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ABSTRACT
One of the most complex and life-threatening pathologies of the central nervous
system is brain tumors. Correct diagnosis of these tumors plays an important role in
determining the treatment plans of patients. Traditional classification methods often
rely on manual assessments, which can be prone to error. Therefore, multiple
classification of brain tumors has gained significant interest in recent years in both
the medical and computer science fields. The use of artificial intelligence and
machine learning, especially in the automatic classification of brain tumors, is
increasing significantly. Deep learning models can achieve high accuracy when
trained on datasets in diagnosis and classification. This study examined deep
learning-based approaches for automatic multi-class classification of brain tumors,
and a new approach combining deep learning and quantum genetic algorithms
(QGA) was proposed. The powerful feature extraction ability of the pre-trained
EfficientNetB0 was utilized and combined with this quantum genetic algorithms, a
new approach was proposed. It is aimed to develop the feature selection method.
With this hybrid method, high reliability and accuracy in brain tumor classification
was achieved. The proposed model achieved high accuracy of 98.36% and 98.25%,
respectively, with different data sets and significantly outperformed traditional
methods. As a result, the proposed method offers a robust and scalable solution that
will help classify brain tumors in early and accurate diagnosis and contribute to the
field of medical imaging with patient outcomes.

Subjects Bioinformatics, Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer
Vision
Keywords Brain tumor, Deep learning, Convolutional neural network, Quantum genetic
algorithms, Medical image analysis

INTRODUCTION
One of the most complex and life-threatening pathologies of the central nervous system is
brain tumors. Timely accurate diagnosis and classification of these tumors plays a critical
role in the treatment of patients. In traditional classifications, this process is time-
consuming and prone to errors. Therefore, studies on automatic multiple classification of
brain tumors arouse great interest. In particular, deep learning methods show promising
results in automatically classifying brain tumors (Litjens et al., 2017). Deep learning
models trained on large data sets have the ability to diagnose and classify with high
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accuracy rates (Esteva et al., 2021). Thus, brain tumors are automatically classified and
diseases can be diagnosed more quickly and accurately (Ghaffari, Sowmya & Oliver, 2019).
One of the most commonly used methods for classifying brain tumors is magnetic
resonance imaging. Magnetic resonance imaging method allows a detailed examination of
morphology and anatomical features by providing high-resolution and contrast images
(Mazurowski et al., 2019). For this reason, it is known to be used effectively in training deep
learning models. Figure 1 shows a plan consisting of brain tumor types and normal brain
images. On the other hand, the development of automatic classification systems is difficult
due to the availability of sufficient and balanced data sets. For this reason, decreases in
model performance are observed in many studies (Bakas et al., 2018).

Methods such as data augmentation techniques and transfer learning are used to help
use data sets effectively and increase the generalization capacity of models (Shorten &
Khoshgoftaar, 2019). In the literature, deep learning models and different techniques have
been used to classify brain tumors and perform feature selection. However, no study is
known that integrates the EfficientNetB0 model using the quantum genetic algorithm and
applies this method for feature selection. This combination makes our proposed approach
unique with high accuracy. A combination of deep learning and quantum genetic
algorithms was used in this study, creating an advanced and effective methodology for
classifying brain tumors. The powerful feature extraction capabilities of the EfficientNetB0
model pre-trained in ImageNet were utilized and developed with a new feature selection
method based on quantum genetic algorithms. The proposed hybrid approach addresses
critical challenges in medical imaging, reducing the need for high-dimensional feature
space and improving classification performance on limited, unbalanced datasets. It offers a
robust and scalable solution, aiding in early and accurate diagnoses, thus advancing
medical imaging research.

Key contributions of our study include:

. Two different brain tumor datasets were used to demonstrate the generalization ability
of the proposed hybrid model and its performance on different data sources.

. As a result of comparing the proposed method (EfficientNetB0 Model with QGA-FS)
with CNN, EfficientNetB0, CNN+EfficientNetB0, fine-tuning CNN+EfficientNetB0
models, it was possible to determine the model that gives the best results.

. The proposed hybrid model reached the highest accuracy rate in both data sets, revealing
that using the quantum genetic algorithm for feature selection will increase performance.
With feature selection made in a hybrid way, the most important features were
determined and the model worked more efficiently and accurately. This made a
significant contribution to the integration of the quantum genetic algorithm with deep
learning models.

. Comparing the performance of different models in the study helped determine which
model configuration was most effective in the brain tumor classification problem. This
provides an important reference point for future research and practice.
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Figure 1 Visualization of different brain tumor types and normal brain. Full-size DOI: 10.7717/peerj-cs.2556/fig-1
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These contributions show that the study both brings innovation to existing methods in
the literature and aims to achieve higher accuracy rates in brain tumor classification. We
believe that the use of quantum genetic algorithm (QGA) in our study has significantly
enhanced the uniqueness and quality of our hybrid model. QGA offers a more effective
feature selection and optimization compared to traditional methods, especially in the
classification of biomedical images. This algorithm combines the power of quantum
computing with genetic algorithms to produce faster and more efficient solutions, while
also enabling the discovery of more complex relationships in large datasets. The use of
QGA in our study not only allowed us to achieve high accuracy rates but also improved the
overall performance of the model, presenting an innovative approach to classification
tasks. As a result, we can confidently state that the proposed hybrid model distinguishes
itself from similar works in the literature and provides a unique contribution.

