
Submitted 17 June 2024
Accepted 7 November 2024
Published 26 November 2024

Corresponding author
Shaohan Wei,
weish_fit_edu@163.com

Academic editor
Marco Piangerelli

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj-cs.2560

Copyright
2024 Wei

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Multi-angle information aggregation for
inductive temporal graph embedding
Shaohan Wei
School of Computing and Information Science, Fuzhou Institute of Technology, Fuzhou, Fujian, China

ABSTRACT
Graph embedding has gained significant popularity due to its ability to represent large-
scale graph data by mapping nodes to a low-dimensional space. However, most of the
existing research in this field has focused on transductive learning, where fixed node
embeddings are generated by training the entire graph. This approach is not well-suited
for temporal graphs that undergo continuous changes with the addition of new nodes
and interactions. To address this limitation, we propose an inductive temporal graph
embedding method called MIAN (Multi-angle Information Aggregation Network).
The key focus of MIAN is to design an aggregation function that combines multi-angle
information for generating node embeddings. Specifically, we divide the information
into different angles, including neighborhood, temporal, and environment. Each
angle of information is modeled and mined independently, and then fed into an
improved gated recuttent unit (GRU) module to effectively combine them. To assess
the performance of MIAN, we conduct extensive experiments on various real-world
datasets and compare its results with several state-of-the-art baseline methods across
diverse tasks. The experimental findings demonstrate that MIAN outperforms these
methods.

Subjects Artificial Intelligence, Data Mining and Machine Learning
Keywords Graph embedding, Temporal graph, Inductive learning, Multi-angle information

INTRODUCTION
In the real world, various types of graph data exist, including communication graphs,
citation graphs (Jia & Yao, 2024), brain graphs (Ma et al., 2024), and online consultation
graphs (Luo & Guo, 2024). The fields of machine learning and data mining have shown
significant interest in understanding and learning from such graph data (Cui et al.,
2019; Lin, Wang & Lin, 2024). Graph embedding has emerged as a popular method for
representing graphs by mapping nodes to a low-dimensional space (Cao, Lu & Xu, 2015;
Liang et al., 2024). The node embeddings generated by graph embedding can be applied to
downstream machine learning tasks, such as node classification (Bruna et al., 2014), link
prediction (Liu et al., 2024), and community detection (Wang et al., 2017).

Traditional research in this area has primarily focused on transductive learning,
which involves generating node embeddings by training the entire graph as a one-
time process (Srinivasan & Ribeiro, 2020). However, real-world graphs undergo frequent
changes, including the addition of new nodes and the occurrence of new interactions.
In such cases, transductive learning would require retraining the entire graph to obtain
updated node embeddings, which is not practical for real-world graphs. Assuming that

How to cite this article Wei S. 2024. Multi-angle information aggregation for inductive temporal graph embedding. PeerJ Comput. Sci.
10:e2560 http://doi.org/10.7717/peerj-cs.2560

https://peerj.com/computer-science
mailto:weish_fit_edu@163.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2560
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.2560


for a graph dataset with 10,000 nodes and 100,000 interactions, it may take 20 epochs, or
about half an hour, to complete training. When a new node is added, it will take half an
hour to retrain each time. In the real world, the size of this graph dataset may increase by
a hundred times, and the frequency of new nodes joining may be reduced to every hour.
In this case, there will be a situation where new data is added before the previous round of
retraining is completed, which is unrealistic.

In contrast to transductive learning, inductive learning (Trivedi et al., 2019) shifts the
focus from generating final node embeddings to developing models capable of dynamically
generating node embeddings over time, even for previously unseen nodes. This approach
facilitates flexible training and testing ofmodels with dynamically changing real-world data,
such as temporal graph data. Temporal graph is an important form in graph structured data.
It changes the storage method of node interactions from adjacency matrix to interaction
sequence, thus gaining the ability to dynamically increase interactions. In this data form,
the inductive graph learning method is undoubtedly more suitable for temporal graphs.

Based on the aforementioned motivations, we have devised MIAN, an inductive graph
embedding model. By formulating an aggregation function that combines multi-angle
information for node embedding, we achieve a flexible paradigm that eliminates the need
for training from scratch when incorporating node interactions. Multi-angle information is
very important in the study of temporal graph embedding. In thework of Liang et al. (2024),
it is pointed out that time information, structural information and possible multi-modal
information are all very helpful for model mining and generating higher-quality node
embedding. All this information can be regarded as multi-angle information, which can
expand the receptive field of the model from different aspects.

This scholarly article introduces MIAN, a method for inductive graph embedding
specifically designed to learn node embeddings in temporal graphs. MIAN effectively
captures graph changes, enabling the generation of node embeddings at any given time.
This method places particular emphasis on the aggregation of multi-angle information to
facilitate inductive temporal graph embedding.

In particular, we identify the presence of multi-angle information in the temporal graph
data, which offers a more comprehensive receptive field in comparison to prior approaches
that often only consider single-angle neighborhood information. This information can be
categorized into different angles: (1) the neighborhood angle, which focuses on how anode’s
neighbor information is transmitted to the node itself through the message propagation
mechanism; (2) the temporal angle, which focuses on how nodes’ interactions at different
moments adaptively assign varying weights for aggregation; and (3) the environment angle,
which focuses on the evolution of the overall graph environment through the dynamic
interaction of nodes and how this environment impacts the nodes. The information from
these three angles is modeled independently and subsequently combined using an enhanced
GRU module to inductively generate the corresponding node embedding for each node.
This embedding naturally updates as nodes interact and evolve over time.

We conduct extensive experiments using multiple real-world datasets, comparing the
performance of MIAN against several state-of-the-art baseline methods. The experimental

Wei (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2560 2/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2560


results demonstrate that MIAN surpasses the baseline methods, highlighting its efficiency
in capturing graph changes. Our contributions can be summarized as follows:

Problem statement: We identify that inductive learning is better suited for temporal
graphs, which dynamically and flexibly record node interactions. In addition, inductive
learning can more flexibly explore multi-angle information.

Algorithm proposal: We propose the MIAN method, which aggregates multi-angle
information in an inductive manner to dynamically generate node embeddings. We also
propose an improved GRU to help the model more comprehensively aggregate multi-angle
information.

Experimental evaluation: We empirically evaluate MIAN using various real-world
datasets, showcasing its superior performance. We select datasets from different fields
such as academia, business, and social network, with the number of nodes ranging from
thousands to tens of thousands. The selected comparison methods are all classic methods
in temporal graph learning, which have been cited many times for comparison with other
works.

This paper is organized as follows: In ‘Related Work’, we introduce related work on
temporal graph embedding and inductive learning. ‘Method’ presents the details of the
proposed method MIAN. ‘Experiment’ reports the detailed settings and results of the
experiments. Finally, we conclude with a conclusion.

