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ABSTRACT
This work introduces a method to estimate reflectance, shading, and specularity from
a single image. Reflectance, shading, and specularity are intrinsic images derived from
the dichromatic model. Estimation of these intrinsic images has many applications
in computer vision such as shape recovery, specularity removal, segmentation, or
classification. The proposed method allows for recovering the dichromatic model
parameters thanks to two independent quadratic programming steps. Compared to
the state of the art in this domain, our approach has the advantage to address a
complex inverse problem into two parallelizable optimization steps that are easy to
solve and do not require learning. The proposed method is an extension of a previous
algorithm that is rewritten to be numerically more stable, has better quantitative
and qualitative results, and applies to multispectral images. The proposed method is
assessed qualitatively and quantitatively on standard RGB and multispectral datasets.

Subjects Artificial Intelligence, Computer Vision, Optimization Theory and Computation,
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INTRODUCTION
Light reflected on the surface of an object could be either diffuse or specular. Diffuse
reflection is produced by rough surfaces that tend to reflect light in all directions while
specular reflection is defined as light reflected at a definite angle, like a mirror reflection.
These two phenomena appear on an image, thus, a challenging task is to isolate their
contributions. Shape, color, and geometry are very useful information that could be
obtained from the decomposition of diffuse and specular reflection. For example, the
color of an object can be used for segmentation, classification, or recoloring and the shape
and the geometry gives 3D information about the environment and could be used for
object recognition. Several models have been proposed to model light reflected on a
surface. One of the simplest models is the Lambertian model proposed by Lambert in 1760.
The model is expressed by

Iðu; �Þ ¼ 1
p
lð�ÞSðu; �Þ cosðuiÞdwi (1)

where I(u, λ) is the diffuse radiance at pixel u and wavelength λ, S(u, λ) is the surface
reflectance, l is the light source radiance, θi is the incident angle and dwi is the solid angle of
the light source viewed from pixel u.
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The dichromatic model is also widely used in the literature. It was first proposed by
Shafer (1985) for modeling dielectric objects. The model is mathematically defined by the
equation:

Iðu; �Þ ¼ lð�ÞðgðuÞSðu; �Þ þ kðuÞÞ (2)

where I, l, and S are defined as previously, g is the shading factor and k is the specular
coefficient. The dichromatic model assumes uniform illumination across the spatial
domain as explained in the book of Robles-Kelly & Huynh (2012). In this model, an
image can be split into a diffuse and a specular part. The shading factor g governs the
proportion of diffuse light reflected from the object and k models the irregularities of
the micro-facet structure that causes specularity in the scene. Compared to the lambertian
model, the dichromatic model adds the specular part k and for a purely diffuse lambertian
surface, gðuÞ ¼ 1

p cosðuiÞdwi and I(u, λ) = l(λ)g(u)S(u, λ).
Other models exist like Shape, illumination and reflectance from shading (SIRFS),

developed by Barron & Malik (2015). The model is parametrized with a rendering
engine and a spherical harmonic model of illumination. To the contrary of
the dichromatic model, SIRFS is based on computer graphics and not on
phenomenology. All these models can be used to decompose an image or to generate
synthetic images.

Methods to inverse the dichromatic model are often based on the neighborhood
analysis of each pixel: Tan, Nishino & Ikeuchi (2004) and Tan & Ikeuchi (2005) have
described a specular-to-diffuse mechanism that is applied to local neighborhoods having
the same reflectance. Fast recovery of intrinsic images from a single image already exists.
Yoon, Choi & Kweon (2006) create specular-free 2-channel images and Yang, Tang &
Ahuja (2015) use guided filtering (originally proposed by He, Sun & Tang (2013)) to
remove specularity. Recent progress in deep learning encourages researchers in the field to
use convolutional neural network (CNN) based approaches to solve the inversion problem
like Son & Lee (2016) or Shi et al. (2017). Few works consider a non-local strategy like
Xie et al. (2016). They encourage distant clusters that have the same color to have the
same reflectance. Shen, Tan & Lin (2008) use intensity-normalized color information as
texture vectors and encourage distant pixels that have the same texture vectors to have the
same reflectance.