RELATED WORK
Classification of brain tumors has gained significant attention in recent years with the use
of artificial intelligence (AI) and machine learning (ML) techniques in the field of medical
imaging. Traditional methods are time-consuming and error-prone as they often rely on
manual evaluations. Therefore, studies on automatic multiclass classification of brain
tumors arouse great interest both in the medical field and in computer science.

Bakas et al. (2017) extended their Glioma MRI collection with expert segmentation
labels and radiomic features. The Cancer Genome Atlas (TCGA) has improved the quality
of the glioma MRI dataset, providing researchers with richer and more detailed data sets,
and has become an important resource in the development of glioma diagnosis and
classification models. Cheng et al. (2015) used tumor area augmentation and division
methods to increase performance in brain tumor classification, and classification accuracy
was increased by providing more detailed and precise identification of tumors. The study
provided significant gains, especially when working with small and unbalanced data sets.
Esteva et al. (2021) performed skin cancer classification at the dermatologist level using
deep learning networks and showed that deep learning models trained on large data sets
can diagnose with accuracy comparable to human experts. Ghaffari, Sowmya & Oliver
(2019) performed brain tumor segmentation using multimodal brain scans and three-
dimensional convolutional neural networks, and a more accurate segmentation of tumors
was achieved by integrating data obtained from different imaging modalities. Litjens et al.
(2017) presented a comprehensive review on the use of deep learning techniques in
radiology and provided a broad perspective on how deep learning models can be used in
radiological image analysis and became an important reference source for researchers.
Mazurowski et al. (2019) presented an overview of the concepts and current status of deep
learning in radiology and examined in detail the potential and application areas of deep
learning techniques in radiological image analysis.

Pereira et al. (2016) used convolutional neural networks for glioma segmentation and
demonstrated the effectiveness of these models in distinguishing different tumor types.
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Thus, it highlights the success of deep learning models in automatic segmentation of
complex and heterogeneous tumors such as glioma. Shorten & Khoshgoftaar (2019)
present a survey on image data augmentation techniques for deep learning, detailing how
data augmentation methods can improve the performance of deep learning models and the
applicability of these techniques. Sultan, Salem & Al-Atabany (2019) performed multi-
class brain tumor image classification using a deep neural network. Deep neural networks
were used to accurately classify different brain tumor types and high accuracy rates were
achieved. Akhtar & Mian (2018) presented a survey on the threats of adversarial attacks to
deep learning in computer vision. This study examines the vulnerabilities of deep learning
models and their defense strategies against hostile attacks. In Zhang et al. (2015), deep
convolutional neural networks were used for multimodal isointense infant brain image
segmentation. This study demonstrates the effectiveness of deep learning techniques in
segmenting infant brain images. In Afshar, Plataniotis & Mohammadi (2019), brain tumor
classification based on MRI images was performed using capsule networks. Capsule
networks have been particularly effective in learning complex data structures and
improving model performance. Liu et al. (2023) presented a survey on deep learning for
brain tumor segmentation. This study comprehensively reviews deep learning techniques
in the field of brain tumor segmentation and current advances in this field. Abd-Ellah et al.
(2019) presented a review on brain tumor diagnosis from MRI images and examines the
different techniques used in the analysis of MRI images and how these techniques affect
diagnostic accuracy. Kamnitsas et al. (2017) used efficient multiscale 3D CNN with fully
connected CRF for brain lesion segmentation, demonstrating the effectiveness of
multiscale 3D CNNs in segmentation of brain lesions. Roy et al. (2019) developed
QuickNAT, a fully convolutional network for fast and accurate segmentation of
neuroanatomy. QuickNAT provided high accuracy and speed in neuroanatomy
segmentation. Wang et al. (2019) made an aleatoric uncertainty estimation with test time
increase for medical image segmentation and examined how uncertainty estimation
techniques can increase model reliability. Havaei et al. (2017) performed brain tumor
segmentation with deep neural networks and evaluated the performance of deep neural
networks in brain tumor segmentation. Milletari, Navab & Ahmadi (2016) developed V-
net, a fully convolutional neural network for volumetric medical image segmentation, and
V-net showed high performance in the segmentation of 3D medical images. Zhao et al.
(2018) developed a deep learning model integrating FCNNs and CRFs for brain tumor
segmentation, providing high accuracy in segmenting different tumor types. Akkus et al.
(2017) presented a review on deep learning for brain MRI segmentation and
comprehensively examined the deep learning techniques used in the field of brain MRI
segmentation. Hosseini-Asl, Keynton & El-Baz (2016) diagnosed Alzheimer’s disease with
the adaptation of a 3D convolutional network and demonstrated the use of deep learning
techniques in the diagnosis of Alzheimer’s disease. Beers et al. (2021) developed
DeepNeuro, an open-source deep learning toolbox for neuroimaging. DeepNeuro
facilitates the application of deep learning techniques in neuroimaging analysis.
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METHODS
CNN-based model
In our study, a traditional convolutional neural network (CNN) model was developed for
brain tumor classification. The model consists of several layers, including convolutional,
max pooling, and fully connected layers, designed to extract features and perform
classification tasks. The CNN accepts 128 × 128 pixel RGB brain tumor images as input. It
uses two convolutional layers (32 and 64 filters) with ReLU activation, followed by max
pooling layers to reduce the image size and retain important features. The extracted
features are flattened and passed through a fully connected layer with 128 neurons,
followed by a softmax layer for classification into three tumor types (glioma, meningioma,
pituitary tumor). To prevent overfitting, dropout with a rate of 50% was applied. The
model was trained using the sparse categorical cross-entropy loss function and the Adam
optimizer, with early stopping and learning rate reduction techniques employed to
enhance performance. The dataset was split 80% for training and 20% for testing, and the
model was trained for up to 50 epochs, with early stopping applied to halt training when no
improvement was observed (Pereira et al., 2016).

