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ABSTRACT
Machine-to-machine (M2M) communication within the Internet of Things (IoT)
faces increasing security and efficiency challenges as networks proliferate. Existing
approaches often struggle with balancing robust security measures and energy effi-
ciency, leading to vulnerabilities and reduced performance in resource-constrained
environments. To address these limitations, we propose SAFE-CAST, a novel secure
AI-federated enumeration for clustering-based automated surveillance and trust
framework. This study addresses critical security and efficiency challenges in M2M
communication within the context of IoT. SAFE-CAST integrates several innovative
components: (1) a federated learning approach using Lloyd’s K-means algorithm
for secure clustering, (2) a quality diversity optimization algorithm (QDOA) for
secure channel selection, (3) a dynamic trust management system utilizing blockchain
technology, and (4) an adaptive multi-agent reinforcement learning for context-aware
transmission scheme (AMARLCAT) to minimize latency and improve scalability.
Theoretical analysis and extensive simulations using network simulator (NS)-3.26
demonstrate the superiority of SAFE-CAST over existing methods. The results show
significant improvements in energy efficiency (21.6% reduction), throughput (14.5%
increase), security strength (15.3% enhancement), latency (33.9% decrease), and
packet loss rate (12.9% reduction) compared to state-of-the-art approaches. This
comprehensive solution addresses the pressing need for robust, efficient, and secure
M2M communication in the evolving landscape of IoT and edge computing.

Subjects Adaptive and Self-Organizing Systems, Agents and Multi-Agent Systems, Computer
Networks and Communications, Internet of Things, Blockchain
Keywords Machine-to-machine communication, Internet of things security, Federated learning,
Blockchain trust management, Quantum-derived optimization, Secure clustering, Multi-agent
reinforcement learning, Hybrid attention mechanism, SAFE-CAST framework, Edge computing
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INTRODUCTION
The contemporary technological infrastructure largely relies on machine-to-machine
(M2M) communication, which allows devices to interact directly with one another
without the need for human supervision. This model of operation is finding its way
into many new applications, from active control and automation to the not-so-novel field
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of passive monitoring systems (Prabhakara Rao & Satyanarayana Murthy, 2023). Yet, with
the increasing ubiquity of M2M, a growing number of security problems has come to light.

The primary security risks inherent in M2M communication include:

• Physical tampering: Unauthorized physical access to M2M devices can lead to data
breaches or device manipulation.
• Unauthorized monitoring: Interception of M2M communications can compromise
sensitive data and privacy.
• Hacking: Malicious actors may exploit vulnerabilities in M2M systems to gain
unauthorized control or access to data.
• Insecure M2M connections: The heterogeneity of systems and technologies deployed in
M2Mdevices contributes to substantial vulnerabilities, complicating the implementation
of effective defensive measures (Bilami & Lorenz, 2022).
• Large-scale sensitive data leakage: The vast amount of data transmitted in M2M
networks increases the risk of large-scale data breaches (Moussa et al., 2022; Luo et al.,
2023).
• Inadequate surveillance: Lack of effective monitoring systems makes it challenging to
detect and respond to security threats in real-time.
• Compromised Quality of Service (QoS): Security vulnerabilities can lead to disruptions
in service, affecting the reliability and performance of M2M systems.

The security landscape is further complicated by the absence of unified communication
standards and the proliferation of vulnerable devices across the expanding Internet
ecosystem. This fragmentation of protocols and the surge of poorly protected endpoints
amplify existing security risks, creating a more complex and challenging environment to
safeguard M2M communications. As a result, the proliferation of M2M systems could
potentially introduce a significant number of vulnerable points in the wider network
ecosystem (Dehalwar et al., 2022; Zukarnain, Muneer & Ab Aziz, 2022; Santhanakrishnan
et al., 2022).

To address these challenges, researchers have introduced various strategies aimed at
improving the security of M2M communication. For instance, Panda, Mondal & Kumar
(2022) proposed a secure and lightweight authentication protocol (SLAP) for M2M
communication in Industry 4.0, focusing on ensuring robust security measures with
minimal computational overhead. Djehaiche et al. (2023) discussed adaptive control of
Internet of Things (IoT)/M2M devices in smart buildings using heterogeneous wireless
networks, highlighting the need for secure and efficient communication protocols.
Similarly, Ghasri & Hemmatyar (2022) introduced a dynamic optimal M2M radio
frequency (RF) interface setting for IoT applications with the aim of improving the
security and reliability of M2M communications.

Other notable contributions include the work of Shahzad et al. (2022), who
developed a single-factor lightweight authentication protocol (SF-LAP) for secure M2M
communication in industrial IoT (IIoT), highlighting the importance of low power and
efficient security solutions. Kaushal et al. (2022) proposed a secure IoT framework for
medical applications, addressing the critical need for secure data transmission in healthcare
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settings. Bilami & Lorenz (2022) presented a lightweight blockchain-based scheme to secure
wireless M2M area networks, focusing on data integrity and secure storage (Choudhary &
Pahuja, 2023; Nyangaresi, Rodrigues & Abeka, 2023).

Despite these advancements, existing solutions remain susceptible to various issues.
The heterogeneity in M2M communication, coupled with the lack of effective machine
clustering and the selection of appropriate cluster heads (CHs), leads to increased power
consumption. Furthermore, only a few existing approaches incorporate security measures
during data transmission, resulting in increased risks of data privacy breaches. The
deficiency in effective surveillance and maintenance further compromises the security
of M2M communications.

The overall goal of this research is to significantly reduce power consumption,
minimize data leaks in edge-assisted M2M communication, and enhance overall system
security. To achieve this, we propose a novel approach: federated secure clustering-based
communication enhanced with trust enumeration, surveillance, and maintenance for
enhanced security analysis. This method is designed to boost security, thereby minimizing
packet loss and power consumption.

Our approach addresses the following key challenges:

• Amplification of data privacy: Through secure clustering and dual cluster head
selection.
• Minimization of sensitive data leakage: By implementing secure channel selection and
strategic channel divisions.
• SecuringM2M communication: Using enhanced blockchain technology for improved
scalability and privacy in data transmission.
• Enumeration of machine trust: Estimating trust based on significant parameters to
establish a secure communication environment.
• Enhancement of surveillance andmaintenance: Efficiently detecting communication
threats and anomalies and accurately predicting link states to reduce packet loss.

This research includes both theoretical analysis and experimental demonstrations to
evaluate efficiency and security. The theoretical analysis provides insight into the expected
performance and security enhancements of the proposed method, while experimental
demonstrations validate these theoretical predictions under practical conditions, ensuring
a comprehensive solution to the inherent vulnerabilities of M2M communication systems.

