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ABSTRACT
Aiming to address the need for dynamic sensing and channel equalization in UAV
cluster communication environments, this article introduces an equalization algorithm
based on a U-Net model and fuzzy reinforcement Q-learning (U-FRQL-EA). This
algorithm is designed to enhance the channel sensing and equalization capabilities of
UAV communication systems. Initially, we develop a U-Net-based signal processing
algorithm that effectively reduces acoustic noise in UAV communication channels
and enables real-time, accurate perception of channel states by automatically learn-
ing channel features. Subsequently, we enhance fuzzy reinforcement Q-learning by
incorporating a fuzzy neural network to approximate the Q-values and integrating this
approach with the allocation strategy of wireless sensing nodes. This enhancement not
only improves the accuracy ofQ-value approximation but also increases the algorithm’s
adaptability and decision-making ability in complex channel environments. Finally, we
construct the U-FRQL-EA equalization algorithm by combining the improved U-Net
model with fuzzy reinforcement Q-learning. This algorithm leverages the U-Net model
to sense channel states in real time and intelligently adjusts data forwarding strategies
based on fuzzy values generated by the fuzzy reinforcement Q-learning. Simulation
results demonstrate that the U-FRQL-EA algorithm effectively reduces the system’s
bit error rate, enhances communication quality, and optimizes network resource
utilization, offering a novel solution for improving the performance of uncrewed aerial
vehicle communication systems.

Subjects Adaptive and Self-Organizing Systems, Algorithms and Analysis of Algorithms,
Computer Networks and Communications, Emerging Technologies, Social Computing
Keywords Blind equalization, U-Net, Fuzzy reinforcement Q learning, Adaptive perception,
Dynamic equalization

INTRODUCTION
Since its inception in 1914, the unscrewed aerial vehicle (UAV) has evolved significantly
in both military and civilian applications. UAVs, as autopilot vehicles, are now extensively
employed in military reconnaissance, disaster rescue, flood control, drought relief, border
inspection, and other complex tasks due to their autonomous navigation capabilities and
the ability to operate without direct human intervention. Technological advancements have
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enabled UAVs to become increasingly miniaturized, highly mobile, and well-concealed,
enhancing their value for operations in complex environments (Chukwu & Sweetman,
2024).

In the realm of UAV communication, the cooperative operation of UAV clusters has
emerged as a significant trend. However, UAV cluster communication channels exhibit
multipath and time-varying characteristics. Traditional adaptive equalization techniques
require periodic transmission of training sequences to track channel variations, which
not only diminishes communication efficiency but also escalates system complexity and
resource consumption (Iqbal et al., 2024). Conversely, adaptive sensing technologies offer
precise channel parameters for equalization by monitoring and predicting channel states
in real time. In UAV cluster communication, adaptive sensing can provide real-time
monitoring of inter-UAV channel states and dynamically adjust equalization strategies
according to channel variations, thereby addressing the multipath and time-varying
nature of the channel more effectively (Banafaa et al., 2024). Reinforcement learning
(Shuford, 2024), an artificial intelligence technique, enables computers to discover optimal
behaviors in unknown environments through continuous trial, error, and feedback
optimization. Applied to UAV cluster channel equalization, reinforcement learning can
enhance parameter optimization and strategy selection for equalizers, facilitating adaptive
adjustment and improving communication quality by learning and adapting to channel
changes. Consequently, leveraging adaptive perception and reinforcement learning can
significantly enhance the reliability and efficiency of UAV cluster communication (Alam
&Moh, 2024).