EfficientNetB0 based model
In this study, the EfficientNetB0 model was utilized with transfer learning for brain tumor
classification. EfficientNetB0, a deep learning model pre-trained on the ImageNet dataset,
was fine-tuned for the specific task of classifying brain tumors. By leveraging pre-trained
weights, the training time was reduced, and performance was improved. The model’s pre-
trained layers were frozen, except for the final layers, which were modified for the
classification task. The output features were flattened and passed through a dense layer
with 128 neurons, followed by a dropout layer to prevent overfitting. The final softmax
layer classified the images into glioma, meningioma, and pituitary tumor categories. The
model was trained using the Adam optimizer and sparse categorical cross-entropy loss
function, with early stopping and learning rate reduction applied for optimization. The
EfficientNetB0 model demonstrated high accuracy in brain tumor classification (Pereira
et al., 2016).

Hybrid model
In this study, a hybrid model combining CNN and EfficientNetB0 was developed to
improve brain tumor classification accuracy. The hybrid model leverages CNN’s ability to
extract low-level features and EfficientNetB0’s strength in extracting high-level features.
The features from both models are concatenated and passed through dense layers for
classification. This combination enhances performance by utilizing the strengths of both
models. The hybrid model was trained with early stopping and learning rate reduction
techniques, preventing overfitting. After training, the model was evaluated on a test set,
showing high accuracy and superior performance in brain tumor classification (Pereira
et al., 2016).
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Fine-tuned hybrid model
In this study, the performance of the hybrid model combining CNN and EfficientNetB0
was further enhanced through the fine-tuning method. Fine-tuning is an optimization
process where certain layers of a pre-trained model, such as EfficientNetB0, are retrained
to better adapt to a new dataset. During the transfer learning phase, the core layers of the
EfficientNetB0 model were frozen and not trained. However, in the fine-tuning phase, the
final layers of the model were unlocked and retrained to better fit the new dataset. The last
few layers of EfficientNetB0 were adapted specifically for the brain tumor classification
task, allowing the model to learn more distinct features and improve its overall
performance. During training, only the last layers of the EfficientNetB0 model were
retrained while the other layers remained fixed, preserving the general features learned
from the large-scale dataset and adding more specific features for the new dataset. The
fine-tuned hybrid model, combining the strengths of CNN and EfficientNetB0, offered
higher accuracy and generalization ability. The model delivered better results on the test
data, and its performance was evaluated through classification reports and confusion
matrices. Notably, the fine-tuned hybrid model achieved higher accuracy rates compared
to the transfer learning model alone (Pereira et al., 2016).

Quantum genetic algorithm
Quantum genetic algorithm (QGA) is an extension of classical genetic algorithms based on
quantum mechanical principles. QGA aims to explore the solution space more effectively
by using the concepts of quantum bits (qubits) and superposition. The basic components
and working principles of this algorithm are as follows:
1. Beginning:

. The algorithm initializes the initial quantum state matrix Q tð Þ.

. By observing these situations, the initial population P tð Þ is created.

. The population is evaluated and the best individual B is kept.

2. Iterative process:

. The maximum number of generations tmaxð Þ is selected.

. The number of iterations is increased t ¼ t þ 1

. A new population P tð Þ is created by observing the states of the previous quantum state
matrix Q t � 1ð Þ).

. The new population P tð Þ is evaluated.

. The quantum state matrix Q tð Þ is updated.

. The best individual in the new population is kept.

3. Update and result:
QGA aims to improve the overall performance of the population by updating qubits

based on the best individual.
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When the maximum number of generations is reached or other stopping criteria are
met, the algorithm is terminated and the best individual B is given as the result.

The features and advantages of QGA are as follows. Quantum bits (Qubits), unlike
classical bits, have superposition states that can take both values at the same time, not just
‘0’ or ‘1’. A qubit state |ψ〉 is expressed as:

j�> ¼ ajh>þ bj1 > (1)

Here α and β are complex numbers, and a2 and b2 values indicate the probabilities of
the qubit being in the ‘0’ and ‘1’ states, respectively. As normalization condition:

aj j2þ bj j2 ¼ 1 (2)

In superposition and parallel computing, the superposition state of qubits allows
2m states to be represented simultaneously in m-qubit systems. This enables parallel
exploration of the solution space and reduces computational complexity.

Regarding the global search capability, QGA reduces the possibility of getting stuck in
local minima when searching for global optimal solutions. This allows the algorithm to
find optimal solutions more effectively and quickly. In its effectiveness in feature selection,
QGA enables the model to work more efficiently and accurately by identifying the most
important features of the data when selecting features.

This is a significant advantage, especially in high-dimensional datasets. The QGA
pseudo code is as follows.

