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ABSTRACT

Long short-term memory (LSTM) networks, widely used for financial time series
forecasting, face challenges in arbitrage spread prediction, especially in
hyperparameter tuning for large datasets. These issues affect model complexity and
adaptability to market dynamics. Existing heuristic algorithms for LSTM often
struggle to capture the complex dynamics of futures spread data, limiting prediction
accuracy. We propose an integrated Cuckoo and Zebra Algorithms-optimised LSTM
(ICS-LSTM) network for arbitrage spread prediction. This method replaces the Lévy
flight in the Cuckoo algorithm with the Zebra algorithm search, improving
convergence speed and solution optimization. Experimental results showed a mean
absolute percentage error (MAPE) of 0.011, mean square error (MSE) of 3.326, mean
absolute error (MAE) of 1.267, and coefficient of determination (R2) of 0.996. The
proposed model improved performance by reducing MAPE by 8.3-50.0%, MSE by
10.2-77.8%, and MAE by 9.3-63.0% compared to existing methods. These
improvements translate to more accurate spread predictions, enhancing arbitrage
opportunities and trading strategy profitability.

Subjects Algorithms and Analysis of Algorithms, Data Mining and Machine Learning,
Optimization Theory and Computation, Neural Networks

Keywords LSTM networks, Arbitrage spread forecasting, Hyperparameter setting, Cuckoo
algorithm, Zebra algorithm

INTRODUCTION

In today’s data-intensive world, the ability to process vast amounts of real-time data
efficiently is paramount (Engelmayer, Georgiev ¢ Velickovi¢, 2024). Against this backdrop,
the latest data from the China Futures Association shows that in 2023, the scale of China’s
futures market has steadily expanded. The cumulative trading volume in the futures
market reached 8.501 billion lots, with a cumulative turnover of 56.851 trillion dollars,
representing year-on-year growth of 25.60% and 6.28% respectively (Liu, Feng & Xu,
2024). This robust expansion not only showcases the vitality of China’s futures market but
also underscores the pressing need for advanced data processing techniques to handle the
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ever-growing volumes of real-time market data. Artificial intelligence (AI) has ushered in a
revolutionary era for the financial industry, propelling unprecedented advancements in
data analysis and parallel computing. This technological leap has inspired numerous
researchers to delve deeper into time series forecasting (TSF) problems (He et al., 2023). It
also paved the way for the emergence and development of various trading strategies,
including statistical arbitrage. Statistical arbitrage, a common type of algorithmic trading,
is widely recognized and utilized in academic and industrial environments. Given the
potential to generate higher profits with limited risk, an increasing number of investors are
transitioning into arbitrageurs and entering the arbitrage market. However, intense
competition has led to a decline in the profitability of statistical arbitrage. Kozhan & Tham
(2012) pointed out that the proliferation of competitive arbitrageurs results in higher
execution risk, as highlighted in their research. Consequently, enhancing the efficiency of
trading strategies has become a crucial factor in determining arbitrage profitability.

However, most futures arbitrage indices behave very similarly to a random walk because
the financial time series data is noisy and non-stationary (He et al., 2023). Undoubtedly, it
is very difficult to predict the futures arbitrage market, since the volatility is too large to be
captured in a model (Olorunnimbe ¢ Viktor, 2023). Despite these difficulties, there has
been a constant desire to develop a reliable futures arbitrage market prediction model
(Mahmoodi et al., 2023). Several approaches have been made in recent decades to forecast
future arbitrage markets using statistics and soft computing techniques. Earlier studies
relied on statistical methods, but they often struggled with complex financial data due to
computational complexities and efficiency constraints (Vullam et al., 2023). Accordingly,
various machine learning techniques, such as artificial neural networks (ANN) and
support vector machines (SVM), which can capture nonlinearity and complex
characteristics of financial time series, have started to be utilized for financial market
prediction. These approaches have improved the ability to predict the chaotic
environments of future arbitrage markets by capturing their nonlinear and unstructured
nature (Basterrech & Rubino, 2023; Adebiyi, Adewumi ¢» Ayo, 2014). Unlike traditional
statistical models, machine learning models are data-driven, non-parametric weak models,
and they let “the data speak for themselves.” Consequently, machine learning models are
less susceptible to the problem of model misspecification compared to most parametric
models.

In recent years, there have been increasing attempts to apply deep learning techniques
to financial market prediction. The Local Linear Embedding Dimensionality Reduction
(LLE) algorithm (Yu et al., 2020) was chosen to reduce the dimensionality of the factors
affecting the stock price and the dimensionality reduced data is used as a new input
variable to the back-propagation (BP) neural network for stock price prediction. Khoobjou
¢ Mazinan (2017) proposed a financial prediction model based on the generalized
regression neural network method. This method can improve the operation speed, and the
prediction performance is also better than that of the traditional BP neural network. Jahan
¢ Sajal (2018) used a recurrent neural network (RNN) algorithm on the time-series data of
a stock and also cross-checked the predicted closing price with the true closing price. This
demonstrates that RNNs can be used to predict other volatile financial instruments (Jahan
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¢ Sajal, 2018). The temporal representation capabilities of RNNs offer advantages in tasks
that involve processing sequential data, such as financial predictions, natural language
processing, and speech recognition (Weerakody et al., 2021). In contrast to recurrent
neural networks (RNNs), conventional neural networks exhibit limitations in handling
sequential data due to the absence of memory mechanisms essential for capturing
temporal dependencies and dynamics within the data. Wang et al. (2018) studied the
application of long short-term memory (LSTM) networks in the stock market. They
defined a parameter combination library and used the skill of dropout to get the more ideal
prediction results (Wang et al., 2018).