However, in UAV trunked communication, equalization processing in complex
multipath channels presents a significant research challenge. Effective equalization
processing in high-speed environments can track and adapt to real-time channel changes,
suppressing multipath interference and inter-code interference, thereby enhancing the
reliability and stability of UAV trunked communication. The multipath and time-varying
characteristics of UAV communication channels can degrade signal quality, leading to
low channel measurement accuracy. Additionally, cluster channel equalization in UAV
communication is crucial for ensuring efficient and reliable interactions between UAVs
and between UAVs and ground equipment. Given the high mobility and flexibility of
UAVs, their communication channels are influenced by factors such as UAV position,
speed, direction, and physical environment. Variations in these factors can cause
fluctuations in channel quality, impacting communication reliability and efficiency. In
the complex communication environment, UAV cluster is vulnerable to many kinds of
signal interference from outside and inside, such as electromagnetic interference, same
frequency interference and malicious interference. These interferences not only affect the
stability and reliability of communication links, but also may lead to data transmission
errors, control instruction failure and other serious consequences. Therefore, it is the key
to ensure the safe and stable operation of UAV cluster communication system to study
how to monitor the channel state in real time through adaptive sensing technology and
dynamically adjust the channel equalization strategy combinedwith reinforcement learning
algorithm to effectively deal with and reduce the impact of signal interference. At the same
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time, it is necessary to dynamically adjust the communication parameters according to
the channel state when sensing the channel state. This study integrates adaptive sensing,
reinforcement learning, and blind equalization techniques to offer a novel solution for
UAV cluster communication and to advance the application and development of UAV
technology across various fields. The specific contributions of this paper are as follows:

(1) Development of the U-Net-Based Signal Processing Algorithm: A signal processing
algorithm based on the convolutional neural network (CNN) U-Net is constructed
to accurately predict channel changes by automatically learning channel features.
This approach enables acoustic noise reduction and real-time sensing of the UAV
communication channel state.

(2) Enhanced fuzzy reinforcement Q-learning: The fuzzy reinforcement Q-learning
method is improved by using a fuzzy neural network to approximate the Q-value.
This improvement integrates the Q-value approximation with the wireless sensing node
allocation process, achieving high-precision Q-value approximation.

(3) Construction of the U-FRQL-EA Equalization Algorithm: The U-FRQL-EA
algorithm combines the enhanced U-Net model with fuzzy reinforcement Q-learning.
The U-Net model facilitates real-time channel state sensing, while data forwarding is
managed according to fuzzy values derived from fuzzy reinforcement Q-learning. If data
transmission fails, the node automatically reduces its fuzzy value to zero, minimizing
network blockage and enabling dynamic network equalization.

RELATED WORKS
As a pivotal technology in the field of information, wireless communication technology
is highly valued by researchers and scholars. However, the multipath propagation of
wireless signals can cause inter-symbol interference and inter-code crosstalk, adversely
affecting transmission efficiency and communication quality. Unlike traditional adaptive
equalization techniques that require extensive training sequences, blind equalization (Liu,
Wang & Wei, 2024) adjusts system parameters adaptively without relying on training
sequences, thereby mitigating inter-code crosstalk and enhancing communication quality.
As blind equalization techniques have evolved, researchers have increasingly focused
on applying these techniques to various scenarios and modulation methods. Currently,
blind equalization techniques can be categorized into four main types based on their
algorithmic principles: Bussgang-type blind equalization algorithms (Wang et al., 2024),
blind equalization algorithms based on signal detection (Chen, Dong & Xiao, 2024), blind
equalization algorithms based on higher-order spectra (Yang et al., 2024), and blind
equalization algorithms based on neural networks (Shwetha, Priyatham & Gangadhar,
2024).

The benefits of incorporating deep learning into communication systems are becoming
increasingly evident as the applications of AI and deep learning expand. In the realm
of equalization techniques, neural networks are anticipated to overcome the limitations
of traditional blind equalizers due to their proficiency in solving nonlinear problems.
Moreover, the highly cascaded nature of neural networks contributes to faster learning and
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superior automatic training, resulting in enhanced equalization performance, including
improved noise resistance and accuracy, compared to traditional equalizers.

The earliest neural network model applied to blind equalization algorithms was the
multilayer perceptron (MLP) (Naseer & Jalal, 2024). This model consists of an input layer,
an output layer, and one or more hidden layers, facilitating nonlinear mapping from input
to output signals and thereby achieving nonlinear equalization. The Back Propagation (BP)
algorithm (Hou, Zhang & Du, 2024) is typically employed for training MLPs, primarily
due to its widespread adoption and ease of hardware implementation. However, MLP
equalizers are characterized by long and uncertain training times, as well as challenges in
structural selection.

