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ABSTRACT9

This work presents a method to estimate reflectance, shading and specularity from a single image.

Reflectance, shading and specularity are intrinsic images derived from the dichromatic model. Estimation

of these intrinsic images has many applications in computer vision such as shape recovery, specularity

removal, segmentation or classification. The proposed method allows to recover the dichromatic model

parameters thanks to two independent quadratic programming steps. Compared to the state of the

art in this domain, our approach has the advantage to address a complex inverse problem into two

parallelizable optimization steps that are easy to solve and do not require learning. The proposed method

is assessed qualitatively and quantitatively on standard RGB and multispectral datasets.
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1 INTRODUCTION18

Light reflected on the surface of an object could be either diffuse or specular. Diffuse reflection is produced

by rough surfaces that tend to reflect light in all directions while specular reflection is defined as light

reflected at a definite angle, like a mirror reflection. These two phenomena appear on an image, thus, a

challenging task is to isolate their contributions. Shape, colour and geometry are very useful information

that could be obtained from the decomposition of diffuse and specular reflection. For example, the colour

of an object can be used for segmentation, classification or recolouring and the shape and the geometry

gives 3D information about the environment and could be used for object recognition. Several models

have been proposed to model light reflected on a surface. One of the simplest model is the lambertian

model proposed by Lambert in 1760. The model is expressed by

I(u,λ ) =
1

π
l(λ )S(u,λ )cos(θi)dwi (1)

where I(u,λ ) is the diffuse radiance at pixel u and wavelength λ , S(u,λ ) is the surface reflectance, l is19

the light source radiance, θi is the incident angle and dwi is the solid angle of the light source viewed20

from pixel u as explained by Robles-Kelly and Huynh (2012).21

The dichromatic model is also widely used in the literature. It was first proposed by Shafer (1985) for

modelling dielectric objects. The model is mathematically defined by the equation:

I(u,λ ) = l(λ )(g(u)S(u,λ )+ k(u)) (2)

where I, l and S are defined as previously, g is the shading factor and k is the specular coefficient. In the22

dichromatic model, an image can be split into a diffuse and a specular part. The shading factor g governs23

the proportion of diffuse light reflected from the object and k models the irregularities of the micro-24

facet structure that cause specularity in the scene. Compared to the lambertian model, the dichromatic25

model adds the specular part k and for a purely diffuse lambertian surface, g(u) = 1
π cos(θi)dwi and26

I(u,λ ) = l(λ )g(u)S(u,λ ).27
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The dichromatic model can be seen as a special case of the Bidirectional Reflectance Distribution28

Function (BRDF) simplified with the assumption of a uniform illumination across the spatial domain29

as explained in the book of Robles-Kelly and Huynh (2012). Other models exist like SIRFS (Shape,30

Illumination and Reflectance From Shading), developped by Barron and Malik (2015). The model is31

parametrized with a rendering engine and a spherical harmonic model of illumination. To the contrary32

of the dichromatic model, SIRFS is based on computer graphics and not on phenomenology. All these33

models can be used to decompose an image or to generate synthetic images.34

Methods to inverse the dichromatic model are often based on the neighbourhood analysis of each pixel:35

Tan et al. (2004); Tan and Ikeuchi (2005) have described a specular-to-diffuse mechanism which is applied36

on local neighbourhood having the same reflectance. Fast recovery of intrinsic images from a single image37

already exists. Yoon et al. (2006) create specular-free 2-channel images and Yang et al. (2015) use guided38

filtering (originally proposed by He et al. (2013)) to remove specularity. Recent progress in deep learning39

encourage researchers in the field to use CNN (convolutional neural network) based approaches to solve40

the inversion problem like Son and Lee (2016) or Shi et al. (2017). There are few works that consider41

non-local strategy like Xie et al. (2016). They encourage distant clusters that have the same colour to have42

the same reflectance. Shen et al. (2008) use intensity-normalized colour information as texture vectors43

and encourage distant pixels that have the same texture vectors to have the same reflectance.44

