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At CRYPTO 2019, Gohr pioneered the application of deep learning to differential cryptanalysis and
successfully attacked the 11-round NSA block cipher Speck32/64 with a 7-round and an 8-round single-
key differential neural distinguisher. Subsequently, Lu et al. presented the improved related-key
differential neural distinguishers against the \simon{} and \simeck{}. Following this work, we provide a
framework to construct the enhanced related-key differential neural distinguisher for \simon{} and
\simeck{}. In order to select input differences efficiently, we introduce a method that leverages weighted
bias scores to approximate the suitability of various input differences. Building on the principles of the
basic related-key differential neural distinguisher, we further propose an improved scheme to construct
the enhanced related-key differential neural distinguisher by utilizing two input differences, and obtain
superior accuracy than lu et al. for both \simon{} and \simeck{}.

Specifically, our meticulous selection of input differences yields significant accuracy improvements of
$3\%$ and $1.9\%$ for the 12-round and 13-round basic related-key differential neural distinguishers of
\simon{32/64}. Moreover, our enhanced related-key differential neural distinguishers surpass the basic
related-key differential neural distinguishers. For 13-round \simon{32/64}, 13-round \simon{48/96}, and
14-round \simon{64/128}, the accuracy of their related-key differential neural distinguishers increases
from 0.545, 0.650, and 0.580 to 0.567, 0.696, and 0.618, respectively. For 15-round \simeck{32/64}, 19-
round \simeck{48/96}, and 22-round \simeck{64/128}, the accuracy of their neural distinguishers is
improved from 0.547, 0.516, and 0.519 to 0.568, 0.523, and 0.526, respectively. The raw data and code
are available at: \url{https://doi.org/10.5281/zenodo.11178441}.
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ABSTRACT

At CRYPTO 2019, Gohr pioneered the application of deep learning to differential cryptanalysis and
successfully attacked the 11-round NSA block cipher Speck32/64 with a 7-round and an 8-round single-
key differential neural distinguisher. Subsequently, Lu et al. presented the improved related-key differential
neural distinguishers against the SIMON and SIMECK. Following this work, we provide a framework to
construct the enhanced related-key differential neural distinguisher for SIMON and SIMECK. In order
to select input differences efficiently, we introduce a method that leverages weighted bias scores to
approximate the suitability of various input differences. Building on the principles of the basic related-key
differential neural distinguisher, we further propose an improved scheme to construct the enhanced
related-key differential neural distinguisher by utilizing two input differences, and obtain superior accuracy
than lu et al. for both STMON and SIMECK.

Specifically, our meticulous selection of input differences yields significant accuracy improvements
of 3% and 1.9% for the 12-round and 13-round basic related-key differential neural distinguishers of
SIMON32/64. Moreover, our enhanced related-key differential neural distinguishers surpass the basic
related-key differential neural distinguishers. For 13-round s1MON32/64, 13-round sIMON48/96, and
14-round STMONG64/128, the accuracy of their related-key differential neural distinguishers increases from
0.545, 0.650, and 0.580 to 0.567, 0.696, and 0.618, respectively. For 15-round sTMECK32/64, 19-round
SIMECK48/96, and 22-round SIMECK64/128, the accuracy of their neural distinguishers is improved from
0.547, 0.516, and 0.519 to 0.568, 0.523, and 0.526, respectively. The raw data and code are available at:
https://doi.org/10.5281/zenodo.11178441.

1 INTRODUCTION

In recent years, with the wide application of wireless sensor networks (WSN) and radio frequency
identification (RFID) technology in various industries, the data security problem of these resource-
constrained devices have become more and more prominent. As a cryptographic solution that can achieve
a good balance between security and performance under limited resources, lightweight block ciphers are
widely used to protect data security in various resource-constrained devices. The security of block ciphers
is closely related to the security of data. In this context, evaluating the security properties of these ciphers
has become a popular research topic in the field of computer science and cryptography. Among many
cryptanalysis techniques, differential cryptanalysis, proposed by Biham and Shamir in Biham and Shamir
(1991Db), is one of the most commonly used methods for evaluating the security of block ciphers. This
technique focuses on the propagation of plaintext differences during the encryption.

In traditional differential cryptanalysis, the core task of differential cryptanalysis is to find a differential
characteristic with high probability. Initially, this task was achieved by manual derivation, which required
a lot of effort and time. At EUROCRYPT 1994, Matsui Matsui (1994) presented a branch-and-bound
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method for this task, which replaced manual derivation with automated search techniques for the first time.
However, for the block ciphers with large sizes, this method is insufficient to provide useful differential
characteristics. This prompts cryptographers to adopt more efficient automated search tools for searching
the differential characteristic with high probability, including Mixed Integer Linear Programming (MILP)
Sun et al. (2014); Bellini et al. (2023a); Mouha et al. (2012), Constraint Programming (CP) Gerault et al.
(2016); Sun et al. (2017a), and Boolean satisfiability problem or satisfiability modulo theories (SAT/SMT)
Sun et al. (2017b); Lafitte (2018).

In recent years, with the rapid de «a')Hpment of deep learning, cryptanalysts have begun to explore how
to harness its power for differential cryptanalysis. At CRYPTO 2019, Gohr Gohr (2019) constructed an 8-
round differential neural distinguishers by leveraging neural networks to learn the differential properties of
block ciphers SPECK32/64 and successfully carried out an 11-round key recovery attack. This pioneering
research significantly accelerated the integration of deep learning and differential cryptanalysis. Since this
study, the differential neural distinguisher has been widely applied to various block ciphers in single-key
and related-key scenarios, including but not limited to SIMON Bao et al. (2022); Lu et al. (2024); Bellini
et al. (2023b), SIMECK Zhang et al. (2023a); Lu et al. (2024), PRESENT Jain et al. (2020); Bellini et al.
(2023b); Zhang et al. (2023b), GIFT Shen et al. (2024), ASCON Shen et al. (2024), and others. In this
paper, we focus on the related-key differential neural distinguishers for STMON and SIMECK.

So far, there are many studies exploring the differential neural distinguishers for STMON and SIMECK
ciphers, such as Bao et al. (2022); Zhang et al. (2023a); Wang et al. (2022); Seong et al. (2022); Gohr
et al. (2022); Lyu et al. (2022); Lu et al. (2024). However, most of them focused on the single-key
scenario, until the research of Lu et al. Lu et al. (2024) broke this trend. They not only improved
the accuracy of their single-key differential neural distinguishers by using the enhanced data format
(A}, AR, C, Cr,C;,CL,AIr{l, pA;{Z), but also constructed the related-key differential neural distinguishers
for them. The experimental results show that the related-key differential neural distinguishers outperforms
the single-key differential neural distinguishers in terms of the number of analyzed rounds and accuracy.
In the single-key scenario, Lu et al. exhaustively evaluated the input differences with Hamming weights of
1, 2, and 3 by training a differential neural distinguisher for each difference. However, for the related-key
scenario, this task has not been explored in depth due to the huge number of input differences that need
to be evaluated. Even for the smallest variants SITMON32/64 and SIMECK32/64, the number of input
differences with Hamming weights of 1, 2, and 3 already reaches about 200 million. Therefore, it is
impractical to train a neural distinguisher for each difference. In this paper, we aim to further address this
challenge.