Over the past 2 years, Huang et al. (2024) introduced a novel deep network architecture
called bidirectional long short-term memory (BiLSTM)-Attention, which enhances the
network’s ability to identify key features and patterns in stock market data, allowing the
model to focus on the most relevant aspects of the data. Yang et al. (2023) proposed an
end-to-end model called DRL-UTrans for learning a single stock trading strategy that
combines deep reinforcement learning, transformer layer, and U-Net architecture, which
provides higher profitability compared to seven baseline methods. Yariez, Kristjanpoller ¢
Minutolo (2024) investigate the performance of a Transformer-based deep neural network
in predicting financial market returns, compared to a conventional model. The study
employs a comprehensive approach, including iterative abandonment testing and batch
size optimization, to improve the model’s predictive performance. The results show the
proposed Transformer variant outperforms the benchmark model in all cases (Yariez,
Kristjanpoller &> Minutolo, 2024). Zhu et al. (2024) proposed a hybrid model PMANet for
stock price prediction. PMANet incorporates multiscale temporal feature convolution and
ant particle swarm optimization, improving understanding of stock data dependencies.
Experimental results show PMANet’s prediction closely matches actual values, with
feasible and generalized predictive capability (Zhu et al., 2024). Xue, Li ¢ Wang (2024)
investigates a novel composite prediction framework that integrates the variational mode
decomposition (VMD), PatchTST, and adaptive scale weighting layer (ASWL). The VMD-
PatchTST-ASWL framework significantly improves the prediction accuracy and exhibits
robust performance in different indices compared to conventional models (Xue, Li ¢
Wang, 2024). Shi (2024) proposes MambaStock, a Mamba-based stock price prediction
model with a selection mechanism and scanning module. MambaStock efficiently mines
historical data to predict future stock prices, outperforming previous methods with highly
accurate forecasts (Shi, 2024).

While the above studies have made significant progress in time series forecasting, LSTM
performs particularly well in the specific application scenario of futures arbitrage. Zaheer
et al. (2023) propose a hybrid deep learning prediction model. The model takes input stock
data and predicts two stock parameters for the next day: closing price and high price. The
results show that LSTM outperforms convolutional neural network-long short-term
memory (CNN-LSTM), CNN-RNN outperforms CNN-LSTM, CNN-RNN outperforms
LSTM, and the proposed single-layer RNN model beats all other models (Zaheer et al,
2023). Lahboub ¢ Benali (2024) proposed a data-driven approach to predict stock prices
on the Moroccan stock exchange, testing three prediction models: the ARIMA, LSTM, and
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transformers, applied to historical stock price data of three well-known credit companies
(EQD, LES, and SLF) listed on the Casablanca stock exchange, the results show that LSTM
model achieves the highest level of accuracy. Han ¢ Li (2024) propose a model to optimize
arbitrage spreads based on Long Short-Term Memory (LSTM). The training results show
that the proposed optimization model can successfully filter out unprofitable trades and
significantly outperforms the returns of the benchmark strategy and the CSI 300 index in
the same period (Han ¢ Li, 2024). From the above study, we can conclude that LSTM is
more suitable for more suitable for arbitrage spread prediction.

Although LSTM shows good performance in the arbitrage spread prediction problem,
the biggest challenge in LSTM neural networks is tuning their hyperparameters, namely
batch size, number of epochs, learning rate, and optimizing the connection weights as well
as the bias of the network. The automatic exploration of neural network architectures has
been attempted by several authors. Sakshi ¢ Kumar (2019) utilized genetic algorithms to
optimize the parameters of an artificial neural network (ANN) and discovered that the
proposed model exhibits a brief training period, fast convergence, and a higher success
rate. Peng et al. (2018) applied differential evolution (DE) to obtain the optimal values of
various hyperparameters, such as window length, the number of hidden nodes, batch size,
and the number of epochs in LSTM for electricity price prediction. Liu ¢ Liu (2019),
incorporated a modified genetic algorithm (GA) to select the optimal feature subset and
hidden neurons of LSTM neural networks for house price prediction in China. Hao, Song
¢ Du (2023) utilized a two-layer LSTM with time attention to encode stock data and focus
on temporal dependencies. In addition, the proposed adaptive particle swarm optimization
algorithm is used to select the key parameters of the network structure, which improves the
overall prediction performance (Hao, Song ¢» Du, 2023). Liu et al. (2023) used the Cuckoo
Search algorithm (CS) to optimize an LSTM neural network to predict four indicators of
the reservoir in 2022. The experimental results show that the average absolute error and
root mean square error of the CS-LSTM-based prediction model is lower than that of the
comparison model, and the coefficient of determination is higher than that of the
comparison model and better than that of the LSTM model (Liu et al., 2023). Rajalakshmi
¢ Kala (2024) used CS optimization to find the best weights and bias values for LSTM
networks to provide appropriate decision-making to the driver, and the results propagated
to show that CS improves the performance of LSTM. Rani ¢ Kavitha (2024) used the
Zebra Optimisation Algorithm (ZOA) to fine-tune the EEG signal features. The features
obtained from the selection algorithm were then fed into a hyperparameter-optimized
LSTM classifier to classify normal and abnormal seizures, The results show high accuracy
for three datasets (Rani ¢ Kavitha, 2024). Shahul Hameed ¢ Ravi (2022) proposed an
improved CS optimization model to tune the hyperparameters of the LSTM model. In
comparative evaluation with related benchmark techniques, namely genetic algorithm
optimized LSTM, particle swarm optimized LSTM, and CS optimized LSTM, the result
shows that the recommended methodology outperforms the taken benchmark models and
provides better accuracy (Shahul Hameed ¢ Ravi, 2022). We can see in Table 1 a
comparison of the main methods mentioned above.
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Table 1 Summary of key literature.