The decomposition of multispectral images into photometric invariants is recent. For example, Huynh45

and Robles-Kelly (2008, 2010) have worked on multispectral images. Their method consists on minimiz-46

ing objective functions based on the dichromatic model to recover intrinsic images. The decomposition47

was then used for skin recognition, material clustering and specularity removal. Koirala et al. (2011)48

have another approach. They detect and remove specularity with a filter which coefficients are found49

by constrained energy minimization. The dichromatic model parameters recovery can also be achieved50

with the inversion of linear model like demonstrated by Fu et al. (2006). They have applied Orthogonal51

Subspace Projection to remove specularity. In a similar way, Zheng et al. (2015) and Chen et al. (2017)52

separate the illumination spectra from the reflectance using low rank matrix factorization following the53

lambertian model.54

The purpose of this work is to inverse the dichromatic model. Precisely, three photometric invariants g,55

S, and k are recovered. These photometric invariants are recovered thanks to two quadratic programming56

steps. The presented inversion method has the advantages to be learning free and to be applicable to57

RGB images as well as multispectral images. Thus, the rest of the paper is organized as follows: in58

section 2, the inversion problem and its underdetermination is analyzed. The solutions and the limitations59

found in literature are explored to compare our approach to existing methods. Then, the proposed method60

is detailed in section 3. Finally, we assess the robustness of the proposed method qualitatively and61

quantitatively in section 4.62

2 UNDERDETERMINATION AND RELATED WORK63

Even if the dichromatic model is rather simple, its inversion is still complex. The inversion process is64

an underdetermined problem. One single image could have been obtained by a large combination of65

illumination, shape and reflectance.66

Mathematically, we note that in equation (2), there could be any balancing factor between g and S i.e.67

if S∗ and g∗ are solution of the inverse problem, then αS∗ and
g∗

α are also solution of the problem for68

any positive scalar α . From a numerical point of view, there are fewer equations than unknowns. Let69

us define Np as the number of pixels and Nc as the number of wavelengths. According to equation (2),70

there are Np ×Nc equations for Nc +Np +Np ×Nc +Np unknowns. This comparison shows clearly that71

the problem is underdetermined, thus the inversion algorithm should include soft or hard constraints to72

overcome the underdetermination. For example g, S and k have a physical meaning, they must be positive73

numbers.74

One of the simplest way to reduce the number of unknowns is to assume that the illumination spectrum

is known or can be experimentally estimated. This can be done by imaging a white standard reference

and define l as the spatial mean spectra. l can also be obtained thanks to one of the reference methods

taken from literature like the White-Patch method, the Grey-World method or the Grey-Edge method as

explained by Huynh and Robles-Kelly (2010). Recent deep learning based algorithms compete these

methods like the Convolutional Neural Network (CNN) of Bianco et al. (2015) or the mixed pooling

neural networks of Fourure et al. (2016). Once the spectrum of the illumination is known the equation (2)
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becomes:

R(u,λ ) =
I(u,λ )

l(λ )
= g(u)S(u,λ )+ k(u). (3)

This simplification suggests that the reflectance spectra S is related to R with a scalar and an offset.75

For some applications, if only one material is considered, the number of unknowns can be further

reduced because the reflectance S is no more pixel dependent and the equation (3) is simplified by

R(u,λ ) = g(u)S(λ )+ k(u). (4)

This system is overdetermined and can be solved by linear regression as suggested by Robles-Kelly76

and Huynh (2012). The uniqueness of the material is unfortunately a strong assumption and is rarely77

applicable in practice.78

Barron and Malik (2012) and Barron and Malik (2015) have expressed priors on the illumination,79

the reflectance and the shape of an object. These constraints are soft constraints and even if we are not80

using the same model, we use some of their ideas to build our own optimization algorithm. For example,81

Barron et al. explain that surfaces tend to be smooth, thus the shading image g is also smooth. This82

assumption is also used in the papers of Gu and Robles-Kelly (2016) and Huynh and Robles-Kelly (2008).83

The smoothness is expressed by a regularization term that minimizes the gradient and the mean curvature84

respectively. Barron and Malik (2015) also expressed the fact that the number of different reflectances85

in an image tends to be small. This means that the palette used for an image is small. These priors86

reflect good assumptions but require learning. In this case, learning based methods would require a lot of87

training samples and would be dependent on the number of channels of the image. In practice Barron and88