1.1 Our Contributions

In this paper, we first present a framework to construct the basic related-key differential neural distinguish-
ers for SIMON and SIMECK. This framework is comprised of five components: differences selection,
sample generation, network architecture, distinguisher training, and distinguisher evaluation. Subse-
quently, we provide a method for approximately assessing the suitability of different input dif " nces
with weighted bias scores, which significantly accelerates the process of differences selection. Gdiinetic-
ulous selection of the input difference can make the accuracy of the basic related-key differential neural
distinguisher match or surpass previous results. In particular, the accuracy for the 12-round and 13-round
distinguishers of STMON32/64 is improved from 0.648 and 0.526 to 0.678 and 0.545, respectively, as
shown in Table 1.

Furthermore, based on the principles of the basic related-key differential neural distinguishers, we
propose an enhanced scheme that harnesses two distinct input differences to construct a more powerful
related-key differential neural distinguisher for STMON and SIMECK. Specifically, for the 13-round
SIMON32/64, 13-round STMON48/96, and 14-round SIMON64/128, their accuracy is raised from 0.545,
0.650, and 0.580 to 0.567, 0.696, and 0.618, respectively. Similarly, the neural distinguishers for 15-
round SIMECK32/64, 19-round SIMECK48/96, and 22-round SIMECK64/128 also showed significant
improvements in accuracy, rising from 0.547, 0.516, and 0.519 to 0.568, 0.523, and 0.526, respectively.
All these results illustrate the effectiveness and robustness of our scheme.

1.2 Organization

Section 2 commences by introducing the foundational knowledge about the related-key differential neural
distinguisher. Following this, Section 3 comprehensively explores the construction of basic and enhanced
neural distinguishers for STMON and SIMECK. Building upon this framework, Section 4 constructs
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Table 1. A summary of related-key neural distinguishers against STMON32/64, S TMON48/96,
SIMONG64/128, SIMECK32/64, SIMECK48/96, and SIMECK64/128 using 8 pairs of ciphertexts as a
sample. Acc: Accuracy, TPR: True Positive Rate, TNR: True Negative Rate. RKND: The basic
related-key differential neural distinguisher trained with a difference. RKND': The enhanced related-key
differential neural distinguisher trained using a pair of differences.

Cipher Round Model Acc TPR  TNR Source

RKND 0.648 0.652 0.644 Luetal. (2024)
12 RKND 0.678 0.685 0.671 Sect. 4.3
RKND'  0.740 0.729 0.750 Sect. 4.4

SIMON32/64

RKND 0.526 0.544 0.508 Luetal. (2024)

13 RKND 0.545 0.537 0.552 Sect. 4.3

RKND'  0.567 0.564 0.570 Sect. 4.4

1 RKND 0993 0.999 0.986 Sect. 4.3

STMONAS/96 RKND' 0997 0.998 0.996 Sect. 4.4

13 RKND 0.650 0.660 0.640 Sect. 4.3

RKND' 0.696 0.698 0.695 Sect. 4.4
13 RKND 0.840 0.839 0.841 Luetal. (2024)

S IMONGA/128 RKND' 0916 0910 0.922 Sect. 4.4
14 RKND 0.579 0.589 0.568 Luetal. (2024)

RKND' 0.618 0.596 0.639 Sect. 4.4
14 RKND 0.668 0.643 0.693 Luetal. (2024)

S IMECK32/64 RKND'  0.730 0.722 0.738 Sect. 4.4
5 RKND 0.547 0.517 0.576 Luetal. (2024)

RKND' 0.568 0.553 0.582 Sect. 4.4

18 RKND 0.551 0.456 0.646 Sect. 4.3

S ITMECKA8/96 RKND' 0.572 0572 0.572 Sect. 4.4

19 RKND 0.516 0.411 0.611 Sect. 4.3

RKND' 0523 0.527 0.518 Sect. 4.4
21 RKND 0.552 0425 0.679 Luetal. (2024)

S IMECK64/128 RKND' 0.572 0.580 0.563 Sect. 4.4
2 RKND 0.518 0.391 0.646 Luetal. (2024)

RKND' 0.526 0523 0.529 Sect. 4.4
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the improved related-key differential neural distinguishers for STMON and SIMECK. Finally, Section 5
concludes this paper.

2 PRELIMINARIES

In this section, we first present the pivotal notations in Table 2. Following this, we offer a succinct
overview of the block ciphers SIMON and SIMECK, along with the basic concepts about related-key
differential cryptanalysis and convolutional neural networks.

2.1 Notations
Table 2 illustrates the notations utilized in this paper.

Table 2. Notations

Notation Description

& Bit-wise XOR operation

© Bit-wise AND operation

| Concatenation

P Plaintext

C Ciphertext

K Master key

AP Plaintext difference

AC Ciphertext difference

AK Master key difference

AP, The r-round input difference
AC, The r-round ciphertext difference
AK, The r-round key difference

2.2 A Brief Description of s1MON and SIMECK Ciphers

SIMON Beaulieu et al. (2015) is a lightweight block cipher, designed by the National Security Agency
(NSA) in 2013. It employs a Feistel structure, making it suitable for resource-constrained environments.
In addition, it supports various block lengths and key sizes, such as STMON32/64, SITMON48/96, and
SIMONG64/128, where the first number represents the block length and the second number denotes the key
size. The round function of STMON is composed of three simple operations: bit-wise XOR @, bit-wise
AND ©, and circular left shift <« operations, as shown in Figure 1. The round function can be formally
defined as:

{L, =(Lo1 a)O (L1 K B))®R_1®(L— KY) Dkr—1, )

Rr - erlv

where o, B and y represent the fixed rotation constants that are utilized in the circular left shift operation.
For SIMON, the values of these constants are set to 1, 8, and 2, respectively. Given a master key K
that comprises 4 key words, denoted as K = (K3, ...,K],Kp), the round key K, is generated through a
linear key schedule. This process incorporates predefined constants C and a series of constants (Z;);, the
generation follows the scheme outlined below:

{T = (Kit3 3> 3) @ K1, 2

Kiys=Cd(Z))idKidT & (T > 1).
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The SIMECK Yang et al. (2015) cipher, presented at CHES in 2015, is a variant of the STMON. It
retains the same Feistel structure and round function as SIMON, but distinguishes itself through the values
of a, B, and 7y, which are set to 0, 5, and 1, respectively. In addition, STMECK uses the round function to
generate the round keys K, for a given master key K = (f2,11,1,ko), as explained below:

kiv1 =1, 3)
i3 =koLo(l <K5)d (< 1)®Co(Z));.

where C and (Z;); are the predefined constants. For more details, please refer to Yang et al. (2015).