Literature (Chew, He & Zhang, 2024) integrates radial basis function (RBF) neural
networks (Jitchaijaroen et al., 2024) with transversal equalizers, employing the recursive
least squares (RLS) algorithm (Lai & Bernstein, 2024) to update weights. This approach
reduces the number of basis functions needed compared to traditional methods and
demonstrates superior performance in handling nonlinear channels. Literature (Chen et
al., 2024a) introduces an RBF neural network equalization algorithm optimized using
an immune algorithm. The immune algorithm, a computational technique for solving
combinatorial search and optimization problems, is used to optimize the parameters of
the implicit layer in the neural network structure. This optimization process identifies
appropriate weights, resulting in improved equalization performance. Literature (Zhao
et al., 2024) presents a CNN-based equalization algorithm, CNN-FA. This algorithm
incorporates a CNN structure consisting of an input layer, two convolutional layers, a
fully connected layer, and a softmax layer between the output layers to achieve effective
equalization. Literature (Shyni & Chitra, 2024) proposes a complex convolutional neural
network equalization algorithmwith a hybrid connection structure. This structure includes
input layers, multiple convolutional units, and output layers. Each convolutional unit
consists of a convolutional layer, a batch normalization layer, and a Leaky-ReLU activation
function. This approach allows the CNN to operate in the complex-valued domain and
has been experimentally shown to outperform traditional equalization algorithms.

In summary, with the advancement of artificial intelligence and machine learning,
neural network-based equalization technology has become a significant research area.
Depending on the application environment, different neural network structures can be
selected for equalization tasks. Additionally, as research into this technology progresses,
further optimization of these equalizers can be achieved, leading to the development of
blind equalizers with enhanced performance.

METHODS
Improved signal noise reduction algorithm for U-net model
The U-Net network (Chen et al., 2024b) is a fully convolutional network designed around
encoding and decoding operations. It processes input images that have undergone a
mirroring operation, with each image sized at 572× 572 pixels. Given that the input layer of
the U-Net network is typically fed with image data, and the UAV acoustic magnetoacoustic
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Figure 1 The network structure diagram of the improved U-Net model.
Full-size DOI: 10.7717/peerjcs.2557/fig-1

signals discussed in this paper are one-dimensional,modifications to theU-Net architecture
are necessary. The structure of the improved U-Net model is illustrated in Fig. 1.

In the U-Net model, the original input size is 572 × 572 pixels, designed for 2D
image data. Since the acoustic signal being processed is one-dimensional, the model
needs adaptation. Specifically, the 2D image input is transformed into a 1× 1× 1,024
one-dimensional signal input. The one-dimensional acoustic signals are inherently linear,
hence the utilization of one-dimensional convolution kernels (such as 1× 5) enables direct
convolution operations on these signals, eliminating the need for meaningless expansion
in another dimension as seen in two-dimensional convolutions. This design facilitates a
more efficient capture of local features within the signal. By setting the width of the 1
× 5 convolution kernel, we can grasp the dependency relationships spanning a broader
range within the signal without introducing excessive computational complexity. This is
particularly crucial for one-dimensional acoustic signals, as some of their features may
extend across multiple sampling points.

In the decoder section of the U-Net, the deconvolution operation serves to upsample the
signals, restoring their dimensionality. Employing a 1 × 4 deconvolution kernel achieves a
two-fold upsampling effect. Furthermore, by adjusting the size of the deconvolution kernel,
we can control the width of the featuremaps post-upsampling, ensuring seamless alignment
with corresponding feature maps from the Encoder section during concatenation. This
is pivotal for maintaining the structural symmetry and performance of the model.By
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implementing these modifications to the U-Net architecture, we enable it to process
one-dimensional acoustic signals effectively.