Malik (2015) have trained their priors for gray-scale image (1 channel) and RGB images (3 channels)89

independently.90

Some works overcome the underdetermination by increasing the amount of data available, for example91

by combining multiple views of the scene. Using multiple images makes easier the separation of diffuse92

and specular components. For example, Umeyama and Godin (2004) use a rotating polarizer to acquire93

several images and then apply Independent Component Analysis (ICA) assuming the probabilistic94

independence between diffuse and specular components. Feris et al. (2004) use multi-flash images to95

reduce specularity and Xie et al. (2016) use stereoscopic images and inverse the lambertian model96

R(u,λ ) = g(u)S(u,λ ). Zhou et al. (2015) increase the amount of information by asking the user to order97

image patches according to their brightness, thus producing a data-driven reflectance prior. The use of98

several views of the same scene clearly decreases the underdetermination but is also more cumbersome.99

The proposed method takes into account the numerical constraints that were observed. As most of100

real life objects are smooth, a soft smoothness is also introduced. The illumination spectra is known thus,101

the efforts are focused on the resolution of equation (3). The next section details the complete method to102

recover the intrinsic images and explains the constraints that were used.103

3 METHOD104

In a previous paper, we have proposed a method to solve the decomposition problem with two quadratic

programming steps (Krebs et al. (2017)). The shading factor g and the specular image k were indirectly

recovered as the minimum of quadratic objective functions subject to linear constraints. It means that the

decomposition is obtained by solving two problems under the general form:



























x∗ = argmin
x

1

2
xtQx+ ctx

subject to

Ax∗ ≤ b

Aeqx∗ = beq

(5)

where x∗ is the desired solution vector, Q,A and Aeq are matrices and c,b and beq are column vectors.105

Quadratic programming is the process of solving this kind of optimization problem. Nowadays, these106

problems are well known and it exists a variety of methods to solve them like the interior point, the active107

set, the augmented Lagrangian or the conjugate gradient detailed by Nocedal and Wright (2006).108
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In the following parts, an improved version of our algorithm written in 2017 is introduced while109

preserving the quadratic formulation to keep the simplicity of resolution. The objective functions have110

been changed to be in the logarithmic domain. Working in the logarithmic domain allow us to reach better111

stability and much better results. The new algorithm keeps all advantages of the previous version, it is112

still learning free and is now applicable to RGB images as well as multispectral images.113

3.1 Indirect recovery of the shading factor114

The first goal of the proposed method is to recover the shading factor g. g is actually indirectly recovered:115

we define the unknown of the optimization problem as x = ln(g).116

It has been shown that if two pixels u and v belong to the same material, the ratio between gu and gv

(values of the image g at pixels u and v) is equal to the ratio between σu and σv (the standard deviations

of R along the wavelengths axis):

gu

gv

=
σu

σv

(6)

because

σu

σv

=
std(Ru,λ )

std(Rv,λ )
=

gustd(Su,λ )

gvstd(Sv,λ )
=

gu

gv

. (7)

Thus, applying the logarithm transforms ratios into differences

xu − xv = ln(σu)− ln(σv). (8)

The key idea is then to write an objective function as a weighted sum of squared residuals:

f1(x) = ∑
u

∑
v∈N (u)

ζu,v(xu − xv − ln(σu)+ ln(σv))
2 (9)

where N (u) denotes the neighbourhood of u, ζu,v is a weight between 0 and 1 corresponding to the

similarity measure between two spectra at pixels u and v:

ζu,v = exp

(

−SAM(Ru,Rv)
2

r

)

(10)

with r as the bandwidth parameter and SAM as the Spectral Angle Mapper, one spectral similarity measure

explored by Galal et al. (2012).

SAM(Ru,Rv) = arccos





∑
Nc
i=1 RuiRvi

√

∑
Nc
i=1 R2

ui

√

∑
Nc
i=1 R2

vi





. (11)

In case pixels u and v do not belong to the same material (i.e. ζu,v is close to zero), x is assumed to be

smooth i.e. xu ≈ xv. The complementary objective function is thus created under the form:

f2(x) = ∑
u

∑
v∈N (u)

(1−ζu,v)(xu − xv)
2
. (12)

From an image processing point of view, minimizing the distance between xu and xv is intuitively like117

applying an averaging filter on x which is also equivalent to applying a geometric mean filter on g. This118

smoothing is more robust to positive outliers than the classical averaging filter.119

There is a third case which is more difficult. If two pixels u and v are grey, then the standard deviation120

is close or equal to zero and thus f1 could be unstable. A grey pixel is defined as a pixel for which Ru is121

nearly constant for every wavelength and thus cannot be separated into a diffuse part and a specular part.122

In this case, the mean over the wavelengths µ is used instead of the standard deviation σ .123

This case corresponds to the assumption that there is no specularity on grey objects (i.e. that k = 0).

