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At CRYPTO 2019, Gohr pioneered the application of deep learning to differential cryptanalysis and
successfully attacked the 11-round NSA block cipher Speck32/64 with a 7-round and an 8-round single-
key differential neural distinguisher. Subsequently, Lu et al. presented the improved related-key
differential neural distinguishers against the \simon{} and \simeck{}. Following this work, we provide a
framework to construct the enhanced related-key differential neural distinguisher for \simon{} and
\simeck{}. In order to select input differences efficiently, we introduce a method that leverages weighted
bias scores to approximate the suitability of various input differences. Building on the principles of the
basic related-key differential neural distinguisher, we further propose an improved scheme to construct
the enhanced related-key differential neural distinguisher by utilizing two input differences, and obtain
superior accuracy than lu et al. for both \simon{} and \simeck{}.

Specifically, our meticulous selection of input differences yields significant accuracy improvements of
$3\%$ and $1.9\%$ for the 12-round and 13-round basic related-key differential neural distinguishers of
\simon{32/64}. Moreover, our enhanced related-key differential neural distinguishers surpass the basic
related-key differential neural distinguishers. For 13-round \simon{32/64}, 13-round \simon{48/96}, and
14-round \simon{64/128}, the accuracy of their related-key differential neural distinguishers increases
from 0.545, 0.650, and 0.580 to 0.567, 0.696, and 0.618, respectively. For 15-round \simeck{32/64}, 19-
round \simeck{48/96}, and 22-round \simeck{64/128}, the accuracy of their neural distinguishers is
improved from 0.547, 0.516, and 0.519 to 0.568, 0.523, and 0.526, respectively. The raw data and code
are available at: \url{https://doi.org/10.5281/zenodo.11178441}.

PeerJ Comput. Sci. reviewing PDF | (CS-2024:05:100801:2:0:NEW 5 Oct 2024)

Manuscript to be reviewedComputer Science



Enhanced related-key differential neural1

distinguishers for SIMON and SIMECK block2

ciphers3

Gao Wang1 and Gaoli Wang1,2
4

1Shanghai Key Laboratory of Trustworthy Computing, Software Engineering Institute,5

East China Normal University, Shanghai, 200062, China.6

2Advanced Cryptography and System Security Key Laboratory of Sichuan Province,7

Chengdu, 610103, China.8

Corresponding author:9

Gaoli Wang1,2
10

Email address: glwang@sei.ecnu.edu.cn11

ABSTRACT12

At CRYPTO 2019, Gohr pioneered the application of deep learning to differential cryptanalysis and

successfully attacked the 11-round NSA block cipher Speck32/64 with a 7-round and an 8-round single-

key differential neural distinguisher. Subsequently, Lu et al. presented the improved related-key differential

neural distinguishers against the SIMON and SIMECK. Following this work, we provide a framework to

construct the enhanced related-key differential neural distinguisher for SIMON and SIMECK. In order

to select input differences efficiently, we introduce a method that leverages weighted bias scores to

approximate the suitability of various input differences. Building on the principles of the basic related-key

differential neural distinguisher, we further propose an improved scheme to construct the enhanced

related-key differential neural distinguisher by utilizing two input differences, and obtain superior accuracy

than lu et al. for both SIMON and SIMECK.
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Specifically, our meticulous selection of input differences yields significant accuracy improvements

of 3% and 1.9% for the 12-round and 13-round basic related-key differential neural distinguishers of

SIMON32/64. Moreover, our enhanced related-key differential neural distinguishers surpass the basic

related-key differential neural distinguishers. For 13-round SIMON32/64, 13-round SIMON48/96, and

14-round SIMON64/128, the accuracy of their related-key differential neural distinguishers increases from

0.545, 0.650, and 0.580 to 0.567, 0.696, and 0.618, respectively. For 15-round SIMECK32/64, 19-round

SIMECK48/96, and 22-round SIMECK64/128, the accuracy of their neural distinguishers is improved from

0.547, 0.516, and 0.519 to 0.568, 0.523, and 0.526, respectively. The raw data and code are available at:

https://doi.org/10.5281/zenodo.11178441.
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1 INTRODUCTION32

In recent years, with the wide application of wireless sensor networks (WSN) and radio frequency33

identification (RFID) technology in various industries, the data security problem of these resource-34

constrained devices have become more and more prominent. As a cryptographic solution that can achieve35

a good balance between security and performance under limited resources, lightweight block ciphers are36

widely used to protect data security in various resource-constrained devices. The security of block ciphers37

is closely related to the security of data. In this context, evaluating the security properties of these ciphers38

has become a popular research topic in the field of computer science and cryptography. Among many39

cryptanalysis techniques, differential cryptanalysis, proposed by Biham and Shamir in Biham and Shamir40

(1991b), is one of the most commonly used methods for evaluating the security of block ciphers. This41

technique focuses on the propagation of plaintext differences during the encryption.42

In traditional differential cryptanalysis, the core task of differential cryptanalysis is to find a differential43

characteristic with high probability. Initially, this task was achieved by manual derivation, which required44

a lot of effort and time. At EUROCRYPT 1994, Matsui Matsui (1994) presented a branch-and-bound45
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method for this task, which replaced manual derivation with automated search techniques for the first time.46

However, for the block ciphers with large sizes, this method is insufficient to provide useful differential47

characteristics. This prompts cryptographers to adopt more efficient automated search tools for searching48

the differential characteristic with high probability, including Mixed Integer Linear Programming (MILP)49

Sun et al. (2014); Bellini et al. (2023a); Mouha et al. (2012), Constraint Programming (CP) Gerault et al.50

(2016); Sun et al. (2017a), and Boolean satisfiability problem or satisfiability modulo theories (SAT/SMT)51

Sun et al. (2017b); Lafitte (2018).52

In recent years, with the rapid development of deep learning, cryptanalysts have begun to explore how53

to harness its power for differential cryptanalysis. At CRYPTO 2019, Gohr Gohr (2019) constructed an 8-54

round differential neural distinguishers by leveraging neural networks to learn the differential properties of55

block ciphers SPECK32/64 and successfully carried out an 11-round key recovery attack. This pioneering56

research significantly accelerated the integration of deep learning and differential cryptanalysis. Since this57

study, the differential neural distinguisher has been widely applied to various block ciphers in single-key58

and related-key scenarios, including but not limited to SIMON Bao et al. (2022); Lu et al. (2024); Bellini59

et al. (2023b), SIMECK Zhang et al. (2023a); Lu et al. (2024), PRESENT Jain et al. (2020); Bellini et al.60

(2023b); Zhang et al. (2023b), GIFT Shen et al. (2024), ASCON Shen et al. (2024), and others. In this61

paper, we focus on the related-key differential neural distinguishers for SIMON and SIMECK.62