The U-net model is renowned for its distinctive U-shaped architecture, which comprises
two primary components: an encoder and a decoder, both symmetrically mirrored in
terms of layer depth. The encoder section progressively downsamples the input through
multiple layers of convolution and pooling operations, extracting high-level features
while reducing spatial resolution. Conversely, the decoder section reverses this process by
employing multiple layers of deconvolution (transposed convolution) and upsampling,
gradually restoring the spatial resolution of the image and generating the final segmentation
outcome. Consequently, when the encoder comprises eight layers (typically a combination
of convolutional and pooling layers), the decoder correspondingly mirrors this with eight
layers, preserving the overall symmetry of the network. This symmetry not only imparts
a regular and intuitive structure that is easier to design and adjust but also facilitates the
efficient transfer of feature information between the encoder and decoder, enhancing the
model’s performance. The improved U-Net model features 16 layers. The input layer uses
a 1×1× 1,024 one-dimensional signal. Convolution is performed with a kernel size of
1 × 5 and a ReLU activation function in four-channel mode, followed by max pooling
with a 1 × 4 pooling kernel. This produces an output of 1×32×256. The output is then
downsampled again using a 1 × 5 convolution kernel and a ReLU activation function
in 2-channel mode, resulting in a size of 1×64×64. Further convolution with a ReLU
activation function in 2-channel mode is applied, followed by max pooling, producing
an output of 1×128×16. This process is repeated with another convolution and ReLU
activation function in 2-channel mode, followed by max pooling, resulting in 1×256×4.
This completes the left side of the U-Net network model.

On the right side, the process begins with deconvolution, or up-sampling. The feature
maps from deconvolution are merged with the symmetric feature maps from the left
compression path. This merging involves convolution in 2-channel mode with a ReLU
activation function, repeated twice. Deconvolution is then applied, followed by single-
channel convolution, merging with feature maps from the left compression path to
produce the final output with dimensions of 1×1× 1,024. The flow of the deconvolution
process is illustrated in Fig. 2.

Fuzzy reinforcement Q learning
In fuzzy control, the process begins with ameasuring device that captures state information,
producing an exact deviation value. This value is then fuzzified to obtain fuzzy quantities.
The fuzzy controller subsequently performs fuzzy reasoning based on predefined control
rules to calculate the fuzzy control quantity, which is then used to adjust the exact quantity
accordingly.

In the fuzzy reinforcement learning model, the fuzzy rule form is defined as follows:

R1 : if x1 is F1
1 ,...,xn is F

n
1 , then y1= c10 + c

1
1x1+···+ c

1
nxn. (1)

Where, F i
1 is a fuzzy set, c

i
1 is a real number and yi is the output of the system obtained

by the approximation rule. For an input vector (x1,x2,...,xn)T , the output of the fuzzy
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Figure 2 Deconvolution flowchart.
Full-size DOI: 10.7717/peerjcs.2557/fig-2

system is calculated as follows.

y =
M∑
j=1

yj
n∏

i=1

µF j
i
(xi)

/ M∑
j=1

n∏
i=1

µF j
i
(xi). (2)

Next, based on the fuzzy control model, the fuzzy control result, which approximates
the Q-value function, is calculated. The model is structured into three layers, as illustrated
in Fig. 3.

The first layer is called the input layer and the main function of this layer is to receive
learned notations of input variables:

x = (s1,...,su,a)T . (3)

The vector is constructed by combining the state vector and the action vector, with the
dimension of the input vector maintained as u+1throughout the learning process. The
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Figure 3 Fuzzy control model.
Full-size DOI: 10.7717/peerjcs.2557/fig-3

state vector, representing the previous part of the state space, is denoted as:

s= (s1,...,su)T . (4)

The part of the vector that follows the vector is denoted as the action vector component.
The second layer is the layer where the fuzzification process of the vectors is carried

out. Assume that the input component of the first layer is denoted as xi(i= 1,2,...,u+1),
which includes a total of J members. To obfuscate each input component, we assign each
member a differentiable elliptic Gaussian function (also called a membership function) as
its member function. Suppose the j-th membership function of xi is denoted as shown in
Eq. (5).

MFij(xi)= exp(−(xi−uij)2/σ 2
ij ), (i={1,2,...,u+1},j ={1,2,...,J }). (5)

Where µij and σij denote the center and width of the differentiable elliptic Gaussian
function respectively. Next, we calculate the emission intensity of the fuzzy rule according
to the membership function values of all members. Assuming K fuzzy rules, the emission
intensity of Rule k (also known as activation or confidence) is calculated by multiplying all
relevant input member functions as ϕk(x):

ϕk(x)=
u+v∏
i=1

exp(−(xi−uik)2/σ 2
ik), (k={1,2,...,K }). (6)

The third layer is the fuzzy parsing layer, which calculates the output state-action
Q-values using the central mean parsing method:
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δi=ϕi

/ k∑
k=1

ϕk (7)

Q(sT ,aT )=
k∑

k=1

wkδk . (8)

Where K denotes the number of rules and wk is the rule posterior.