Authors (Year) Input data Output Method

Liu & Liu (2019)  Eight characteristics of the housing market in Shenzhen, China House price GA-LSTM

Hao, Song & Du  Stock data set Stock price APSO-TA-LSTM
(2023)

Liu et al. (2023) Four indicators for reservoirs Water quality CS-LSTM

Rani & Kavitha Three standard datasets such as Temple University Hospital (TUH), Bonn Classify the normality and ZOA-LSTM
(2024) University (BU) and Bern Barcelona (BB) abnormality of seizures

Shahul Hameed ¢ Technical indicators extracted from Bitcoin’s Historical Data Bitcoin price MCSO-LSTM
Ravi (2022)

The CS algorithm has shown strong performance on a variety of optimization problems,
but it still has limitations, especially in dealing with complex problems and large-scale data
(Yang ¢ Deb, 2009). One main drawback is its reliance on Lévy flights, which enhances
global search but often results in insufficient local search, causing the algorithm to get
stuck in local optima. Additionally, CS tends to have slower convergence in the early
stages, particularly for high-dimensional problems, limiting its effectiveness in financial
time series forecasting. To address these issues, this study proposes the Integrated Cuckoo
Search (ICS) algorithm, which builds on the cuckoo algorithm but introduces key
innovations. The ICS algorithm incorporates a “zebra” pattern search strategy to achieve a
better balance between global exploration and local exploitation, overcoming the large
jumps in Lévy flights (Trojovskd, Dehghani ¢ Trojovsky, 2022). It also adopts the adaptive
search step mechanism of the zebra algorithm to automatically adjust the search scope,
enabling a smooth transition from wide exploration to fine local search. Furthermore, the
ICS algorithm introduces the zebra algorithm’s probabilistic selection mechanism to
flexibly switch search strategies, increasing diversity and avoiding local optima. These
innovations significantly enhance the ICS algorithm’s global search capability, local fine-
tuning, convergence speed, and optimization efficiency. The complementarity of the ZOA
and CS algorithms also improves the ICS algorithm’s adaptability to complex, multimodal,
and high-dimensional problems. The proposed ICS algorithm is tailored for financial time
series forecasting, particularly in predicting arbitrage spreads. It initializes the population
using a tent chaotic mapping to boost global search (Li, Han ¢ Guo, 2020). The Cuckoo
and Zebra algorithms’ synergy enables precise tuning of LSTM hyperparameters, crucial
for accurate financial forecasting. The following are the key contributions of this work:

1) We replaced the Lévy flights in the cuckoo algorithm with a “zebra” pattern search
strategy that incorporates the zebra algorithm’s adaptive search step mechanism and
probabilistic strategy selection. This enhances the algorithm’s global exploration, local
exploitation, convergence speed, and optimization efficiency while reducing the risk of
getting stuck in local optima.
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2) We propose an innovative ICS-LSTM network model optimized using the ICS for
hyperparameter tuning. This model enables adaptive training with diverse financial
time series data, specifically enhancing the accuracy of arbitrage spread predictions.

The remainder of this article is divided into several sections: “Data Analysis” presents
the data analysis, which primarily focuses on the effectiveness of real data. “Materials and
Methods” introduces the ICS algorithm and the ICS-LSTM network. “Results and
Discussion” presents the experimental description and results analysis of ICS-LSTM and
other models for intercommodity spread prediction. “Conclusions” concludes this article.

DATA ANALYSIS

In this section, we provide a clear and concise description of the data. And, we also affirm
its validity and applicability through correlation analysis and the Engle-Granger (EG)
cointegration test (Ssekuma, 2011).

The data used in this study was sourced from the Shanghai Futures Exchange in China.
The exchange provides a snapshot-based order feed using the CTP protocol, which
aggregates changes over the last 500 ms. The corresponding rebar and hot-rolled coil
contracts’ 500-ms tick data were used to calculate the spread data. The final output is
1-min K-line data. Furthermore, since each contract has a duration of one year, we
combined the historical data for the January, May, and October contracts of each year
based on turnover to obtain the continuous spread data of the main contract. Ultimately,
we acquired the spread data from 21:01 on July 15, 2020, to 10:50 on March 23, 2023,
comprising a total of 225,155 data points over 654 days.

Before initiating inter-commodity spread trading, it is crucial to confirm the existence of
a long-term stable cointegration relationship among the selected futures contracts. For this
reason, we conducted a cointegration analysis of the closing prices of rebar and HRC. First,
we conducted unit root tests on the closing prices of the two contracts.

From Table 2 we know that the two logarithmic series contain a unit root, i.e., they are
non-smooth series, meanwhile, the unit root test is carried out on their differences, and the
first-order differences of the two pairs of series do not contain a unit heel, i.e., their first-
order differences are smooth series. The following regression equation is constructed for
the closing price data of hc and rb.

rb = 0.876960672658 * hc + 405.938874678 + Re sid01. (1)

We then conducted a unit root test on the residuals of the model. From Table 3 the
residual Resid01 does not contain a unit root and is a stable sequence. It can be concluded
that the closing prices of hc and rb contracts are in line with the cointegration relationship.

MATERIALS AND METHODS

The ICS algorithm is designed to determine the optimal hyperparameters in this part.
Further, we propose the ICS-LSTM network to adaptively tune the prediction model. The
network eliminates the impact of individual subjectivity elements in traditional
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Table 2 Unit root test.