] Ry
B o
-

(<)
N

N\

N
N\

D kr-1

L, R,

Figure 1. The round function of SIMON and SIMECK.

2.3 Related-key Differential Cryptanalysis

In 1990, Biham et al. Biham and Shamir (1991b) introduced a groundbreaking attack strategy called
differential cryptanalysis. This cryptanalysis technique can distinguish the block cipher from the random
permutation by studying the propagation properties of the plaintext difference AP throughout the encryp-
tion. Due to its simple principle and excellent efficacy, this approach quickly attracted significant attention
among the cryptography community Biham and Shamir (1991a, 1992); Biham and Dunkelman (2007).

In lightweight block ciphers, the key schedule holds paramount importance, as it is responsible for
generating and updating the round keys. To delve into the security of this vital component, Biham et
al. Biham (1994) proposed a pioneering related-key cryptanalysis method in 1994, which studies the
security of block cipher under different keys. The related-key differential cryptanalysis method combines
the principles of differential cryptanalysis and related-key cryptanalysis. It investigates differential
propagation under different keys instead of the same key. The basic concepts related to block cipher and
related-key differential cryptanalysis are summarized as follows.

Assuming £ is he r-round encryption procedure employed by a block cipher with the block length bl
and the key length &/, and the plaintext, ciphertext, and master key are denoted as P, C, and K, respectively.
The formalized encryption process of this block cipher can be expressed as C = Ek(P), which indicates
that the ciphertext C results from encrypting the plaintext P for r rounds using the master key K. For
iterative block ciphers, their encryption process Ex(P) is derived by repeatedly applying the round
function F (K, P;), where K; represents the round key for the i-th iteration, whereas P; denotes the input to
this iteration. Consequently, the encryption process of iterative block cipher can be represented as:

Ex(P) =Fx,(P.) - Fk, ,(Pr—1) ... - Fx, (P2) - Fx, (P1). ()
nition 1 (Plaintext Difference, Ciphertext Difference, and Key Difference.) For a block cipher,

the plaintext difference AP of the plaintext pair (P,P') is P® P'. Similarly, the ciphertext difference
AC of the ciphertext pair (C,C") is C®C', and the key difference AK of the key pair (K,K') is K®K'.
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19 Definition 2 (Related-key Differential Characteristic.) Giver @ slaintext pair (P,P') and a key pair
w0 (K,K') with the difference of AP and AK, let (C;,C;) be the cipher pair obtained by encrypting the
w51 (P, P") with (K,K') for i rounds, the r-round related-key differential characteristic of the block cipher is
12 (AP,ACY,...... ,AC,_1,AC,), where AC; = C; DC;.

153 Definition 3 (Related-key Differential Probability.) The related-key differential probability DP(AP,AK,AC)
154 of the block cipher E with the plaintext difference AP, master key difference AK, and ciphertext difference
155 AC is

_ #H{Ekeak (x©AP) @ Ei(x) = AC}

DP(AP,AK,AC) = T 5)

156 where x € Flzp‘ and k € F‘ZK‘.

157 Definition 4 (Hamming Weight.) Assuming X € %, the hamming weight of X is the number of non-zero
158 bits within its binary representation. Mathematically, it can be formulated as ;| X;, where X; denotes
159 the i-th bit in the binary of X.

w0 2.4 Convolutional Neural Network

161 Convolutional Neural Network (CNN), as a feed-forward neural network with convolutional structure, has
12 been widely applied in numerous domains, including but not limited to image recognition Chauhan et al.
163 (2018), video analysis Ullah et al. (2017), and natural language processing Yin et al. (2017), and among
s others. A convolutional neural network usually consists of the input layer, convolutional layer, pooling
s layer, fully connected layer, and output layer. The convolutional layer is used to extract features, the
s pooling layer is used to achieve data dimensionality reduction through subsampling, the fully connected
17 layer integrates the previously extracted features for tasks such as classification or regression, and the
s output layer is responsible for producing the final results.

169 LeNet-5 LeCun et al. (1998) is a convolutional neural network designed by Yann et al. in 1998 for
170 handwritten digit recognition, and it is one of the most representative results of the early convolutional
171 neural network. It consists of one input layer, one output layer, two convolutional layers, two pooling
172 layers, and two fully connected layers, as shown in Figture [l. Its input is a image of 32 x 32. After two
173 convolution and subsampling operations, this input becomes a feature map of 16 x 5 x 5. The convolution
17+ kernels are all 5 x 5 with stride 1. The subsampling function used for the pooling layers is maxpooling.
175 Then it passes through two fully connected layers with sizes of 120 and 64 to reach the output layer.

Convolutional layer Pooling layer
16 x10x 10 16 xX5%x5 .
Convolutional layer [l o Full connection layer
6x32x32 Pooling layer DD 1% 120\ Full connection layer
INPUT 6%x14%14 o T 1x64
32x32 o OPTPUT
1x10
[——
D:\T\ s
Convolutions Maxpooling , — T Full connection
T T X Full connection
Convolutions X Full connection
Maxpooling
Figure 2. The architecture of LeNet-5 LeCun et al. (1998)
176 Later, based on LeNet-5, many improved convolutional neural networks have been proposed, such as

177 AlexNet Krizhevsky et al. (2017), GoogleLeNet Szegedy et al. (2015), ResNet He et al. (2016), and so on.
172 The main components used in this paper are convolutional layers, activation functions, fully connected
179 layers, as well as the advanced architectures including Residual Network (ResNet) He et al. (2016) and
10 Squeeze-and-Excitation Network (SENet) Hu et al. (2018).

1s1  Convolution layer. Convolutional layers are the core component of convolutional neural networks. It
12 1S responsible for extracting features from input data through convolution operations. In a convolution
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operations, a convolutional kernel (also known as a filter) continuously slides over the input feature map.
At each step, it calculates the sum of the product of the values at each position and takes it as the value in
the corresponding position on the output feature map.