U-FRQL-EA
In a UAV cluster, when a UAV sensor node i acquires a packet P to be forwarded, it must
select one of its neighboring nodes to forward the packet. This chosen node must be located
within the target region R, which is identified by the center D. In this article, the node with
the maximum value of the fuzzy computation result Q(Ni) is selected as the forwarding
node for the next hop.

Therefore, in UAV communication, after noise reduction has been applied to the
communication channel, the set of neighboring nodes is evaluated. The neighbor node
closest to the center of the region D within the entire sensor region is selected as the
candidate forwarding node:

Fi= node ∈Ni|d(i,D)−d(node,D)> 0. (9)

Where d(i,D) and d(node,D) denote the distance between this node and its neighboring
nodes to the destination node in the target area, respectively. At this point every node is
initialized with a Q value at the beginning of network operation. For the node node∈ Fi,
the initialized Q value of node i is assumed to be Q(i), which is calculated as follows:

Q(i)=αK/
1
N

∑
node∈Fi

d(node,D)+ (1−α)Max(e(i,node)). (10)

Where K is a scaling factor which represents the percentage of energy overhead when the
coordinates of the node performs packet forwarding. 1

N
∑

node∈Fid(node,D) is the average
distance to be traveled by node i to all its next hop neighboring nodes for forwarding
packets. Max(e(i,node)) is the maximum value of energy overhead when node carries out
data transmission with its neighboring nodes. The Q-value of each node is updated in real
time based on the energy status of the node during the transmission of network data. The
values of the neighboring nodes are also updated continuously.

When node i forwards a packet, there may be both successful and unsuccessful
forwarding attempts. Upon receiving the packet, the node compares the Q-values of
all its neighboring nodes, selecting the node with the highest Q-value as the forwarding
node for the next hop. If the packet forwarding is successful, both node and its neighboring
node receive a positive feedback factor to update their Q-values. Conversely, if the packet
forwarding is unsuccessful, both node K and its neighboring node receive a negative
feedback coefficient, resulting in a decrease in their Q-values.

In UAV cluster networks, packet forwarding failures can primarily occur for two reasons:
(1) sending failures at the data node and (2) failures in selecting the appropriate next-hop
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neighbor node. If all nodes experience sending failures, it leads to network congestion. In
such cases, if a node fails to forward the packet, it automatically reduces its fuzzy value
to zero. Consequently, the neighboring nodes are updated based on the current fuzzy
Q-values, and the node halts packet forwarding. This mechanism effectively mitigates
network congestion and achieves dynamic balancing of the network’s energy resources.

EXPERIMENTS AND ANALYSIS
In this section, we analyze the performance of the improved U-Net model and U-FRQL-EA
to verify the channel equalization capability of U-FRQL-EA in UAV communication.

Experimental environment
To verify the effectiveness of the equalization algorithm proposed in this article, two
sensor network simulation tools were utilized: the OMNeT++ simulation tool and the
third-party model MobilityFramework2. These tools facilitate the random deployment of
UAV communication nodes and offer the capability to set specific coordinate values for
sensor placement. The sensors deployed in the network area are primarily responsible for
data sensing and acquisition within designated target regions.

In the simulation, the following parameters were assumed: the maximum
communication distance of each UAV node is set to 200 m, the communication radius of
the base station node is 100 m, and the communication radius of each sensor node is 10 m.
Additionally, the sensor’s transmission power and propagation sensitivity are calculated
using the following formula:

Ws(dBm)+Wsa(dB)+Wra(dB)−Wrs(dBm)−100 dB= 20∗ log(D(km)). (11)

Where Ws,Wsa,Wra represent a set of coefficients describing the transmitting end,
characterizing the transmitting power and the antenna gain of the transmitting end,
respectively. The radius of the communication distance Wrs isset to D. Assuming that the
absolute power W of the remote base station node and the sensing node in the network
is both 20 mW (equivalent to 17 dBm), and the absolute power W of the sensing node
in the network is set to 1 mW (equivalent to 8 dBm), with an antenna gain of 10 dB,
the reception sensitivity of the base station node is calculated to be −55 dBm, while the
reception sensitivity of the sensing node is −43 dBm.