The decomposition of multispectral images into photometric invariants is recent.
For example, Huynh & Robles-Kelly (2008, 2010) have worked on multispectral images.
Their method consists of minimizing objective functions based on the dichromatic model
to recover intrinsic images. The decomposition was then used for skin recognition,
material clustering, and specularity removal. Koirala et al. (2011) have another
approach. They detect and remove specularity with a filter that coefficients are found
by constrained energy minimization. The dichromatic model parameters recovery can also
be achieved with the inversion of a linear model as demonstrated by Fu, Tan & Caelli
(2006). They have applied Orthogonal Subspace Projection to remove specularity.
Similarly, Zheng, Sato & Sato (2015) and Chen, Drew & Li (2017) separate the illumination
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spectra from the reflectance using low-rank matrix factorization following the Lambertian
model.

The purpose of this work is to inverse the dichromatic model. Precisely, three
photometric invariants g, S, and k are recovered. These photometric invariants are
recovered thanks to two quadratic programming steps. The presented inversion method
has the advantages to be learning free and applies to RGB images as well as multispectral
images. Thus, the rest of the paper is organized as follows: in “Underdetermination
and Related Work,” the inversion problem and its underdetermination are analyzed.
The solutions and the limitations found in the literature are explored to compare our
approach to existing methods. Then, the proposed method is detailed in “Method.” Finally,
we assess the robustness of the proposed method qualitatively and quantitatively in
“Results and Discussion.”

UNDERDETERMINATION AND RELATED WORK
Even if the dichromatic model is rather simple, its inversion is still complex. The inversion
process is an underdetermined problem. One single image could have been obtained by a
large combination of illumination, shape, and reflectance.

Mathematically, we note that in Eq. (2), there could be any balancing factor between
g and S that is, if S� and g� are solutions to the inverse problem, then αS� and g�

a are
also solutions to the inverse problem for any positive scalar α. From a numerical point of
view, there are fewer equations than unknowns. Let us define Np as the number of
pixels and Nc as the number of wavelengths. According to Eq. (2), there are Np × Nc

equations for Nc + Np + Np × Nc + Np unknowns. This comparison shows clearly that the
problem is underdetermined, thus the inversion algorithm should include soft or hard
constraints to overcome the underdetermination. For example, g, S, and k have a physical
meaning, they must be positive numbers.

One of the simplest ways to reduce the number of unknowns is to assume that the
illumination spectrum is known or can be experimentally estimated. This can be done
by imaging a white standard reference and define l as the spatial mean spectra. l can
also be obtained thanks to one of the reference methods taken from literature like the
White-Patch method, the Grey-World method, or the Grey-Edge method as explained by
Huynh & Robles-Kelly (2010). Recent deep-learning-based algorithms compete with
these methods like the CNN of Bianco, Cusano & Schettini (2015) or the mixed pooling
neural networks of Fourure et al. (2016). Once the spectrum of the illumination is known,
the Eq. (2) becomes:

Rðu; �Þ ¼ Iðu; �Þ
lð�Þ ¼ gðuÞSðu; �Þ þ kðuÞ: (3)

This simplification suggests that the reflectance spectra S is related to R with a scalar and
an offset.

For some applications, if only one material is considered, the number of unknowns can
be further reduced because the reflectance S is no more pixel dependent and the Eq. (3) is
simplified by
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Rðu; �Þ ¼ gðuÞSð�Þ þ kðuÞ: (4)

This system is overdetermined and can be solved by linear regression as suggested by
Robles-Kelly & Huynh (2012). Unfortunately, the uniqueness of the material is a strong
assumption and is rarely applicable in practice.