Activation function. In neural networks and deep learning, the activation function plays a crucial role in
introducing nonlinear properties that enable the neural network to learn complex patterns in the data. The
activation functions Sigmoid Little (1974) and Rectified Linear Unit (ReLU) Nair and Hinton (2010) are
used in this paper. The Sigmoid function can map any real value to an output between 0 and 1. Therefore,
it is a common choice for the output layer in binary classification problems. The ReLU function returns
the input value itself for the positive inputs and zero for the negative inputs. It performs well in many
deep learning tasks because of its effectiveness in mitigating the gradient vanishing problem. Their
mathematical formulations are as follows:

Sigmoid : f(x) = I +1e*"’ ReLU: f(x) = max(0,x). (6)

Fully connected layer. The fully connected layer (also known as Dense Layer) is a fundamental element
of neural networks. In this layer, every neuron establishes a connection to each neuron in the preceding
layer. This connection ensures that all the outputs from the previous layer are the inputs to every neuron
in the current layer. This structure allows the fully connected layer to execute a weighted combination of
input features, effectively capturing the intricate relationships between them. For a single neuron in the
fully connected layer, its output can be represented as o-( . w; - x; + b), where n is the total number of
neurons in the previous layer, ¢ represents the activatiou tunction, x; denotes the output of the i-th neuron
in the previous layer, w; corresponds to the weight of the connection, and b is the bias of the neuron.

Residual Network (ResNet). Residual Neural Network (ResNet) He et al. (2016) is an effective deep
learning model that solves the problem of grad ent vanishing and gradient explosion by introducing
shortcut connections shown in Figure 3. In this suucture, the gradient can directly pass to shallower layers
even for very deep networks.

Squeeze-and-Excitation Network (SENet). The Squeeze-and-Excitation (SE) block Hu et al. (2018) is a
plug-and-play channel attention mechanism that can be integrated into any network, as shown in Figure 4.
It can adjust the weights of each channel and improves the attention to important channels. In this paper,
the SE block is directly integrated with the residual network to form the SE-ResNet architecture.

Previous input

X
\ 4
F(x) Stacked layers X
identity
y=F(x)+x

Figure 3. The shortcut connections of ResNet He et al. (2016).

718
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Figure 4. The Squeeze-and-Excitation block of SENet Hu et al. (2018).

20 3 THE FRAMEWORK FOR DEVELOPING RELATED-KEY DIFFERENTIAL
211 NEURAL DISTINGUISHERS TO s1MON AND SIMECK

212 The development of related-key differential neural distinguisher consists of four steps: differences selec-
213 tion, sample generation, network architecture design, distinguisher training and distinguisher evaluation,
214 as shown in Figure 5. In this section, we first introduce how to use a difference to construct the basic
215 related-key differential neural distinguishers for STMON and SIMECK from these steps. Subsequently, we
216 introduce an advanced technique to construct the enhanced related-key differential neural distinguisher
217 using a pair of distinct differences.

[ Differences selection
[ Sample generation

l

J
]
[ Network architecture design ]
J

[ Distinguisher training

{ Distinguisher evaluation ]

Figure 5. The framework of basic and enhanced related-key differential neural distinguishers

2s 3.1 Basic Related-key Differential Neural Distinguishers

219 Differences selection. Selecting an appropriate plaintext difference AP and a master key difference
20 AK for sample generation is a crucial step in the development of basic related-key differential neural
221 distinguishers, since it significantly influences the features embodied within the samples. The study
222 of Gohr et al. (2022); Bellini et al. (2023b) indicates that the differences that can yield the ciphertext
223 differences with high bias scores Z -11ay be more suitable for constructing neural distinguishers. In the
224 related-key scenario, the r-round exact bias score of ciphertext difference is defined as follows.

s Definition 5 (Ex ¢t bias score.) Fora cipher primitive E : s x F& — %, the r-round bias score b,(AP,AK)
226 Of the plaintext dijjerence AP € I and master key difference AK € Fé is the sum of the biases of each bit
227 position in the resulting ciphertext differences, i.e.,

1 Yxem kept (Ex(X) @ Exonk (X © AP));
br(APAK) = — Y 05— 225 R . D
=0
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However, due to the immense computational demands posed by the exhaustive enumeration of all
possible plaintexts and keys, computing the exact bias score is impractical. Therefore, we have to
adopt more efficient methods to do this work. One promising approach is to utilize statistical s ling
techniques. By randomly selecting ¢ samples from the plaintext and key space, we can obtdin an
approximate bias score b.(AP,AK) as follow:

" 1 n—1 1 —1
bl(AP,AK) = - Y 05— " ) (Ex, (X)) & Exionk (X; ©AP)) | @®)
=0 i=0

In addition, to mitigate the instance where certain differences have low bit bias in the initial few
rounds but exhibit favorable bit bias in subsequent rounds, a practical strategy is to calculate the bias score
from the initial round and adopt their weighted bias score as the final the final metric for evaluation. This
approach can enhance the robustness of the differential evaluation. Specifically, the r-rounds weighted
bias score Sz (4/" AK) for a given plaintext difference AP and master key difference AK is the sum of the
product of the number of rounds and their bias score. The mathematical expression is as follows:

R ~
SR(AP,AK) = Y r x b,(AP,AK). ©)

r=1

Sample generation. The related-key differential neural distinguisher is a supervised binary classifier.
Thus, its dataset consists of positive and negative samples, labeled as 1 and 0, respectively. The positive
samples are obtained by encrypting the plaintext pairs using the key pairs that exhibit the plaintext
difference AP and key difference AK. In contrast, the negative samples are derived from encrypting the
random plaintext pairs using the random key pairs.

Following the work of Lu et al. (2024), we use 8 ciphertext pairs with boosted data formats to train the
related-key differential neural distinguishers for STMON and STMECK. Specifically, the i-th (1 <i < 8)
r-round ciphertext pair (C;,C,,C},C,.);, derived from the i-th plaintext pair (P,P’'); and key pair (K,K’);,
can be extended to (A}, Ay, C;,C,,C),Cl A , pAL2);, denoted as Q;, where

A =Ca(,
Ap=C,oCl,
fO=x<xa)oxkp)ox<ky), (10)

AT =f(ChaCaf(C)ad,
PAR = F(F(C)eC)®Ca f(f(C)aC) aC.

The label ¥ of the sample (Q1]|Q:|...[|€s) can be expressed as

1, ifPi@Pli:APandKi@K/i:AK,

11
0, else. an

Y(Q1Q]--.[1€) :{

Network architecture. We evaluate the various neural network architectures for the STMON and SIMECK,
such as neural network architectures used in Gohr (2019), Bao et al. (2022), Lu et al. (2024) and Zhang
et al. (2023b), the architecture shown in Figure 6 can achieve best accuracy under the same conditions. It
consists of the following components:
* Input Layer: For the STMON and SIMECK with a block length of b/, the input of neural network is
a tensor with a shape of (8 x bl x 4,1).
* Reshape Layer: This layer transforms the input tensor into a new shape of (8,b/ x 8) to enhance
the feature extraction for subsequent convolutional layers.
* Conv-1: A convolutional layer with bl convolutional kernels of size 1, followed by a batch
normalization layer and a ReLU activation function.
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* Dense bl x 2: Two dense layers implemented sequentially to process the features extracted from
the Conv-1. Each dense layer consists of bl neurons followed by a batch normalization layer and a
ReLU activation function.