Variety Dickey-Fuller P-value Steady or not
hc 0.035680 0.6942 No
RB -0.025008 0.6745 No
Ahc -96.58328 0.0001 Yes
Arb —93.88820 0.0001 Yes

Table 3 Residual series test.

Residual sequence ADF test P-value Steady or not

Resid01 -7.235169 0.0000 Yes

hyperparameter tuning and provides a reliable reference for constructing effective and
efficient predictive models in the field of algorithmic trading.

ICS algorithm

The CS algorithm is derived from modeling the breeding behavior of cuckoos. CS
algorithms typically use a real-valued representation scheme, where the position of each
cuckoo takes the form of a vector in a continuous search space. For a problem with D
dimensions, the position of a cuckoo can be encoded as: x; = [x;1, X2, . .. ... , X;p], where Xij
denotes the j th dimension of the first value of the i cuckoo. The algorithm utilized a
balanced combination of local randomized wandering and global exploratory randomized
wandering, controlled by a switching parameter. The local randomized wandering can be
expressed as:

A =x+as@H(p, — &) ® (x}—x,i) (2)

where x]? and x; are two solutions chosen randomly by random permutations, H is the

Heaviside function that turns a discontinuous signal into a continuous function, thus
facilitating analysis and processing. ¢ is a random number drawn from a uniform
distribution, s is the step size, and ® is the dot product operator. By generating a random
matrix and comparing it to the parameter pa, if the random number is greater than pa, the
corresponding position will return True (indicating retention), otherwise, it returns False
indicating abandonment. On the other hand, global exploratory random wandering is
achieved by Lévy flights, which are random wandering in random directions with step sizes
derived from Lévy distributions. These Lévy flights are performed by animals and insects
and are characterized by a series of straight flights followed by an abrupt 90-degree turn.
The specific formulas are shown in Egs. (3) and (4), where « > 0 is the step size scaling
factor which is related to the size of the problem of interest, in most cases we can use « = 1.
17 is a power operation on s used to scale the step size. This determines the direction of the

AL'(Z) sin (”2—’)

step and the size of the base. determines the direction of the step and the size of
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the base. 4 is a shape parameter (also known as the stability index or order) of the Lévy
distribution that controls the hopping behavior of the Lévy flight. This parameter affects
the thickness of the tail of the Lévy distribution, i.e., how often large jump steps occur.

X =%l +oL(s,4) (0< 2 <2) (3)
)I(/l) sin <%/L> 1 (4)
L(S,},) = 7@, (O <s< 1)

The CS uses random generation to initialize the population, which often results in
uneven initialization and fails to cover the entire population. To address these issues, this
article proposes using tent chaotic mapping to initialize the population. Tent chaotic
mapping introduces randomness, traversal, and sensitivity to initial values, which can
accelerate the algorithm’s convergence speed. This ensures that the initial solution is evenly
distributed in the solution space. The comparison of the population distribution generated
randomly and the population distribution initialized using tent mapping can be found in
the Supplemental File. In both scenarios, the population size is set to 100, and after 30
independent experiments. The population distribution tends to be concentrated in one
place for populations initialized using random search compared to populations initialized
using tent chaotic mapping. Initializing the population using tent mapping leads to a more
uniform population distribution. The tent map is a function with a parameter y and is a
segmented linear mapping. It is defined as shown in Eq. (5):

1
WXy for x, < =

u(l —x,) for x, > —

(5)

Xn+1 = fu(xn) =

N | =N

In the original CS algorithm, the Lévy flight mechanism is used to explore the solution
space. As can be seen from Egs. (3) and (4), the step size of the Lévy flight shows a pattern
of frequent short distances and occasional long distances, and its search process allows
individuals to easily span a wide range of search regions, resulting in a weak local search
capability of the algorithm. When the algorithm needs to search for a local optimal
solution, the randomness of the Lévy flight reduces the search efficiency, resulting in the
algorithm needing more iterations to converge when approaching the optimal solution.

To solve the shortcomings of the original CS algorithm in terms of local search
capability, we introduce ZOA to replace the Lévy flight mechanism while retaining the
local search capability of the CS algorithm. ZOA is chosen because it has the following
advantages: (1) balanced search strategy, which can strike a better balance between global
exploration and local exploitation; (2) adaptive, which can automatically adjust the search
strategy according to the current situation; and (3) utilizes group intelligence to guide the
search, which can explore the complex solution space more effectively. The specific
alternatives are: in the global search phase, the position update mechanism of ZOA is used
instead of Lévy flight, so that individuals can move to the global and local optimal solutions
more effectively; in the local search phase, the local search mechanism of CS algorithm is
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retained, which not only retains the advantages of CS algorithm, but also overcomes its
deficiencies in local search, and improves the overall performance of the algorithm and the
convergence speed.