Begin

t = 0;

Initialize Q(t); // Initialize quantum state matrix

Make P(t) by observing Q(t) states; // Create the initial population by observing Q(t) states

Evaluate P(t); // Evaluate the population

Choose a maximum number of generations tmax; // Select maximum number of generations

Store the best individual B among P(t); // Store the best individual among P(t)

While (not satisfied and t < tmax) Begin

t = t + 1;

Make P(t) by observing Q(t-1) states; // Create the new population by observing Q(t-1) states

Evaluate P(t); // Evaluate the new population

Update Q(t); // Update quantum state matrix

Store the best individual B among P(t); // Store the best individual among P(t)

end

end
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In the update process, Qubits are updated to approximate the best individual angularly.
The update formula is as follows:

at
bt

� �
¼ cos Dhtð Þ � sin Dhtð Þ

sin Dhtð Þ cos Dhtð Þ
� �

at�1

bt�1

� �
(3)

Here, the h angle is best determined according to the fitness function of the individual
(Malossini, Blanzieri & Calarco, 2008). A variant of QGA is given in Fig. 2.

Proposed method
In this study, the EfficientNetB0 model was trained on image data. This model was used to
solve the brain tumor classification problem and its accuracy was evaluated. Features were
extracted from the trained EfficientNetB0 model. This process represents the features
obtained from the last layers of the model. Feature extraction was performed on both
training and test data. Feature selection was made using QGA on the features extracted
from the EfficientNetB0 model. QGA was used to select the most important features in the
data. A newmodel was created with features selected by QGA. This model was trained only
on selected features. The new model trained with the selected features was re-evaluated on
the test data. In summary, feature selection with QGA was applied on the features

Figure 2 Quantum genetic algorithm simulation. Full-size DOI: 10.7717/peerj-cs.2556/fig-2
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extracted from the EfficientNetB0 model, and it was aimed to make a more optimized
classification by training a new model with these features. In this section, the step-by-step
processes are given as follows and in Fig. 3. Brain tumor classification is a critical task for
medical imaging and early diagnosis, and while many studies have explored deep learning
approaches, there is still room for improvement in terms of accuracy and efficiency. This is
especially important when dealing with limited and imbalanced datasets, where traditional
methods may struggle to generalize well. The motivation behind our study is to enhance
the performance of brain tumor classification systems by proposing a novel hybrid
approach that combines the deep feature extraction capabilities of the EfficientNetB0
model with the powerful feature selection process of a QGA. This combination addresses
the challenges of feature selection, improves the model’s efficiency, and leads to better
performance in classification, particularly in real-world clinical settings where accurate
and rapid diagnosis is crucial. The unique contribution of this article lies in the integration
of EfficientNetB0 with QGA-based feature selection (QGA-FS). No previous research has
combined these two advanced techniques to address the brain tumor classification
problem. This integration leverages EfficientNetB0’s powerful feature extraction
capabilities and QGA’s ability to select the most important features, resulting in a more
efficient and accurate model. The proposed method demonstrates superior accuracy
compared to existing approaches. In our study, the hybrid model achieved accuracy rates
of 98.36% on the Figshare dataset and 98.25% on the MRI dataset, outperforming other
deep learning models and feature selection techniques in the literature. The proposed
model was validated using two different datasets, emphasizing its generalization capacity

Figure 3 Proposed approach for brain tumor classification. Full-size DOI: 10.7717/peerj-cs.2556/fig-3
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across different data types. This differentiates our approach from other studies that focus
on a single dataset, making our solution more robust for real-world applications. While
other methods use genetic algorithms for feature selection, the use of QGAs in
combination with deep learning models for brain tumor classification is innovative. QGA
enhances the model’s ability to find optimal features in high-dimensional datasets,
reducing computational costs and increasing classification accuracy. These contributions
distinguish our article from existing studies, offering both innovation and practical value in
improving the performance of brain tumor classification.

EXPERIMENTS
Datasets
The brain tumor dataset on the Kaggle platform was chosen due to its widespread use and
its inclusion in many recent studies. The dataset provides a rich collection of MRI images
and enables performance comparisons of commonly used models in the literature. In
addition, the labeling quality, diversity, and easy accessibility of the dataset provide
significant advantages for brain tumor classification studies. Although other datasets have
been evaluated, this dataset was found to be more suitable due to factors such as being
widely tested on different models and being constantly updated with feedback from the
community. Therefore, we aimed to compare it with other studies in the literature by
focusing on the Kaggle dataset in our study and analyze the success level of the proposed
model in a wider reference framework. Two different datasets were used: the Figshare
Brain Tumor Dataset and the MRI Brain Tumor Dataset. The Figshare Brain Tumor
Dataset consists of images from three different tumor classes (glioma, meningioma, and
pituitary tumor). MRI Brain Tumor Dataset consists of MRI images containing various
types of tumors.

The first data set used in this study was collected by Tianjin Medical University between
2005 and 2010 and published online by Jun (2017). The Figshare dataset consists of 3064
T1-weighted contrast-enhanced (CE) MRI images of glioma, meningioma and pituitary
tumors. These images were obtained in three different planes (coronal, sagittal and axial)
from 233 patients. Images are 512 × 512 pixels in size, with each pixel measuring 49 mm ×
49 mm. The second data set was obtained from the Kaggle website. This dataset also
includes Normal samples as well as glioma, meningioma and pituitary tumors. The Kaggle
dataset is basically divided into two parts: training and testing samples. The images were
collected from various web sources and published online after verification by a medical
expert (Bhuvaji et al., 2020).