So far, there are many studies exploring the differential neural distinguishers for SIMON and SIMECK63

ciphers, such as Bao et al. (2022); Zhang et al. (2023a); Wang et al. (2022); Seong et al. (2022); Gohr64

et al. (2022); Lyu et al. (2022); Lu et al. (2024). However, most of them focused on the single-key65

scenario, until the research of Lu et al. Lu et al. (2024) broke this trend. They not only improved66

the accuracy of their single-key differential neural distinguishers by using the enhanced data format67

(∆r
L,∆

r
R,Cl ,Cr,C

′
l ,C

′
r,∆

r−1
R , p∆r−2

R ), but also constructed the related-key differential neural distinguishers68

for them. The experimental results show that the related-key differential neural distinguishers outperforms69

the single-key differential neural distinguishers in terms of the number of analyzed rounds and accuracy.70

In the single-key scenario, Lu et al. exhaustively evaluated the input differences with Hamming weights of71

1, 2, and 3 by training a differential neural distinguisher for each difference. However, for the related-key72

scenario, this task has not been explored in depth due to the huge number of input differences that need73

to be evaluated. Even for the smallest variants SIMON32/64 and SIMECK32/64, the number of input74

differences with Hamming weights of 1, 2, and 3 already reaches about 200 million. Therefore, it is75

impractical to train a neural distinguisher for each difference. In this paper, we aim to further address this76

challenge.77

1.1 Our Contributions78

In this paper, we first present a framework to construct the basic related-key differential neural distinguish-79

ers for SIMON and SIMECK. This framework is comprised of five components: differences selection,80

sample generation, network architecture, distinguisher training, and distinguisher evaluation. Subse-81

quently, we provide a method for approximately assessing the suitability of different input differences82

with weighted bias scores, which significantly accelerates the process of differences selection. Our metic-83

ulous selection of the input difference can make the accuracy of the basic related-key differential neural84

distinguisher match or surpass previous results. In particular, the accuracy for the 12-round and 13-round85

distinguishers of SIMON32/64 is improved from 0.648 and 0.526 to 0.678 and 0.545, respectively, as86

shown in Table 1.87

Furthermore, based on the principles of the basic related-key differential neural distinguishers, we88

propose an enhanced scheme that harnesses two distinct input differences to construct a more powerful89

related-key differential neural distinguisher for SIMON and SIMECK. Specifically, for the 13-round90

SIMON32/64, 13-round SIMON48/96, and 14-round SIMON64/128, their accuracy is raised from 0.545,91

0.650, and 0.580 to 0.567, 0.696, and 0.618, respectively. Similarly, the neural distinguishers for 15-92

round SIMECK32/64, 19-round SIMECK48/96, and 22-round SIMECK64/128 also showed significant93

improvements in accuracy, rising from 0.547, 0.516, and 0.519 to 0.568, 0.523, and 0.526, respectively.94

All these results illustrate the effectiveness and robustness of our scheme.95

1.2 Organization96

Section 2 commences by introducing the foundational knowledge about the related-key differential neural97

distinguisher. Following this, Section 3 comprehensively explores the construction of basic and enhanced98

neural distinguishers for SIMON and SIMECK. Building upon this framework, Section 4 constructs99
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Table 1. A summary of related-key neural distinguishers against SIMON32/64, SIMON48/96,

SIMON64/128, SIMECK32/64, SIMECK48/96, and SIMECK64/128 using 8 pairs of ciphertexts as a

sample. Acc: Accuracy, TPR: True Positive Rate, TNR: True Negative Rate. RKND: The basic

related-key differential neural distinguisher trained with a difference. RKND′: The enhanced related-key

differential neural distinguisher trained using a pair of differences.

Cipher Round Model Acc TPR TNR Source

SIMON32/64

12

RKND 0.648 0.652 0.644 Lu et al. (2024)

RKND 0.678 0.685 0.671 Sect. 4.3

RKND′ 0.740 0.729 0.750 Sect. 4.4

13

RKND 0.526 0.544 0.508 Lu et al. (2024)

RKND 0.545 0.537 0.552 Sect. 4.3

RKND′ 0.567 0.564 0.570 Sect. 4.4

SIMON48/96

12
RKND 0.993 0.999 0.986 Sect. 4.3

RKND′ 0.997 0.998 0.996 Sect. 4.4

13
RKND 0.650 0.660 0.640 Sect. 4.3

RKND′ 0.696 0.698 0.695 Sect. 4.4

SIMON64/128

13
RKND 0.840 0.839 0.841 Lu et al. (2024)

RKND′ 0.916 0.910 0.922 Sect. 4.4

14
RKND 0.579 0.589 0.568 Lu et al. (2024)

RKND′ 0.618 0.596 0.639 Sect. 4.4

SIMECK32/64

14
RKND 0.668 0.643 0.693 Lu et al. (2024)

RKND′ 0.730 0.722 0.738 Sect. 4.4

15
RKND 0.547 0.517 0.576 Lu et al. (2024)

RKND′ 0.568 0.553 0.582 Sect. 4.4

SIMECK48/96

18
RKND 0.551 0.456 0.646 Sect. 4.3

RKND′ 0.572 0.572 0.572 Sect. 4.4

19
RKND 0.516 0.411 0.611 Sect. 4.3

RKND′ 0.523 0.527 0.518 Sect. 4.4

SIMECK64/128

21
RKND 0.552 0.425 0.679 Lu et al. (2024)

RKND′ 0.572 0.580 0.563 Sect. 4.4

22
RKND 0.518 0.391 0.646 Lu et al. (2024)

RKND′ 0.526 0.523 0.529 Sect. 4.4
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the improved related-key differential neural distinguishers for SIMON and SIMECK. Finally, Section 5100

concludes this paper.101

2 PRELIMINARIES102

In this section, we first present the pivotal notations in Table 2. Following this, we offer a succinct103

overview of the block ciphers SIMON and SIMECK, along with the basic concepts about related-key104

differential cryptanalysis and convolutional neural networks.105

2.1 Notations106

Table 2 illustrates the notations utilized in this paper.107

Table 2. Notations

Notation Description

· Bit-wise XOR operation

» Bit-wise AND operation

∥ Concatenation

P Plaintext

C Ciphertext

K Master key

∆P Plaintext difference

∆C Ciphertext difference

∆K Master key difference

∆Pr The r-round input difference

∆Cr The r-round ciphertext difference

∆Kr The r-round key difference

2.2 A Brief Description of SIMON and SIMECK Ciphers108

SIMON Beaulieu et al. (2015) is a lightweight block cipher, designed by the National Security Agency109

(NSA) in 2013. It employs a Feistel structure, making it suitable for resource-constrained environments.110

In addition, it supports various block lengths and key sizes, such as SIMON32/64, SIMON48/96, and111

SIMON64/128, where the first number represents the block length and the second number denotes the key112

size. The round function of SIMON is composed of three simple operations: bit-wise XOR ·, bit-wise113