The primary reason for the development of the secure AI-federated enumeration for
clustering-based automated surveillance and trust (SAFE-CAST) framework was the need
to provide more secure and efficient M2M communication systems. Without these two
requirements being met concurrently, one can have an insecure system or an inefficient
system. Existing solutions often prioritize one aspect at the expense of the other, leaving
systems either vulnerable to security breaches or suffering from under-valued performance.
SAFE-CAST aims to close this gap by providing a comprehensive framework that ensures
hardened securitymeasureswithout compromising on systemefficiency, thereby addressing
the fundamental challenge of balancing protection and performance in M2M networks.
Many current methods concentrate on single security or effectiveness matters while
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ignoring holistic threats or only working intermittently as needed by an organization. A
fully integrated framework of SAFE-CAST, coherent to channel selection, among others,
is made up of federated learning, quality-diversified optimization, blockchain-based trust
management, and adaptive reinforcement learning, among others. Efficient energy usage
and improved network performance will be achieved, which will also ensure that all levels
of M2M communication are secure in this context.

The rest of the paper is structured as follows: ‘Literature Survey’ presents a literature
survey on existing M2M security solutions, highlighting current approaches and their
limitations. ‘Problem Statement And Existing Challenges’ outlines the problem statement
and existing challenges in M2M communication security. ‘Proposed Method’ details our
proposed methodology, SAFE-CAST, including its key components: federated clustering,
secure channel selection, trust evaluation, and surveillance mechanisms. ‘Analysis of Key
Algorithms in SAFE-CAST’ provides a theoretical analysis of the SAFE-CAST efficiency
and security aspects. ‘Experimental Results’ presents our experimental results, including
simulation setup, comparative analysis, and research findings. Finally, ‘Conclusion and
Future Work’ concludes the paper, summarizing key contributions and suggesting future
research directions.

LITERATURE SURVEY
This section critically reviews the shortcomings of previous research. One study (Railkar,
Mahalle & Shinde, 2021) proposed a fuzzy-based trust score estimation method for M2M
communication with the aim of creating a scalable trust management (STM) paradigm.
Although STM offers a structured approach, its effectiveness is limited when trust
assessment is based on a narrow set of parameters, potentially rendering the estimates
less reliable. Another research (Zhang et al., 2021) introduced an efficient and privacy-
preserving blockchain security solution for online social networks, integrating keyword
search strategies with public-key encryption and blockchain technology. This method
offers an effective keyword search mechanism for data queries, but the lack of the necessary
verification processes can be a drawback in certain scenarios.

In M2M communication, effective key-selection techniques often require extensive
computational resources, leading to increased processing overhead. A different study (Weng
et al., 2019) presented the DeepChain incentive mechanism along with a collaborative
training paradigm, where parties share local gradients for collective deep learning (DL)
training. However, this approach used a standard blockchain, which is known to have
scalability issues in data storage and transactions.

In another paper, researchers (Sanober et al., 2021) proposed an enhanced DL system to
detect fraud in wireless communications. It modified principal component analysis (PCA)
for relevant feature selection but faced challenges with interpretability and increased
complexity. Another research (Fatani et al., 2021) developed a DL-based efficient intrusion
detection system using the Transient Search Optimization (TSO) technique. The approach
involved feature extraction using convolutional neural networks (CNN) and feature
selection modified by TSO, known as TSODE, employing the differential evolution (DE)
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algorithm’s operators. Although effective, the CNN algorithm can generate numerous
extraneous layers during processing, which might result in increased latency. Further
investigations in the literature reveal a diverse array of approaches and challenges in M2M
communication and IoT security.

Another study (Mazhar et al., 2022) suggested an intelligent forensic analysis strategy
for the detection of M2M-based automated attacks on IoT devices. Here, many machine
learning (ML) algorithms and forensic analysis tools were used to construct the M2M
framework to identify the kind of assault. The method makes use of many ML techniques,
including the decision tree (DT) algorithm, which works with a high degree of accuracy
to identify attacks automatically. The DT technique was used in this scenario to identify
attacks. However, overfitting occurs because of the algorithms’ lack of sample dependency.
In a recent research (Xu et al., 2022), a unique bidirectional linked blockchain (BLB)
was enabled for assault defense. Here, the bidirectional references between blocks were
created using the suggested chameleon hash function. At the same time, a novel consensus
process known as the committee member auction (CMA) was created to improve security
and resilience to BLB attacks, thereby achieving great scalability. Bidirectional linked
blockchains have scalability issues, particularly in situations where a lot of devices are
connected. The research carried out in Ejigu & Santhosh (2020) presented an M2M
communication-based autonomous home automation and security system. To operate,
monitor, and manage appliances remotely, the suggested work adapts the merging of
wireless communication, the cloud, and services. All of the users would converse with
each other in this situation. M2M communication is facilitated by the message queueing
telemetry transport (MQTT) messaging protocol. For M2M communication, the MQTT
protocol was used. However, the absence of data encryption raises the risk of hostile
activity. Samy et al. (2021) suggested improving IoT security by using an efficient protocol
for M2M authentication. In the beginning, devices were registered by giving their details.
After that, secret key generation in the key agreement phase was done using the elliptic curve
cryptography (ECC) technique. In addition, the public key cryptography (PKC) process
was used to enhance security. The secret key was produced using the ECC technique,
its encryption size was noticeably larger, and secure establishment was challenging. Al-
Shareeda et al. (2022) proposes to analyze replay attacks that may occur in the SECS/GEM
system. The primary goal of the proposed work is to defend SECS/GEM communications
from replay assaults. Here, the threat that threatens the existing state of the operation-based
control system was revealed. Due to binary encoding, SECS/GEM does not provide any
security features.

Mahdavisharif, Jamali & Fotohi (2021) focused on using long-short-term memory
(LSTM) for attack detection, capitalizing on the algorithm’s ability to maintain both long-
term and short-term temporal information dependencies, but faced challenges due to the
extensive training time required by LSTM, leading to increased latency. The study byWazid,
Das & Shetty (2022) proposed a trust aggregation certificate-based authentication method
(TACAS-IoT) for secure communication in an edge-enabled IoT context, with the aim to
safeguard the environment and detect various assaults, yet the approach did not sufficiently
address device vulnerabilities, increasing the risk of malicious activities. In Ahmed et al.
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(2023), a lightweight authentication protocol-based authentication-chains protocol was
suggested within a distributed decentralized blockchain ledger in an authorized IoT
ecosystem, establishing cluster nodes and generating an authentication blockchain for
each cluster, although its lightweight nature made it more susceptible to cryptographic
attacks. The purpose of Modiri, Mohajeri & Salmasizadeh (2022) was to enhance M2M
communication security through a group-based secure, lightweight authentication and
key agreement (GSL-AKA) protocol, using automated validation of applications and
protocols (AVISPA) to identify different types of attacks, but it could suffer from long
delays and substantial communication and computational overhead. Lastly, Jin et al.
(2023) proposed developing a historical data-entrenched multi-factor authenticated and
confidential channel (HMACCE), validated using the secret key managed by IIoT and
storing historical data and tags in server relationships, but despite improved security, the
approach still faced significant breaches due to a lack of thorough vulnerability analysis.