* SE-ResNet x 5: A sequence of 5 SE-ResNet layers. Each SE-ResNet integrates the ResNet and
SENet architectures and contains two convolutional layers with 3x3 kernels for feature extraction,
followed by a batch normalization layer, a ReLU activation function, and a Squeeze-and-Excitation
module. The features from different layers are merged by Multiply and Add operations.

* Flatten: This layer flattens the multi-dimensional output from the SE-ResNet layer into a one-
dimensional tensor.

* Dense-128 x 2: Two fully connected layers with 128 neurons are used to connect all the features
and send the output to the Sigmoid classifier in the subsequent layer.

* Qutput: The final layer of the neural network is responsible for generating the final prediction
result.

Training and evaluation. The training process of a related-key differential neural distinguisher can be
divided into two phases: the offline phase and the online phase. During the offline phase, the attacker
aims to train a neural network that can effectively distinguish between positive and negative samples. To
achieve this, the attacker first generates training samples and validation samples using selected plaintext
difference AP and master key difference AK. The training samples are used to train the neural network,
while the validation samples are used to evaluate the recognition ability of the neural network. Ultimately,
we can determine whether we have successfully constructed an effective neural distinguisher based on
whether its accuracy surpasses the threshold of 0.5.

In the online phase, the neural distinguisher trained in the offline phase is employed to distinguish the
ciphertext data generated by a block cipher or a random function. If the score of more than half of the
samples exceeds 0.5, we consider the ciphertext data comes from the block cipher. Otherwise, these data
are considered to originate from the random function.

Input
EN.
SE-ResNet oiVer

==

Convix1

i«

—
A

{ Conv-1 ]4— BN

ReLU

Dense-bix2

1

Dense (x)

BN

oy
o

[ Dense-x ]4—

SE-ResNetx5

ReLU

Multiply

-

hr
=

Figure 6. Overview of neural network architectures. BN: Batch Normalization. GAP: Global Average
Pooling.

Parameter setting. The nur o1 of training samples and validation samples used in this paper is 2 x 107
and 2 x 10°. In addition, we set the number of epochs to 120, and each epoch contains multiple batches,
each containing 30,000 samples. In order to adjust the learning rate more efficiently, we adopt the
cyclic learning rate. Specifically, for the i-th epoch, its learning rate /; is dynamically calculated by
Li=a+ M x (b—a), where a = 0.0001, b = 0.003, and n = 29. Moreover, we choose Adam
Kingma and Ba (2014) as the optimizer and Mean Squared Error (MSE) as the loss function. To prevent
the model from overfitting, we use L2 regularization with the parameter ¢ of 0.00001.
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3.2 Enhanced Related-key Differential Neural Distinguishers

Motivation. Benamira et al. Benamira et al. (2021) found that Gohr’s neural distinguisher showed a
superior recognition ability for the ciphertext pairs exhibiting truncated differences with high probability in
the last two rounds, suggesting a potential understanding and learning of differential-linear characteristics
in the ciphertext pairs. Subsequently, Gohr et al. Gohr et al. (2022) expanded their study to five different
block, including STIMON, Speck Beaulieu et al. (2015), Skinny Beierle et al. (2016), Present Bogdanov et al.
(2007), Katan De Canniere et al. (2009), and ChaCha Bernstein (2008). Notably, their research highlights
the close connection between the accuracy of the neural distinguisher and the mean absolute distance of
the ciphertext differential distribution and the uniform distribution. In light of these investigations, we
enhance the basic differential neural distinguisher by using two distinct non-zero plaintext differences and
master key differences, symbolically represented as (AP,AP',AK,AK").

The primary rationale behind selecting two input differences instead of one or more stems from the
objective of minimizing conflicts among the output differences arising from positive and negative samples.
When an input difference is chosen, as the number of rounds increases, some output differences will tend
to be uniformly distributed due to the inherent confusion and diffusion properties of the block cipher.
This poses a great challenge for the neural network to distinguish them from the uniformly distributed
negative samples. However, if the negative samples are generated from another good difference, the mean
absolute distance between the positive and negative samples may become more significant, which can
allow the neural network to distinguish them more effectively. There are two reasons for limiting the
number of input differences to two rather than more: firstly, the input differences that can maintain their
unique distribution across several rounds are rare; secondly, an increase in the variety of ciphertext data
may heighten the likelihood of collisions.

Differences selection. To develop an efficient and enhanced neural distinguisher, (AP,AP',AK,AK")
needs to satisfy two pivotal requirements. Firstly, they must exhibit a favorable weighted bias score after
several rounds, ensuring that the resulting ciphertext data possess distinct and discernible features. This
can be straightforwardly accomplished by adopting the differential evaluation scheme detailed in Section
3.1. Second, the disparity between the ciphertext data derived from the input differences (AP,AK) and
(AP',AK’) should be maximized, thereby ensuring that there are sufficient features for the neural network
to leverage during the learning process.

Inspired by the role of weighted bias scores, we try to directly utilize their relative weighted bias
scores, denoted as Sg(AP, AP',AK,AK"), as a rough metric to evaluate the suitability of (AP,AP’,AK,AK’)
for building the enhanced neural distinguishers, where

. 1 n—1 1 t—1
bL.(AP,AP',AK,AK") = - Z - Z(EKI.@AK(X[@AP) —Exoak (Xi ®AP)); | (12)
j=01]" i=0
R ~
Sr(AP,AP' ,AK,AK") = Z rx b.(AP,AP',AK,AK"). (13)
r=1

However, the outcomes are disappointing, primarily due to the fact that the relative weighted bias scores
among all combinations derived from two input differences with weighted high bias scores have a high
degree of similarity.

Fortunately, the differences that have high weighted bias scores are generally scarce. For a set of m
input differences, the total number of potential combinations is W Consequently, when m is small,
the exhaustive approach that compares all potential combinations to identify the optimal one is feasible.
Nonetheless, as the value of m increases, the number of combinations grows rapidly. Specifically, when m
is 32, it is a daunting task to train 496 neural distinguishers. Given that the training of a single neural
distinguisher takes about an hour and a half, the aggregate time required for this task approximating 31
days, which is impractical and and unacceptable for most researchers. Therefore, the adoption of a more
efficient and targeted strategy for selecting promising combinations becomes imperative.