A third part of the objective function is thus written:

f3(x) = ∑
u

∑
v∈N (u)

ζu,vζuζv(xu − xv − ln(µu)+ ln(µv))
2 (13)
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New symbols are introduced with the following definition: ζu = ζ (Ru,1) and ζu = 1−ζ (Rv,1) (1 being124

a vector of ones). ζu is an indicator, based on SAM metric, that emphasizes the spectra that are nearly125

grey (value close to 1) or not (value close to 0).126

On the same time, f1 and f2 are slightly modified with an additional factor that discards grey pixels:

f1(x) = ∑
u

∑
v∈N (u)

ζu,vζuζv(xu − xv − ln(σu)+ ln(σv))
2
, (14)

f2(x) = ∑
u

∑
v∈N (u)

(1−ζu,vζuζv −ζu,vζuζv)(xu − xv)
2
. (15)

The final objective function is written as the sum of f1, f2 and f3 so that all three cases are well

encompassed.

fshading(x) = f1(x)+ f2(x)+ f3(x). (16)

As this objective function is the sum of quadratic functions, fshading is also quadratic and its minimiza-127

tion can be seen as a quadratic programming task as presented in the system (5).128

Once the objective function is built, hard constraints are considered. Mathematically, we have seen129

in section 2 that there could be any balancing factor between g and S. Thus, in the logarithmic domain,130

considering x∗ instead of g∗, there can be any offset ε we can add to x∗, the solution will still hold. Thus,131

we can constraint the sum of all elements of x to be equal to an arbitrarily chosen constant c.132

3.2 Indirect recovery of the specular factor133

The second goal of the proposed method is to recover the specular factor k. This part of the method is134

independent from the previous calculus of g, and thus, the two optimizations are perfectly interchangeable135

or can be parallelized to speed up the algorithm. The intermediate variable y = ln(gS) is computed as136

the minimum of a constrained quadratic objective function. The symbol S being the mean of S over the137

wavelengths.138

If two pixels u and v belong to the same material, then:

yu − yv = ln(σu)− ln(σv) (17)

for the same reason as for equation (8).139

Thus our objective function can be written as the square of the difference between yu and yv weighted

by ζu,v to express the similarity of the material and ζuζv to express the fact that the pixels cannot be grey:

f4(y) = ∑
u

∑
v∈N (u)

ζu,vζuζv(yu − yv − ln(σu)+ ln(σv))
2
. (18)

f4 is analogous to the function f1 in equation (14).140

Like in previous part, a complementary function is written. In this case, we assume that the specularity

is negligible compared to the diffuse part i.e. yu ≈ µu.

f5(y) = ∑
u

∑
v∈N (u)

(1−ζu,vζuζv)(yu − yv − ln(µu)+ ln(µv))
2
. (19)

f4 and f5 are also quadratic and the final objective function can be written as:

fspecular(y) = f4(y)+ f5(y). (20)

Because of the physical constraint, k is bounded below by 0, all elements of k must be positive.

Moreover, the consideration of the minimum of R over the wavelength:

min(Ru,λ ) = gu min(Su,λ )+ ku (21)

shows that ku is also upper-bounded by min(Ru,λ ). Thus, yu is also bounded:

ln(µ −min(Ru,λ ))≤ yu ≤ ln(µ). (22)

5/10PeerJ Comput. Sci. reviewing PDF | (CS-2019:08:40793:0:0:NEW 4 Sep 2019)

Manuscript to be reviewedComputer Science



As for x, y is recovered thanks to a quadratic programming algorithm. g, k and S are then obtained

with

g = exp(x)

k = µ − exp(y)

S =
R− k

g
. (23)