In a following study (Umran et al., 2023), an architecture-based private blockchain
network/smart contract and interplanetary system were presented, focusing on security,
scalability, speed, decentralization, privacy preservation, and reliability. The approach
enhanced blockchain functionality using theMerkle tree’s incremental aggregator subsector
commitment and consensus algorithms as multi-chain evidence for rapid authentication.
However, the complexity of maintaining and implementing these consensus techniques
poses significant challenges for organizations when integrating them into their existing
authentication systems. Li et al. (2023) proposed an editable blockchain-based IIoT device
authentication method suitable for large-scale scenarios, addressing the issue of low
energy consumption in devices. A lightweight identity authentication protocol, BLMA,
was developed to tackle authentication challenges between industrial devices. The system
relies on validate-practical Byzantine fault tolerance (vPBFT), which depends heavily on
message forwarding between nodes for consensus. As the number of nodes increases,
so does the communication cost, affecting the system’s speed and scalability. The goal
of the study by Sasikumar et al. (2023) was to enhance the security and efficiency of IoT
systems by introducing a novel approach to decentralized resource allocation in edge
computing environments, with the caveat that private information stored on IoT devices
is vulnerable to hacking. In Gupta et al. (2023), a lightweight authentication mechanism
was implemented for multiple enhanced machine-type communication (eMTC) devices
in the 5G ecosystem using a group-leader approach. Although offering increased security,
stronger authentication techniques surpass the security level of this lightweight approach.
Table 1 outlines the research gaps identified in the literature survey.

The following paper, Alsultan, Oztoprak & Hassanpour (2016) discusses advancements
in wireless sensor networks (WSNs), focusing on energy-efficient and scalable routing
protocols. It introduces the multi-hop, far-zone, and load-balancing hierarchical-based
routing algorithm (MFLHA) to address the limitations of traditional routing algorithms,
such as inefficient energy consumption and reduced network lifetimes. MFLHA improves
network performance by prioritizing higher-energy nodes as CHs, creating a far-zone
for energy-efficient sensor communication, and implementing a multi-hop inter-cluster
routing algorithm to reduce energy consumption by CHs, ultimately enhancing the
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Table 1 Research gap in literature survey.

Reference Objectives Methods or algorithms used Limitations

Railkar, Mahalle &
Shinde (2021)

To develop the M2M communi-
cation paradigm of scalable trust
management (STM)

Fuzzy approach A limited set of security
parameters.

Zhang et al. (2021) To provide a blockchain security
solution for online social
networks that is both effective and
private-preserving

Efficient keyword search algo-
rithm

Increases processing overhead.

Weng et al. (2019) To build a DeepChain prototype and
test it in various scenarios on an ac-
tual dataset

Deep chain mechanism Scalability issues.

Sanober et al. (2021) To propose a DL system with en-
hanced security for detecting wireless
communication fraud

Random Forest, Support Vec-
tor Machine (SVM), K-Nearest
Neighbor, Logistic regression
(LR), DT

Increase in complexity.

Fatani et al. (2021) To introduce an effective AI-based
method for IoT systems’ intrusion
detection systems (IDS)

Convolutional neural networks
(CNNs), Transient Search Opti-
mization (TSO) algorithm

Increased latency.

Mazhar et al. (2022) To put forth a method for M2M-
based automatic threat detection in
IoT devices using intelligent forensic
analysis

DT, RF, Naïve Bayes (NB) Overfitting problems.

Xu et al. (2022) To implement a special bi-
directional linked blockchain
(BLB) for attack defense

Committee members auction
(CMA) consensus algorithm

Scalability issues.

Ejigu & Santhosh
(2020)

To provide voice-assisted, IoT-based,
cross-platform, simple, easy, versa-
tile, multi-way, comprehensive, user-
friendly, and self-governing methods
for monitoring and managing house-
hold appliances and security systems

Message Queuing Telemetry
Transport (MQTT)

Increases the possibility of
hostile activity.

Samy et al. (2021) To enhance IoT security by using
a successful M2M authentication
mechanism

Optimized protocol The encryption size was larger,
and secure setup was difficult.

Al-Shareeda et al.
(2022)

To prevent replay attacks on SEC-
S/GEM communications

Binary-encoded communica-
tions

Does not provide any security
measures.

Mahdavisharif, Jamali
& Fotohi (2021)

To identify attacks using long short-
term memory (LSTM), where the al-
gorithm can maintain both short-
and long-term temporal relation-
ships of data

Big Data-Deep Learning IDS
(BDL-IDS)

Increased latency.

Wazid, Das & Shetty
(2022)

To enable secure communication
in an IoT setting by using a trust
aggregation-certificate-based authen-
tication method

TACAS-IoT Raised the risk of malicious
behavior.

Ahmed et al. (2023) To reduce resource usage and main-
tain a decentralized authentication
procedure in the IoT

Consensus algorithm More vulnerable to
cryptographic assaults.

(continued on next page)
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Table 1 (continued)

Reference Objectives Methods or algorithms used Limitations

Modiri, Mohajeri &
Salmasizadeh (2022)

To enhance the security of commu-
nication between M2M devices

GSL-AKA Delay and computation
overhead.

Jin et al. (2023) To construct multi-factor ACES
protocols using the random oracle
model’s historical data

HMACCE One major cause of security
breaches is inadequate
vulnerability assessments.

Umran et al. (2023) To provide an interplanetary sys-
tem of architecture and a private
blockchain network that is decen-
tralized, quick, scalable, safe, private,
trustworthy, and uses little power

Consensus algorithm Consensus approaches are hard
to maintain and use.

Li et al. (2023) To deliver an editable blockchain-
based IIoT device authentication sys-
tem that can address the issue of low
energy consumption in devices while
meeting the requirements of large-
scale scenarios

vPBFT algorithm, online and of-
fline signature algorithm

An increase in communication
costs affects the system’s overall
speed and scalability.