An available greedy strategy is to fix (AP,AK) as the optimal or top-ranked input difference that can
be used to construct the most effective basic neural distinguisher. Subsequently, (AP’, AK") is chosen from

11/18

Peer] Comput. Sci. reviewing PDF | (CS-2024:05:100801:2:0:NEW 5 Oct 2024)


K
Vurgu

K
Yapışkan Not
Please provide a Figure or algorithm or pseudo code or a chart to show that the main differences, working idea, applicability strategy of proposed Neural Distinguisher scheme


Peer]

336
337
338

339

340
341
342

343

344

345

346

347

348

349

350

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

372

373
374
375
376
377

378

379

380

the remaining differences with good weighted bias score. This strategy can ensure that the ciphertext data
generated with (AP, AK) have discernible and distinctive features. In this paper, we adopt the exhaustive
approach for STMON32/64 and STMON32/64. For the remaining variants, we adopt this greedy strategy to
speed up the process of differences selection.

Sample generation. The sample generation for enhanced neural distinguisher is different from method
outlined for the basic neural distinguisher in Section 3.1. For the enhanced neural distinguisher, the
positive and negative samples are ciphertext data generated from the plaintext pairs and key pairs with the
differences (AP,,AK) and (AP’ AK/). The label of a sample (Q1||Q]|...||Q;) is represented as

1, ifPOP;=APand K;®K'; = AK,

Y@l ) = 1 HELL Aand KEE, AR (14)
0, if POP;=AP and K;®K'; =AK'.

The neural network architecture and the process of training and evaluation remain consistent with that in

Section 3.1.

4 RELATED-KEY DIFFERENTIAL NEURAL DISTINGUISHERS FOR ROUND-
REDUCED s1MON AND SIMECK

In this section, we adopt the framework and strategies in Section 3 to develop the basic and enhanced
related-key differential neural distinguishers for SIMON and SIMECK.

4.1 Differences Selection for sIMON

The differences with Hamming weights of 1 and 2. For a block cipher with block length b/ and key
length kI, the number of input differences we need to evaluate is 2°/+*_ Even for the smallest variants,
i.e., STMON32/64 and STMECK32/64, the number of differences that need to be evaluated reaches 2%,
which would take a lot of time. Therefore, we first evaluate the weighted bias scores for all the differences
with Hamming weights of 1 and 2.

For the 8-round STMON32/64, there are 16 input differences with weighted bias scores around 11.0,
which are AP = (0x0,0x1 << i),AK = (0x0,0x0,0x0,0x1 < i), i € [0,15]. This is followed by another
16 input differences with a weighted bias score of about 10.8, specified as AP = (0x0,0x21 << i),AK =
(0x0,0x0,0x0,0x21 << i), i € [0,15]. The score for all remaining input differences with Hamming
weights of 1 and 2 is less than 10.00.

For the 8-round STIMON48/96, there are 24 input differences with a Hamming weight of 1 that have a
weighted bias score between 15.3 and 14.4: AP = (0x0,0x1 << i), AK = (0x0,0x0,0x0,0x1 << i), i€
[0,23]. For differences with a Hamming weight of 2, only 11 input differences yield weighted bias scores
greater than 14.4. They are AP = (0x0,0x41000 < i), AK = (0x0, 0x0, 0x0,0x41000 < i), i € [0,6], AP =
(0x0,0x21000 < i), AK = (0x0,0x0,0x0,0x21000 < i), i € [0,2], and [AP = (0x0,0x30000), AK =
(0x0,0x0,0x0,0x30000).

For the 8-round STIMON64/128, there are 32 differences with a Hamming weight of 1 that exhibit
scores around 13.4. These differences are denoted as AP = (0x0,0x1 < i), AK = (0x0,0x0,0x0,0x1 <«
i), i €[0,31]. After that, there are 32 differences with Hamming weight 2 that have scores close
to 12.6 or 12.5, which are AP = (0x0,0x21 < i), AK = (0x0,0x0,0x0,0x21 < i), i € [0,31], and
AP = (0x0,0x41 << i), AK = (0x0,0x0,0x0,0x41 < i), i € [0,31], respectively. The scores for all
remaining differences are below 12.2.

Structural features of STMON. For STMON32/64, SITMON48/96, and SIMON64/128, the input differences
with high weighted bias scores are those with the structure AP = (0x0,AX ) and AK = (0x0, 0x0,0x0, AX).
This is because the plaintext differences and key differences cancel each other out in the first round. In the
next three rounds, both plaintext difference and key difference are zero. Only in the fifth round, the key
difference AX is re-injected, and the plaintext difference is still zero. The detailed differential propagation
process is given in Table 3.

The differences with a Hamming weight greater than 2. Based on the structural feature of STMON,
for differences with a weight greater than 2, we only consider the differences with a structure of AP =
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Table 3. The related-key differential characteristic of SIMON with 4 key words.

Round AP, AK,
1 (0x0, AX) AX
2 (0x0, 0x0) 0x0
3 (0x0, 0x0) 0x0
4 (0x0, 0x0) 0x0
5 (0x0, 0x0) AX

(0x0,AX) and AK = (0x0,0x0,0x0,AX). For 8-round SIMON32/64, there are only 32 differences with
Hamming weights of 3 that have weighted bias scores greater than 10.0. Specifically, they are AP =
(0x0,0x43 /0x421 < i), AK = (0x0,0x0,0x0,0x43 /0x421 << i), i € [0, 15], with scores between 10.7
and 10.3 . For the 8-round STMON48/96 and STIMON64/128, the weighted bias scores for all differences
with a Hamming weight greater than 2 are less than 14.4 and 12.2, respectively.

4.2 Differences Selection for SIMECK

The differences with Hamming weights of 1 and 2. Following the experiments on SIMON, we first
explore the applicability of the input differences with Hamming weights of 1 and 2 in constructing
neural distinguishers for SIMECK. For 10-round STMECK32/64, 16 differences with a Hamming weight
of 1, denoted as AP = (0x0,0x1 << i), AK = (0x0,0x0,0x0,0x1 << i), i € [0, 15], achieve the optimal
weighted bias score around 16.3. Then there are 32 differences with Hamming weight of 2, AP =
(0x0,0x3/0x11 <« i), AK = (0x0,0x0,0x0,0x3/0x11 << i), i € [0, 15], with scores greater than 13.0.
The rest of the differences are scored below 13.0.