Barron & Malik (2012, 2015) have expressed priors on the illumination, the
reflectance and the shape of an object. These constraints are soft constraints and even if we
are not using the same model, we use some of their ideas to build our optimization
algorithm. For example, Barron et al. explain that surfaces tend to be smooth, thus the
shading image g is also smooth. This assumption is also used in the papers of Gu &
Robles-Kelly (2016) and Huynh & Robles-Kelly (2008). The smoothness is expressed by a
regularization term that minimizes the gradient and the mean curvature respectively.
Barron & Malik (2015) also expressed the fact that the number of different reflectances in
an image tends to be small. This means that the palette used for an image is small.
These priors reflect good assumptions but require learning. In this case, learning-
based methods would require a lot of training samples and would be dependent on the
number of channels of the image. In practice Barron & Malik (2015) have trained
their priors for gray-scale image (one channel) and RGB images (three channels)
independently.

Some works overcome the underdetermination by increasing the amount of data
available, for example by combining multiple views of the scene. Using multiple
images makes easier the separation of diffuse and specular components. For example,
Umeyama & Godin (2004) use a rotating polarizer to acquire several images and then
apply Independent component analysis assuming the probabilistic independence
between diffuse and specular components. Feris et al. (2004) use multi-flash images to
reduce specularity and Xie et al. (2016) use stereoscopic images and inverse the
Lambertian model R(u, λ) = g(u)S(u, λ). Zhou, Krähenbühl & Efros (2015) increases
the amount of information by asking the user to order image patches according
to their brightness, thus producing a data-driven reflectance prior. The use of
several views of the same scene decreases the underdetermination but is also more
cumbersome.

The proposed method takes into account the numerical constraints that were observed.
As most of the real-life objects are smooth, a soft smoothness is also introduced. The
illumination spectrum is known thus, the efforts are focused on the resolution of Eq. (3).
The next section details the complete method to recover the intrinsic images and explains
the constraints that were used.

METHOD
In a previous paper, we have proposed a learning free method to solve the decomposition
problem with two quadratic programming steps (Krebs, Benezeth & Marzani (2017)).
The shading factor g and the specular image k were indirectly recovered as the minimum of

Krebs et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.256 4/15

http://dx.doi.org/10.7717/peerj-cs.256
https://peerj.com/computer-science/


quadratic objective functions subject to linear constraints. It means that the decomposition
was obtained by solving two problems under the general form:

x� ¼ argmin
x

1
2
xtQx þ ctx

subject to
Ax� � b
Aeqx� ¼ beq

8>>>><
>>>>:

(5)

where x� is the desired solution vector (i.e., the flattened version of g or indirectly k). Q, A,
and Aeq are matrices. The values ofQ take into account the similarity between neighboring
pixels of the input image. c, b, and beq are column vectors, with the same number of
elements as the number of pixels of the input image.

Quadratic programming is the process of solving this kind of optimization problem.
Nowadays, these problems are well known and it exists a variety of methods to solve them
like the interior point, the active set, the augmented Lagrangian, or the conjugate gradient
detailed by Nocedal & Wright (2006).

The previous method was based on the distinction of three cases, the case where
neighboring pixels belong to the same material, the case where they are not and the case
where the pixels are gray.

In the following parts, an improved version of our algorithm written in 2017 is
introduced. The goal is to get rid of some drawbacks while staying learning free and
preserving the quadratic formulation to keep the simplicity of resolution. The objective
functions are changed and expressed in the logarithmic domain. Working in the
logarithmic domain allows us to reach better numerical stability because it transforms
divisions into subtractions. This leads to less instability when dividing by numbers
close to zero and thus, much better quantitative and qualitative results. Moreover, the
algorithm is extended to multispectral images. To the best of our knowledge, no other
method that considers RGB and multispectral images have been published.

Indirect recovery of the shading factor
The first goal of the proposed method is to recover the shading factor g. g is
actually indirectly recovered: we define the unknown of the optimization problem as
x = ln(g).