Sasikumar et al.
(2023)

To present an innovative method for
edge computing scenarios’ decentral-
ized resource allocation, therefore
enhancing the security and effective-
ness of IoT systems

The Secure Hash Algorithm
(SHA)-256

IoT devices that store personal
data are vulnerable to hacking.

Gupta et al. (2023) To implement a low-power authenti-
cation solution for several enhanced
Machine Type Communication
(eMTC) devices into the 5G network

Group-leader technique Limited security.

network’s lifetime and efficiency. Similarly, there are studies trying to minimize energy
usage while maximizing the capacity usage in wireless networks (Kihtir et al., 2022;
Oztoprak, 2018).

One study by researchers investigates the protocol independent switch architecture
(PISA), focusing on its application in enhancing distributed denial-of-service (DDOS)
attack detection and empowering operators to develop network code (Butun, Tuncel
& Oztoprak, 2021) independently. In another study (Oztoprak, Tuncel & Butun, 2023),
researchers discuss the shift towards the edge-cloud continuum, particularly emphasizing
the role of DevOps in network evolution and the integration of advanced technologies
like AI/ML and edge computing. In addition, researchers also explore PISA’s application
in security traffic inspection, highlighting its role in efficient network management and
the development of comprehensive security systems (Oztoprak & Tuncel, 2023). Together,
these studies underscore the ongoing evolution and challenges in telecommunications,
offering insights into future network technology and security directions.

PROBLEM STATEMENT AND EXISTING CHALLENGES
Problem statement
An ongoing key problem is to improve maintenance and surveillance-based secure online
M2M communication. A few of the specific problems highlighted in the latest research are
as follows:
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Lokhande & Patil (2021) developed secure and energy-efficient M2M communication
to enhance the energy efficiency of medical sensor nodes in telerobotic systems. An energy-
efficient routing technique called event-driven duty cycling (EDDC) was suggested. To
determine whether a node was an attacker or a regular node, an estimation of the periodic
trust score for each node was made using three metrics. To achieve this goal, the degree of
node (DN), energy available (EA), and successful packet delivery ratio (SPD) are assessed.
In an other original study (Shahzad et al., 2022), communication security was guaranteed
by establishing a secure authentication system. To facilitate secure M2M communication,
the SF-LAP was enabled. A suggested protocol for analyzing the transmission between the
sensor and controller modified the exclusive-OR operation and hashing function. Some of
the problems detected in these papers are:

• The trust score was assessed for each computer inside the network to improve security. If
the machines are not clustered, maintenance will be inefficient, and power consumption
will be excessive.
• Although considering trust scores in terms of SPD, EA, andDNallowed for the successful
identification of the attacker in the study, the accuracy of anomaly detection was harmed
by depending only on trust score consideration.
• In addition, the study used trust estimation-based attack detection for energy-efficient
communication. However, sensitive data leakage and data privacy are impacted by data
transfer without any privacy concerns.
• The single-factor lightweight authentication protocol was used in this study to protect
M2M connection, yet the attacker was able to tamper with data since there was no secure
route for data transmission.
• This case included protecting the connection to avoid eavesdropping and
desynchronization assaults, but the security of M2M communication is still impacted by
the lack of thought given to potential attack scenarios.
• Moreover, AVISPA was implemented for informal and broad verification to guarantee
security. The absence of monitoring and link state prediction leads to increased security
failures and packet loss.

Existing challenges in M2M communication security
The ES-SECS/GEM technique was introduced (Laghari et al., 2023) to bolster security
in M2M communication within industrial networks. This model encompasses three
critical stages: attack prevention, message integrity, and authentication. The hash-based
message authentication code (HMAC) was employed to safeguard data transfers between
machines. Another study (Bilami & Lorenz, 2022) presented a private blockchain-based
lightweight scheme for authenticating M2M interactions, utilizing blockchain technology
to enhance data security and ensure availability and traceability. The identification process
was structured into three modules to solidify communication security: pre-registration,
registration, and authentication. However, researchers encountered several challenges:
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• To ensure security, the study used authentication code blocks for machine
authentication. High-power consumption is an issue when clustering mechanisms
are not employed.
• To safeguard data transit between computers and enhance privacy, a hash-basedmessage
authentication code was utilized. Nevertheless, data privacy and quality of service are
compromised when data is not encrypted prior to transmission.
• The study carried out attack detection and prevention by validating the message’s
authenticity. However, in scenarios where intelligence is lacking, this approach adversely
affects the quality of service and leads to ineffective detection of attacks.
• Despite the implementation of attack detection and prevention techniques to improve
M2M communication security, there was a lack of ongoingmaintenance andmonitoring
to support acceptable QoS.

These issues underscore the necessity for more robust and intelligent systems in M2M
communication to enhance security, efficiency, and reliability.

• To improve security, the pre-shared key was exchanged over a secure channel, although
the difficulty of making the whole conversation via a random channel increased
significantly.
• Because there is a shortage of sensitive data, the standard blockchain has non-scalability
problems. In this case, the lightweight blockchain was modified for safe data handling
and transmission.
• The SHA-3 algorithm, which uses 256 bits for secret key creation and transmission in
the study, is vulnerable to collision attacks and requires a long time for key generation,
increasing latency and reducing security.

Gong, Feng & Albettar (2022) presented the PUF-based efficient authentication
and session establishment (PEASE) protocol, an effective authentication and session
establishment method based on physical unclonable functions (PUFs). Two message
interactionmechanisms are included in the proposed protocol to provide strong availability
and security. In this case, the primary goal of the suggested work was to improve security
and availability concerns about edge machine connectivity in M2M communication. Some
of the major problems in the study are:

• Whereas the fuzzy extractor finds it tough to handle feature space and entropy estimates,
leading to complexity, it was used by the supervisor to ensure the machine’s legitimacy.
• Although a secret key and master key were supplied here for safe communication, a
deficiency in data security measures caused a significant amount of sensitive data to leak.
• Although a secure communication protocol was developed in the aforementioned study,
the trustworthiness of each machine was not assessed, and the lack of communication
monitoring restricts the quality of service.