RELATED WORK
Graph embedding has garnered significant attention from both academic and industrial
circles, finding applications in various real-world scenarios. With the increasing amount of
research conducted in this field, graph embedding has progressed in multiple directions.
Depending on the characteristics of the dataset, graph embedding can be classified into
static graph learning and dynamic graph learning. Furthermore, considering the training
patterns employed, graph embedding can be categorized into transductive learning and
inductive learning.

Temporal graph embedding
In the field of graph embedding, researchers commonly categorize graphs into two main
types: static graphs and dynamic graphs. A static graph refers to a graph where neither the
topological structure nor the node attributes change over time. In the early stages of graph
embedding, researchers primarily focused on the topological structure of graphs. They
obtained the adjacency matrix of the graphs and utilized techniques such as random walk
or matrix decomposition (Ou et al., 2016) to learn node embeddings. Random walk means
that, in a simple one-dimensional random walk, an entity starts at a specific point and at
each time step, it moves either left or right with equal probability. The path taken by the
entity forms a random walk. Matrix decomposition, also known as matrix factorization,
is the process of breaking down a matrix into simpler, more manageable parts. This is
commonly done to simplify calculations, extract meaningful information, or reduce the
complexity of a problem.

Wei (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2560 3/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2560


For instance, DeepWalk performs a random walk procedure over the graph and then
applies the Skip-Gram (Mikolov et al., 2013a) model to learn node embeddings (Perozzi,
Al-Rfou’ & Skiena, 2014). LINE learns node embeddings by considering first-order and
second-order proximity (Tang et al., 2015), while node2vec introduces a biased random
walk procedure to balance breadth-first and depth-first search strategies (Grover & Leskovec,
2016).

In contrast to static graphs, dynamic graphs encompass the changes that occur in a graph
over time. Compared with static graphs, dynamic graphs can better reflect the real changes
in the real world. Whether in academic citation scenarios, social scenarios, or business
scenarios, the establishment of edges is never completed at the same time, and there may be
a long time interval between them. If you cannot grasp this time information, youmaymake
wrong judgments. Capturing the temporal evolution of graph structures allows researchers
to obtain more effective embeddings. In the early stages of dynamic graph research,
graphs were divided into several states based on timestamps, with each state representing
a static snapshot of the dynamic graph (Liang et al., 2023). Current work often employs
graph neural network (GNN) frameworks to learn node embeddings within each static
snapshot at different timestamps, leveraging recurrent neural network (RNN) frameworks
to capture temporal changes in node embeddings (Xu et al., 2019). For example, DySAT
computes node embeddings through joint self-attention across structural neighborhoods
and temporal dynamics (Sankar et al., 2020), while EvolveGCN captures dynamic graph
changes by using an RNN to evolve the parameters of the graph convolutional network
(GCN) (Pareja et al., 2020). These methods can utilize time information without changing
the classic static graph technology, and also make researchers think more deeply about
whether they must stick to the adjacency matrix training model. In this case, the temporal
graph came into being.

Recognizing that static snapshots may not accurately represent graph changes,
researchers have shifted their focus toward learning node embeddings in temporal graphs
characterized by chronological interactive events (Liu & Liu, 2021; Fan, Liu & Liu, 2022).
CTDNE incorporates temporal information into node embeddings through biased or
unbiased random walk procedures (Nguyen et al., 2018), while HTNE employs the Hawkes
process to capture the influence of historical neighbors on the current node to obtain node
embeddings (Zuo et al., 2018). JODIE models the future trajectory of node embeddings
and introduces a novel projection operator that learns to estimate node embeddings at any
future time (Kumar, Zhang & Leskovec, 2018). AGLI (Liu, Wu & Liu, 2022) focuses on the
global influence and local influence aggregation. TGC (Liu et al., 2024b) is the first work to
focus on deep temporal graph clustering. The information comparison of these methods
is shown in Table 1.

Transductive learning and inductive learning
Graph embedding approaches can be categorized into two types based on the training
pattern: transductive learning and inductive learning.

Transductive learning aims to generate fixed node embeddings by directly optimizing
the final state of the graph. Many existing approaches for node embedding fall under

Wei (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2560 4/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2560


Table 1 Details of different graphmethods.

# Types Static Dynamic Temporal

# Data Adjacency matrix Static snapshot Adjacency list
Deepwalk (RandomWalk) DySAT (RNN) CTDNE (RandomWalk)
LINE (Matrix Factorization) EvolveGCN (GCN+RNN) HTNE (Hawkes Process)

# Methods node2vec (RandomWalk) – JODIE (RNN)
– – AGLI (Hawkes Process)
– – TGC (KL-Distribution)

this category. However, transductive learning has a drawback in dynamic graphs: when
the graph undergoes changes, these approaches require retraining the entire graph to
obtain updated node embeddings, which can be computationally expensive. Consequently,
transductive learning is not well-suited for generating new node embeddings in dynamic
graphs. Asmentioned above, assume that for a graph dataset with 10,000 nodes and 100,000
interactions, it may take 20 epochs, or about half an hour, to complete training. When a
new node is added, it will take half an hour to retrain each time. In the real world, the size
of this graph dataset may increase by a hundred times, and the frequency of new nodes
joining may be reduced to every hour. In this case, there will be a situation where new data
is added before the previous round of retraining is completed, which is unrealistic.

In contrast, inductive learning focuses on learning a model that can generate node
embeddings at any given time. This approach does not produce fixed embeddings but
instead emphasizes the ability to calculate node embeddings directly when new nodes are
added. The model leverages the node’s features and neighborhood information to compute
its embedding. For instance, GraphSAGE learns a function that generates embeddings
by sampling and aggregating features from a node’s local neighborhood (Hamilton, Ying
& Leskovec, 2017). DeepGL is a deep hierarchical framework designed for large graphs,
capable of discovering both node and edge features (Rossi, Zhou & Ahmed, 2018). DyREP
introduces a two-time scale deep temporal point process model to capture the interleaved
dynamics of observed processes (Trivedi et al., 2019).

Based on this classification, our proposed method MIAN falls into the category of
inductive learning in dynamic temporal graphs. Temporal graphs offer an accurate
embedding of graph changes in real-world datasets, while inductive learning enables
flexible capturing of these changes. Therefore, MIAN is better suited for generating
effective node embeddings in dynamic temporal graphs. MIAN considers information
fusion from multiple angles, focusing on the local neighborhood angle, time angle, and
global environment angle, and fuses them together through the GRU module to generate
node embeddings with richer information content. In the following sections, we will
provide detailed insights into the MIAN method.

Wei (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2560 5/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2560


METHOD
Problem definition
As discussed previously, we can learn node embeddings in the graph inductively. According
to the interaction between nodes, we can formally define the temporal graph as follows.