It has been shown that if two pixels u and v belong to the same material, the ratio
between gu and gv (values of the image g at pixels u and v) is equal to the ratio between σu
and σv (the standard deviations of R along the wavelengths axis):

gu
gv

¼ su

sv
(6)

because

su

sv
¼ stdðRu; �Þ

stdðRv; �Þ ¼
gustdðSu; �Þ
gvstdðSv; �Þ ¼

gu
gv
: (7)
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Thus, applying the logarithm transforms ratios into differences

xu � xv ¼ lnðsuÞ � lnðsvÞ: (8)

The key idea is then to write an objective function as a weighted sum of squared
residuals:

f1ðxÞ ¼
X
u

X
v2NðuÞ

zu;vðxu � xv � lnðsuÞ þ lnðsvÞÞ2 (9)

where NðuÞ denotes the neighborhood of u, ζu, v is a weight between 0 and 1
corresponding to the similarity measure between two spectra at pixels u and v:

zu; v ¼ exp
�SAMðRu;RvÞ2

r

� �
(10)

with r as the bandwidth parameter and SAM as the Spectral angle mapper, one spectral
similarity measure explored by Galal, Hasan & Imam (2012).

SAMðRu;RvÞ ¼ arccos

PNc
i¼1 RuiRviffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNc

i¼1 R
2
ui

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNc
i¼1 R

2
vi

q
0
B@

1
CA: (11)

In case pixels u and v do not belong to the same material (i.e., ζu, v is close to zero), x is
assumed to be smooth i.e., xu ≈ xv. The complementary objective function is thus created
under the form:

f2ðxÞ ¼
X
u

X
v2NðuÞ

ð1� zu;vÞðxu � xvÞ2: (12)

From an image processing point of view, minimizing the distance between xu and xv is
intuitively like applying an averaging filter on x which is also equivalent to applying a
geometric mean filter on g. This smoothing is more robust to positive outliers than the
classical averaging filter.

There is a third case which is more difficult. If two pixels u and v are gray, then the
standard deviation is close or equal to zero and thus f1 could be unstable. A gray pixel is
defined as a pixel for which Ru is nearly constant for every wavelength and thus cannot be
separated into a diffuse part and a specular part. In this case, the mean over the
wavelengths μ is used instead of the standard deviation σ.

This case corresponds to the assumption that there is no specularity on gray objects
(i.e., that k = 0). A third part of the objective function is thus written:

f3ðxÞ ¼
X
u

X
v2NðuÞ

zu;vzuzvðxu � xv � lnðmuÞ þ lnðmvÞÞ2 (13)

New symbols are introduced with the following definition: ζu = ζ(Ru, 1) and

zu ¼ 1� zðRv; 1Þ (1 being a vector of ones). ζu is an indicator, based on SAM metric, that
emphasizes the spectra that are nearly gray (value close to 1) or not (value close to 0).
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On the same time, f1 and f2 are slightly modified with an additional factor that discards
gray pixels:

f1ðxÞ ¼
X
u

X
v2NðuÞ

zu;vzuzvðxu � xv � lnðsuÞ þ lnðsvÞÞ2; (14)

f2ðxÞ ¼
X
u

X
v2NðuÞ

ð1� zu;vzuzv � zu;vzuzvÞðxu � xvÞ2: (15)

The final objective function is written as the sum of f1, f2, and f3 so that all three cases
are well encompassed.

fshadingðxÞ ¼ f1ðxÞ þ f2ðxÞ þ f3ðxÞ: (16)

As this objective function is the sum of quadratic functions, fshading is also quadratic
and its minimization can be seen as a quadratic programming task as presented in the
system (5).

Once the objective function is built, hard constraints are considered. Mathematically,
we have seen in “Underdetermination and Related Work” that there could be any
balancing factor between g and S. Thus, in the logarithmic domain, considering x�

instead of g�, there can be any offset ε we can add to x�, the solution will still hold. Thus, we
can constraint the sum of all elements of x to be equal to an arbitrarily chosen constant c.