AND », and circular left shift j operations, as shown in Figure 1. The round function can be formally114

defined as:115

�
Lr = ((Lr−1 j α)» (Lr−1 j β ))·Rr−1 · (Lr−1 j γ)· kr−1,

Rr = Lr−1,
(1)

where α , β and γ represent the fixed rotation constants that are utilized in the circular left shift operation.116

For SIMON, the values of these constants are set to 1, 8, and 2, respectively. Given a master key K117

that comprises 4 key words, denoted as K = (K3, ...,K1,K0), the round key Kr−1 is generated through a118

linear key schedule. This process incorporates predefined constants C and a series of constants (Z j)i, the119

generation follows the scheme outlined below:120

�
T = (Ki+3 k 3)·Ki+1,

Ki+4 =C· (Z j)i ·Ki ·T · (T k 1).
(2)
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The SIMECK Yang et al. (2015) cipher, presented at CHES in 2015, is a variant of the SIMON. It121

retains the same Feistel structure and round function as SIMON, but distinguishes itself through the values122

of α , β , and γ , which are set to 0, 5, and 1, respectively. In addition, SIMECK uses the round function to123

generate the round keys Kr for a given master key K = (t2, t1, t0,k0), as explained below:124

�
ki+1 = ti,

ti+3 = ki · ti » (ti j 5)· (ti j 1)·C· (Z j)i.
(3)

where C and (Z j)i are the predefined constants. For more details, please refer to Yang et al. (2015).125

Figure 1. The round function of SIMON and SIMECK.

2.3 Related-key Differential Cryptanalysis126

In 1990, Biham et al. Biham and Shamir (1991b) introduced a groundbreaking attack strategy called127

differential cryptanalysis. This cryptanalysis technique can distinguish the block cipher from the random128

permutation by studying the propagation properties of the plaintext difference ∆P throughout the encryp-129

tion. Due to its simple principle and excellent efficacy, this approach quickly attracted significant attention130

among the cryptography community Biham and Shamir (1991a, 1992); Biham and Dunkelman (2007).131

In lightweight block ciphers, the key schedule holds paramount importance, as it is responsible for132

generating and updating the round keys. To delve into the security of this vital component, Biham et133

al. Biham (1994) proposed a pioneering related-key cryptanalysis method in 1994, which studies the134

security of block cipher under different keys. The related-key differential cryptanalysis method combines135

the principles of differential cryptanalysis and related-key cryptanalysis. It investigates differential136

propagation under different keys instead of the same key. The basic concepts related to block cipher and137

related-key differential cryptanalysis are summarized as follows.138

Assuming E is the r-round encryption procedure employed by a block cipher with the block length bl139

and the key length kl, and the plaintext, ciphertext, and master key are denoted as P, C, and K, respectively.140

The formalized encryption process of this block cipher can be expressed as C = EK(P), which indicates141

that the ciphertext C results from encrypting the plaintext P for r rounds using the master key K. For142

iterative block ciphers, their encryption process EK(P) is derived by repeatedly applying the round143

function F(Ki,Pi), where Ki represents the round key for the i-th iteration, whereas Pi denotes the input to144

this iteration. Consequently, the encryption process of iterative block cipher can be represented as:145

EK(P) = FKr(Pr) ·FKr−1
(Pr−1) · ... ·FK2

(P2) ·FK1
(P1). (4)

Definition 1 (Plaintext Difference, Ciphertext Difference, and Key Difference.) For a block cipher,146

the plaintext difference ∆P of the plaintext pair (P,P′) is P·P′. Similarly, the ciphertext difference147

∆C of the ciphertext pair (C,C′) is C·C′, and the key difference ∆K of the key pair (K,K′) is K ·K′.148
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Definition 2 (Related-key Differential Characteristic.) Given a plaintext pair (P,P′) and a key pair149

(K,K′) with the difference of ∆P and ∆K, let (Ci,Ci
′) be the cipher pair obtained by encrypting the150

(P,P′) with (K,K′) for i rounds, the r-round related-key differential characteristic of the block cipher is151

(∆P,∆C1, ......,∆Cr−1,∆Cr), where ∆Ci =Ci ·Ci
′.152

Definition 3 (Related-key Differential Probability.) The related-key differential probability DP(∆P,∆K,∆C)153

of the block cipher E with the plaintext difference ∆P, master key difference ∆K, and ciphertext difference154

∆C is155

DP(∆P,∆K,∆C) =
#{Ek·∆K(x·∆P)·Ek(x) = ∆C}

2|P|+|K|
, (5)

where x ∈ F
|P|
2 and k ∈ F

|K|
2 .156

Definition 4 (Hamming Weight.) Assuming X ∈ F
n
2, the hamming weight of X is the number of non-zero157

bits within its binary representation. Mathematically, it can be formulated as ∑
n
i=1 Xi, where Xi denotes158

the i-th bit in the binary of X.159

2.4 Convolutional Neural Network160

Convolutional Neural Network (CNN), as a feed-forward neural network with convolutional structure, has161

been widely applied in numerous domains, including but not limited to image recognition Chauhan et al.162

(2018), video analysis Ullah et al. (2017), and natural language processing Yin et al. (2017), and among163

others. A convolutional neural network usually consists of the input layer, convolutional layer, pooling164

layer, fully connected layer, and output layer. The convolutional layer is used to extract features, the165

pooling layer is used to achieve data dimensionality reduction through subsampling, the fully connected166

layer integrates the previously extracted features for tasks such as classification or regression, and the167

output layer is responsible for producing the final results.168

LeNet-5 LeCun et al. (1998) is a convolutional neural network designed by Yann et al. in 1998 for169

handwritten digit recognition, and it is one of the most representative results of the early convolutional170

neural network. It consists of one input layer, one output layer, two convolutional layers, two pooling171

layers, and two fully connected layers, as shown in Figure 2. Its input is a image of 32×32. After two172

convolution and subsampling operations, this input becomes a feature map of 16×5×5. The convolution173

kernels are all 5×5 with stride 1. The subsampling function used for the pooling layers is maxpooling.174

Then it passes through two fully connected layers with sizes of 120 and 64 to reach the output layer.175

Figure 2. The architecture of LeNet-5 LeCun et al. (1998)

Later, based on LeNet-5, many improved convolutional neural networks have been proposed, such as176

AlexNet Krizhevsky et al. (2017), GoogleLeNet Szegedy et al. (2015), ResNet He et al. (2016), and so on.177

The main components used in this paper are convolutional layers, activation functions, fully connected178

layers, as well as the advanced architectures including Residual Network (ResNet) He et al. (2016) and179

Squeeze-and-Excitation Network (SENet) Hu et al. (2018).180

Convolution layer. Convolutional layers are the core component of convolutional neural networks. It181

is responsible for extracting features from input data through convolution operations. In a convolution182
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operations, a convolutional kernel (also known as a filter) continuously slides over the input feature map.183