Definition 1: Temporal graph. When two nodes establish an interaction within the
graph, the interaction is accompanied by a clearly defined timestamp. Accordingly, the
temporal graph can be formally defined as G = (V ,E,T ), where V represents the set
of nodes, E ⊆ V × V denotes the set of edges, and T represents the set of interaction
timestamps. For each edge e = (u,v) connecting node u and node v, there exists at least
one corresponding interaction instance denoted as Tu,v = (u,v,t1),(u,v,t2),...,(u,v,tn),
where ti represents an individual timestamp associated with the interaction between nodes u
and v .

In a temporal graph, a node engages in multiple interactions with other nodes, and these
interactions can be arranged in chronological order based on their timestamps. When two
nodes interact with each other, we refer to them as neighbors. The historical neighbor
sequence of a node can be defined as follows.

Definition 2: Historical neighbor sequence.
For a given node u, its historical neighbor sequence Hu can be obtained, where Hu =

(v1,t1),(v2,t2),...,(vn,tn). Each tuple in this sequence represents an event, indicating that
node vi interacts with node u at time ti.

Motivated by the work presented in Liu, Wu & Liu (2022), our objective within the
context of the aforementioned temporal graph is to develop a function capable of capturing
multi-angle information for the purpose of inductively updating node embeddings. The
following sections will provide detailed explanations of our method.

Overall framework
As shown in Fig. 1, we consider the potential information in the temporal graph embedding
from three different perspectives. Furthermore, since neighborhood-angle information
and temporal-angle information are naturally close, we combine the information from
these two angle to generate neighborhood with temporal information embeddings, and
also generate environment information embeddings. These information embeddings are
fused with the node embedding itself in the improved GRU module to generate the final
node embedding.

Neighborhood angle information
Neighborhood information plays a crucial role in graph neural networks, and many
traditional graph learning methods employ message propagation mechanisms to aggregate
neighborhood information for nodes. This involves combining the features of different
neighboring nodes with varying weights as part of the node’s own characteristics. This
approach effectively enables the learning of information-rich node embeddings while
maintaining the independence of each node’s embedding to a certain extent.

In this process, determining how to assign weights to information from different
neighboring nodes becomes an area of significant exploration. Following an interaction

Wei (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2560 6/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2560


Neighborhood

Angle Information

Temporal

Angle Information

Environment

Angle Information

Temporal Graph

Neighborhood with

Temporal Embedding

Environment

Embedding

Improved

GRU

Previous Node

Embedding

Final Node

Embedding

Figure 1 Overall framework of MIAN. This framework consists of two steps: the first step is to model in-
formation from different angles and generate information embeddings separately, and also initialize node
embeddings for later updates. The second step is to aggregate these information embeddings using an im-
proved GRU module to generate the final (new) node embeddings.

Full-size DOI: 10.7717/peerjcs.2560/fig-1

between node u and v , node v will influence the future interactions of node u with other
nodes, and reciprocally, node u will influence the future interactions of node v with other
nodes. This influence can be interpreted as different weighting methods for aggregating the
characteristics of different neighboring nodes. Here, we adopt two approaches to construct
such weights.

Priority weight
The influence of a new neighbor on node u diminishes as the number of neighbors
increases. To illustrate this concept, we will provide an example using the movie ratings
dataset, which was utilized in our experiments.

When an individual is first exposed to a particular movie genre that aligns with their
taste, they are more likely to assign a high rating based on specific details. However, as they
watch more movies within the same genre, their ratings for new movies in that genre may
take into account various factors, such as overall quality, duration, and so on. In other
words, as individuals gain experience, it becomes increasingly challenging for new movies
to make a strong impression on them.

Based on the aforementioned idea, we believe that the earlier a neighbor node i interacts
with node u, the higher its priority and the greater its influence on node u. We calculate
the priority weight pu,i of neighbor i on node u using the following approach.

pu,i= δ
p
u×

exp(1/i)∑
i′∈Hu

exp(1/i′)
(1)

Wei (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2560 7/22

https://peerj.com
https://doi.org/10.7717/peerjcs.2560/fig-1
http://dx.doi.org/10.7717/peerj-cs.2560


Here δpu is a learnable parameter that regulates the priority weight of neighbor nodes on
u, Hu is the historical neighbor sequence of node u, and i is the sequence number of node
i in Hu. When the number of u’s neighbors increases, each neighbor’s priority weight on
node u should be decreased. Thus we divide by |Hu| when calculating pu,i.

Regarding the calculation of this weight, we followed some common paradigms in classic
temporal graph works. However, it should be noted that there are many ways to calculate
this weight, which need to be selected and adjusted according to different model designs.
For example, exponentially after calculating the position, or sharpening the weight in the
form of square, or introducing an attention mechanism. These have been successfully
tested in past studies.

Affinity weight
We propose that there exists an affinity between any two nodes, which represents the
closeness of their relationship. Given a node u and one of its neighbor nodes i, we can
compute their affinity au,i based on their respective node embeddings zu and zi using the
following approach.

au,i= σ (zu ·zi)= sigmoid(zu ·zi) (2)

where σ is the variant of sigmoid function to normalize its value to between [0, 1], · denotes
dot-product operation. Once we have computed the affinity between node u and each of its
neighbors, we can then determine the affinity weight for each neighbor using an attention
mechanism. The attention mechanism is inspired by the concept that individuals tend to
focus on areas of higher importance, and it has been widely utilized across various research
domains.

In this context, we posit that within the historical neighbor sequence Hu of node u,
neighbors with higher affinity towards u exert a greater influence on u. Therefore, we
calculate the affinity weight ωu,i for neighbor i on node u using the following equation.

ωu,i=
au,i∑

i′∈Hu
au,i′

. (3)

Neighborhood-angle information embedding
Combining the above two weights, the embedding from neighborhood angles can be
calculated as follows.

zNu =
∑
i∈Hu

θu,iz
tn−1
i , θu,i= exp(pu,i ·ωu,i) (4)

where z tn−1i is the embedding of u’s neighbor i at time tn−1. To calculate the influence of
the next timestamp, we need to use the node embedding of the previous timestamp, which
will be introduced later.

Temporal angle information
In the realm of temporal graph learning, time information holds significant importance.
Drawing inspiration from the work outlined in Hawkes (1971), the Hawkes process is

Wei (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2560 8/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2560


employed to model discrete sequential events. This process assumes that past events have
an impact on the occurrence of future events. According to this framework, the probability
of future events is influenced by historical events, with the influence diminishing over time.

In the context of our problem, we posit that a node’s historical neighbors play a role in
shaping its future interactions. Moreover, the closer the interaction in terms of time, the
greater the influence it exerts on future interactions. Consequently, we can calculate the
time weight ku,i for neighbor i on node u using the following equation.

ku,i= exp(−δtu|tc− ti|) (5)

where ti is the timestamp when neighbor i interacts with u, tc is the current time, δtu is a
learnable weight parameter that regulates the neighbor nodes’ time weight on u.