Indirect recovery of the specular factor
The second goal of the proposed method is to recover the specular factor k. This part
of the method is independent of the previous calculus of g, and thus, the two optimizations
are perfectly interchangeable or can be parallelized to speed up the algorithm. The
intermediate variable y ¼ lnðgSÞ is computed as the minimum of a constrained quadratic
objective function. The symbol S being the mean of S over the wavelengths.

If two pixels u and v belong to the same material, then:

yu � yv ¼ lnðsuÞ � lnðsvÞ (17)

for the same reason as for Eq. (8).
Thus our objective function can be written as the square of the difference between yu

and yv weighted by ζu, v to express the similarity of the material and zuzv to express the fact
that the pixels cannot be gray:

f4ðyÞ ¼
X
u

X
v2NðuÞ

zu;vzuzvðyu � yv � lnðsuÞ þ lnðsvÞÞ2: (18)

f4 is analogous to the function f1 in Eq. (14).
Like in previous part, a complementary function is written. In this case, we assume that

the specularity is negligible compared to the diffuse part i.e., yu ≈ μu.

f5ðyÞ ¼
X
u

X
v2NðuÞ

ð1� zu;vzuzvÞðyu � yv � lnðluÞ þ lnðlvÞÞ2: (19)
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f4 and f5 are also quadratic and the final objective function can be written as:

fspecularðyÞ ¼ f4ðyÞ þ f5ðyÞ: (20)

Because of the physical constraint, k is bounded below by 0, all elements of k must be
positive. Moreover, the consideration of the minimum of R over the wavelength:

minðRu; �Þ ¼ gu minðSu; �Þ þ ku (21)

shows that ku is also upper-bounded by min(Ru, λ). Thus, yu is also bounded:

lnðm�minðRu; �ÞÞ � yu � lnðmÞ: (22)

As for x, y is recovered thanks to a quadratic programming algorithm. g, k, and S are
then obtained with

g ¼ expðxÞ
k ¼ m� expðyÞ

S ¼ R� k
g

: (23)

To conclude on this section, two quadratic objective functions have been built allowing
us to recover indirectly g, k, and S. Only simple statistical tools (standard deviation
and mean) have been used making the method applicable to RGB images as well as
multispectral images. These functions decompose all pixels into three categories:
neighboring pixels that belong to the same material, pixels from different materials and
gray pixels.

RESULTS AND DISCUSSION
This section presents the qualitative and quantitative results of the presented method.
First, qualitative results are presented and then, metrics are introduced to assess the quality
of the method quantitatively. It is very important to compare our work to current methods
in the literature, thus, in the following parts, the references Barron & Malik (2015),
Yang, Wang & Ahuja (2010), Gu, Robles-Kelly & Zhou (2013), Huynh & Robles-Kelly
(2010), and the previous version of the algorithm (Krebs, Benezeth & Marzani (2017)) are
used as comparative methods. Afterward, we will use the following abbreviations to refer to
each of these methods:

� LS for Gu, Robles-Kelly & Zhou (2013)

� KL for Huynh & Robles-Kelly (2010)

� Barron for Barron & Malik (2015)

� Yang for Yang, Wang & Ahuja (2010)

� Krebs for Krebs, Benezeth & Marzani (2017)

LS employs shapelets to recover the shading of an image. KL is based on objective
functions with a regularization term that enforces the smoothness of g. Barron uses priors

Krebs et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.256 8/15

http://dx.doi.org/10.7717/peerj-cs.256
https://peerj.com/computer-science/


to recover the most probable illumination, shape, and reflectance, and Yang uses guided
image filtering to iteratively remove specularity.