At each step, it calculates the sum of the product of the values at each position and takes it as the value in184

the corresponding position on the output feature map.185

Activation function. In neural networks and deep learning, the activation function plays a crucial role in186

introducing nonlinear properties that enable the neural network to learn complex patterns in the data. The187

activation functions Sigmoid Little (1974) and Rectified Linear Unit (ReLU) Nair and Hinton (2010) are188

used in this paper. The Sigmoid function can map any real value to an output between 0 and 1. Therefore,189

it is a common choice for the output layer in binary classification problems. The ReLU function returns190

the input value itself for the positive inputs and zero for the negative inputs. It performs well in many191

deep learning tasks because of its effectiveness in mitigating the gradient vanishing problem. Their192

mathematical formulations are as follows:193

Sigmoid : f (x) =
1

1+ e−x
, ReLU : f (x) = max(0,x). (6)

Fully connected layer. The fully connected layer (also known as Dense Layer) is a fundamental element194

of neural networks. In this layer, every neuron establishes a connection to each neuron in the preceding195

layer. This connection ensures that all the outputs from the previous layer are the inputs to every neuron196

in the current layer. This structure allows the fully connected layer to execute a weighted combination of197

input features, effectively capturing the intricate relationships between them. For a single neuron in the198

fully connected layer, its output can be represented as σ (∑n
i=1 wi · xi +b), where n is the total number of199

neurons in the previous layer, σ represents the activation function, xi denotes the output of the i-th neuron200

in the previous layer, wi corresponds to the weight of the connection, and b is the bias of the neuron.201

Residual Network (ResNet). Residual Neural Network (ResNet) He et al. (2016) is an effective deep202

learning model that solves the problem of gradient vanishing and gradient explosion by introducing203

shortcut connections shown in Figure 3. In this structure, the gradient can directly pass to shallower layers204

even for very deep networks.205

Squeeze-and-Excitation Network (SENet). The Squeeze-and-Excitation (SE) block Hu et al. (2018) is a206

plug-and-play channel attention mechanism that can be integrated into any network, as shown in Figure 4.207

It can adjust the weights of each channel and improves the attention to important channels. In this paper,208

the SE block is directly integrated with the residual network to form the SE-ResNet architecture.209

Figure 3. The shortcut connections of ResNet He et al. (2016).
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Figure 4. The Squeeze-and-Excitation block of SENet Hu et al. (2018).

3 THE FRAMEWORK FOR DEVELOPING RELATED-KEY DIFFERENTIAL210

NEURAL DISTINGUISHERS TO SIMON AND SIMECK211

The development of related-key differential neural distinguisher consists of four steps: differences selec-212

tion, sample generation, network architecture design, distinguisher training and distinguisher evaluation,213

as shown in Figure 5. In this section, we first introduce how to use a difference to construct the basic214

related-key differential neural distinguishers for SIMON and SIMECK from these steps. Subsequently, we215

introduce an advanced technique to construct the enhanced related-key differential neural distinguisher216

using a pair of distinct differences.217

Figure 5. The framework of basic and enhanced related-key differential neural distinguishers

3.1 Basic Related-key Differential Neural Distinguishers218

Differences selection. Selecting an appropriate plaintext difference ∆P and a master key difference219

∆K for sample generation is a crucial step in the development of basic related-key differential neural220

distinguishers, since it significantly influences the features embodied within the samples. The study221

of Gohr et al. (2022); Bellini et al. (2023b) indicates that the differences that can yield the ciphertext222

differences with high bias scores br may be more suitable for constructing neural distinguishers. In the223

related-key scenario, the r-round exact bias score of ciphertext difference is defined as follows.224

Definition 5 (Exact bias score.) For a cipher primitive E :Fn
2×F

k
2 →F

n
2, the r-round bias score br(∆P,∆K)225

of the plaintext difference ∆P ∈ F
n
2 and master key difference ∆K ∈ F

k
2 is the sum of the biases of each bit226

position in the resulting ciphertext differences, i.e.,227

br(∆P,∆K) =
1

n

n−1

∑
j=0

!!!!!0.5−
∑X∈Fn

2,K∈Fk
2
(EK(X)·EK·∆K(X ·∆P)) j

2n+k

!!!!! . (7)
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However, due to the immense computational demands posed by the exhaustive enumeration of all228

possible plaintexts and keys, computing the exact bias score is impractical. Therefore, we have to229

adopt more efficient methods to do this work. One promising approach is to utilize statistical sampling230

techniques. By randomly selecting t samples from the plaintext and key space, we can obtain an231

approximate bias score �bt
r(∆P,∆K) as follow:232

�bt
r(∆P,∆K) =

1

n

n−1

∑
j=0

!!!!!0.5−
1

t

t−1

∑
i=0

(EKi
(Xi)·EKi·∆K(Xi ·∆P)) j

!!!!! . (8)

In addition, to mitigate the instance where certain differences have low bit bias in the initial few233

rounds but exhibit favorable bit bias in subsequent rounds, a practical strategy is to calculate the bias score234

from the initial round and adopt their weighted bias score as the final the final metric for evaluation. This235

approach can enhance the robustness of the differential evaluation. Specifically, the r-rounds weighted236

bias score SR(∆P,∆K) for a given plaintext difference ∆P and master key difference ∆K is the sum of the237

product of the number of rounds and their bias score. The mathematical expression is as follows:238

SR(∆P,∆K) =
R

∑
r=1

r×�bt
r(∆P,∆K). (9)

Sample generation. The related-key differential neural distinguisher is a supervised binary classifier.239

Thus, its dataset consists of positive and negative samples, labeled as 1 and 0, respectively. The positive240

samples are obtained by encrypting the plaintext pairs using the key pairs that exhibit the plaintext241

difference ∆P and key difference ∆K. In contrast, the negative samples are derived from encrypting the242

random plaintext pairs using the random key pairs.243

Following the work of Lu et al. (2024), we use 8 ciphertext pairs with boosted data formats to train the244

related-key differential neural distinguishers for SIMON and SIMECK. Specifically, the i-th (1 f i f 8)245

r-round ciphertext pair (Cl ,Cr,C
′
l ,C

′
r)i, derived from the i-th plaintext pair (P,P′)i and key pair (K,K′)i,246

can be extended to (∆r
L,∆

r
R,Cl ,Cr,C

′
l ,C

′
r,∆

r−1
R , p∆r−2

R )i, denoted as Ωi, where247





∆r
L =Cl ·C′

l ,

∆r
R =Cr ·C′

r,

f (x) = (x j α)» (x j β )· (x j γ),

∆r−1
R = f (Cr)·Cl · f (C′

r)·C′
l ,

p∆r−2
R = f ( f (Cr)·Cl)·Cr · f ( f (C′

r)·C′
l)·C′

r.