For the 12-round SIMECK48/96, there are 24 differences with a Hamming weight of 1, AP =
(0x0,0x1 < i), AK = (0x0,0x0,0x0,0x1 < i), i € [0,23], that have a weighted bias score between
30.4 and 26.6. For differences with a Hamming weight of 2, there are 33 differences with scores
greater than or equal to 26.6. They are AP = (0x0,0x30 < i), AK = (0x0,0x0,0x0,0x30 < i), i €
[0,12], AP = (0x0,0x220 < i), AK = (0x0,0x0,0x0,0x220 < i), i € [0, 8], AP = (0x0,0x140 < i), AK =
(0x0,0x0,0x0,0x140 < i), i € [0,6], and AP = (0x0,0x480 < i), AK = (0x0,0x0,0x0,0x480 < i), i €
[0,3]. The scores of all remaining differences are all less than 26.5.

For the 15-round STMECK64/128, the best weighted bias score around 30.1 is achieved by 32 differ-
ences with a Hamming weight of 1, which are AP = (0x0,0x1 << i), AK = (0x0,0x0,0x0,0x1 < i), i €
[0,31]. Then there are 32 differences, AP = (0x0,0x3 < i),AK = (0x0,0x0,0x0,0x3 << i), i in[0,31],
with scores close to 26.7. All the other differences have scores below 26.0.

Structural features of STMECK. Similar to STMON, for all variants of STMECK, the input differences that
exhibit good weighted bias scores adhere to the format: AP = (0x0,AX) and AK = (0x0,0x0,0x0,AX).
This is also due to the fact, as shown in Table 4, that the plaintext difference and key difference cancel
each other out in the first round, and in the subsequent three rounds, both the plaintext difference and
key difference are zero. It is not until the fifth round that the key difference AX’, resulting from the ®
operation of AK, <€ o and AK, < f3, is reintroduced.

The differences with a Hamming weight greater than 2. For the 10-round STMECK32/64 and 15-round
SIMECK64/128, none of the differences with a Hamming weight of more than 2 yields a weighted bias
score above 12.5 and 24.5, respectively. For 12-round STMECK48/96, there are only three differences
with a Hamming weight of 3 that have a score of 26.8, which are AP = (0x0,0x700/0xe00,/0x2300),
AK = (0x0,0x0, 0x0,0x700/0xe00,/0x2300). The scores for all remaining differences with a Hamming
weight of 3 or higher are all below 26.6.

4.3 Basic Related-Key Differential Neural Distinguishers

For the STMON32/64, the 16 most effective 13-round related-key differential neural distinguishers are
trained using the candidate differences AP = (0x0,0x21 <« i), AK = (0x0,0x0,0x0,0x21 << i) where i

13/18

Peer] Comput. Sci. reviewing PDF | (CS-2024:05:100801:2:0:NEW 5 Oct 2024)



Peer]

420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447

448

449
450
451
452
453

454

455

456

Table 4. The related-key differential characteristic of SIMECK.

Round AP, AK,
1 (0x0, AX) AX
2 (0x0, 0x0) 0x0
3 (0x0, 0x0) 0x0
4 (0x0, 0x0) 0x0
5 (0x0, 0x0) AX'

ranges from O to 15. Their accuracy is 0.543 +0.002, while it is 0.525 £ 0.005 for the distinguishers built
from the candidate differences AP = (0x0,0x1 << i), AK = (0x0,0x0,0x0,0x1 << i), i € [0, 15]. The best
13-round neural distinguisher is constructed by AP = (0x0,0x2004),AK = (0x0,0x0,0x0,0x2004) with
an accuracy of 0.545. Its 12-round neural distinguisher achieves an accuracy of 0.678. Compared with the
related-key differential neural distinguisher in Lu et al. (2024), our differential selection strategy enables
us to yield the superior distinguisher, as shown in Table 1.

For STIMON48/96, the best 13-round related-key differential neural distinguisher with an accuracy
of 0.650 is constructed with AP = (0x0,0x200000) and AK = (0x0,0x0,0x0,0x200000). Its 12-round
neural distinguisher can achieve an accuracy of 0.993. For the remaining 23 candidate differences with a
Hamming weight of 1, the accuracy of their 13-round neural distinguishers is between 0.640 to 0.650. In
contrast, when the candidate differences with Hamming weight 2 in Section 4.1 is adopted, the highest
accuracy is only 0.593, which is lower than that of 24 candidate differences with a Hamming weight of 1.
Moreover, the 3 candidate differences with a Hamming weight of 3 could not construct an effective neural
distinguisher for 13 rounds.

For STMONG64/128, the optimal 14-round related-key differential neural distinguisher is constructed
using AP = (0x0,0x100000) and AK = (0x0, 0x0, 0x0, 0x100000) with an accuracy of 0.580. The accuracy
of its 13-round neural distinguisher is 0.840. In addition, the neural distinguishers built from the other 31
candidate differences with a Hamming weight of 1 exhibit accuracy between 0.577 and 0.580. There are
no valid 14-round neural distinguishers achieved when using the candidate differences with a Hamming
weight of 2 in section 4.1.

For SIMECK, the maximum number of rounds that can be constructed for related-key differen-
tial neural distinguishers is 15 for SIMECK32/64, 19 for SIMECK48/96, and 22 for SIMECK64/128.
Their optimal neural distinguishers are constructed using AP = (0x0,0x10/0x2/0x200000) and AK =
(0x0,0x0,0x0,0x10/0x2/0x200000) with an accuracy of 0.547, 0.516, and 0.519, respectively. The
accuracies of these neural distinguishers from the previous round are 0.668, 0.551, and 0.552, respectively.
The neural distinguishers constructed from other candidate differences with a Hamming weight of 1
have an accuracy very close to the best neural distinguisher above, with a maximum deviation of only
0.002. The candidate differences with Hamming weights greater than 2 fail to construct effective neural
distinguishers with the maximum number of rounds.

4.4 Enhanced Related-Key Differential Neural Distinguishers

For the STMON32/64 and SIMECK32/64, we use all possible combinations of the superior candidate
differences AP = (0x0,0x21/0x1 <« i) and AK = (0x0,0x0,0x0,0x21/0x1 << i), i € [0, 15], to construct
the related-key differential neural distinguisher. For STMON32/64, there are 5 different (AP,AP’, AK,AK")
that can yield the 13-round related-key differential neural distinguisher with an accuracy of 0.567. They
are

AP = (0x0,0x801 /0x42,/0x2100,/2004 /2100), AK = (0x0,0x0, 0x0, 0x100000,/0x2,/0x200000),
AP’ = (0x0,0x1002,/0x84/0x1080,/1002/4200), Ak’ = (0x0,0x0, 0x0, 0x400000,/0x80000/0x200).

For the first two instances, the accuracy of their 12-round neural distinguisher is 0.740, while it is 0.738
for the remaining three instances.
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Table 5. The basic related-key differential neural distinguishers for STMON and SIMECK.