Experimental protocol
The preprocessing steps applied to the datasets are as follows: All images were resized to
128 × 128 pixels. Black-and-white images were converted to RGB format and made three-
channel. Pixel values were normalized to the range [0,1]. The datasets were split into 80%
training and 20% testing. Two different approaches were tested using the EfficientNetB0
model and a CNN-based model: A model pre-trained on ImageNet was fine-tuned on
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brain tumor images using transfer learning. Feature extraction and classification tasks were
optimized using a CNN model trained from scratch. EfficientNetB0 and CNN were
combined, where EfficientNetB0 was used for feature extraction and CNN for
classification. During the parameter tuning process, the model hyperparameters were
manually tested. The early stopping mechanism was used to prevent overfitting by
stopping training early if no improvement was observed. Additionally,
ReduceLROnPlateau was applied to reduce the learning rate when no improvement in
validation loss was detected. The dropout rate used in the model was set to 0.5, which is a
commonly accepted value in the literature. For the QGA-FS algorithm, the population size
and maximum number of iterations were carefully tuned, and the mutation rate was set to
1%. To assess the robustness and generalization capability of the model, an 80–20 split
ratio was used for training and testing. The data were randomly divided into training and
testing sets, minimizing the risk of overfitting. Moreover, cross-validation was used to
further improve the generalization ability of each model. A fixed random seed was
employed in each experiment to ensure reproducibility of the results. The hyperparameters
used during model training included a learning rate of 0.001, batch size of 32, epoch count
of 50, early stopping (stopping training if no improvement in validation loss occurred for
five epochs), and ReduceLROnPlateau (reducing the learning rate if no improvement
occurred for five epochs).

Evaluation metrics
The proposed method was evaluated with precision, recall, accuracy, F1 score, Cohen’s
Kappa score and Matthews correlation coefficient. Precision is specified in Eq. (4),
Precision is specified in Eq. (5), and Accuracy is specified in Eq. (6). In Eq. (7), F1 Score is
used as the harmonic average of these metrics. To evaluate the performance of the
classification models, Cohen’s Kappa coefficient and Matthews correlation coefficient
(MCC) statistical measures are provided in Eqs. (8) and (9). Cohen’s Kappa coefficient is a
measure that adjusts for chance agreement when assessing the agreement between two
classifiers (Cohen, 1960). It is particularly useful in imbalanced datasets where
classification accuracy can be misleading. MCC is a balanced measure used in binary
classification problems, evaluating the overall performance of the classifier. It provides
reliable results even when there is an imbalance between positive and negative classes
(Matthews, 1975).

Presicion ¼ TP
TP þ FP

(4)

Recall ¼ TP
TP þ FN

(5)

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

(6)

F1 Score ¼ 2 � Precision� Recall
Precisionþ Recall

(7)
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k ¼ p0 � pe
1� pe

(8)

MCC ¼ TP � TNð Þ � FP � FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp (9)

Here, TP represents true positives, FP represents false positives, FN represents false
negatives, TN represents true negatives. F1 score is the harmonic mean of precision and
sensitivity and is used to evaluate model performance on unbalanced data sets.

RESULTS
Proposed method results
In this study, first, the CNN method was used, as seen in Table 1. This method had
precision values of 87%, 92% and 98% in the classification of meningioma, glioma and
pituitary tumors, respectively. The overall accuracy rate was calculated as 92.65%. The
transfer learning method had precision values of 94%, 98% and 98% in the classification of
meningioma, glioma and pituitary tumors, respectively. The overall accuracy rate of this
method was calculated as 97.22%. The hybrid model (CNN + EfficientNetB0) had
precision values of 97%, 98% and 99% in classifying meningioma, glioma and pituitary
tumors, respectively. The overall accuracy rate was calculated as 98.20%. The fine-tuned
hybrid model (Fine Tuning Hybrid) had precision values of 50%, 67% and 69% in the
classification of meningioma, glioma and pituitary tumors, respectively. The overall
accuracy rate was calculated as 66.06%. Finally, the proposed EfficientNetB0 model and the
QGA-FS method had precision values of 96%, 100% and 98%, respectively, in the
classification of meningioma, glioma and pituitary tumors. The overall accuracy rate was
calculated as 98.36%. Both Cohen’s Kappa and MCC scores reveal that the proposed
EfficientNetB0 model with QGA-FS outperforms the other methods, providing a highly
accurate and reliable classification of brain tumors. The Hybrid (CNN + EfficientNetB0)
model also performs well, while the Fine-Tuning Hybrid struggles significantly, as reflected
in both Kappa and MCC scores.