(10)

The label Y of the sample (Ω1∥Ω2∥...∥Ωs) can be expressed as248

Y (Ω1∥Ω2∥...∥Ωs) =

"
1, i f Pi ·P′

i = ∆P and Ki ·K′
i = ∆K,

0, else.
(11)

Network architecture. We evaluate the various neural network architectures for the SIMON and SIMECK,249

such as neural network architectures used in Gohr (2019), Bao et al. (2022), Lu et al. (2024) and Zhang250

et al. (2023b), the architecture shown in Figure 6 can achieve best accuracy under the same conditions. It251

consists of the following components:252

• Input Layer: For the SIMON and SIMECK with a block length of bl, the input of neural network is253

a tensor with a shape of (8×bl ×4,1).254

• Reshape Layer: This layer transforms the input tensor into a new shape of (8,bl ×8) to enhance255

the feature extraction for subsequent convolutional layers.256

• Conv-1: A convolutional layer with bl convolutional kernels of size 1, followed by a batch257

normalization layer and a ReLU activation function.258
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• Dense bl ×2: Two dense layers implemented sequentially to process the features extracted from259

the Conv-1. Each dense layer consists of bl neurons followed by a batch normalization layer and a260

ReLU activation function.261

• SE-ResNet × 5: A sequence of 5 SE-ResNet layers. Each SE-ResNet integrates the ResNet and262

SENet architectures and contains two convolutional layers with 3x3 kernels for feature extraction,263

followed by a batch normalization layer, a ReLU activation function, and a Squeeze-and-Excitation264

module. The features from different layers are merged by Multiply and Add operations.265

• Flatten: This layer flattens the multi-dimensional output from the SE-ResNet layer into a one-266

dimensional tensor.267

• Dense-128 × 2: Two fully connected layers with 128 neurons are used to connect all the features268

and send the output to the Sigmoid classifier in the subsequent layer.269

• Output: The final layer of the neural network is responsible for generating the final prediction270

result.271

Training and evaluation. The training process of a related-key differential neural distinguisher can be272

divided into two phases: the offline phase and the online phase. During the offline phase, the attacker273

aims to train a neural network that can effectively distinguish between positive and negative samples. To274

achieve this, the attacker first generates training samples and validation samples using selected plaintext275

difference ∆P and master key difference ∆K. The training samples are used to train the neural network,276

while the validation samples are used to evaluate the recognition ability of the neural network. Ultimately,277

we can determine whether we have successfully constructed an effective neural distinguisher based on278

whether its accuracy surpasses the threshold of 0.5.279

In the online phase, the neural distinguisher trained in the offline phase is employed to distinguish the280

ciphertext data generated by a block cipher or a random function. If the score of more than half of the281

samples exceeds 0.5, we consider the ciphertext data comes from the block cipher. Otherwise, these data282

are considered to originate from the random function.283

Figure 6. Overview of neural network architectures. BN: Batch Normalization. GAP: Global Average

Pooling.

Parameter setting. The number of training samples and validation samples used in this paper is 2×107
284

and 2×106. In addition, we set the number of epochs to 120, and each epoch contains multiple batches,285

each containing 30,000 samples. In order to adjust the learning rate more efficiently, we adopt the286

cyclic learning rate. Specifically, for the i-th epoch, its learning rate li is dynamically calculated by287

li = a+ (n−i) mod (n+1)
n

× (b−a), where a = 0.0001, b = 0.003, and n = 29. Moreover, we choose Adam288

Kingma and Ba (2014) as the optimizer and Mean Squared Error (MSE) as the loss function. To prevent289

the model from overfitting, we use L2 regularization with the parameter c of 0.00001.290
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3.2 Enhanced Related-key Differential Neural Distinguishers291

Motivation. Benamira et al. Benamira et al. (2021) found that Gohr’s neural distinguisher showed a292

superior recognition ability for the ciphertext pairs exhibiting truncated differences with high probability in293

the last two rounds, suggesting a potential understanding and learning of differential-linear characteristics294

in the ciphertext pairs. Subsequently, Gohr et al. Gohr et al. (2022) expanded their study to five different295

block, including SIMON, Speck Beaulieu et al. (2015), Skinny Beierle et al. (2016), Present Bogdanov et al.296

(2007), Katan De Canniere et al. (2009), and ChaCha Bernstein (2008). Notably, their research highlights297

the close connection between the accuracy of the neural distinguisher and the mean absolute distance of298

the ciphertext differential distribution and the uniform distribution. In light of these investigations, we299

enhance the basic differential neural distinguisher by using two distinct non-zero plaintext differences and300

master key differences, symbolically represented as (∆P,∆P′,∆K,∆K′).301

The primary rationale behind selecting two input differences instead of one or more stems from the302

objective of minimizing conflicts among the output differences arising from positive and negative samples.303

When an input difference is chosen, as the number of rounds increases, some output differences will tend304

to be uniformly distributed due to the inherent confusion and diffusion properties of the block cipher.305

This poses a great challenge for the neural network to distinguish them from the uniformly distributed306

negative samples. However, if the negative samples are generated from another good difference, the mean307

absolute distance between the positive and negative samples may become more significant, which can308

allow the neural network to distinguish them more effectively. There are two reasons for limiting the309

number of input differences to two rather than more: firstly, the input differences that can maintain their310

unique distribution across several rounds are rare; secondly, an increase in the variety of ciphertext data311

may heighten the likelihood of collisions.312

Differences selection. To develop an efficient and enhanced neural distinguisher, (∆P,∆P′,∆K,∆K′)313

needs to satisfy two pivotal requirements. Firstly, they must exhibit a favorable weighted bias score after314

several rounds, ensuring that the resulting ciphertext data possess distinct and discernible features. This315

can be straightforwardly accomplished by adopting the differential evaluation scheme detailed in Section316

3.1. Second, the disparity between the ciphertext data derived from the input differences (∆P,∆K) and317

(∆P′,∆K′) should be maximized, thereby ensuring that there are sufficient features for the neural network318

to leverage during the learning process.319

Inspired by the role of weighted bias scores, we try to directly utilize their relative weighted bias320

scores, denoted as SR(∆P,∆P′,∆K,∆K′), as a rough metric to evaluate the suitability of (∆P,∆P′,∆K,∆K′)321

for building the enhanced neural distinguishers, where322

 bt
r(∆P,∆P′,∆K,∆K′) =

1

n

n−1

∑
j=0

     
1

t

t−1

∑
i=0

(EKi·∆K(Xi ·∆P)−EKi·∆K′(Xi ·∆P′)) j

     . (12)

SR(∆P,∆P′,∆K,∆K′) =
R

∑
r=1

r× bt
r(∆P,∆P′,∆K,∆K′). (13)

However, the outcomes are disappointing, primarily due to the fact that the relative weighted bias scores323

among all combinations derived from two input differences with weighted high bias scores have a high324

degree of similarity.325

Fortunately, the differences that have high weighted bias scores are generally scarce. For a set of m326

input differences, the total number of potential combinations is
m×(m−1)

2
. Consequently, when m is small,327

the exhaustive approach that compares all potential combinations to identify the optimal one is feasible.328