Cipher Round AP AK Acc  TPR TNR
12 (0x0, 0x2004) (0x0, 0x0, 0x0, 0x2004)  0.678 0.685 0.671
SIMON32/64
13 (0x0, 0x2004) (0x0, 0x0, 0x0, 0x2004)  0.545 0.537 0.552
12 (0x0, 0x200000)  (0x0, 0x0, 0x0, 0x200000) 0.993 0.999 0.986
SIMON48/96
13 (0x0, 0x200000)  (0x0, 0x0, 0x0, 0x200000) 0.650 0.660 0.640
STMON6A/128 13 (0x0, 0x100000) (0x0, 0x0, 0x0, 0x100000) 0.840 0.834 0.845
14 (0x0, 0x100000)  (0x0, 0x0, 0x0, 0x100000) 0.580 0.575 0.585
14 1 1 . .64 .
SIMECK32/64 (0x0, 0x10) (0x0, 0x0, 0x0, 0x10) 0.668 0.640 0.695
15 (0x0, 0x10) (0x0, 0x0, 0x0, 0x10) 0.547 0.524 0.570
18 (0x0, 0x2) (0x0, 0x0, 0x0, 0x2) 0.551 0.456 0.646
SIMECK48/96
19 (0x0, 0x2) (0x0, 0x0, 0x0, 0x2) 0.516 0411 0.611
21 (0x0, 0x200000)  (0x0, 0x0, 0x0, 0x200000) 0.552 0.413 0.691
SIMECK64/128

22 (0x0, 0x200000)  (0x0, 0x0, 0x0, 0x200000) 0.519 0.374 0.663

For STMON48/96, STMON64/128, SIMECK48/96, and SIMECK64/128, we consider combinations
of the best differences in Table 5 and the remaining candidate differences of AP = (0x0,0x1 < i)
and AK = (0x0,0x0,0x0,0x1 << i), i € [0,15] to accelerate the construction of our enhanced neu-
ral distinguishers. Specifically, for STMON48/96, there are 3 pairs of differences that can yield 12-
round and 13-round related-key differential neural distinguishers with accuracies of 0.997 and 0.696,
respectively. These pairs are AP = (0x0,0x200000) and AK = (0x0,0x0,0x0,0x2000) together with
AP" = (0x0,A) and AK’ = (0x0,0x0,0x0,A), where A € [0x400000,0x100000, 0x40]. For STMON64/128,
SIMECK48/96, and SIMECK64/128, only one pair of differences can construct 14-round, 19-round,
and 22-round related-key neural distinguishers with accuracies of 0.618, 0.523, and 0.526, respec-
tively. They are AP = (0x0,0x100000/0x2/0x200000), AK = (0x0, 0x0, 0x0,0x100000/0x2/0x200000),
AP" = (0x0,0x400000/0x80000/0x200), and AK’ = (0x0, 0x0, 0x0, 0x400000,/0x80000/0x200). The ac-
curacies of 13-round, 18-round, and 21-round neural distinguishers for these pairs are 0.916, 0.572, and
0.572, respectively, as shown in Table 6.

4.5 Comparison and Discussion

In this section, we first evaluate the differences with Hamming weights of 1 and 2 for SIMON and
SIMECK, using weight bias scores. Then, we further evaluate the differences with Hamming weights
greater than 2 based on the structural features of STMON and SIMECK. Compared with the exhaustive
approach of training a neural distinguisher for each difference in Lu et al. (2024), our scheme is more
efficient.

Using these differences, we can obtain 13-round basic related-key differential neural distinguishers,
exhibiting superior accuracy than that in Lu et al. (2024), for SIMON32/64, as shown in Table 1. For
the remaining variants, we can obtain the basic related-key differential neural distinguishers with the
same accuracy as that in Lu et al. (2024). In addition, we obtain multiple basic related-key differential
neural distinguishers that have the same or similar accuracy as the best distinguisher. When constructing
differential neural distinguishers using our method, all the enhanced related-key differential neural
distinguishers achieve higher accuracy than the basic related-key differential neural distinguishers for
all the variants of STMON and SIMECK. Compared with the results in Lu et al. (2024), our neural
distinguishers all achieve different degrees of improvement in accuracy, as shown in Table 1.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we first establish a comprehensive framework to construct basic related-key differential
neural distinguishers for the STMON and SIMECK. To choose an appropriate difference to construct this
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Table 6. The enhanced related-key differential neural distinguishers for SIMON and SIMECK.

Cipher AP/AP AK/AK' Round Acc TPR TNR

(0x0, 0x801) (0x0, 00, 0x0, 0x801) 12 0740 0729 0.750
(0x0, 0x1002)  (0x0, 0x0, 00, 0x1002) 13 0567 0564 0.570
(0x0, 0x200000)  (0x0, 0x0, 0x0, 0x200000) 12 0.997 0.998 0.996

SIMON32/64

SIMON48/96
(0x0, 0x400000)  (0x0, 0x0, 0x0, 0x400000) 13 0.696 0.698 0.695
S TMON64/128 (0x0, 0x100000)  (0x0, 0x0, 0x0, 0x100000) 13 0916 0910 0.922
(0x0, 0x400000)  (0x0, 0x0, 0x0, 0x400000) 14 0.618 0.596 0.639
14 7 722 T

S IMECK32/64 (0x0, 0x80) (0x0, 0x0, 0x0, 0x80) 0.730 O 0.738
(0x0, 0x2000) (0x0, 0x0, 0x0, 0x2000) 15 0.568 0.553 0.582
(0x0, 0x2) (0x0, 0x0, 0x0, 0x2) 18 0.572 0.572 0.572

SIMECK48/96
(0x0, 0x80000) (0x0, 0x0, 0x0, 0x80000) 19 0.523 0.527 0.518
(0x0, 0x200000)  (0x0, 0x0, 0x0, 0x200000) 21 0.572 0.580 0.563

SIMECK64/128

(0x0, 0x200) (0x0, 0x0, 0x0, 0x200) 22 0.526 0.523 0.529

distinguisher, we utilize weighted bias scores to assess the applicability of various differences. Moreover,
we introduce an innovative method that incorporates two distinct differences into the neural distinguisher,
resulting in a more robust and effective neural distinguisher. Compared with the results in Lu et al. (2024),
we successfully improve the accuracy of the related-key differential neural distinguisher for both STMON
and SIMECK/THis enhancement is evident in Table 1, highlighting the effectiveness of our proposed
techniques.

Furthermore, we envision several promising directions for future research. Firstly, our framework
can be easily extended to other block ciphers. Secondly, the integration of advanced neural network
architectures and training techniques could yield even more powerful neural distinguishers. With the
continuous development of deep learning, emerging technologies can provide opportunities for innovation
and advancement in cryptanalysis.
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