Existing solutions vs. SAFE-CAST
The primary security risks inherent in M2M communication include physical tampering,
unauthorized monitoring, and hacking. These vulnerabilities are exacerbated by the lack
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of communication trends, leading to a scenario where the proliferation of M2M systems
could result in a significant number of unsecured devices within the Internet framework
(Prabhakara Rao & Satyanarayana Murthy, 2023). Furthermore, the heterogeneity of
the systems and technologies deployed in M2M devices contributes to substantial
vulnerabilities, complicating the implementation of effective defensive measures against
various attacks. Consequently, surveillance in M2M communication has emerged as
a critical component in bolstering security. To address these challenges, previous
researchers have introduced a range of strategies aimed at improving the security of
M2M communication. A notable concern is the security of M2M devices, which are
typically designed to operate autonomously, thus lagging behind human oversight and
being inherently more vulnerable (Bilami & Lorenz, 2022). Various methodologies have
been explored, including efficient authentication protocols, message integrity validation,
attack detection, and preventionmechanisms. These approaches focus on the establishment
of robust authentication protocols to verify the legitimacy of devices, often involving the
transmission of secret keys through secure channels. The primary objective of these
protocols is to ensure confidentiality and safety in communication (Moussa et al., 2022;
Luo et al., 2023).

Moreover, the integrity of messages is scrutinized to assess security, employing
techniques like authentication codes and pre-shared key-based integrity checks. Rapid
and efficient identity authentication is facilitated by aligning pre-shared keys with identity
data during key management (Dehalwar et al., 2022; Zukarnain, Muneer & Ab Aziz, 2022;
Santhanakrishnan et al., 2022). Further studies have focused on identifying attackers
by evaluating the trustworthiness of individual machines or devices, with mechanisms
implemented to identify and prevent authenticity-compromising attacks. Ensuring reliable
and secure communication, especially in dynamic and decentralized environments, is
crucial to prevent data breaches and mitigate the risk posed by malicious threats that
could disrupt standard operations and impact a wide range of technologies (Choudhary &
Pahuja, 2023; Nyangaresi, Rodrigues & Abeka, 2023).

Despite these advancements, existing solutions remain susceptible to various issues. For
example, heterogeneity inM2M communication, coupled with the lack of effectivemachine
clustering and the selection of appropriate CHs, leads to increased power consumption.
Furthermore, only a few existing approaches incorporate security measures during data
transmission, resulting in increased risks of data privacy breaches. The deficiency in effective
surveillance and maintenance further compromises the security of M2M communications.

To overcome these challenges, we propose a novel approach: secure federated clustering-
based communication augmented with trust enumeration, surveillance, and maintenance
for enhanced security analysis. This method is designed to boost security, thus minimizing
packet loss and power consumption, presenting a comprehensive solution to the inherent
vulnerabilities of M2M communication systems.

In Table 2, we summarized the differences between SAFE-CAST and other major
frameworks discussed in the paper by Kazmi et al. (2023).
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Table 2 Comparison of SAFE-CAST and emerging 6G security frameworks.

Aspect SAFE-CAST Quantum-safe
cryptography

AI-driven security Blockchain-based security

Threat model Focuses on M2M commu-
nication in IoT, addressing
unauthorized access, data
breaches, and CIA (Confi-
dentiality, Integrity, Avail-
ability).

Addresses potential
future threats from
quantum computing
that could break current
cryptographic systems,
focusing on quantum-
resistant algorithms.

Targets dynamic and adap-
tive threat detection, focus-
ing on advanced persistent
threats (APTs) and real-
time attack mitigation in
6G networks.

Provides decentralized
trust, focusing on eliminat-
ing single points of failure
and securing data integrity
and access control across
distributed networks.

Countermeasures Utilizes advanced encryp-
tion techniques, potentially
blockchain for secure data
transmission. Includes ho-
momorphic encryption for
privacy-preserving compu-
tation, enabling secure data
processing without decryp-
tion.

Quantum-resistant algo-
rithms, such as lattice-
based, hash-based, and
code-based cryptogra-
phy, designed to withstand
quantum attacks.

AI/ML algorithms for in-
trusion detection, anomaly
detection, and automated
response mechanisms.

Decentralized ledger sys-
tems, smart contracts, and
secure data aggregation
techniques to enhance trust
and transparency.

Authentication
techniques

Likely employs traditional
mutual authentication,
lightweight cryptographic
methods suitable for IoT.

Focuses on secure key
exchange and signature
schemes that remain secure
against quantum attacks.

AI-enhanced biometric
authentication, behavior-
based authentication, and
continuous monitoring of
authentication events.

Blockchain-based authenti-
cation using decentralized
identity management and
token-based systems for se-
cure access control.

Scalability Designed to be scalable
for IoT networks, possibly
leveraging edge computing
or decentralized architec-
tures.

Scalability is a challenge,
with ongoing research into
efficient implementation
and integration with exist-
ing infrastructure.

Highly scalable, capable of
handling large volumes of
data and adaptive to real-
time network changes.

Highly scalable due to de-
centralized nature; how-
ever, consensus mecha-
nisms can impact perfor-
mance in large-scale de-
ployments.

Innovation Focuses on secure com-
munication protocols in
current IoT networks, po-
tentially incorporating
blockchain and AI. Uses
homomorphic encryption
to ensure privacy while al-
lowing computations on
encrypted data, a cutting-
edge approach in privacy-
preserving technology.

Pioneering the develop-
ment of cryptographic
techniques that are resilient
against future quantum
threats.

Innovates through the inte-
gration of AI with security,
enabling proactive threat
detection and mitigation.

Innovates by decentralizing
trust and enhancing trans-
parency, with smart con-
tracts automating security
policies.

Implementation Targeted for real-time,
resource-constrained IoT
environments, ensuring
secure and efficient M2M
communication. Privacy-
preserving computations
using homomorphic en-
cryption are implemented
to secure data even during
processing.

Implementation is still in
research phase, with grad-
ual adoption expected as
quantum computing be-
comes a tangible threat.

AI-driven security solu-
tions are being imple-
mented in pilot projects,
with a focus on adaptive se-
curity in real-time.

Already seeing adoption in
various sectors, particularly
in supply chain manage-
ment, finance, and identity
verification.

(continued on next page)
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Table 2 (continued)

Aspect SAFE-CAST Quantum-safe
cryptography

AI-driven security Blockchain-based security

Research directions Focuses on immediate ap-
plication and enhance-
ment of current security
protocols in IoT, includ-
ing the exploration of ho-
momorphic encryption for
broader use cases in secure,
privacy-preserving compu-
tations.

Extensive research into
quantum-resistant algo-
rithms and integration with
current systems without
significant performance
loss.

Research is focused on en-
hancing AI’s accuracy in
threat detection, reducing
false positives, and inte-
grating AI with other secu-
rity mechanisms.

Research is aimed at im-
proving scalability, reduc-
ing energy consumption,
and integrating blockchain
with AI and IoT for com-
prehensive security solu-
tions.

Flexibility Adaptable to current IoT
network conditions, with
potential edge computing
integration. The use of ho-
momorphic encryption
adds flexibility in handling
sensitive data securely.