ZOA also uses a real-valued representation scheme, where the position of each zebra is
represented as a vector in a continuous search space: X; = [x;1, X2, . . . . . . , Xip]. Where Xij
denotes the jth dimension of the first value of the i zebra. The zebra search involves two
main phases. In the first phase, population members simulate zebra behavior while
foraging for food. The most outstanding member of the ZOA acts as the pioneer zebra,
guiding others to their positions in the search space. Equations (6) and (7) mathematically
model the updating of pioneer zebras’ positions during the foraging phase. Where “r” is a
random number between 0 and 1, and “I” is a random value from the set. The second phase
models zebra defense strategies against predators. Zebras evade lion attacks using zigzag
and random lateral maneuvers. Against smaller predators like hyenas and dogs, zebras
adopt a more aggressive strategy, rallying together to confuse and intimidate their
attackers. The ZOA considers two scenarios with equal probability: in the first, a zebra
hides near its location from a lion (modeled by SI in Eq. (8)), The search step size of ZOA
is adaptively adjusted as the number of iterations increases this allows the algorithm to
explore a large area in the early stages and focus more on localized fine-grained search in
the later stages; in the second, zebras in the herd gather around an attacked zebra to form a
defensive structure (modeled by S2 in reference Eq. (8)). By introducing a probabilistic
selection mechanism that switches between different search strategies, it helps to increase
algorithmic diversity. In this context, “t” represents the number of iterations, “T” stands for
the maximum number of iterations, and “R” is a constant set at 0.01. P is the switching
probability of the two strategies. The value is a random number between 0 and 1, and AZ
represents the state of the attacked zebra. When updating a zebra’s position, if the zebra
has a better objective function value at the new position, that new position is accepted.
Modeling this updating condition using Eq. (9).

xZ]‘?W’Pl =xij+r-(PZ—1 x;)(0<p<l) (6)
new,P1 new,P1 )
X, — { X; Fi P < -
X; else
t
X = {Sl xR (2r = 1) <1 _?> Y (0<r<1) 8)
S, :X,'J'—i‘r' (AZj—I-x,-_j)

1 1

X, =
' X; else

new,P2 new,P2 )
{ X F™P < ©)

To improve the performance of the CS algorithm, in this study, not only did we use tent
chaotic mapping to initialize the population, but we also used the idea of the ZOA
algorithm in the position update process of the CS algorithm. Updating of the bird’s nest
can be like the zebra in the ZOA algorithm, which always pursues the current optimum
and the global optimum. This not only maintains the stochasticity required for searching
but also reduces the blindness of searching and speeds up the convergence of the
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population to the optimal solution, and at the same time, the stochastic elimination
mechanism of the CS algorithm makes the algorithm able to smoothly escape from the
local optimum, thus significantly enhancing its overall performance. The pseudo-code for
the algorithm is shown in Box 1. This pseudo-code describes the optimization process of
ICS. First, the algorithm receives information about the optimization problem and sets the
number of iterations T and the population size N. It initializes the positions of the zebras
and evaluates these positions utilizing an objective function. In each iteration, the
algorithm updates the locations in two parts: the first part uses ZOA, which simulates the
zebra’s foraging behavior and defense strategy, For each nest, the algorithm uses a new
location inspired by the ZOA to generate a new location, i.e., the location of the pioneer
zebra, and then, the algorithm searches around the pioneer zebra, after which it introduces
a probabilistic selection mechanism that balances between two search strategies (when Ps <
0.5) and (when Ps >= 0.5). When Ps < 0.5, a careful local search is performed in the
neighborhood of the current solution through an adaptive step size and a random search,
and when Ps >= 0.5, an extensive exploration is performed in the whole search space by
introducing a random factor and a diverse search; the second part uses CS, which updates
the cuckoo’s locations based on the probability of discovery pa (set to 0.25). After each
iteration, the current best solution is saved, and the best solution found in all iterations is
finally output. The overall time complexity of the ICS algorithm is:

O(T * (n*x dim+n * f)), T is the total number of iterations, # is the number of cuckoos,
dim is the positional dimension of each cuckoo, f is the complexity of computing
adaptation. In numerous models for hyperparameter optimization, the MSE or MAE of the
validation set is typically employed as the fitness function of the model. In this study, we
selected MSE as the fitness function.

ICS-LSTM
Structure of ICS-LSTM

The LSTM network is made up of the memory cell and three gates, namely the input gate,
forget gate, and output gate. The three gates control the flow of information within the
memory cell by determining what information to discard, store, and transmit to the next
state. Figure 1 displays the typical structure of an LSTM network with a single hidden layer.
The core part of the LSTM unit contained in the hidden layer(s) is the cell state. Let

Xe =[x}, x2,x0, ... x)'| be the N number of inputs, H; = [h},h} k2, ... ... hf] be the
K hidden units or hidden states, and C; = [c}, ey, K } be the cell state of the
LSTM network at time t and f;, I; and O, represent the forget gate, input gate, and output
gate, respectively. At each timestamp t, the input X; along with the previously hidden state
h}_, is presented to three gates to compute the next hidden state /; and to update the
previous cell state C;_; to compute the new cell state C;. Where Wy, W;, W, W, are the
weights matrices corresponding to the input X; and Uy, U;, U,, U, are recurrent weights
matrices associated with previously hidden state h;_; and by, b;, b. and b, are the bias
vectors for forget gate, input gate, candidate solution, and output gate, respectively. g(x) is
a log-sigmoid activation function and tanh(x) is the hyperbolic tangent activation
function.
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Box 1 Algorithm pseudo-code.
Integrated Cuckoo Search Algorithm (ICS)
Start ICS
1.  Input: The optimization problem information.

2. Set the number of iterations (T) and the number of populations (N).

e

Initialization of population position using Eq. (5) and evaluation of the
objective function.
Part1: Update position using ZOA
Fort=1:T
Update Pioneer Zebra (PZ).
Fori=1:N

Phase 1: Zebra foraging behavior

© ©® N S ok

Calculate the new status of the ith zebra using Eq. (6).