In the context of network communication, the failure of message forwarding is often
attributed to a multitude of factors, including network congestion, link failures, and
inadequate processing capabilities of nodes. Within the scope of this research, the
phenomenon of reduced node fuzziness values upon message forwarding failure can
be addressed by adopting strategies such as the Random Early Detection (RED) algorithm
and flow control mechanisms, in conjunction with existing classical methods, to tackle
network congestion issues. This approach enables an effective management of congestion,
mitigating its negative impact on message delivery and overall network performance.

Evaluation index
In acoustic noise reduction for communication, the signal-to-noise ratio (SNR) and the
mean square error (MSE) can effectively evaluate the noise reduction effect. Let Psignal and
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Asignal refer to the useful signal, i.e., pure signal, for which the SNR is prepared. Pnoise and
Anoise refer to the pure noise. It can also be directly expressed as:

SNR= 10 log 10(Psignal/Pnoise)= 20 log 10(Asignal/Anoise). (12)

The SNR is the most intuitive measure of noise reduction effectiveness. A higher
signal-to-noise ratio indicates that the signal contains less noise, thereby reflecting better
noise reduction performance. The MSE quantifies the degree of discrepancy between the
estimated quantity and the actual quantity. It is defined as the average of the squared
differences between the filtered signal and the pure signal. The formula for calculating the
mean square error is provided below:

MSE=

( N∑
i=1

|Asignal−Adenoised|
2

)/
N (13)

where Adenoised represents the filtered signal.

Signal processing capability analysis
In UAV communication systems, the channel noise characteristics are critical factors
affecting the quality and reliability of data transmission. As UAVs typically operate in
complex and diverse environments, such as urban landscapes, mountainous regions, and
above oceans, their communication channels confront a multitude of noise challenges.
These include multipath effect noise, where signal propagation through multiple paths
caused by ground reflections, building scattering, and so on, results in rapid fluctuations due
to phase superposition, thereby impacting the intensity and stability of the received signal.
Additionally, atmospheric noise arises from variations in the ionosphere, troposphere,
as well as weather conditions like rain, fog, and snow, all of which introduce additional
noise, especially pronounced in high-frequency communications. Most significantly,
electromagnetic interference noise, stemming from electromagnetic radiation from other
wireless communication systems, radars, high-voltage power lines, and the like, can severely
disrupt UAV communication links, degrading signal quality.

Therefore, in real-world scenarios, it is imperative to implement noise reduction
measures for the signals. We must leverage advanced signal processing techniques and
algorithms to mitigate the impact of these noise sources, ensuring robust and reliable
communication for UAVs. The network is trained on collected data over 200 training
rounds. The training dataset comprises 12,000 samples from four sensor collection points
at 0 degrees, 90 degrees, 180 degrees, and 270 degrees. Following the training, the network
model is validated with newly collected data. The effectiveness of the magnetic acoustic
signal noise reduction is assessed through experimental evaluation metrics, specifically the
signal-to-noise ratio and mean square error.

In this section, experimental simulations are conducted using noisy magnetoacoustic
signals, with an initial signal-to-noise ratio of −3.5725 dB and a mean square error
of 0.3382 at 0 degrees, as obtained from laboratory measurements. Figure 4 illustrates
the comparative denoising waveforms of the magnetoacoustic signals under the model.
Specifically, (a) represents the waveform of the pure magnetoacoustic signal; (b) shows
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Figure 4 Contrast of de-noising waveform of magnetoacoustic signal.
Full-size DOI: 10.7717/peerjcs.2557/fig-4

the denoised waveform at epoch 100; (c) depicts the denoised waveform at epoch 150; and
(d) displays the denoised waveform at epoch 200. By comparing the acoustic signals across
different training rounds, it is evident that the network model with 150 epochs achieves the
most effective data denoising. At this epoch, the signal-to-noise ratio improves to 2.2738
dB, and the mean square error reduces to 0.0591. The improved U-Net model enhances
the signal-to-noise ratio by 5.8312 dB and decreases the mean square error by 0.2712,
demonstrating the model’s effectiveness in processing magnetoacoustic signals.