Nonetheless, as the value of m increases, the number of combinations grows rapidly. Specifically, when m329

is 32, it is a daunting task to train 496 neural distinguishers. Given that the training of a single neural330

distinguisher takes about an hour and a half, the aggregate time required for this task approximating 31331

days, which is impractical and and unacceptable for most researchers. Therefore, the adoption of a more332

efficient and targeted strategy for selecting promising combinations becomes imperative.333

An available greedy strategy is to fix (∆P,∆K) as the optimal or top-ranked input difference that can334

be used to construct the most effective basic neural distinguisher. Subsequently, (∆P′,∆K′) is chosen from335
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the remaining differences with good weighted bias score. This strategy can ensure that the ciphertext data336

generated with (∆P,∆K) have discernible and distinctive features. In this paper, we adopt the exhaustive337

approach for SIMON32/64 and SIMON32/64. For the remaining variants, we adopt this greedy strategy to338

speed up the process of differences selection.339

Sample generation. The sample generation for enhanced neural distinguisher is different from method340

outlined for the basic neural distinguisher in Section 3.1. For the enhanced neural distinguisher, the341

positive and negative samples are ciphertext data generated from the plaintext pairs and key pairs with the342

differences (∆P, ,∆K) and (∆P′,∆K′). The label of a sample (Ω1∥Ω2∥...∥Ωs) is represented as343

Y (Ω1∥Ω2∥...∥Ωs) =

"
1, i f Pi ·P′

i = ∆P and Ki ·K′
i = ∆K,

0, i f Pi ·P′
i = ∆P′ and Ki ·K′

i = ∆K′.
(14)

The neural network architecture and the process of training and evaluation remain consistent with that in344

Section 3.1.345

4 RELATED-KEY DIFFERENTIAL NEURAL DISTINGUISHERS FOR ROUND-346

REDUCED SIMON AND SIMECK347

In this section, we adopt the framework and strategies in Section 3 to develop the basic and enhanced348

related-key differential neural distinguishers for SIMON and SIMECK.349

4.1 Differences Selection for SIMON350

The differences with Hamming weights of 1 and 2. For a block cipher with block length bl and key351

length kl, the number of input differences we need to evaluate is 2bl+kl . Even for the smallest variants,352

i.e., SIMON32/64 and SIMECK32/64, the number of differences that need to be evaluated reaches 296,353

which would take a lot of time. Therefore, we first evaluate the weighted bias scores for all the differences354

with Hamming weights of 1 and 2.355

For the 8-round SIMON32/64, there are 16 input differences with weighted bias scores around 11.0,356

which are ∆P = (0x0,0x1 j i),∆K = (0x0,0x0,0x0,0x1 j i), i ∈ [0,15]. This is followed by another357

16 input differences with a weighted bias score of about 10.8, specified as ∆P = (0x0,0x21 j i),∆K =358

(0x0,0x0,0x0,0x21 j i), i ∈ [0,15]. The score for all remaining input differences with Hamming359

weights of 1 and 2 is less than 10.00.360

For the 8-round SIMON48/96, there are 24 input differences with a Hamming weight of 1 that have a361

weighted bias score between 15.3 and 14.4: ∆P= (0x0,0x1j i), ∆K = (0x0,0x0,0x0,0x1j i), i∈362

[0,23]. For differences with a Hamming weight of 2, only 11 input differences yield weighted bias scores363

greater than 14.4. They are ∆P=(0x0,0x41000j i), ∆K =(0x0,0x0,0x0,0x41000j i), i∈ [0,6], ∆P=364

(0x0,0x21000 j i), ∆K = (0x0,0x0,0x0,0x21000 j i), i ∈ [0,2], and [∆P = (0x0,0x30000), ∆K =365

(0x0,0x0,0x0,0x30000).366

For the 8-round SIMON64/128, there are 32 differences with a Hamming weight of 1 that exhibit367

scores around 13.4. These differences are denoted as ∆P = (0x0,0x1 j i), ∆K = (0x0,0x0,0x0,0x1 j368

i), i ∈ [0,31]. After that, there are 32 differences with Hamming weight 2 that have scores close369

to 12.6 or 12.5, which are ∆P = (0x0,0x21 j i), ∆K = (0x0,0x0,0x0,0x21 j i), i ∈ [0,31], and370

∆P = (0x0,0x41 j i), ∆K = (0x0,0x0,0x0,0x41 j i), i ∈ [0,31], respectively. The scores for all371

remaining differences are below 12.2.372

Structural features of SIMON. For SIMON32/64, SIMON48/96, and SIMON64/128, the input differences373

with high weighted bias scores are those with the structure ∆P = (0x0,∆X) and ∆K = (0x0,0x0,0x0,∆X).374

This is because the plaintext differences and key differences cancel each other out in the first round. In the375

next three rounds, both plaintext difference and key difference are zero. Only in the fifth round, the key376

difference ∆X is re-injected, and the plaintext difference is still zero. The detailed differential propagation377

process is given in Table 3.378

The differences with a Hamming weight greater than 2. Based on the structural feature of SIMON,379

for differences with a weight greater than 2, we only consider the differences with a structure of ∆P =380
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Table 3. The related-key differential characteristic of SIMON with 4 key words.

Round ∆Pr ∆Kr

1 (0x0, ∆X) ∆X

2 (0x0, 0x0) 0x0

3 (0x0, 0x0) 0x0

4 (0x0, 0x0) 0x0

5 (0x0, 0x0) ∆X

(0x0,∆X) and ∆K = (0x0,0x0,0x0,∆X). For 8-round SIMON32/64, there are only 32 differences with381

Hamming weights of 3 that have weighted bias scores greater than 10.0. Specifically, they are ∆P =382

(0x0,0x43/0x421 j i), ∆K = (0x0,0x0,0x0,0x43/0x421 j i), i ∈ [0,15], with scores between 10.7383

and 10.3 . For the 8-round SIMON48/96 and SIMON64/128, the weighted bias scores for all differences384

with a Hamming weight greater than 2 are less than 14.4 and 12.2, respectively.385

4.2 Differences Selection for SIMECK386

The differences with Hamming weights of 1 and 2. Following the experiments on SIMON, we first387

explore the applicability of the input differences with Hamming weights of 1 and 2 in constructing388

neural distinguishers for SIMECK. For 10-round SIMECK32/64, 16 differences with a Hamming weight389

of 1, denoted as ∆P = (0x0,0x1 j i), ∆K = (0x0,0x0,0x0,0x1 j i), i ∈ [0,15], achieve the optimal390

weighted bias score around 16.3. Then there are 32 differences with Hamming weight of 2, ∆P =391

(0x0,0x3/0x11 j i), ∆K = (0x0,0x0,0x0,0x3/0x11 j i), i ∈ [0,15], with scores greater than 13.0.392

The rest of the differences are scored below 13.0.393

For the 12-round SIMECK48/96, there are 24 differences with a Hamming weight of 1, ∆P =394

(0x0,0x1 j i), ∆K = (0x0,0x0,0x0,0x1 j i), i ∈ [0,23], that have a weighted bias score between395