The temporal weights calculated above will be further incorporated into the embedding
of the neighborhood angles as part of the weight. In this way, the temporal with
neighborhood information embedding can be calcluated as follows.

zNTu =
∑
i∈Hu

θu,iz
tn−1
i , θu,i= exp(pu,i ·ωu,i ·ku,i) (6)

Indeed, incorporating the time weight into Eq. (4) enhances the embedding of node u by
considering both the neighborhood weight and the temporal aspect. In a temporal graph,
the time information encapsulates the interactions between a node and its neighbors.
Consequently, although these two types of information are derived from different
perspectives, they are inherently interconnected and can be effectively combined to
improve the overall embedding of the node.

Environment angle information
The interactions among nodes within a graph have the potential to alter the graph’s
structure and properties, subsequently influencing the global environment. Conversely,
the global environment can also impact the interactions between nodes. As illustrated in
the accompanying figure, when a node u initially becomes part of a graph, it may exhibit
limited sensitivity to changes occurring in the global environment. However, once the
cumulative affinity of node u surpasses a certain threshold, it becomes attuned to global
environment changes and can readily capture the latest updates within the graph.

This mechanism highlights the notion that nodes gradually become more responsive to
the evolving global environment as they accumulate stronger relationships and affinities
with their neighbors. It enables nodes to adapt and incorporate the most recent changes,
allowing for a more comprehensive understanding of the graph dynamics.

Activation threshold
We define a node u as an active node in this context. To define the active status of a node
and its cumulative affinity, we draw inspiration from the linear threshold (LT) model
(Granovetter, 1978) commonly used in the field of information propagation (Li et al., 2018;
Tian, Yi-Tong & Xiao-Jun, 2011).

The LT model posits that a node can change from an inactive state to an active state if
the cumulative influence from its neighbors surpasses a certain threshold. In our case, we

Wei (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2560 9/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2560


set ε as the activation threshold, which is a hyper-parameter. Additionally, we denote εu
as the cumulative affinity of node u, representing the sum of the affinities between node u
and its neighbors. The calculation for the cumulative affinity εu of node u is as follows.

εu=
∑
i∈Hu

σ (zu ·zi)=
∑
i∈Hu

sigmoid(zu ·zi)+1
2

. (7)

If, at any given time, the cumulative affinity εu of node u exceeds the activation threshold
ε, node u transforms into an active status. We posit that the cumulative affinity εu between
node u and its neighbors can offer insights into the relationship between node u and the
graph, to some extent. A higher cumulative affinity implies that node u is more susceptible
to the influence of the global environment.

Moreover, once a node enters an active status, this status is irreversible. In other words,
once node u starts being influenced by the global environment, that influence will persist.
For instance, once a scholar gains a deep understanding of a particular field, they will always
remain sensitive to the latest ideas within that field. Therefore, after node u becomes active,
it becomes crucial to calculate the embedding zEu representing the global environment
information for node u at time tn.

Global environment embedding
To generate an environment embedding that captures the global information on each
node, we create an embedding zE that aggregates all node embeddings. Initially, we sum
the node embeddings obtained from the positional encoding method. The calculation for
zE is as follows, and |V | is the number of nodes, and z t0u is the initial node embedding of
node u at time t0.

zE =
∑
u∈V

z t0u /|V |. (8)

In a temporal graph, the graph structure and features will evolve over time. Therefore, we
need to update the environment embedding over time. Similarly, in the updating process,
we also believe that only nodes in the active status can be ‘‘noticed’’ by the whole graph
and thus become part of the environment embedding. In this way, only an active node u’s
embedding is updated from z tn−1u to z tnu , the environment embedding zE will be updated as
follows:

zE :=
|V |×zE−z tn−1u +z tnu

|V |
. (9)

Environment-angle infromation embedding
The information pertaining to the environment received by a node is not solely dependent
on the environment embedding, but also on its dynamics. Initially, we classify the dynamics
of a node, denoted as u, into two distinct components, namely c−u and c+u , based on its
activation time ta. Here, we define c−u as the rate of change of the embedding per unit time
prior to the activation of node u. On the other hand, c+u represents the rate of change of the
embedding per unit time subsequent to the activation of node u. The calculations for c−u

Wei (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2560 10/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2560


and c+u are performed by considering the difference in embeddings and the time interval
in the following manner:

c−u =
z tau −z

t0
u

ta− t0
, c+u =

z tn−1u −z tau
tn−1− ta

(10)

where z tau is the embedding when node u enters an active status, z t0u is u’s initial embedding,
and z tn−1u is the embedding of u at time tn−1.

The influence of the environment information on a node in the graph is determined
based on its relevance to the graph after becoming active. By combining Eqs. (9) and (10),
we can ultimately compute the global influence embedding zEu of node u at time tn using
the following formula:

zEu = (
1
d

d∑
i=1

c+u,i− c
−

u,i

c+u,i
)×δgu×zE (11)

where c+u,i is the component of c+u in the ith dimension, c−u,i is the component of c−u in the
ith dimension, and d is the dimension size.

The initial term, ( 1d
∑d

i=1
c+u,i−c

−

u,i

c+u,i
), in Eq. (11), is utilized to assess the extent to which a

node is influenced by the graph. It determines the proportion at which the environment
embedding is integrated into the node embedding.

The disparity between the degrees of embedding change before and after activation
can effectively reflect the role of global environment influence. Hence, by calculating the
difference between c+u and c−u , we can determine the degree of embedding change influenced
by the graph. The percentage of this difference within c+u indicates the depth of the global
environment influence on node u. It is important to note that this difference is represented
as a vector, with a percentage assigned to each dimension of the vector. Consequently, we
average this percentage across all dimensions to obtain the final percentage.

The second term, δgu , in Eq. (11), represents a learnable weight parameter that regulates
the global environment influence embedding of node u. By multiplying the weights of the
first two terms with the environment embedding zE , we can ultimately compute the global
environment influence embedding zEu of node u.

Aggregator function
In order to consolidate the various angle information, we propose an enhanced version of
the GRU module to serve as an aggregator function. The GRU module, introduced by Cho
et al. (2014), is capable of capturing temporal patterns in sequential data by controlling
the degree of aggregation for different information and determining the proportion of
historical information to retain. In particular, We extend GRU to devise an aggregator
function that combines multiple-angle information embeddings with the node embeddings
from the previous timestamp to generate the node embeddings for the next timestamp.
The aggregator function employed is defined as follows.