Energy consumption performance analysis
After confirming the improvement in noise reduction performance through signal
processing, we evaluate energy consumption under the same noise conditions to ensure
consistency in the test environment, thereby allowing for direct and accurate comparisons
of algorithm performance. This approach helps eliminate potential interference from
varying noise conditions on the assessment results, making the outcomes more reliable
and reproducible. Therefore, the monitoring area is defined as a two-dimensional plane
measuring 3,000 m × 3,000 m, with a communication radius of 50 m. The setup includes
120 sensing nodes, each with a communication radius of 10 m. Data is deployed using
an as-you-go scattering approach. When a sensing node’s memory space approaches
saturation, it transmits the data to the base station. The node employs a data fusion ratio
of 1:100. The results of the simulation are presented in Fig. 5.
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Figure 5 Optimize energy consumption data of sensor nodes before and after communication.
Full-size DOI: 10.7717/peerjcs.2557/fig-5

Figure 5 provides a comprehensive comparison of the energy consumption
characteristics between two key algorithms: U-FRQL-FA and its predecessor, FRQL-FA,
which does not incorporate the improved U-Net model. The performance of tFRQL-FA
model has been rigorously verified through a vast array of research studies and practical
applications. In order to fortify the persuasiveness and credibility of our conclusions, we
have deliberately chosen this model as our benchmark for comparison. This comparative
analysis highlights the innovative advantages of the U-FRQL-FA algorithm, particularly
its integration of the deeply optimized U-Net model. As a fundamental component of
signal processing, the U-Net model effectively filters out noise interference in acoustic
signals and significantly enhances the system’s adaptive sensing capability in complex
and fluctuating communication environments. Consequently, U-FRQL-FA demonstrates
exceptional precision and flexibility in dynamically adjusting communication strategies
and optimizing resource allocation.

Upon examining the data trends in Fig. 6, it is evident that the energy-saving advantages
of the U-FRQL-FA algorithm become increasingly pronounced as the number of
sensor network nodes grows. The algorithm achieves a refined optimization of the
equalization process through the innovative integration of deep learning and reinforcement
learning techniques. This results in a substantial reduction in energy consumption per
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Figure 6 Communication energy consumption curve.
Full-size DOI: 10.7717/peerjcs.2557/fig-6

communication unit, with the savings in energy loss compared to the unoptimized FRQL-
FA algorithm widening as data volume increases. This trend is visually represented in the
graph as a smooth, continuously downward curve, highlighting the superior performance
of U-FRQL-FA in energy efficiency management. Notably, while the early advantage of
U-FRQL-FA in energy savings may appear modest due to the system’s initialization and
debugging phase, this transient effect does not diminish the algorithm’s long-term efficacy.
As the UAV trunked communication network expands and the number of nodes increases,
coupled with the stabilization of the network layout, the optimized algorithm demonstrates
its robust adaptive capability and efficient resource management strategy. The pronounced
downward trend in the latter part of the curve serves not only as strong evidence of the
algorithm’s performance but also as a compelling validation of the research methodology
presented in this article.

Comparative analysis
This section analyzes the equalization performance of the U-FRQL-FA algorithm by
comparing it with the RBF algorithm from the literature (Chew, He & Zhang, 2024)
andthe CNN-FA algorithm from the literature (Zhao et al., 2024), using the environment
settings described in ‘Experimental Environment’. Faster convergence speed is indicative of
a shorter time required for convergence and a lower number of bit error rates (BERs) at the
beginning of communication, reflecting better communication quality. Conversely, slower
convergence results in poorer communication quality. Figure 7 illustrates the convergence
plots of the mean square error for each equalization algorithm after iteration. As shown
in Fig. 7, the proposed U-FRQL-FA algorithm achieves the desired training target with
approximately 250 iterations, demonstrating superior convergence speed. In contrast, both
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the RBF algorithm and the CNN-FA algorithm exhibit significantly slower convergence,
with noticeable convergence tendencies only occurring after around 350 iterations.