30.4 and 26.6. For differences with a Hamming weight of 2, there are 33 differences with scores396

greater than or equal to 26.6. They are ∆P = (0x0,0x30 j i), ∆K = (0x0,0x0,0x0,0x30 j i), i ∈397

[0,12], ∆P= (0x0,0x220j i), ∆K = (0x0,0x0,0x0,0x220j i), i∈ [0,8], ∆P= (0x0,0x140j i), ∆K =398

(0x0,0x0,0x0,0x140 j i), i ∈ [0,6], and ∆P = (0x0,0x480 j i), ∆K = (0x0,0x0,0x0,0x480 j i), i ∈399

[0,3]. The scores of all remaining differences are all less than 26.5.400

For the 15-round SIMECK64/128, the best weighted bias score around 30.1 is achieved by 32 differ-401

ences with a Hamming weight of 1, which are ∆P = (0x0,0x1 j i), ∆K = (0x0,0x0,0x0,0x1 j i), i ∈402

[0,31]. Then there are 32 differences, ∆P = (0x0,0x3 j i),∆K = (0x0,0x0,0x0,0x3 j i), i in[0,31],403

with scores close to 26.7. All the other differences have scores below 26.0.404

Structural features of SIMECK. Similar to SIMON, for all variants of SIMECK, the input differences that405

exhibit good weighted bias scores adhere to the format: ∆P = (0x0,∆X) and ∆K = (0x0,0x0,0x0,∆X).406

This is also due to the fact, as shown in Table 4, that the plaintext difference and key difference cancel407

each other out in the first round, and in the subsequent three rounds, both the plaintext difference and408

key difference are zero. It is not until the fifth round that the key difference ∆X ′, resulting from the »409

operation of ∆Kr j α and ∆Kr j β , is reintroduced.410

The differences with a Hamming weight greater than 2. For the 10-round SIMECK32/64 and 15-round411

SIMECK64/128, none of the differences with a Hamming weight of more than 2 yields a weighted bias412

score above 12.5 and 24.5, respectively. For 12-round SIMECK48/96, there are only three differences413

with a Hamming weight of 3 that have a score of 26.8, which are ∆P = (0x0,0x700/0xe00/0x2300),414

∆K = (0x0,0x0,0x0,0x700/0xe00/0x2300). The scores for all remaining differences with a Hamming415

weight of 3 or higher are all below 26.6.416

4.3 Basic Related-Key Differential Neural Distinguishers417

For the SIMON32/64, the 16 most effective 13-round related-key differential neural distinguishers are418

trained using the candidate differences ∆P = (0x0,0x21 j i),∆K = (0x0,0x0,0x0,0x21 j i) where i419
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Table 4. The related-key differential characteristic of SIMECK.

Round ∆Pr ∆Kr

1 (0x0, ∆X) ∆X

2 (0x0, 0x0) 0x0

3 (0x0, 0x0) 0x0

4 (0x0, 0x0) 0x0

5 (0x0, 0x0) ∆X ′

ranges from 0 to 15. Their accuracy is 0.543±0.002, while it is 0.525±0.005 for the distinguishers built420

from the candidate differences ∆P = (0x0,0x1 j i),∆K = (0x0,0x0,0x0,0x1 j i), i ∈ [0,15]. The best421

13-round neural distinguisher is constructed by ∆P = (0x0,0x2004),∆K = (0x0,0x0,0x0,0x2004) with422

an accuracy of 0.545. Its 12-round neural distinguisher achieves an accuracy of 0.678. Compared with the423

related-key differential neural distinguisher in Lu et al. (2024), our differential selection strategy enables424

us to yield the superior distinguisher, as shown in Table 1.425

For SIMON48/96, the best 13-round related-key differential neural distinguisher with an accuracy426

of 0.650 is constructed with ∆P = (0x0,0x200000) and ∆K = (0x0,0x0,0x0,0x200000). Its 12-round427

neural distinguisher can achieve an accuracy of 0.993. For the remaining 23 candidate differences with a428

Hamming weight of 1, the accuracy of their 13-round neural distinguishers is between 0.640 to 0.650. In429

contrast, when the candidate differences with Hamming weight 2 in Section 4.1 is adopted, the highest430

accuracy is only 0.593, which is lower than that of 24 candidate differences with a Hamming weight of 1.431

Moreover, the 3 candidate differences with a Hamming weight of 3 could not construct an effective neural432

distinguisher for 13 rounds.433

For SIMON64/128, the optimal 14-round related-key differential neural distinguisher is constructed434

using ∆P=(0x0,0x100000) and ∆K =(0x0,0x0,0x0,0x100000) with an accuracy of 0.580. The accuracy435

of its 13-round neural distinguisher is 0.840. In addition, the neural distinguishers built from the other 31436

candidate differences with a Hamming weight of 1 exhibit accuracy between 0.577 and 0.580. There are437

no valid 14-round neural distinguishers achieved when using the candidate differences with a Hamming438

weight of 2 in section 4.1.439

For SIMECK, the maximum number of rounds that can be constructed for related-key differen-440

tial neural distinguishers is 15 for SIMECK32/64, 19 for SIMECK48/96, and 22 for SIMECK64/128.441

Their optimal neural distinguishers are constructed using ∆P = (0x0,0x10/0x2/0x200000) and ∆K =442

(0x0,0x0,0x0,0x10/0x2/0x200000) with an accuracy of 0.547, 0.516, and 0.519, respectively. The443

accuracies of these neural distinguishers from the previous round are 0.668, 0.551, and 0.552, respectively.444

The neural distinguishers constructed from other candidate differences with a Hamming weight of 1445

have an accuracy very close to the best neural distinguisher above, with a maximum deviation of only446

0.002. The candidate differences with Hamming weights greater than 2 fail to construct effective neural447

distinguishers with the maximum number of rounds.448

4.4 Enhanced Related-Key Differential Neural Distinguishers449

For the SIMON32/64 and SIMECK32/64, we use all possible combinations of the superior candidate450

differences ∆P = (0x0,0x21/0x1 j i) and ∆K = (0x0,0x0,0x0,0x21/0x1 j i), i ∈ [0,15], to construct451

the related-key differential neural distinguisher. For SIMON32/64, there are 5 different (∆P,∆P′,∆K,∆K′)452

that can yield the 13-round related-key differential neural distinguisher with an accuracy of 0.567. They453

are454

"
∆P = (0x0,0x801/0x42/0x2100/2004/2100),∆K = (0x0,0x0,0x0,0x100000/0x2/0x200000),

∆P′ = (0x0,0x1002/0x84/0x1080/1002/4200),∆k′ = (0x0,0x0,0x0,0x400000/0x80000/0x200).

For the first two instances, the accuracy of their 12-round neural distinguisher is 0.740, while it is 0.738455

for the remaining three instances.456
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Table 5. The basic related-key differential neural distinguishers for SIMON and SIMECK.