UGu= σ (WUG[z tn−1u ⊕zNTu ⊕zEu ]+bUG) (12)

TNGtn
u = σ (WTNG[z tn−1u ⊕zNTu ⊕zEu ]+bTNG) (13)

Wei (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2560 11/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2560


EGtn
u = σ (WEG[z tn−1u ⊕zNTu ⊕zEu ]+bEG) (14)

z̃ tnu = tanh(Wz [z tn−1u ⊕ (TNGtn
u �zNTu )⊕ (EGtn

u �zEu )]+bz) (15)

z tnu = (1−UGu)�z tn−1u +UGu� z̃ tnu (16)

Here σ is the sigmoid function,⊕ denotes concatenation operator,� denotes element-
wise multiplication. zNTu , zEu and z tnu are temporal with neighborhood information
embedding, environment information embedding and node u’s embedding at time
tn respectively. WUG,WTNG,WEG,Wz ∈ Rd×3d , bUG,bTNG, bEG,bz ∈ Rd are learnable
parameters, UG,TNG,EG∈Rd are called update gate, local reset gate, and global reset gate
respectively.

In this study, we introduce a modification to the GRU by dividing the reset gate into
two separate gates: the temporal with neighborhood reset gate (TNG) and the environment
reset gate (EG). The TNG gate and EG gate are utilized to control the degree of information
retention for the two types of embeddings, respectively. By combining the node embedding
from the previous timestamp and the two reserved information embeddings, we generate
a new hidden state z̃utn for the next timestamp.

Furthermore, we employ the UG gate to control the degree of historical information
retention. Using the node embedding z tn−1u from the previous timestamp and the new
hidden state z̃utn for the next timestamp, we derive the node embedding z tnu for the next
timestamp. This recursive process allows us to calculate node embeddings iteratively.

Loss function
In order to learn effective node embeddings in a fully unsupervised setting, we employ
a graph-based loss function on the node embedding z tnu and optimize it using the Adam
methodproposed byKingma & Ba (2015). The graph-based loss function aims to encourage
similar embeddings for neighboring nodes, while ensuring that embeddings of dissimilar
nodes are significantly different. To measure the similarity between two embeddings, we
utilize the negative squared Euclidean distance. The loss function is defined as follows:

logL=
∑
u∈V

∑
v∈Hu

[
logσ

(
−
∥∥z tnu −z tnv ∥∥2)−Q ·Evn∼Pn(v) logσ (−∥∥z tnu −z tnvn∥∥2)]. (17)

To address the significant computational burden associated with the loss function, we
employ negative sampling (Mikolov et al., 2013b) to optimize the loss. Negative sampling
involves sampling negative examples from a distribution Pn(v), where Q denotes the
number of negative samples. In our approach, we sample negative nodes that have
not appeared in the historical neighbor sequence of node u. This helps alleviate the
computational cost while still allowing us to train the model effectively. The algorithm
procedure is given in Algorithm 1.

Wei (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2560 12/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2560


Algorithm 1MAIN procedure
Require: Temporal Graph G.
Ensure: Node embeddings for downstream tasks.
1: Initialize model parameters and data loading;
2: Fetch data by batch;
3: repeat
4: for each epoch do
5: for each batch do
6: Calculate neighborhood angle information in Section 3.3;
7: Calculate temporal angle information in Section 3.4;
8: Calculate environment angle information in Section 3.5;;
9: Aggregate the multi-angle information via GRU;
10: Optimize the loss function and update the parameters;
11: end for
12: end for
13: until Convergence

Table 2 Description of datasets.

# Datasets DBLP BitCoin ML1M Amazon

# Nodes 28,085 3,783 9,746 74,526
# Edges 236,894 24,186 1,100,209 89,689
# Labels 10 7 5 5
# Type Academic Social Business Business

Note that in the link prediction task, there are some other loss functions, which are
briefly introduced here for reference. Binary Cross Entropy Loss (BCELoss) is a common
loss function used for binary classification tasks, where the output is a probability score
between 0 and 1. Hinge loss is commonly used for binary classification tasks as well,
especially in support vector machines (SVMs). It penalizes predictions that are on the
wrong side of the decision boundary. Bayesian Personalized Ranking Loss (BPR Loss) is
often used in collaborative filtering tasks, including link prediction in recommendation
systems. It optimizes the ranking of positive interactions over negative interactions.

EXPERIMENT
Datasets
We report the statistical information of the following real-world graph datasets in Table 2.
The datasets we selected are several public datasets commonly used in the temporal
graph community, which are often used by researchers for experimental analysis. These
datasets cover different scenarios such as academic, social, and business, and can more
comprehensively analyze the real performance and versatility of the model.

Wei (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2560 13/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2560


DBLP (Zuo et al., 2018): This dataset represents a co-authorship graph in the field of
Computer Science. It contains over 10,000 nodes, and for our study, we extracted 10
research fields from the DBLP website.

BitCoin (Kumar et al., 2016; Kumar et al., 2018): The BitCoin dataset is derived from a
bitcoin trading platform called Alpha. Users on the platform rate other members on a scale
of -10 (total distrust) to +10 (total trust) with steps of 1. We categorized the ratings into
seven distinct categories based on every three consecutive scores.

ML1M (Li, Wang & McAuley, 2020): ML1M is a widely used movie dataset employed
in various machine learning tasks. Each movie in this dataset is associated with a score
assigned by users, and we choose the most frequently rated score as the label for each
movie. The scores range from 1 to 5, allowing us to divide the movies into five categories.

Amazon (Ni, Li & McAuley, 2019): The Amazon dataset consists of magazine
subscription data. Similar to the ML1M dataset, each magazine is assigned a score based on
user ratings. We select the most frequently assigned score as the label for each magazine,
and the magazines are divided into five categories accordingly.

Baselines
We compare MIAN with multiple state-of-the-art baselines:

CTDNE (Nguyen et al., 2018) gives rise to methodologies for acquiring time-respecting
embeddings from networks with continuous-time dynamics.

HTNE (Zuo et al., 2018) employs the Hawkes process to capture the influence of
historical neighbors on the current node, thereby obtaining node embeddings.

JODIE (Kumar, Zhang & Leskovec, 2019) represents a coupled recurrent neural network
model that learns the embedding trajectories of users and items.

TGN (Rossi et al., 2020) constitutes a versatile and efficient framework for deep learning
on dynamic graphs represented as sequences of timed events.

TREND (Wen & Fang, 2022) introduces a framework that incorporates both event and
node dynamics, thereby enabling a more precise modeling of events within a Hawkes
process-based graph neural network.

OTGNet (Feng et al., 2022) offers a comprehensive and principled learning approach
for open temporal graphs, aiming to address the aforementioned challenges.

The code of our proposed method MIAN can be find in GitHub: https://github.com/
doublefish-han/MIAN.

Experimental settings
The experimental results were obtained using a desktop computer equipped with an Intel
Core i7-6800KCPU, anNVIDIAGeForce RTX 3090 GPU, 64 GB of RAM, and the PyTorch
deep learning framework.