10. Update the ith zebra using Eq. (7).

11.  Phase 2: Defense strategies against predators

12.  If Ps < 0.5, Ps = rand

13.  Strategy 1: against lion

14.  Calculate the new status of the ith zebra using mode S1 in Eq. (8).
15.  else

16.  Strategy 2: against other predators

17.  Calculate the new status of the ith zebra using mode S2 in Eq. (8).
18. endif

19.  Update the ith zebra using Eq. (9).

20.  Part2: Update position using CS

21.  Set the probability of discovery pa to 0.25

22.  Update the position of cuckoo birds using Eq. (2)

23. endfori=1:N

24.  Save the best candidate solution so far.

25. endfort=1:T

26. Output: The best solution obtained by ICS for the given optimization problem.
End ICS.

The ICS algorithm proposed in this article offers strong global search capability, high
search accuracy, and fast convergence speed. In this article, we focus on optimizing the
hyperparameters of the network model to minimize the influence of human factors on the
network model and enhance the predictive ability of the model. Therefore, we consider the
time step, discard rate, and the number of neurons in one input layer and two hidden
layers of LSTM as the target optimization parameters. Finally, we establish the ICS-LSTM
model with the structure shown in Fig. 2 for futures spread prediction.
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Figure 2 ICS-LSTM model architecture.
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Steps of the ICS
The specific process of ICS to optimize the parameters of the LSTM network is divided into
the following five steps:

Step 1: Preprocessing. The data preprocessing consists of multiple sections: determining
input features and normalization processing. After completing these tasks, we divide the
training set and test set proportionally.

Step 2: Population and parameter settings. Set the number of populations, search scope,
number of algorithm iterations, and generate the search space according to the number of
cuckoos and the target parameters (discard rate, number of neurons, and time step).
Initialize the population using tent mapping.

Step 3. Calculate the fitness value. We use mean squared error (MSE) as the fitness
function to identify the best individuals based on their fitness values.

Step 4. Location update. Update the position of the population according to Eqs. (6)-(8)
and (2). Then, compare the current global optimal solutions and adjust the optimal fitness
value.

Step 5. Determine the loop situation. If the optimal fitness value is stabilized or the
iteration is completed, output the best value; else, return to Step 3.

More details are available in the Supplemental File.

RESULTS AND DISCUSSION

Test function

We selected the CS and the ZOA, along with the enhanced Cuckoo Algorithm proposed in
this article, for testing in the CEC 2019 test function. In CEC 2019, the F1-F3 functions
have varying dimension values and ranges, while the F4-F10 functions are 10-dimensional
minimization problems. All these optimization benchmarks aim to minimize the target
fitness value. Since the search range of CEC-07 is consistently negative during the testing of
the three algorithms, which does not align with the requirements of futures spread
prediction models, all CEC 2019 function sets except CEC-07 have been chosen. The
function introductions of the selected function sets can be found in the Supplemental File.
The mean and standard deviation of the three algorithms after 30 independent runs under
the nine test functions are shown. From Table 4 it can be seen that the enhanced cuckoo
algorithm proposed in this article consistently outperforms the other two algorithms in
terms of mean value. The standard deviation of the cuckoo algorithm in the functions F4,
F5, F6, and F8 is the smallest among the three algorithms. The ZOA shows the best
performance in the functions F2 and F10, while the improved cuckoo algorithm proposed
in this article excels in the functions F1, F3, and F9, performing only slightly worse than the
other two optimal algorithms in the remaining test functions.

Data processing

The 1-min period K-line fitted spread data of rebar and HRC futures on the Shanghai
Futures Exchange from December 34, 2020, to March 15, 2023, was used to evaluate the
proposed prediction model. Each period’s price spread data includes eight features:
opening price spread, highest price spread, lowest price spread, closing price spread,
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Table 4 Statistical results of ICS compared to other algorithms on classic benchmarks.

Functions Indicator Algorithms
CS ZOA ICS
F1 Mean 14,222.621 1.0 1.0
Std Dev 7,098.222 0.0 0.0
F2 Mean 203.817 5.0 4913
Std Dev 51.121 0.0 0.224
F3 Mean 7.038 6.961 3.069
Std Dev 0.685 0.686 0.407
F4 Mean 23.166 14,023.811 21.115
Std Dev 3.431 5,702.329 3.490
F5 Mean 1.125 4.754 1.115
Std Dev 0.023 0.607 0.027
F6 Mean 8.880 10.242 8.527
Std Dev 0.472 0.707 0.781
F8 Mean 1.000 1.457 1.00
Std Dev 7.152e-15 0.125 3913
F9 Mean 1.278 558.604 1.262
Std Dev 0.044 166.737 0.043
F10 Mean 21.052 21.413 14.612
Std Dev 1.030 0.106 6.716

MACD, DEA, DIF, and price spread fluctuation. The closing price spread is the target for
prediction.

Data preprocessing is required before training, and the data preprocessing steps include
the following: firstly, data cleaning is performed to remove missing values and error
records, and forward or backward padding is used to ensure the continuity of the time
series for missing data during non-trading hours; next, min-max normalization is
performed on all the features to ensure that the numerical scales of the different features
are consistent, to avoid affecting the learning effect of the model; then, the data is divided
into a training set (80%), a validation set (10%), and a test set (20%), which are used for
model training, hyper-parameter tuning, and final evaluation, respectively; and lastly,
technical indicators such as MACD, DEA, and DIF are calculated using the historical price
data, which are used as the input features to help the model capture the market trend and
the time series pattern. These preprocessing steps ensure the quality and consistency of the
data and provide a reliable basis for model training and comparison.

Metrics

To demonstrate the predictive effectiveness of each model, four metrics were used to
measure the performance of each model: MSE, MAPE, MAE, and coefficient of
determination (R?). This is calculated by Egs. (10) to (13).
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where y; is the predicted output value of the ith observation of the model, ¥, is the expected
value, and n denotes the number of samples. If the value of MAE, MSE, and MAPE is
smaller, the smaller the deviation between the predicted value and the original value. Also
the closer the coefficient of determination R? is to 1, the better the model fits. In addition to

the aforementioned indicators, one traditional assessment indicator has been employed, as
defined in Eq. (14).