Less flexible due to the
computational complex-
ity of quantum-safe algo-
rithms, but essential for
future-proof security.

Extremely flexible, with
the ability to adapt to new
threats and network condi-
tions dynamically.

Offers flexibility in secure,
decentralized data manage-
ment, but may face chal-
lenges in integration with
legacy systems.

Research contributions
This study makes several key contributions. First, it develops SAFE-CAST, a framework
that integrates various components of AI to create a more secure and efficient M2M
communication environment. The second contribution is an implementation of a federated
learning approachwithin the SAFE-CAST framework. This allows us to harness the learning
potential of many ‘‘agents’’ -in this case, the many devices that make up an artificial IOT
(AIoT)—without compromising their individual data privacy and security.

The QDOA for selecting channels in a secure and efficient way in M2M networks is
another original contribution of this study. The creation of a trust management system
among M2M devices is critical to the security of the network. Trust management is
a problem that has been solved in many ways; this solution leverages the power and
transparency of blockchain technology.

The innovative scheme that we named AMARLCAT minimizes latency and improves
scalability in M2M communication. It is a new way of working that optimizes the adaptive
multi-agent reinforcement learning algorithm and allows us in this lab to harness the
power of the many communication events that occur within our communication system.
The comprehensive performance evaluation that has been done has shown us how well this
schemeworks compared to existingmethods. It certainly appears to be a great improvement
over those methods, as it has shown significant improvements over what was there before
in several key areas.

Dealing with the all-important necessity for strong, effective, and safe M2M
communication systems in the ever-changing world of the Internet of Things and edge
computing is the real-world consequences resulting from the output of this study.

PROPOSED METHOD
In this research, we have mainly focused on enhancing privacy and security in online
communication through surveillance M2M communication. In addition to that, the

Tuncel and Öztoprak (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2551 13/48

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2551


intention of the proposed work is to evade resource constraints, latency, insecure
communication, and packets. Here, we have utilized 6G communication to improve
the speed and reliability of data communication, and enhanced blockchain is employed
for secure data transmission and storage. This work embraces several entities, such as
machines, edge servers, cloud servers, and invigilator agents (IA). Figure 1 describes the
proposed architecture. The proposed work consists of four sequential processes,
• Federated clustering
• Unassailable channel selection & channel division
• Trust evaluation & secure communication
• Surveillance & maintenance

Federated clustering
Process of federated clustering
Federated clustering involves the following key steps:
1. Local clustering: Each machine, or node, in the network performs local clustering

based on its observed data and interactions. This step involves grouping neighboring
nodes that frequently communicate and exhibit similar trust values and behaviors.
Local clustering algorithms, such as K-means or DBSCAN, can be employed for this
purpose.

2. Cluster head selection: Within each local cluster, a CH is selected. The CH is
responsible for aggregating data from its cluster members and communicating
with other CHs. The selection of CHs can be based on criteria such as trust values,
computational capabilities, and energy levels to ensure that the most suitable nodes
take on this role.

3. Federated aggregation: CHs participate in a federated learning process, where they
aggregate the data and models from their respective clusters. This step involves sharing
and updating a global model without transferring raw data, thereby preserving data
privacy and reducing communication overhead.

4. Global model update: The aggregated models from CHs are used to update a global
model, which is then distributed back to the CHs. This global model helps maintain
consistency and improve the overall performance of the network.

5. Iterative refinement: The process is iterative, with multiple rounds of local clustering,
aggregation, and global model updates. Each iteration refines the clusters and improves
the accuracy and efficiency of the overall system.

Benefits of federated clustering
Federated clustering offers several benefits for M2M communication networks:

• Enhanced security:Bydecentralizing the clustering process, federated clustering reduces
the risk of single points of failure andmakes it more difficult for attackers to compromise
the entire network.
• Data privacy: Since raw data is not transferred during the federated learning process,
federated clustering preserves data privacy and complies with data protection regulations.
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• Scalability: Federated clustering is inherently scalable, as it distributes the computational
load across multiple nodes and reduces the need for centralized coordination.
• Efficiency: By leveraging local computations and reducing the volume of data
exchanged between nodes, federated clustering improves the efficiency and reduces
the communication overhead of the network.

Implementation of federated clustering
The implementation of federated clustering in the proposed framework involves several
key components:

• Local clustering algorithms: The framework utilizes local clustering algorithms, such
as K-means or density-based spatial clustering of applications with noise (DBSCAN), to
group nodes based on their interactions and trust values.
• Cluster head selection mechanism: A selection mechanism is employed to identify the
most suitable nodes to serve as CHs. This mechanism considers factors such as trust
values, computational capabilities, and energy levels.
• Federated learning framework: A federated learning framework is used to aggregate
and update models from CHs. This framework ensures that data privacy is preserved
and that the global model is continuously improved.
• Communication protocols: Efficient communication protocols are implemented to
facilitate the exchange of models and updates between CHs and the central aggregator.
These protocols minimize communication overhead and ensure timely updates.
• Security measures: The framework incorporates security measures, such as encryption
and authentication, to protect the integrity and confidentiality of the data exchanged
during the federated learning process.

Initially, wireless M2M machines are capable of communicating with each other and
continuously seeking services in a real-time environment. In this setup, the machines
are clustered by adopting federated learning (FL) to improve data privacy and machine
secrecy. For clustering, a local model is generated based on individual machine factors
such as distance, energy, density, degree, and stability. This local model is then encoded
using Lagrange encoding, and the coded data is privately shared with the edge server
using theoretical information. After manipulating the algebraic structure of the coding, FL
implements Lloyd’s K-means algorithm on the coded data to acquire clustering results.
Once the machines are clustered, the cluster head is selected.

We have intensified throughput and energy efficiency, thus minimizing overhead and
premature CH death, by implementing dual CH selection. CH selection is based on
multiple parameters such as distance, energy, capacity, feedback, density, packet delivery
ratio (PDR), and trust. The machines in each cluster are ranked on the basis of these
parameters. The machine ranked first is selected as the CH, and the machine ranked
second becomes the sub-CH. As a result, intra-communication is performed by the sub-
CH, where M2M communication inside the cluster is executed by the sub-CH. Similarly,
inter-communication is accomplished by the CH, involving CH-to-CH communication
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and CH-to-edge server communication. This approach improves the throughput and
energy efficiency of M2M communication.

Lloyd’s K-means algorithm
Lloyd’s K-means algorithm, a widely used local search technique for clustering, has been
a staple in many ML studies due to its effectiveness and simplicity. The algorithm starts
by selecting k random centers from the dataset, where k represents the number of clusters
to be formed. These initial centers are chosen randomly from all samples, and then the
samples are assigned to one of these k clusters based on their proximity to these centers.