All comparison methods were utilized with their default parameters, without any
modifications. For our proposed MIAN method, we set the activation threshold to 0.9, the
node embedding dimension size to 128, the number of training epochs to 5/10/20, and the
batch size and learning rate to 128 and 0.001, respectively.

Wei (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2560 14/22

https://peerj.com
https://github.com/doublefish-han/MIAN
https://github.com/doublefish-han/MIAN
http://dx.doi.org/10.7717/peerj-cs.2560


Table 3 Node classification performance on all datasets. We mark the optimal results in bold and the sub-optimal results in underline.

Methods DBLP BitCoin ML1M Amazon

ACC F1 ACC F1 ACC F1 ACC F1

CTDNE 62.13± 0.94 61.97± 0.94 74.66± 0.67 66.06± 0.82 58.90± 0.93 54.15± 1.12 57.33± 0.64 42.12± 0.53
HTNE 62.86± 0.82 62.73± 0.78 76.25± 1.60 67.97± 1.39 59.73± 0.63 57.22± 0.79 57.34± 0.48 42.11± 0.42
JODIE 61.40± 0.77 61.07± 0.82 72.94± 0.65 67.61± 0.68 60.29± 0.83 58.33± 0.42 57.13± 0.31 41.87± 0.12
TGN 60.59± 0.84 62.54± 1.25 75.89± 0.83 67.83± 0.62 60.04± 0.35 57.53± 0.88 56.55± 0.34 41.59± 0.41
TREND 61.53± 1.36 61.78± 0.87 76.33± 0.69 67.54± 0.53 60.62± 0.82 56.49± 0.83 57.54± 0.43 41.68± 0.39
OTGNet 60.38± 1.72 61.83± 1.69 76.04± 0.88 67.87± 0.76 59.87± 0.95 58.02± 0.91 57.03± 0.64 42.13± 0.53
MIAN 63.95± 0.89 63.47± 0.77 77.67± 0.69 68.56± 0.44 62.66± 0.87 59.91± 0.68 57.85± 0.49 42.40± 0.32

We compare MIAN with other methods on several real-world datasets under the
node classiciation task. We also conduct parameter sensitivity study, ablation study, and
convergence analysis to verify the effectiveness of the proposed method.

Node classification performance
In the node classification experiment, we conduct the performance comparison between the
proposed MIAN algorithm and several state-of-the-art temporal graph learning methods.
The results, as reported in Table 3, demonstrate thatMIANoutperformed all othermethods
on all datasets, providing evidence for the effectiveness of our proposed method.

Note that each result was subjected to five repetitions to determine its corresponding
margin of error, revealing the relative stability of our method. Furthermore, it is worth
noting that the performance improvement of our method varies across different datasets.
This observation suggests that the model needs to consider varying weights of information
from different perspectives depending on the distribution of the data. To delve deeper into
this phenomenon, we conducted additional study on parameter sensitivity and performed
ablation study on the MIAN method.

Parameter sensitivity study
In this part, we report the effectiveness of different activate threshold values on all datasets.
As mentioned above, the activate threshold controls whether a node can compare the
global environment information, thus further influence the final node embeddings.

Here we set the activate threshold as 0.10,0.25,0.5,0.75,0.90, respectively. Then we
training MIAN model on these different parameter settings. In this process, all other
hyper-parameters are set to default values and remain unchanged. As shown in Fig. 2, we
can find that when the activate threshold comes 0.90, the performance usually become the
best performance. In addition, in different temporal graph datsets, the fluctuation range of
the effect caused by the change of threshold is not the same.

Indeed, for varying data distributions across different datasets, it is crucial to adaptively
tune the hyper-parameter values in our model to align with the specific characteristics of
each dataset. Additionally, it is worth highlighting that irrespective of how the threshold
value may change, the performance fluctuation of MIAN remains within a narrow range.
This observation underscores the robustness of our model, as it demonstrates the model’s

Wei (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2560 15/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2560


Figure 2 Parameter sensitivity study with different node activate threshold values.
Full-size DOI: 10.7717/peerjcs.2560/fig-2

ability to withstand variations in hyper-parameters without significant impact on its
effectiveness.

Hyperparameters are values that need to be set manually. It is often difficult to find
completely accurate values in practical application scenarios because the distribution and
scale of real data are different, which may affect the selection of hyperparameter values. In
this case, by selecting a small-scale public dataset of the same neighborhood (for example,
both in the academic field) for preliminary parameter adjustment and partially extracting
and adjusting parameters on internal data, researchers can often choose more reliable
parameter values. The hyperparameters here are not limited to the content we discussed,
but also include common hyperparameters such as embedding dimension size, training
batch size, and number of epochs.

Ablation study
We also focus on the effectiveness of different angle information on the proposed MIAN
method. In this part, we conduct ablation study to observe it.

In particular, we construct several variants of MIAN. Among them, the baseline model
we used is called ‘‘BASE’’, which does notmake any changes. For information fromdifferent
angles, we record them as ‘‘BASE+N’’, ‘‘BASE+T’’, and ‘‘BASE+E’’, respectively, and the
final complete model is ‘‘MIAN’’.

As shown in Fig. 3, we report the ablation results on different datasets. From the figure,
we can find that information from different angles improves the model performance to
different extents, among which information from the neighborhood angle can bring the
greatest improvement. This is consistent with our general understanding that in the field
of graph embedding, information propagation brought by neighbors can greatly enhance

Wei (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2560 16/22

https://peerj.com
https://doi.org/10.7717/peerjcs.2560/fig-2
http://dx.doi.org/10.7717/peerj-cs.2560


Figure 3 Ablation study on different variants of the proposedMIANmethod.
Full-size DOI: 10.7717/peerjcs.2560/fig-3

the information contained in node embedding. Regardless of the angle of information,
it can improve the effect of the model, and the final complete MIAN model has the
best performance. In addition, on different datasets, due to different data distributions,
the improvement brought by information from different angles is different. This is also
consistent with what we said above.

Note that different perspectives are of different importance, which is alsowell understood
in real-world data. Neighborhood information is the most important, followed by time
information, and then environment information. Because in static graph learning, even
without time information, a good prediction rate can be achieved because we know
the objects these nodes interact with. Time information is a supplement to the details.
Furthermore, if the environment does not change significantly, then the impact of the
global environment is not significant. If the environment fluctuates drastically, then it is
worth considering the global influence to a greater extent.

Convergence analysis
Here, we report the convergence of the model on different datasets in Fig. 4. It can be seen
that our model training requires fewer epochs, that is, the loss value drops rapidly in the
first five epochs, basically close to the convergence range, and then continuously adjusts in
multiple epochs of training until convergence. This means that if a small loss of accuracy is
acceptable, our model can be limited to a small number of training epochs, so that training
can be completed quickly. Compared with other methods, the training speed is faster and
the accuracy loss is lower.