We have tested the different algorithms on the Massachusetts Institute of Technology
(MIT) intrinsic dataset created by Grosse et al. (2009). This dataset provides 20 images
along with a ground truth image for the reflectance S, the shading g, and the specularity
k, namely Strue, gtrue, and ktrue. We have also applied our algorithm on the CAVE
(Computer Vision Laboratory at Columbia University) Multispectral image dataset which
provides multispectral images without ground truth. The dataset is available thanks to
Yasuma et al. (2010).

For visualization purposes, the multispectral images are transformed to RGB images via
a multilinear transformation. All images are padded with black pixels to be square and
scaled. All images are also divided by the illumination spectrum. For the MIT database, we
assume l is white and for the CAVE database, l is obtained thanks to the white patch of
ColorChecker appearing on each image.

Qualitative results
Figure 1 presents shading images g resulting from all methods on four examples. The two
first rows are images coming from the MIT dataset, the two other rows are multispectral
images from the CAVE dataset. The first column contains the input image, the second
one contains the ground truth shading images. The next columns are respectively the
results given by LS, KL, Barron, Yang, Krebs and the proposed method. Considering the
apple, the specular spot still appears for LS, KL, and Yang while the proposed method
is more robust and is not corrupted by specularity. For the phone, strong gradients appear

Figure 1 Results of shading images for the different methods: from left to right, the original image,
the ground truth, LS, KL, Barron, Yang, Krebs, and the proposed method.

Full-size DOI: 10.7717/peerj-cs.256/fig-1
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for methods LS, KL, and Yang that are not due to the shape of the object but are
induced by color changes and thus should not appear. The smoothness term introduced in
Eq. (15) makes the difference with other recent works. The key is that this term only
acts on color gradients and not on uniform areas. On the multispectral peppers image,
we can see that the specularity is successfully removed while it is still appearing with
the other methods. The shading image g for the colored feathers seems flat and blurry. But,
as this scene is flat, g is also flat. Still, the method tends to oversmooth the shading image
on multispectral images. This is because the smoothness term in Eq. (15) is a good
assumption if there is only one object on the image which is not the case on the images
from the CAVE dataset (six peppers and six feathers for example).

In Fig. 2, results of reflectance images are also compared between all methods. The first
column contains the input image, the second one contains the ground truth reflectance
images. The next columns are the results obtained with LS, KL, Barron, Yang, Krebs,
and the proposed method. The observation is that for the methods LS, KL, and Yang, the
color are corrupted. These methods fail to conserve the good ratio between colors. For
example, the white part of the phone looks gray for LS, KL, and Yang. That means that g
was over-rated on the white part. Another manifestation of this non-conservation of color
ratios can be seen with the feathers image: the first feather on the left should be white
and appears black for all other methods. It is exactly the opposite with the first feather on
the right which is black and appears white for the other methods. The smoothness
constraint (15) helps also to keep the color ratio which is essential for the visualization
of S. We can note that, on the case of white objects, the objective function (13) helps not to
be confused with specularity. However, it can be seen that some specular is remaining in

Figure 2 Results of reflectance images for the different methods: from left to right, the original
image, the ground truth, LS, KL, Barron, Yang, Krebs, and the proposed method.

Full-size DOI: 10.7717/peerj-cs.256/fig-2
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the reflectance images of the apple and the peppers. It appears in gray for LS, KL, and
Yang and in white for Barron, Krebs, and the proposed method. This can be due to
saturated pixels. The information of color under the specularity becomes too low to be
recognized.

We do not present results on specular images k because the images are very dark, the
specularity is only the white spots we can see on objects (for example on the apple). Thus,
excepting these white spots, the rest of the k images are completely black and thus are
difficult to compare.

Quantitative results
Qualitative analysis is not sufficient to prove the robustness of the proposed method.
Thus, metrics between g, S, and k are computed.