Lloyd presented a local search technique for clustering K-means. Since it is one of
the most widely used algorithms, most ML studies employ it as their primary clustering
method. Beginning with k randomly chosen centers, Lloyd’s approach selects k samples at
random from all of the samples and allocates them to k clusters or data sets at random.
Relocate the centers to the centroid of the newly created clusters after allocating each
sample to the closest center. Assign and recompute the center until convergence is achieved
by repeating these two procedures. The Algorithm 1 has described the complete process.

Algorithm 1: Lloyd’s K-means Algorithm
Input: data matrix Z ∈Sa×m, cluster number k
Output: Clustered data points
/* Initialization */

1 Randomly choose k centers;
2 while no convergence do

/* Step 1 */

3 According to Equation 2, update the indication matrix Y ;
4 Allocate each point to the nearest center;

/* Step 2 */

5 Assign the k centers to the new clusters’ centroid;
6 Update matrix X in Equation 2;

K-means algorithm
Given a data matrix Z ∈ Sa×m that consists of m samples z1,z2,. . . .. zn. The goal of the
K-means clustering problem is to find a partition π = {π1,π2 ......πk} such that the total
square distance between each point and its nearest center is as little as possible. We can
formulate the problem as:

X−
k∑

i=1

∑
zi∈πi

||zi−xi||22 (1)

where xi denotes the centroid of the cluster πi. Considering the definitions of indicator
matrix Y and squared Fronten is norm. Afterwards, the K-means clustering issue may be
expressed as

minY εInd,X ||z−XY S
||
2
Y (2)
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where X = [x1,x2,.....xk] ∈ Sa×m is the center of the k-clusters, Y is the indicator matrix,
and Y ∈ Sm×k .

Unassailable channel selection & channel division
After successful clustering, we have selected the secure and optimal channel for performing
secure communication. For that purpose, we have implemented a QDOA that designates
the secure and optimal channel based on channel occupancy, signal-to-noise ratio (SNR),
angle, capacity, channel state information (CSI), bit rate, and feedback. Here, to reduce
latency, the CH and edge server select the secure channel collaboratively. Furthermore,
the secure channels are split by executing channel division. The entire secure channels are
fragmented into three divisions such as, C1,C2, and C3;

• (C1): channel utilized during cluster formation stage for broadcasting.
• (C2): channel used for intra-communication.
• (C3): channel adapted for intercommunication.

By dividing the channel into multiple fragments, the overhead and latency is minimized,
and the misbehavior of the machine can be identified easily, thus enhancing data privacy
and security.

Quality diversity optimization algorithm
Quality-diversity (QD) optimization algorithms tackle a unique set of problems in the
realm of optimization. Contrary to traditional methods that aim for the optimum of a
cost function, QD algorithms provide a spectrum of effective solutions differentiated by a
few user-defined characteristics. These characteristics are chosen based on their relevance
and significance to the user, who might be influenced by factors like design simplicity
or manufacturing feasibility. Users can then select the most appealing solutions from
this diverse pool, guided by their own expertise and the insights gained from the variety
of solutions. This approach is especially useful in understanding the interplay between
different solution attributes and their impact on performance. QD algorithms thus offer
a broader perspective, enabling users to explore a wide range of effective solutions rather
than focusing on a single optimal point.

eθ ,aθ← e(θ). (3)

This equation represents the core concept of QD optimization, where eθ and aθ signify
the evaluation and attributes of the solutions based on the parameters θ . The function
e(θ) encapsulates the evaluation or generation of solutions, reflecting the diversity-centric
approach of QD algorithms.

It is assumed that the objective function yields a behavioral descriptor (or feature vector)
aθ in addition to the fitness value eθ . While the fitness value eθ measures the solution’s
effectiveness, the behavioral descriptor (BD) typically explains how the solution addresses
the issue.

Looking ahead, the objective function is expected to bemaximizedwhile alsomaintaining
generality. The aim of QD optimization is to identify the parameters θ that yield the highest
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fitness value for each point a in the feature space A. This can be defined as:

∀a∈A θ∗= argmaxθ eθ (4)

where a= aθ . The equation represents the goal of QD optimization to find the optimal
parameters θ that maximize the fitness value eθ for each distinct behavioral descriptor
a within the feature space A. This approach enables a comprehensive exploration of the
solution space, taking into account both the effectiveness of solutions and the diverse ways
they address the problem.

Upon initial observation, QD algorithms might appear akin to multitask optimization,
as they seem to address an optimization issue for every possible combination of features.
The QD problem is essentially a series of optimizations, each constrained by a specific BD.
This is particularly challenging because, firstly, the feature space A could be continuous,
leading to an infinite number of problems, and secondly, the BD is unknown prior to the
application of the fitness function.

A key aspect of QD algorithms is the collective approach to these numerous
optimization problems, which is often more efficient than conducting separate constrained
optimizations. The sharing of information between optimizations is beneficial, especially
since solutions with similar feature descriptors are likely to perform well.

The effectiveness of a QD algorithm is measured by two primary criteria:
1. The quality of the resultant solution for each type of solution reflects the degree of

optimization achieved.
2. The coverage of the feature space indicates how extensively the behavior space is

explored.
The outcome of QD optimization is a diverse set of solutions. This collection, also

known as a ‘‘collection’’, ‘‘archive’’, or ‘‘map’’, expands, evolves, and improves throughout
the optimization process. Each point in this collection represents a distinct ‘‘species’’ or
‘‘type’’ of solution, offering a varied perspective on potential solutions.

Traditionally, evolutionary algorithms focus predominantly on the fitness value or
quality for decision making, often overlooking the global optimum and the diversity of
solutions. In contrast, QD algorithms consider multiple factors to explore the behavior
space (diversity) more thoroughly. The QD-optimization algorithm, encompassing I
iterations, is detailed in Algorithm 2, showcasing its approach to balancing both quality
and diversity in solutions.