Figure 8 illustrates the variation in system bit error rate (BER) with SNR for different
communication signals. As depicted, the incorporation of the blind equalization algorithm
proposed in this paper, which integrates U-Net and fuzzy reinforcement learning for
noise reduction and adaptive sensing, leads to notable improvements in the BER of the
communication system across weak, medium, and strong signals. Firstly, under low SNR
conditions, our proposed algorithm achieves the same BER level at a significantly lower
SNR threshold (approximately 3 to 4 dB improvement) compared to the RBF and CNN-FA
algorithms. This underscores the algorithm’s superior ability to effectively suppress noise
in harsh communication environments, enabling it to reach below the forward error
correction (FEC) threshold for BER earlier, hence demonstrating faster convergence.
In environments characterized by medium to strong signal strengths, even when signal
quality is inherently good, our algorithm continues to exhibit remarkable performance
efficiency. Notably, at an SNR of 10 dB, the BER falls below the FEC tolerance limit,
highlighting the system’s high adaptability and stability across a wide range of signal
intensities. Consequently, as the SNR improves, the algorithm converges to a lower BER
state even more rapidly.

CONCLUSION
This paper proposes the U-FRQL-EA equalization algorithm, which leverages adaptive
perception and reinforcement learning to meet the demands of UAV communication
environments. The U-FRQL-EA algorithm incorporates U-Net for preprocessing, which
significantly enhances the signal-to-noise ratio by reducing noise in the received signal.
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This approach effectively addresses the issue of signal degradation due to noise interference
during transmission in UAV communication systems. Particularly in low SNR conditions,
experimental results demonstrate that this method substantially mitigates the impact
of noise on signal quality, providing high-quality input data for subsequent adaptive
equalization. Given the complexity and variability of UAV communication channels,
traditional equalization algorithms struggle to adapt to real-time channel changes. To
address this, fuzzy reinforced Q-learning is introduced to achieve adaptive perception of
channel characteristics, dynamically adjusting the equalizer tap coefficients in the blind
equalization algorithm. This enables a rapid response to channel changes and facilitates
adaptive equalization. The U-FRQL-EA equalization algorithm effectively reduces system
BER and improves communication quality across varying signal strengths, as confirmed by
simulation experiments. Futureworkwill focus on further optimizing algorithmparameters
and model structures to handle more complex UAV communication scenarios and meet
higher performance requirements.

Incorporating the experimental training process that examines the system’s BER
variation against SNR across balanced performance and diverse communication signals,
this paper harnesses the parallel computing capabilities of the GPU platform to accelerate
the training process, achieving approximately an 80% reduction in U-Net’s training time
compared to traditional CPU-based training. Additionally, the employment of Batch
Normalization and Rectified Linear Unit (ReLU) activation functions expedited model
convergence while mitigating the issue of vanishing gradients, leading to a more rapid
decline in the loss function during training.

To approximate the Q-value function, an efficient fuzzy logic system was leveraged.
In comparison to traditional lookup table methods, this approach ensures comparable
approximation accuracy (with errors contained within ±0.05 range) while significantly
reducing storage requirements and computation time. The utilization of the fuzzy logic
system translated to a roughly 60% decrease in computational overhead per decision-
making instance.

Ultimately, as depicted in Fig. 8, the system, through U-Net’s noise reduction processing
and the adaptive decision-making capabilities of fuzzy Q-learning, successfully reduced
the BER by approximately three orders of magnitude, dropping from initially above
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10 -̂2 to below 10 -̂5. Notably, at an SNR of 11dB, the BER fell below the threshold of
Forward Error Correction (FEC) coding, demonstrating remarkable noise resilience. Even
in medium to strong signal environments, the system maintained high performance, with
BER continuously decreasing as SNR increased. Specifically, when SNR reached 10dB, the
BER surpassed the FEC limit, further validating the algorithm’s efficiency and stability.
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