In addition, we would like to point out that the change of loss function does not
completely mean the change of effect. Sometimes the final adjustment of loss value does
not bring about a significant improvement in performance. More specifically, the initial
loss values on different datasets are different, so the thresholds of final convergence should
also be different. Therefore, simply based on the change of loss function, we can only verify
the speed of model convergence, but the final effect may fall on an earlier epoch. Therefore,
we choose five epochs for BitCoin and ML1M, 10 epochs for DBLP, and 20 epochs for
Amazon.

Wei (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2560 17/22

https://peerj.com
https://doi.org/10.7717/peerjcs.2560/fig-3
http://dx.doi.org/10.7717/peerj-cs.2560


Figure 4 Convergence analysis on all datasets with loss value evolution.
Full-size DOI: 10.7717/peerjcs.2560/fig-4

CONCLUSION
In this paper, we propose an inductive graph embedding method MIAN that captures
multiple-angle information to generate node embeddings at any time. We consider
neighborhood-angle, temporal-angle, and environment-angle information separately.
Then we propose an aggregator function that can flexibly capture graph changes and
generate node embeddings inductively. Extensive experiments on several real-world
datasets demonstrate that MIAN significantly outperforms state-of-the-art baselines. In
the future, we will focus on temporal graph embedding for science application. In the
real world, many data have potential connections and dynamic changes. Modeling these
dynamic data as temporal graphs poses a significant challenge.

For example, in the smart city scenario, there will be information from multiple
angles, including location information, interaction information, time information, and
identity information. In the celestial body trajectory prediction scenario, the speed,
mass, surrounding environment, and operation cycle of the celestial body are all worth
considering. How to better integrate and utilize this multi-angle information will be the
development direction that temporal graph learning needs to seriously consider in the
future, and it is also where our proposed method really comes in handy.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Wei (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2560 18/22

https://peerj.com
https://doi.org/10.7717/peerjcs.2560/fig-4
http://dx.doi.org/10.7717/peerj-cs.2560


Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Shaohan Wei conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code and data are available in the Supplemental Files.
The public datasets are available at:
- DBLP dataset: https://zuoyuan.github.io/publication/HTNE
- BitCoin dataset: https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
- ML1M dataset: https://github.com/JiachengLi1995/TiSASRec
- Amazon dataset:
https://cseweb.ucsd.edu/~jmcauley/datasets.html#amazon_reviews.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2560#supplemental-information.

REFERENCES
Bruna J, ZarembaW, Szlam A, LeCun Y. 2014. Spectral networks and locally connected

networks on graphs. In: International conference on learning representations.
Cao S, LuW, Xu Q. 2015. GraRep: learning graph representations with global structural

information. In: ACM International conference on information and knowledge
management. New York: ACM.

Cho K, Merrienboer vB, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y.
2014. Learning phrase representations using RNN encoder-decoder for statistical
machine translation. In: EMNLP. 1724–1734.

Cui P,Wang X, Pei J, ZhuW. 2019. A survey on network embedding. IEEE Transactions
on Knowledge and Data Engineering.

FanW, LiuM, Liu Y. 2022. A dynamic heterogeneous graph perception network
with time-based mini-batch for information diffusion prediction. In: Bhat-
tacharya A, et al., eds. Database systems for advanced applications. DASFAA
2022. Lecture notes in computer science, vol. 13245. Cham: Springer, 604–612
DOI 10.1007/978-3-031-00123-9_49.

Feng K, Li C, Zhang X, Zhou J. 2022. Towards open temporal graph neural networks. In:
The eleventh international conference on learning representations.

Granovetter M. 1978. Threshold models of collective behavior. American Journal of
Sociology 83(6):1420–1443.

Wei (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2560 19/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2560#supplemental-information
https://zuoyuan.github.io/publication/HTNE
https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
https://github.com/JiachengLi1995/TiSASRec
https://cseweb.ucsd.edu/~jmcauley/datasets.html#amazon_reviews
http://dx.doi.org/10.7717/peerj-cs.2560#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2560#supplemental-information
http://dx.doi.org/10.1007/978-3-031-00123-9_49
http://dx.doi.org/10.7717/peerj-cs.2560


Grover A, Leskovec J. 2016. node2vec: scalable feature learning for networks. In:
KDD’16: proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining. New York: ACM, 855–864.

Hamilton LW, Ying R, Leskovec J. 2017. Inductive representation learning on large
graphs. In: NIPS 2017. New York: ACM, 1024–1034.

Hawkes AG. 1971. Point spectra of some mutually exciting point processes. Journal
of the Royal Statistical Society Series B: Statistical Methodology 33(3):438–443
DOI 10.1111/j.2517-6161.1971.tb01530.x.

Jia N, Yao C. 2024. ShallowBKGC: a BERT-enhanced shallow neural network
model for knowledge graph completion. PeerJ Computer Science 10:e2058
DOI 10.7717/peerj-cs.2058.

Kingma PD, Ba LJ. 2015. Adam: a method for stochastic optimization. ArXiv
arXiv:1412.6980.

Kumar S, Hooi B, Makhija D, KumarM, Faloutsos C, Subrahmanian V. 2018. Rev2:
fraudulent user prediction in rating platforms. In: Proceedings of the eleventh ACM
international conference on web search and data mining. New York: ACM, 333–341.

Kumar S, Spezzano F, Subrahmanian V, Faloutsos C. 2016. Edge weight prediction in
weighted signed networks. In: 2016 IEEE 16th international conference on data mining
(ICDM). Piscataway: IEEE, 221–230.

Kumar S, Zhang X, Leskovec J. 2018. Learning dynamic embeddings from temporal
interactions. ArXiv arXiv:1812.02289.

Kumar S, Zhang X, Leskovec J. 2019. Predicting dynamic embedding trajectory in tem-
poral interaction networks. In: Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining. New York: ACM, 1269–1278.

Li Y, Fan J, Wang Y, Tan K-L. 2018. Influence maximization on social graphs: a sur-
vey. IEEE Transactions on Knowledge and Data Engineering 30(10):1852–1872
DOI 10.1007/s13278-023-01078-9.

Li J, Wang Y, McAuley JJ. 2020. Time interval aware self-attention for sequential
recommendation. In:WSDM ’20: the thirteenth ACM international conference on web
search and data mining Houston TX USA February, 2020. New York: ACM, 322–330.

Liang K, Meng L, LiuM, Liu Y, TuW,Wang S, Zhou S, Liu X. 2023. Learn from
relational correlations and periodic events for temporal knowledge graph reasoning.
In: Proceedings of the 46th international ACM SIGIR conference on research and
development in information retrieval. New York: ACM, 1559–1568.