To conclude on this section, two quadratic objective functions have been built allowing us to recover141

indirectly g, k and S. Only simple statistical tools (standard deviation and mean) have been used making142

the method applicable to RGB images as well as multispectral images. These functions decompose all143

pixels into three category: neighbouring pixels that belong to the same material, pixels from different144

materials and grey pixels.145

4 RESULTS AND DISCUSSION146

This section presents the qualitative and the quantitative results of the presented method. First, qualitative147

results are presented and then, metrics are introduced to assess the quality of the method quantitatively. It148

is very important to compare our work to current methods in the literature, thus, in the following parts,149

the references Barron and Malik (2015), Yang et al. (2010), Gu et al. (2013), Huynh and Robles-Kelly150

(2010) and the previous version of the algorithm (Krebs et al. (2017)) are used as comparative methods.151

Afterwards, we will use the following abbreviations to refer to each of these methods:152

• LS for Gu et al. (2013)153

• KL for Huynh and Robles-Kelly (2010)154

• Barron for Barron and Malik (2015)155

• Yang for Yang et al. (2010)156

• Krebs for Krebs et al. (2017)157

LS employs shapelets to recover the shading of an image. KL is based on objective functions with a158

regularization term that enforces the smoothness of g. Barron uses priors to recover the most probable159

illumination, shape and reflectance and Yang uses guided image filtering to iteratively remove specularity.160

We have tested the different algorithms on the Massachusetts Institute of Technology (MIT) intrinsic161

dataset created by Grosse et al. (2009). This dataset provides 20 images along with a ground truth image162

for the reflectance S, the shading g and the specularity k, namely Strue, gtrue and ktrue. We have also163

applied our algorithm on the CAVE (Computer Vision Laboratory at Columbia University) Multispectral164

Image Dataset which provides multispectral images without ground truth. The dataset is available thanks165

to Yasuma et al. (2010).166

For visualisation purpose, the multispectral images are transformed to RGB images via a multilinear167

transformation. All images are padded with black pixels to be square and scaled. All images are also168

divided by the illumination spectrum. For the MIT database, we assume l is white and for the CAVE169

database, l is obtained thanks to the white patch of ColorCheckerTM appearing on each image.170

4.1 Qualitative results171

Fig. 1 presents shading images g resulting from all methods on five examples. The two first rows are172

images coming from the MIT dataset, the two other rows are multispectral images from the CAVE dataset.173

The first column contains the ground truth shading images. The next rows are respectively the results174

given by LS, KL, Barron, Yang, Krebs and the proposed method.175

Considering the apple, the specular spot still appears for LS, KL and Yang while the proposed method176

is more robust and is not corrupted by specularity. For the phone, strong gradients appear for methods LS,177

KL and Yang that are not due to the shape of the object but are induced by colour changes and thus should178

not appear.179

The smoothness term introduced in equation (15) makes the difference with other recent works. The180

key is that this term only acts on colours gradients and not on uniform areas.181
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Ground truth LS KL Barron Yang Krebs

Proposed

method

Figure 1. Results of shading images for the different methods:

from left to right, Ground truth, LS, KL, Barron, Yang, Krebs and the proposed method.

Ground truth LS KL Barron Yang Krebs

Proposed

method

Figure 2. Results of reflectance images for the different methods:

from left to right, Ground truth, LS, KL, Barron, Yang, Krebs and the proposed method.

On the multispectral peppers image, we can see that the specularity is successfully removed while182

it is still appearing with the other methods. The shading image g for the coloured feathers seems flat183

and blurry. But, as this scene is flat, g is also flat. Still, the method tends to oversmooth the shading184

image on multispectral images. This is due to the fact that the smoothness term in equation (15) is a good185

assumption if there is only one object on the image which is not the case on the images from the CAVE186

dataset (6 peppers and 6 feathers for example).187

In Fig. 2, resulting reflectance images are also compared between all methods. The ground truth188

reflectance is presented in the first column. The next columns are the results obtained with LS, KL, Barron,189

Yang, Krebs and the proposed method. The observation is that for the methods LS, KL, and Yang, the190
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colour are corrupted. These methods fails to conserve the good ratio between colours. For example, the191

white part of the panther and the phone look grey for LS, KL, and Yang. That means that g was over-rated192

on the white part. Another manifestation of this non-conservation of colour ratios can be seen with the193

feathers image: the first feather on the left should be white and appears black for all other methods. It194

is exactly the opposite with the first feather on the right which is black and appears white for the other195

methods. The smoothness constraint (15) helps also to keep the colour ratio which is essential for the196

visualisation of S. We can note that, on the case of white object, the objective function (13) helps not to197

be confused with specularity.198

We do not present results on specular images k because the images are very dark, the specularity is199

only the white spots we can see on objects (for example on the apple). Thus, excepting these white spots,200

the rest of the k images are completely black and thus are difficult to compare.201