2”: _
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0, #f (et = y) Dy — 2t
correctness of the trend direction, which is more important in arbitrage scenarios than

; ” (;J ; symbol accuracy focuses on the

precise numerical predictions.

Model implementation

To enhance the efficiency of updating network weights, the Adam optimizer was selected.
The Adam optimizer adaptively adjusts the learning rate of each parameter based on
historical gradient information, improving the efficiency and stability of the training
process. The number of cuckoo populations was set to 10, and the discovery probability for
the search was set to 0.25. Five hyperparameters of the LSTM model require optimization:
dropout rate, input layer neurons, hidden layer neurons, and time step.

We established a reasonable search range for the parameters to prevent potential issues
during the search process. We analyzed research articles (Chen, Zhou ¢ Dai, 2015; Ding &
Qin, 2020; Lu et al., 2021) on LSTM models for forecasting the Chinese futures arbitrage
market and set the search range of parameters as presented in Table 5. The search range of
the time step was set to 3 to 20, the discard rate to 0.002 to 0.99, and the number of neurons
for all three layers to 1 to 200. After optimizing the improved cuckoo algorithm, the final
optimal parameters are three for the time step, 0.468 for the discard rate, and 109 neurons
for the input layer. The number of neurons in the first hidden layer is 107, and the second
hidden layer is 98. More on the optimization process can be found in the Supplemental
File.
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Table 5 Parameter search range.

Parameter Search range Optimal value
Time step [1, 20] 3

Dropout rate [0.002, 0.99] 0.468
Neuron numbers in the input layer [1, 200] 109

Neuron numbers in the first hidden layer [1, 200] 107

Neuron numbers in the second hidden layer (1, 200] 98

Experimental results and analysis

This section analyzes the capability of ICS-LSTM for predicting spread trends. Models
such as multilayer perceptron (MLP), back propagation (BP), LSTM, BiLSTM, and gated
recurrent unit (GRU) are widely used in the field of futures arbitrage prediction
(Nosratabadi et al., 2021; Zhang et al., 2022; DiPietro ¢ Hager, 2020; Siami-Namini,
Tavakoli ¢ Namin, 2019; Farah et al., 2022). MLP and BP are classic neural network
models widely used in early time series prediction tasks. However, these models have some
limitations. MLP and BP models have a large number of parameters and are prone to
overfitting, and they also struggle to capture the long-term dependencies in time series
data. In contrast, the ICS-LSTM method introduces the ICS optimization algorithm, which
can effectively avoid local optima and improve the model’s search capability and
generalization ability. Therefore, the ICS-LSTM method is more suitable for handling
complex time series data than MLP and BP methods. LSTM, BiLSTM, and GRU are
advanced time series prediction models that can capture the long-term dependencies in the
data. However, the optimization process of these models is prone to getting trapped in
local optima, leading to poor model performance. The ICS-LSTM method, by introducing
the ICS optimization algorithm, can automatically adjust the model’s hyperparameters and
improve the model’s search capability and generalization ability. CS-LSTM and ZOA-
LSTM are methods that use CS and ZOA algorithms to optimize the LSTM model. These
methods can effectively improve the performance of the LSTM model. However, both CS-
LSTM and ZOA-LSTM methods have some limitations, and it is difficult to achieve
accurate prediction of arbitrage price difference. In contrast, the ICS-LSTM method can
automatically adjust hyperparameters and effectively avoid local optima, outperforming
other time series forecasting models in the task of arbitrage spread prediction. The main
experimental results are shown in Table 6 and Fig. 3.

To be specific, although MLP and BP networks can roughly predict future trends, they
are unable to cope with drastic price fluctuations, and there are obvious differences
between the prediction curve and the actual curve, especially at the inflection points. The
MLP is a basic feed-forward artificial neural network, and it has an MSE of 8.620, a MAPE
of 0.016, an MAE of 2.180, and an R2 of 0.989, from the prediction curve and evaluation
indexes, it is obvious that the prediction of MLP is not accurate enough; BP is a classical
artificial neural network model, and its MSE is 7.760, MAPE is 0.022, MAE is 2.483, and R2
is 0.980, which can be seen that BP’s MSE is better than MLP, but other indexes are not as
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Table 6 Evaluation results of models.

Model MSE MAPE MAE R2 SA

ICS-LSTM 3.326 0.011 1.261 0.996 0.4714
GRU 4218 0.023 1.574 0.994 0.4013
LSTM 14.984 0.017 3.410 0.980 0.3747
CS-LSTM 3.705 0.012 1.391 0.995 0.4469
ZOA-LSTM 5.721 0.017 1.791 0.992 0.4526
BP 7.760 0.022 2.483 0.989 0.4532
MLP 8.620 0.016 2.180 0.989 0.3566
BILSTM 8.922 0.013 2.397 0.988 0.3832

good as MLP, which indicates that the overall prediction indexes of BP are slightly better
than those of MLP. Although the overall prediction index of the BP network is slightly
better than that of MLP, the prediction error of the BP network is rather larger in some key
data points. The above results show that there are obvious deviations between MLP and BP
networks in predicting future trends, especially when dealing with inflection points and
drastic fluctuations.