As explained in part 2 there can be any scaling factor between g and S. Thus, we need
to normalize g and gtrue and S and Strue for a fair comparison. For this purpose, they are
scaled so that the sum of all pixels is 1. After normalization, the Sum of squared errors
(SSE) is computed. For k and ktrue, we compute the mean squared error MSE without
normalizing the images. For S and Strue the mean value of the SAM is also computed.
We add this metric because it is usually used to compare spectra. The spectral angle is
more suitable to express changes in chromaticity while the SSE is more suitable to express
the mean aspect of the image. SAM is already a scaling invariant metric thus, there is no
need to normalize S for this metric.

Table 1 presents the results over the 20 images of the MIT dataset by giving the mean
value for all metrics. The quantitative analysis is unfortunately not possible on the
CAVE dataset as there is no ground truth.

First of all, the execution time can be analyzed. The time presented in the table is the total
time needed to process the whole MIT dataset while parallelizing the processing for the
20 images on a 64 bits Intel Xeon CPU processor at 1.9 GHz, with 12 cores. Yang’s method is
the fastest, followed by LS and KL. But it should be noticed that the comparison is not
completely fair in the sense that LS and KL’ implementation are Matlab codes, but that
call C programs that make themmuch faster. The proposed method has a good improvement
compared to Krebs. The proposed method is 32 times faster than the previous one and uses
pure programming. The proposed method outperforms the other methods for the four
metrics, which was not the case in Krebs, Benezeth & Marzani (2017). Concerning g, the
proposed method has the lowest error with an SSE of 0.183 × 10−5, our previous algorithm

Table 1 Quantitative results on the MIT dataset. The numbers written in bold represent the best scores
among all compared methods.

LS KL Barron Yang Krebs Proposed method

Execution time (s) 553 68 16348 9 22187 675

SSE on normalized g (×10−5) 0.780 0.504 1.765 0.883 0.384 0.183

SSE on normalized S (×10−5) 0.225 0.233 0.980 0.240 0.267 0.144

MSE on k (×108) 0.102 1.223 N/A 0.206 0.053 0.007

SAM on S 0.021 0.041 0.032 0.025 0.030 0.020

Krebs et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.256 11/15

http://dx.doi.org/10.7717/peerj-cs.256
https://peerj.com/computer-science/


is second with 0.384 × 10−5 (almost a factor 2 is gained) and KL is third with 0.504 × 10−5.
This is consistent with the results shown in the qualitative results section (Fig. 1).

Results on the MSE of k are also favorable to the proposed method with an MSE of
0.007 × 108. It is seven times lower than the previous version and 10 times lower than
LS (0.102 × 108). Barron’s method does not return the specular component. The whole
image is supposed to be diffuse.

Results for S are also good with a mean angular error of 0.020 radians (1.1 degree)
and an SSE of 0.144 × 10−5. These results are directly correlated to a better estimation of g
and k as S is recovered to respect the equality (23). The quantitative results are consistent
with the qualitative analysis. The proposed method outperforms the state of the art by
recovering a good estimation of the three components g, S, and k. Moreover, the updated
method has a significant gain compared to the one proposed in 2017.

CONCLUSION
In this paper, a novel method to recover the parameters of the dichromatic model using a
single image has been introduced. The algorithm is learning free because it is simply
expressed as two independent quadratic programming problems. The method is an
updated version compared to the one proposed in 2017. The method is applied to
multispectral images and offers a significant gain on RGB images. Two datasets were used
for this study, a set of RGB images from the MIT and a set of multispectral images named
CAVE. We have assessed our results qualitatively and quantitatively to ensure the quality
of the algorithm. The proposed method has better accuracy than recent advances in the
field. The good results are coming from the choice of the objective functions, expressed in
the logarithmic domain and based on soft and hard constraints. A smoothness constraint
helps to improve the quality of the photometric invariants’ recovery. The specific
architecture of our algorithm, i.e., two simple constrained quadratic programming steps,
open opportunities in the field to create memory-efficient and time-efficient algorithms for
the recovery of intrinsic images.
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