Cipher Round ∆P ∆K Acc TPR TNR

SIMON32/64
12 (0x0, 0x2004) (0x0, 0x0, 0x0, 0x2004) 0.678 0.685 0.671

13 (0x0, 0x2004) (0x0, 0x0, 0x0, 0x2004) 0.545 0.537 0.552

SIMON48/96
12 (0x0, 0x200000) (0x0, 0x0, 0x0, 0x200000) 0.993 0.999 0.986

13 (0x0, 0x200000) (0x0, 0x0, 0x0, 0x200000) 0.650 0.660 0.640

SIMON64/128
13 (0x0, 0x100000) (0x0, 0x0, 0x0, 0x100000) 0.840 0.834 0.845

14 (0x0, 0x100000) (0x0, 0x0, 0x0, 0x100000) 0.580 0.575 0.585

SIMECK32/64
14 (0x0, 0x10) (0x0, 0x0, 0x0, 0x10) 0.668 0.640 0.695

15 (0x0, 0x10) (0x0, 0x0, 0x0, 0x10) 0.547 0.524 0.570

SIMECK48/96
18 (0x0, 0x2) (0x0, 0x0, 0x0, 0x2) 0.551 0.456 0.646

19 (0x0, 0x2) (0x0, 0x0, 0x0, 0x2) 0.516 0.411 0.611

SIMECK64/128
21 (0x0, 0x200000) (0x0, 0x0, 0x0, 0x200000) 0.552 0.413 0.691

22 (0x0, 0x200000) (0x0, 0x0, 0x0, 0x200000) 0.519 0.374 0.663

For SIMON48/96, SIMON64/128, SIMECK48/96, and SIMECK64/128, we consider combinations457

of the best differences in Table 5 and the remaining candidate differences of ∆P = (0x0,0x1 j i)458

and ∆K = (0x0,0x0,0x0,0x1 j i), i ∈ [0,15] to accelerate the construction of our enhanced neu-459

ral distinguishers. Specifically, for SIMON48/96, there are 3 pairs of differences that can yield 12-460

round and 13-round related-key differential neural distinguishers with accuracies of 0.997 and 0.696,461

respectively. These pairs are ∆P = (0x0,0x200000) and ∆K = (0x0,0x0,0x0,0x2000) together with462

∆P′ = (0x0,∆) and ∆K′ = (0x0,0x0,0x0,∆), where ∆ ∈ [0x400000,0x100000,0x40]. For SIMON64/128,463

SIMECK48/96, and SIMECK64/128, only one pair of differences can construct 14-round, 19-round,464

and 22-round related-key neural distinguishers with accuracies of 0.618, 0.523, and 0.526, respec-465

tively. They are ∆P = (0x0,0x100000/0x2/0x200000), ∆K = (0x0,0x0,0x0,0x100000/0x2/0x200000),466

∆P′ = (0x0,0x400000/0x80000/0x200), and ∆K′ = (0x0,0x0,0x0,0x400000/0x80000/0x200). The ac-467

curacies of 13-round, 18-round, and 21-round neural distinguishers for these pairs are 0.916, 0.572, and468

0.572, respectively, as shown in Table 6.469

4.5 Comparison and Discussion470

In this section, we first evaluate the differences with Hamming weights of 1 and 2 for SIMON and471

SIMECK, using weight bias scores. Then, we further evaluate the differences with Hamming weights472

greater than 2 based on the structural features of SIMON and SIMECK. Compared with the exhaustive473

approach of training a neural distinguisher for each difference in Lu et al. (2024), our scheme is more474

efficient.475

Using these differences, we can obtain 13-round basic related-key differential neural distinguishers,476

exhibiting superior accuracy than that in Lu et al. (2024), for SIMON32/64, as shown in Table 1. For477

the remaining variants, we can obtain the basic related-key differential neural distinguishers with the478

same accuracy as that in Lu et al. (2024). In addition, we obtain multiple basic related-key differential479

neural distinguishers that have the same or similar accuracy as the best distinguisher. When constructing480

differential neural distinguishers using our method, all the enhanced related-key differential neural481

distinguishers achieve higher accuracy than the basic related-key differential neural distinguishers for482

all the variants of SIMON and SIMECK. Compared with the results in Lu et al. (2024), our neural483

distinguishers all achieve different degrees of improvement in accuracy, as shown in Table 1.484

5 CONCLUSIONS AND FUTURE WORK485

In this paper, we first establish a comprehensive framework to construct basic related-key differential486

neural distinguishers for the SIMON and SIMECK. To choose an appropriate difference to construct this487
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Table 6. The enhanced related-key differential neural distinguishers for SIMON and SIMECK.

Cipher ∆P/∆P′ ∆K/∆K′ Round Acc TPR TNR

SIMON32/64
(0x0, 0x801) (0x0, 0x0, 0x0, 0x801) 12 0.740 0.729 0.750

(0x0, 0x1002) (0x0, 0x0, 0x0, 0x1002) 13 0.567 0.564 0.570

SIMON48/96
(0x0, 0x200000) (0x0, 0x0, 0x0, 0x200000) 12 0.997 0.998 0.996

(0x0, 0x400000) (0x0, 0x0, 0x0, 0x400000) 13 0.696 0.698 0.695

SIMON64/128
(0x0, 0x100000) (0x0, 0x0, 0x0, 0x100000) 13 0.916 0.910 0.922

(0x0, 0x400000) (0x0, 0x0, 0x0, 0x400000) 14 0.618 0.596 0.639

SIMECK32/64
(0x0, 0x80) (0x0, 0x0, 0x0, 0x80) 14 0.730 0.722 0.738

(0x0, 0x2000) (0x0, 0x0, 0x0, 0x2000) 15 0.568 0.553 0.582

SIMECK48/96
(0x0, 0x2) (0x0, 0x0, 0x0, 0x2) 18 0.572 0.572 0.572

(0x0, 0x80000) (0x0, 0x0, 0x0, 0x80000) 19 0.523 0.527 0.518

SIMECK64/128
(0x0, 0x200000) (0x0, 0x0, 0x0, 0x200000) 21 0.572 0.580 0.563

(0x0, 0x200) (0x0, 0x0, 0x0, 0x200) 22 0.526 0.523 0.529

distinguisher, we utilize weighted bias scores to assess the applicability of various differences. Moreover,488

we introduce an innovative method that incorporates two distinct differences into the neural distinguisher,489

resulting in a more robust and effective neural distinguisher. Compared with the results in Lu et al. (2024),490

we successfully improve the accuracy of the related-key differential neural distinguisher for both SIMON491

and SIMECK. This enhancement is evident in Table 1, highlighting the effectiveness of our proposed492

techniques.493

Furthermore, we envision several promising directions for future research. Firstly, our framework494

can be easily extended to other block ciphers. Secondly, the integration of advanced neural network495

architectures and training techniques could yield even more powerful neural distinguishers. With the496

continuous development of deep learning, emerging technologies can provide opportunities for innovation497

and advancement in cryptanalysis.498
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