Compared to traditional models like MLP and BP, LSTM excels at capturing time
dependencies and reducing prediction errors, thanks to its gating mechanism and memory
cells. However, its performance depends heavily on hyperparameter selection, with metrics
showing room for improvement: MSE is 14.984, MAPE is 0.017, MAE is 3.410, and R2 is
0.980. In contrast, the error indicators of GRU are 4.218 for MSE, 0.023 for MAPE, 1.574
for MAE, 4.218 for MSE, and 0.994 for R2. It can be seen that the overall prediction
indicators of GRU are better than those of LSTM, but the indicator of MAPE is slightly
higher, which indicates that the selection of hyperparameters also has a certain effect on
the GRU model. However, the combined prediction curves and indicators show that GRU
is better than LSTM in terms of prediction accuracy and stability. BILSTM enhances LSTM
by taking into account both forward and backward information in the input sequence to
better understand the context. The metrics are as follows: the MSE is 8.922, the MAPE is
0.013, the MAE is 2.397, and the R2 is 0.988. It can be seen that BILSTM outperforms the
LSTM, but its overall error MSE is still somewhat high. After applying the swarm
intelligence optimization algorithm to optimize the model parameters, we found that the
optimized model has better generalization and fitting ability. The values of MSE, MAPE,
MAEF, and R2 are 3.705, 0.012, 1.391, and 0.995 for the CS-LSTM. For the ZOA-LSTM, the
values are 5.721, 0.017, 1.791, and 0.995 respectively. From the results, it can be seen that
both algorithms optimize the LSTM model with significant improvement compared to the
baseline LSTM, and the prediction results are more in line with the real curves. Among
them, the results of CS-LSTM are more optimized for ZOA-LSTM, indicating that the
global search capability of the CS algorithm performs better in the optimization search
process.

The MSE, MAPE, and MAE values of the ICS-LSTM model are 3.326, 0.011, and 1.261
respectively. Compared with MLP, BP, LSTM, BiLSTM, GRU, CS-LSTM, and ZOA-LSTM
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Figure 3 (A-H) Comparison between prediction results of each model.
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models, the MSE of the ICS-LSTM model is reduced by 61.4%, 57.1%, 77.8%, 62.7%,
21.1%, 10.2%, and 41.8%, respectively. Additionally, the MAPE is reduced by 31.2%, 50%,
35.2%, 15.3%, 52.1%, 8.3%, and 35.2%, respectively, compared to the other seven models.
And the MAE is reduced by 42.1%, 49.2%, 63.0%, 47.3%, 19.9%, 9.3%, and 29.6%,
respectively. The results for all three indicators indicate that the error between the
predicted and actual values of ICS-LSTM is smaller compared to other models, resulting in
higher prediction accuracy than other models. In the results of the model evaluation
presented in Table 6, the R2 value of ICS-LSTM is the closest to one compared to all other
models, suggesting that the model has a stronger fitting ability. All the experimental results
show that the predictive ability and prediction effectiveness of the ICS-LSTM model are
superior to other methods.

To more rigorously evaluate the performance of the ICS-LSTM model in predicting
future arbitrage trends, we introduced the metric of symbol accuracy (SA). The model’s
effectiveness in forecasting future price trends is determined by calculating the proportion
of predicted values that are symbolically aligned with actual values. Experimental results
indicate that the ICS-LSTM model achieves a symbol accuracy of 47.1%, which is notably
higher than that of the unoptimized LSTM model (37.4%) and exceeds the performance of
other comparative models. This suggests that the ICS-LSTM model effectively captures
both upward and downward market movements. By accurately predicting price trends,
investors can better conduct arbitrage trades and maximize returns. At the same time, the
high symbol accuracy of the ICS-LSTM model can also help investors avoid losses due to
price fluctuations. Therefore, the application of the ICS-LSTM model in the futures
arbitrage market has great potential and value.

Analysis shows that LSTM architectures capture long-term dependencies in time series
data due to their memory units and gating mechanisms. This capability allows LSTM to
perform well when dealing with data exhibiting long-term trends or repetitive patterns.
However, the model’s performance is highly contingent on the selection of
hyperparameters, such as the number of neurons, time steps, and dropout rates. The ICS
method enhances the traditional cuckoo algorithm by introducing a more flexible search
mechanism, thus avoiding local optima in the complex optimization space, which is critical
for improving the prediction accuracy of LSTM models. By leveraging the LSTM’s robust
handling of time-series data and the efficiency of the improved cuckoo algorithm in
hyperparameter optimization, the ICS-LSTM model demonstrates a significant
enhancement in futures arbitrage prediction accuracy.

CONCLUSIONS

This study develops an LSTM-based futures spread prediction model, named ICS-LSTM.
The model optimizes the parameters of the LSTM network by integrating the cuckoo
algorithm, which enhances the generalization ability and prediction effect of the model.
Rebar and HRC 1-min K-line spread data from the Shanghai Futures Exchange are used
for training and testing. Comparative experiments with LSTM and other methods verify
the ICS-LSTM model’s high prediction accuracy for forecasting future spread trends.
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However, there are still some limitations. Firstly, due to the limitation of hardware
equipment, only a single set of future spread data was selected for experiments. Secondly,
the current model only utilizes the LSTM network structure, without exploring integration
with other advanced machine learning or deep learning algorithms like CNN or GNN,
which could potentially improve prediction accuracy and robustness.

To address these limitations, future research can improve in several ways. First, more
futures spread data should be used to comprehensively verify the ICS-LSTM model’s
generality and improve its performance. Second, combining ICS-LSTM with advanced
algorithms like CNN or GNN can be explored to enhance prediction accuracy and
robustness. Additionally, applying the ICS-LSTM model to real-time financial market data
prediction and trading strategy formulation can evaluate its performance in high-
frequency trading and real-time decision-making, optimizing its real-market application.
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