In the second data set in Table 2, the CNN method was considered first. This method
had precision values of 79%, 84%, 88% and 81% in the classification of no tumor, glioma
tumor, pituitary tumor and meningioma tumor classes, respectively. The overall accuracy
rate was calculated as 83.97%. The EfficientNetB0 model had precision values of 99%, 98%,
99% and 94% in the classification of no tumor, glioma tumor, pituitary tumor and
meningioma tumor classes, respectively. The overall accuracy rate of this method was
calculated as 96.86%. The hybrid model (CNN + EfficientNetB0) had precision values of
86%, 97%, 99% and 86% in the classification of no tumor, glioma tumor, pituitary tumor
and meningioma tumor classes, respectively. The overall accuracy rate was calculated as
92.50%. The fine-tuned hybrid model (Fine Tuning Hybrid) had precision values of 93%,
96%, 96% and 98% in the classification of no tumor, glioma tumor, pituitary tumor and
meningioma tumor classes, respectively. The overall accuracy rate was calculated as
95.64%. Finally, the proposed EfficientNetB0 model and the QGA-FS method had
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precision values of 96%, 99%, 98% and 99%, respectively, in the classification of no tumor,
glioma tumor, pituitary tumor and meningioma tumor classes. The overall accuracy rate
was calculated as 98.25%. In summary, the Cohen’s Kappa score and MCC both confirm
that the proposed EfficientNetB0 with QGA-FS model provides superior performance with
strong classification reliability and accuracy compared to other models, highlighting its
potential for clinical applications. In general, the EfficientNetB0 model and QGA-FS
method proposed for brain tumor classification have the highest accuracy rate compared
to other methods and stand out as the most effective and reliable solution in distinguishing
tumor types. This shows that the proposed method exhibits superior performance in
automatic classification of brain tumors and can make a significant contribution in clinical
applications.

Figure 4 shows the comparison of accuracy and loss values of different brain tumor
classification models of the first data set throughout the training process. With the

Table 1 Performance comparison of five different methods on the Figshare dataset.

Methods Class Precision Recall F1-score Cohen’s Kappa score MCC

CNN Meningioma 0.87 0.84 0.85

Glioma 0.92 0.94 0.93

Pituitary 0.886 0.886

Tumor 0.98 0.97 0.97

Accuracy 0.9265

Transfer Meningioma 0.94 0.94 0.94

Glioma 0.98 0.98 0.98

Pituitary 0.957 0.957

Tumor 0.98 0.98 0.98

Accuracy 0.9722

(Hybrid) CNN+EfficientNetB0 Meningioma 0.97 0.95 0.96

Glioma 0.98 1 0.99

Pituitary 0.972 0.972

Tumor 0.99 0.98 0.99

Accuracy 0.9820

Fine Tuning Hybrid Meningioma 0.5 0.22 0.31

Glioma 0.67 0.75 0.71

Pituitary 0.460 0.471

Tumor 0.69 0.86 0.76

Accuracy 0.6606

Proposed EfficientNetB0 Model with QGA-FS Meningioma 0.96 0.97 0.97

Glioma 1 0.99 0.99 0.975 0.975

Pituitary

Tumor 0.98 0.98 0.98

Accuracy 0.9836
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proposed EfficientNetB0 model, QGA-FS achieved the highest accuracy and lowest loss
values, offering the best performance among all models.

Figure 5 compares the confusion matrices and receiver operating characteristic (ROC)
curves of brain tumor classification models. QGA-FS with the proposed EfficientNetB0
model has the highest accuracy and discrimination ability for all classes and shows the best
results in the ROC curve. This reveals that the proposed model offers the best performance
and performs more accurate classification than other methods.

Figure 6 compares the accuracy and loss curves of brain tumor classification models for
the second data set. With the proposed EfficientNetB0 model, QGA-FS achieved the
highest level of accuracy and the lowest levels of loss values, demonstrating the best
performance among all models. These results show that the proposed model is the most
effective and reliable solution for brain tumor classification.

Figure 7 compares the confusion matrices and ROC curves of the brain tumor
classification models in the second data set. With the proposed EfficientNetB0 model,

Table 2 Performance comparison of five different methods on MRI dataset.

Methods Class Precision Recall F1-score Cohen’s Kappa score MCC

CNN No_tumor 0.79 0.74 0.77

Glioma_tumor 0.84 0.81 0.83 0.813 0.813

Pituitary_tumor 0.88 0.96 0.92

Meningioma_tumor 0.81 0.79 0.80

Accuracy 0.8397

EfficientNetB0 No_tumor 0.99 0.96 0.97

Glioma_tumor 0.98 0.95 0.97

Pituitary_tumor 0.99 0.99 0.99 0.956 0.957

Meningioma_tumor 0.94 0.97 0.95

Accuracy 0.9686

(Hybrid) CNN+EfficientNetB0 No_tumor 0.86 0.96 0.91

Glioma_tumor 0.97 0.97 0.97

Pituitary_tumor 0.99 0.85 0.91 0.904 0.906

Meningioma_tumor 0.86 0.95 0.90

Accuracy 0.9250

Fine Tuning Hybrid No_tumor 0.93 0.96 0.95

Glioma_tumor 0.96 0.98 0.97

Pituitary_tumor 0.96 0.98 0.97 0.959 0.959

Meningioma_tumor 0.98 0.93 0.96

Accuracy 0.9564

EfficientNetB0 Model with QGA-FS No_tumor 0.96 1.00 0.98

Glioma_tumor 0.99 0.99 0.99

Pituitary_tumor 0.98 0.99 0.99 0.976 0.976

Meningioma_tumor 0.99 0.98 0.98

Accuracy 0.9825
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Figure 4 Comparison of model accuracy and loss across epochs in the Figshare dataset, featuring CNN, EfficientNetB0, hybrid, fine hybrid,
and the proposed EfficientNetB0 model with QGA-FS. Full-size DOI: 10.7717/peerj-cs.2556/fig-4
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Figure 5 Comparison of confusion matrices and ROC curves in the Figshare data set, featuring CNN, EfficientNetB0, hybrid, fine hybrid, and
the proposed EfficientNetB0 model with QGA. Full-size DOI: 10.7717/peerj-cs.2556/fig-5
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Figure 6 Comparison of model accuracy and loss across epochs in the MRI dataset, featuring CNN,
EfficientNetB0, hybrid, fine hybrid, and the proposed EfficientNetB0 model with QGA-FS.