4.2 Quantitative results202

Qualitative analysis is not sufficient to prove the robustness of the proposed method. Thus, metrics203

between g, S and k are computed.204

As explained in part 2 there can be any scaling factor between g and S. Thus, we need to normalize205

g and gtrue and S and Strue for a fair comparison. For this purpose, they are scaled so that the sum of206

all pixels is 1. After normalization, the Sum of Squared Errors (SSE) is computed. For k and ktrue, we207

compute the mean squared error MSE without normalizing the images. For S and Strue the mean value of208

the SAM is also computed. We add this metric because it is usually used to compare spectra. The spectral209

angle is more suitable to express changes in chromaticity while the SSE is more suitable to express the210

mean aspect of the image. SAM is already a scaling invariant metric thus, there is no need to normalize S211

for this metric.212

Table 1. Quantitative Results on the MIT Dataset

LS KL Barron Yang Krebs

Proposed

Method

SSE on
normalized g

(×10−5) 0.780 0.504 1.765 0.883 0.384 0.183

SSE on
normalized S

(×10−5) 0.225 0.233 0.980 0.240 0.267 0.144

MSE on k

(×108) 0.102 1.223 N/A 0.206 0.053 0.007

SAM on S 0.021 0.041 0.032 0.025 0.030 0.020

Table 1 presents the results over the 20 images of the MIT dataset by giving the mean value for all213

metrics. The quantitative analysis is unfortunately not possible on the CAVE dataset as there is no ground214

truth.215

Now, the proposed method outperforms the other methods for the four metrics, which was not the216

case in Krebs et al. (2017). Concerning g, the proposed method has the lowest error with an SSE of217

0.183×10−5, our previous algorithm is second with 0.384×10−5 (almost a factor 2 is gained) and KL is218

third with 0.504×10−5. This is consistent with the results shown in the qualitative results section (Fig. 1).219

Results on the MSE of k are also favourable to the proposed method with a MSE of 0.007×108. It is220

7 times lower than the previous version and 10 times lower than LS (0.102×108). Barron’s method does221

not return the specular component. The whole image is supposed to be diffuse.222

Results for S are also good with a mean angular error of 0.020 radians (1.1 degree) and a SSE of223

0.144× 10−5. These results are directly correlated to a better estimation of g and k as S is recovered224

to respect the equality (23). The quantitative results are consistent with the qualitative analysis. The225

proposed method outperforms the state of the art by recovering a good estimation of the three components226

g, S and k. Moreover, the updated method have a significant gain compared to the one proposed in 2017.227
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5 CONCLUSION228

In this paper, a novel method to recover the parameters of the dichromatic model using a single image229

has been introduced. The algorithm is learning free because it is simply expressed as two independent230

quadratic programming problems. The method is an updated version compared to the one proposed in231

2017. The method is now applied to multispectral images and offers a significant gain on RGB images.232

Two datasets were used for this study, a set of RGB images from the MIT and a set of multispectral images233

named CAVE. We have assessed our results in a qualitative and a quantitative way to insure the quality of234

the algorithm. The proposed method has better accuracy than recent advances in the field. The good results235

are coming from the choice of the objective functions, expressed in the logarithmic domain and based236

on soft and hard constraints. A smoothness constraint helps to improve the quality of the photometric237

invariants recovery. The specific architecture of our algorithm, i.e. two simple constrained quadratic238

programming steps, open opportunities in the field to create memory and time efficient algorithms for the239

recovery of intrinsic images.240
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Zhou, T., Krähenbühl, P., and Efros, A. A. (2015). Learning data-driven reflectance priors for intrinsic314

image decomposition. arXiv preprint arXiv:1510.02413.315

10/10PeerJ Comput. Sci. reviewing PDF | (CS-2019:08:40793:0:0:NEW 4 Sep 2019)

Manuscript to be reviewedComputer Science