Liang K, Meng L, LiuM, Liu Y, TuW,Wang S, Zhou S, Liu X, Sun F, He K. 2024. A
survey of knowledge graph reasoning on graph types: static, dynamic, and multi-
modal. IEEE Transactions on Pattern Analysis and Machine Intelligence 46:9456–9478
DOI 10.1109/TPAMI.2024.3417451.

Lin Y-C,Wang C-H, Lin Y-C. 2024. GAT TransPruning: progressive channel pruning
strategy combining graph attention network and transformer. PeerJ Computer Science
10:e2012 DOI 10.7717/peerj-cs.2012.

LiuM, Liang K, Zhao Y, TuW, Zhou S, Gan X, Liu X, Kunlun H. 2024. Self-supervised
temporal graph learning with temporal and structural intensity alignment. IEEE

Wei (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2560 20/22

https://peerj.com
http://dx.doi.org/10.1111/j.2517-6161.1971.tb01530.x
http://dx.doi.org/10.7717/peerj-cs.2058
http://arXiv.org/abs/1412.6980
http://arXiv.org/abs/1812.02289
http://dx.doi.org/10.1007/s13278-023-01078-9
http://dx.doi.org/10.1109/TPAMI.2024.3417451
http://dx.doi.org/10.7717/peerj-cs.2012
http://dx.doi.org/10.7717/peerj-cs.2560


Transactions on Neural Networks and Learning Systems Epub ahead of print 2024 22
April DOI 10.1109/TNNLS.2024.3386168.

LiuM, Liu Y. 2021. Inductive representation learning in temporal networks via mining
neighborhood and community influences. In: Proceedings of the 44th international
ACM SIGIR conference on research and development in information retrieval. New
York: ACM, 2202–2206.

LiuM, Liu Y, Liang K, TuW,Wang S, Liu X. 2024b. Deep temporal graph clustering. In:
The twelfth international conference on learning representations. 1–18.

LiuM,Wu J, Liu Y. 2022. Embedding global and local influences for dynamic graphs. In:
Proceedings of the 31st ACM international conference on information and knowledge
management. New York: ACM, 4249–4253.

Luo C, Guo S. 2024.HSMVS: heuristic search for minimum vertex separator on massive
graphs. PeerJ Computer Science 10:e2013 DOI 10.7717/peerj-cs.2013.

MaW, Zheng Y, Li T, Li Z, Li Y, Wang L. 2024. A comprehensive review of deep learning
in EEG-based emotion recognition: classifications, trends, and practical implications.
PeerJ Computer Science 10:e2065 DOI 10.7717/peerj-cs.2065.

Mikolov T, Chen K, Corrado G, Dean J. 2013a. Efficient estimation of word representa-
tions in vector space. ArXiv arXiv:1301.3781.

Mikolov T, Sutskever I, Chen K, Corrado G, Dean J. 2013b. Distributed representations
of words and phrases and their compositionality. ArXiv arXiv:1310.4546.

Nguyen GH, Lee JB, Rossi RA, Ahmed NK, Koh E, Kim S. 2018. Continuous-time
dynamic network embeddings. In: Companion proceedings of the the web conference
2018. DOI 10.1145/3184558.3191526.

Ni J, Li J, McAuley J. 2019. Justifying recommendations using distantly-labeled reviews
and fined-grained aspects. In: EMNLP/IJCNLP, vol. 1. Available at https://cseweb.ucsd.
edu/~jmcauley/pdfs/emnlp19a.pdf .

OuM, Cui P, Pei J, ZhuW. 2016. Asymmetric transitivity preserving graph embedding.
In: KDD 2016 DOI 10.1145/2939672.2939751.

Pareja A, Domeniconi G, Chen J, Ma T, Suzumura T, Kanezashi H, Kaler T, Schardl
T, Leisersen EC. 2020. EvolveGCN: evolving graph convolutional networks for
dynamic graphs. In: National conference on artificial intelligence.

Perozzi B, Al-Rfou’ R, Skiena S. 2014. DeepWalk: online learning of social representa-
tions. In: KDD 2014. 701–710.

Rossi AR, Zhou R, Ahmed KN. 2018. Deep inductive network representation learning.
In:WWW ’18: the web conference 2018 Lyon France April, 2018. 953–960.

Rossi E, Chamberlain B, Frasca F, Eynard D, Monti F, BronsteinM. 2020. Temporal
graph networks for deep learning on dynamic graphs. ArXiv arXiv:2006.10637.

Sankar A,Wu Y, Gou L, ZhangW, Yang H. 2020. DySAT: deep neural representation
learning on dynamic graphs via self-attention networks. In: Proceedings of the 13th
international conference on web search and data mining. 519–527.

Srinivasan B, Ribeiro B. 2020. On the equivalence between node embeddings and struc-
tural graph representations. In: International conference on learning representations.

Wei (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2560 21/22

https://peerj.com
http://dx.doi.org/10.1109/TNNLS.2024.3386168
http://dx.doi.org/10.7717/peerj-cs.2013
http://dx.doi.org/10.7717/peerj-cs.2065
http://arXiv.org/abs/1301.3781
http://arXiv.org/abs/1310.4546
http://dx.doi.org/10.1145/3184558.3191526
https://cseweb.ucsd.edu/~jmcauley/pdfs/emnlp19a.pdf
https://cseweb.ucsd.edu/~jmcauley/pdfs/emnlp19a.pdf
http://dx.doi.org/10.1145/2939672.2939751
http://arXiv.org/abs/2006.10637
http://dx.doi.org/10.7717/peerj-cs.2560


Tang J, QuM,WangM, ZhangM, Yan J, Mei Q. 2015. LINE: large-scale information
network embedding. ArXiv DOI 10.1145/2736277.2741093.

Tian TJ, Yi-TongW, Xiao-Jun F. 2011. A new hybrid algorithm for influence max-
imization in social networks. Jisuanji Xuebao/Chinese Journal of Computers
34(10):1956–1965.

Trivedi R, Farajtabar M, Biswal P, Zha H. 2019. DyRep—learning representations over
dynamic graphs. In: ICLR.

Wang X, Cui P,Wang J, Pei J, ZhuW, Yang S. 2017. Community preserving network
embedding. Washington, D.C.: AAAI, 203–209.

Wen Z, Fang Y. 2022. Trend: temporal event and node dynamics for graph represen-
tation learning. In: Proceedings of the ACM web conference 2022. New York: ACM,
1159–1169.

XuD, ChengW, Luo D, Liu X, Zhang X. 2019. Spatio-temporal attentive RNN for node
classification in temporal attributed graphs. In: IJCAI. 3947–3953.

Zuo Y, Liu G, Lin H, Guo J, Hu X,Wu J. 2018. Embedding temporal network via
neighborhood formation. In: KDD 2018. 2857–2866.

Wei (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2560 22/22

https://peerj.com
http://dx.doi.org/10.1145/2736277.2741093
http://dx.doi.org/10.7717/peerj-cs.2560