Full-size DOI: 10.7717/peerj-cs.2556/fig-6
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Figure 7 Comparison of confusion matrices and Roc curves in the MRI dataset, featuring CNN, EfficientNetB0, hybrid, fine hybrid, and the
proposed EfficientNetB0 model with QGA-FS. Full-size DOI: 10.7717/peerj-cs.2556/fig-7
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QGA-FS has the highest accuracy rate and lowest error rate for all classes and shows near-
perfect results in the ROC curve. This reveals that the proposed model offers the best
performance and performs more accurate classification than other methods.

Comparison with state-of-the-art deep learning based techniques
Table 3 compares various deep learning techniques used in brain tumor classification. The
accuracy rates of the QGA-FS with the proposed EfficientNetB0 model were found to be
quite high compared to other methods. Hybrid deep learning approaches developed by
Raza et al. (2022) aim to increase classification accuracy by using multiple methods.
However, these models often fail to achieve ideal performance due to dataset limitations or
architectural complexity. For example, Raza et al. achieved an accuracy rate of 96.30%. In
contrast, the EfficientNetB0 with QGA-FS model, which uses QGA for feature selection,
achieved higher accuracy rates of 98.36% (Figshare) and 98.25% (MRI). This demonstrates

Table 3 Summary of techniques compared to state-of-the-art technologies for brain tumor classification using the Figshare and MRI datasets.

References Methods Datasets Originality Pros Cons Results

Tummala et al.
(2022)

Vision Transformers
Ensembling

Figshare Transformer-based
ensemble

State-of-the-art
performance with
Transformers

High
computational
cost

98.70%

Shaik & Cherukuri
(2022)

Multilevel attention
mechanism (MANet)

Figshare,
BraTS’2018

Multi-level attention
mechanism

Robust across
datasets

Slightly lower
accuracy on
BraTS’2018

96.51%
(Figshare),
94.91%
(BraTS’2018)

Aloraini et al.
(2023)

Hybrid transformer-
enhanced CNN
(TECNN)

BraTS 2018,
Figshare

Combines
transformers and
CNN

High accuracy with
hybrid model

High resource
requirements

96.75% (BraTS
2018), 99.10%
(Figshare)

Shyamala &
Brahmananda
(2023)

Optimized feature
reduction and
regression neural
network

MRI Relief-based feature
selection

Effective feature
reduction for
performance

Lower accuracy
compared to
others

94.70%

Sahoo et al. (2023) Efficient segmentation
and classification using
deep learning

MRI Simultaneous
segmentation and
classification

Efficient and
accurate for MRI
data

No transformer
inclusion

97.30%

Deepak & Ameer
(2021)

CNN features and SVM MRI Combination of CNN
features and SVM
classifier

Simplicity and
effectiveness

May not
generalize well
on large datasets

95.82%

Sultan, Salem & Al-
Atabany (2019)

Multi-classification using
deep neural network

MRI Early work on multi-
classification

Simple and effective
neural network

Lower accuracy
than more
recent methods

96.13%

Swati et al. (2019) Transfer learning and
fine-tuning

MRI Transfer learning
approach

Effective transfer
learning with fine-
tuning

Lower accuracy 89.90%

Pundir & Rajeev
Kumar (2021)

Transfer learning MRI Standard transfer
learning

Effective for MRI
data

Not highly
original

91.80%

Proposed
EfficientNetB0
Model with
QGA-FS

EfficientNetB0 with
Quantum Genetic
Algorithm

Figshare, MRI Hybrid model
combining QGA
with EfficientNetB0

High accuracy and
effective feature
selection

Computational
complexity

98.36%
(Figshare),
98.25% (MRI)
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that our model achieves better performance without requiring more complex
architectures, thanks to its high accuracy and efficient feature selection capability.

Tummala et al. (2022) and Aloraini et al. (2023) achieved high accuracy rates (98.70%
and 99.10%, respectively) using transformer-based hybrid models. However, the main
disadvantage of these models is their high computational cost and resource requirements.
The proposed EfficientNetB0 model offers lower computational cost compared to
transformer models while achieving competitive accuracy rates, thanks to QGA-based
feature selection. This makes our model more suitable for practical use.

Studies such as Swati et al. (2019) and Pundir & Rajeev Kumar (2021) used transfer
learning methods, performing classification on MRI data using transferred knowledge.
However, the lack of originality and lower accuracy rates (89.90% and 91.80%) are
significant drawbacks. In contrast, the proposed model combines EfficientNetB0’s
powerful feature extraction capacity with QGA, offering a more innovative and effective
approach compared to these transfer learning models.

