
TRANSFORM
One of the advantages of the traditional FT is that the computing speed is fast by using the
now well-established fft algorithm. To reduce the computing time of the 2D DFT in polar
coordinates, the following steps are recommended:

1. Interpreting the transform as three sequential operations (DFT, DHT, IDFT) instead of
a single four-dimensional matrix.

2. Pre-calculating and saving the Bessel zeros.

Reducing computing time by interpreting the transform as three
operations in sequence
As explained above, the essence of the transform is that the matrix fpk is transformed into
the matrix Fql. The intuitive way to interpret the transform kernel is to think of it as a
four-dimensional matrix or matrices in a matrix. However, interpreting the transform as a
1D-DFT of each column, a 1D-DHT of each row and then a 1D-IDFT of each column
makes it possible to use the Matlab built in functions fft and ifft, which significantly
reduced the computational time.

Reduce computing time by pre-calculating the Bessel Zeros
After defining the transform as three operations in sequence and using the matrix for
the DHT defined in Lozier (2003), it was found that a lot of computational time was used to
calculate the Bessel zeros for every different test case, even though the Bessel zeros are the
same in every case. Pre-calculating the Bessel zeros and storing the results for large
numbers of N1 and N2 saves a lot of time.

Table 7 shows the computing time of a forward transform on the same computer
(Processor: Intel(R) Core(TM) i7-4710HQ CPU, RAM:12GB) for three cases:

1. Evaluate the transform as matrices in a matrix without pre-calculating the Bessel zeros.

2. Evaluate the transform as a DFT, DHT and IDFT in sequence without pre-calculating
the Bessel zeros.
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3. Evaluate the transform as a DFT, DHT and IDFT in sequence with pre-calculating the
Bessel zeros.

The Gaussian function was used as the test function therefore N1 ¼ 383 and N2 ¼ 15.
From Table 7, it can be clearly observed that the computing time by running the

transform as matrices in a matrix costs 3,346.5 s, which is not acceptable for the transform
to be useful. Testing the transform as three operations turns 3,346.5 s into 321.1 s.
This is much better. Finally, pre-calculating the Bessel Zeros makes the transform much
faster and applicable.
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