Models like Shyamala & Brahmananda (2023), which use feature reduction techniques,
improve performance on high-dimensional datasets but still show lower accuracy rates
(94.70%). While this study used relief-based feature selection, the proposed QGA-based
feature selection model provides a more effective feature selection and higher accuracy due
to its broader search space. This demonstrates that our model performs better even on
more complex datasets.

Compared to other methods in the table, the proposed EfficientNetB0 Model with
QGA-FS stands out in terms of originality, high accuracy rates, and effective feature
selection (Shaik & Cherukuri, 2022; Malla, Sahu & Alutaibi, 2023; Sahoo et al., 2023;
Deepak & Ameer, 2021). By combining QGA-based feature selection with EfficientNetB0’s
strong feature extraction capabilities, we achieved the highest accuracy rates in brain
tumor classification. Additionally, we provide a more efficient and faster model by
avoiding the high computational costs of transformer-based models. These results show
the potential for our model to be used in clinical applications.

DISCUSSION AND CONCLUSION
In our study, it was observed that CNN demonstrated strong performance in the first
dataset, successfully distinguishing tumor types. Transfer learning enhanced classification
performance, particularly providing very high accuracy in the classification of glioma and
pituitary tumors. The hybrid model further improved classification performance by
combining the strengths of the CNN and EfficientNetB0 models. However, the fine-tuned
hybrid model did not deliver the expected performance improvement and actually reduced
the model’s performance. These results indicate that the proposed method achieved the
highest accuracy among all methods and significantly improved feature selection and
classification performance through QGA-FS.

Overall, the proposed EfficientNetB0 model and QGA-FS method for brain tumor
classification reached the highest accuracy rate and demonstrated superior performance
compared to other methods. This suggests that the proposed method offers an effective
and reliable solution for the automatic classification of brain tumors.
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In the second dataset, CNN successfully distinguished tumor types but provided lower
accuracy in some classes (particularly in cases with no tumor and meningioma). The
EfficientNetB0 model achieved very high accuracy and precision in tumor
classification. The hybrid model improved classification performance by combining the
strengths of both methods, but experienced performance drops in some classes (especially
pituitary tumor). The fine-tuned hybrid model increased performance and achieved more
balanced results. It was found that the proposed method achieved the highest accuracy
among all methods and significantly enhanced feature selection and classification
performance with QGA-FS.

This study investigates the effectiveness of combining deep learning with QGA in brain
tumor classification. The proposed combination of the EfficientNetB0 model and QGA-FS
achieved high accuracy rates in classifying brain tumors from MRI images. Specifically,
accuracy rates of 98.36% were obtained on the Figshare dataset and 98.25% on the MRI
dataset. These results demonstrate that the proposed approach offers superior
performance compared to existing methods and can be used in clinical applications.

The main findings of the study show that when the EfficientNetB0 model’s strong
feature extraction capacity is combined with QGA’s efficient feature selection, the model’s
classification accuracy and generalization ability are significantly increased. These results
allow for faster and more accurate diagnostic processes by reducing dependency on
manual feature extraction and classification methods in brain tumor diagnosis.
Additionally, since the proposed model has lower dimensions and fewer learnable
parameters, it reduces computational costs and processing times, providing real-world
clinical results. This enhances the model’s applicability in different scenarios.

The EfficientNetB0 model’s strong feature extraction capacity stands out among deep
learning models. The fact that this model is pre-trained on ImageNet allows the features
learned from large datasets to be transferred to smaller and specific datasets, increasing
classification accuracy. The QGA-FS method is more effective than traditional feature
selection methods because quantum genetic algorithms offer a broader search space for
feature selection and reduce the likelihood of getting stuck in local optima. This allows for
the selection of better features that improve the model’s overall performance and accuracy.
QGA helps eliminate unnecessary or low-information features, particularly in high-
dimensional datasets.

The findings of this study suggest that the proposed method can be used for the rapid
and accurate diagnosis of brain tumors in clinical applications. The model’s low
dimensions and fewer learnable parameters reduce computational costs and processing
times, increasing its applicability in real-world clinical scenarios. This can assist doctors in
clinical settings by speeding up diagnostic processes and improving patient care.

This study contributes to future research by shedding light on the development of more
efficient and effective methods for brain tumor classification. Future studies may focus on
expanding the datasets, testing the model’s applicability to different tumor types, and
exploring the real-time use of the model in clinical settings. Additionally, integrations with
other deep learning techniques and feature selection algorithms may be explored to further
improve model performance.
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Moreover, this study enhances the effectiveness of artificial intelligence and deep
learning models in brain tumor classification, facilitating faster and more accurate early
diagnosis. These advancements may enable healthcare policies to be reshaped. Specifically,
the widespread adoption of AI-assisted diagnostic systems in healthcare systems can help
improve patient care quality and reduce diagnostic costs. Furthermore, the widespread
implementation of such systems may provide more automation in healthcare services,
reduce the workload of doctors, and lead to more efficient patient management processes.

From an investor’s perspective, this study demonstrates that the technological
advancements in AI-based medical imaging present commercial opportunities. Such
innovative models provide a strong foundation for new investments in healthcare
technologies and offer attractive opportunities for projects at the intersection of big data,
machine learning, and healthcare technologies. In particular, this model, which is suitable
for clinical use and scalable, has the potential to create new business opportunities for
medical device manufacturers and healthcare technology companies.
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