Trust evaluation & secure communication
Once a secure channel is selected and divided, trust evaluation is implemented to ensure
data privacy. This process is carried out by monitoring agents (MA) present in individual
edge servers, which monitor the machine and evaluate its trust. The trust of all machines
is determined by quantifying four parameters, including direct trust (DT), indirect trust
(IDT), recent trust (RT), and data packet delivery. Direct trust is estimated through the
communication and behavior of individual machines, while indirect trust is derived from
the opinions of neighboring nodes with high trust. Recent trust is computed based on
DT and IDT, and the trust of data packet delivery is determined by the ratio of total data
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Algorithm 2: QD-Optimization algorithm (I iterations)

1 C←∅;
2 for iter= 1→ I do
3 if iter== 1 then
4 Rparents← random();
5 Roffspring← random();
6 else
7 Rparents← selection(C,Roffspring);
8 Roffspring← variation(Rparents);

9 foreach θ ∈Roffspring do
10 {eθ ,aθ }← e(θ);
11 if ADD_TO_CONTAINER(θ,C) then
12 UPDATE_SCORES(parent(θ), Reward, C);
13 else
14 UPDATE_SCORES(parent(θ), -penalty, C);

15 UPDATE_CONTAINER(C);

16 return C ;

packets received to those transmitted by the machine, including packets forwarded and
dropped.

The evaluated trust values of individual machines are stored in the blockchain to
enhance security. To further improve M2M communication, multiagent reinforcement
learning (MARL) is exploited, with each agent trained using a deep deterministic policy
gradient (DDPG) network. Additionally, an AMARLCAT is proposed to minimize latency
and nonscalable convergence in data transmission. For enhanced security in M2M
communication, a homomorphic encryption mechanism is employed, encrypting the
data for transmission through the secure channel.

Reinforcement learning
Automation in machines is predominantly based on reinforcement learning (RL), as
illustrated in Fig. 2. In this framework, agents operate within an environment guided by
intelligent rules and a reward system. The agents engage in a balance of exploitation and
exploration, learning about their environment through continuous trial and error in their
actions. This process of exploration and exploitation continues until the agents become
adept at performing the relevant activities, effectively adapting their behavior to maximize
the cumulative reward or achieve specific objectives within the environment.

Multi-agent reinforcement learning
To complete a task faster, MARL uses autonomous, interactive systems operating in a
shared environment. As a result, agents with centralized training carry out dispersed tasks.
Applications for MARL systems are found in many different fields, such as distributed
control, network administration, game creation, and decision support systems.
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Figure 2 Reinforcement learning (RL).
Full-size DOI: 10.7717/peerjcs.2551/fig-2

Deep deterministic policy gradient
The DDPG algorithm tackles the continuous action space reinforcement learning problem.
Its main procedure includes: first, storing the experience data generated as the agent
interacts with the environment in the memory of past experiences. Additionally, the
actor-critic architecture is utilized to obtain and preserve the sampled data, leading to
the determination of the optimal course of action. Figure 3 illustrates the structure of the
DDPG algorithm.

In the DDPG approach, which is based on the deterministic policy gradient, the DL
method is applied to a neural network that replicates theQ and policy functions. TheDDPG
algorithm, underpinned by the actor-critic architecture, maintains the organizational
structure of the deep Q-network (DQN) algorithm. The actor and critic modules in DDPG
can use the online network and target network structures, combining these with the
actor-critic approach in the DQN method.

During training, the agent in state C selects Action A using the current actor-network.
It then calculates the current action’s P value and the expected return value, xj= T +γP

′

,
based on the current critic network. The actor target network selects the best actionA

′

based
on past learning experiences, while the critic target network calculates the P

′

value of the
subsequent action. The online network parameters of the relevant module are frequently
updated to reflect changes to the target network’s parameters.

To update the target network parameters, DDPG employs a ‘‘soft’’ approach, meaning
each change to the network parameters is made with very little magnitude, which enhances
the training process’s stability. The update coefficient is represented by τ , and the ‘‘soft’’
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update method can be written as Eq. (5):

ω
′

= τω+ (1−τ )ω
′

θ
′

= τθ+ (1−τ )θ
′

. (5)

Using the deterministic policy π , DDPG determines the action to be implemented. The
objective function, which approximates the state-action function, is represented using a
value network. This function is defined as the cumulative reward with a discounted factor,
as shown in Eq. (6):

K (θ)=Bθ
[
e1+γ e2+γ 2e3+ ...

]
. (6)
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In this equation, K (θ) represents the objective function with respect to the policy
parameters θ . The term Bθ reflects the baseline function or the expected value under
the policy π . The elements e1,e2,e3,... denote the sequence of rewards obtained from
the environment, and γ is the discount factor, which quantifies the importance of future
rewards compared to immediate ones. This formulation allows DDPG to effectively balance
immediate and long-term rewards, optimizing the policy towardsmore beneficial outcomes
over time.

Equation (7) delineates the updating process for the critic’s online network’s parameters,
focusing onminimizing themean square error of the loss function. This equation is essential
in the training phase, where the goal is to optimize the critic network to accurately predict
the value of state-action pairs:

K (ω)=
1
n

n∑
k=1

(xk−P(∅(Ck),Ak,ω))2. (7)

In this equation, K (ω) represents the loss function with respect to the critic network
parameters ω. The term xk is the target value for the k-th data sample, and P(∅(Ck),Ak,ω)
is the prediction of the critic network for the k-th state-action pair (Ck,Ak). The loss
function computes the average of the squared differences between the target values and
the network’s predictions over n samples. Minimizing this loss function helps calibrate the
critical network to estimate the value function associated with the policy better.

Equation (8) illustrates how the network parameters for the actor online network are
adjusted based on the policy’s loss gradient.

∇k(θ)=
1
n

n∑
k=1

[
∇aP (Ck,ak,ω)∇θπ

]
. (8)

Adaptive multi-agent reinforcement learning for context-aware transmission
The AMARLCAT system, when compared to advanced DDPG-based MARL systems,
demonstrates significant improvements in reducing convergence time and enhancing
converged performance. Additionally, it surpasses traditional MAC methods in
performance. One notable advantage of AMARLCAT is its adaptability, offering various
QoS options. Extensive simulations have been conducted to evaluate different state space
definitions andmetrics, with AMARLCAT showcasing scalability and resilience in all tested
scenarios.

The foundation of most reinforcement learning algorithms is the idea of an iterative
approach. These algorithms use what are known as temporal-difference updates to spread
knowledge about state-action pairings, Q(s,b), or values of states, V (s). The basis for these
updates is the difference between the two temporally distinct estimations of a certain state
or state-action value. It updates state-action values in the environment after each real
transition, (s,b)→ (s′,r), using the following formula:

Q(s,b)←Q(s,b)+δ[r+γQ(s′,b′)−Q(s,b)]
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where the discount factor γ and the rate of learning δ are given. Once an action is completed
and the environment returns a reward r , it moves to a new state s′, and action b is selected
in state s′. This changes the value of acting in state s.

Balancing discovery and utilization is key to developing effective reinforcement learning
agents. It seeks to provide an equilibrium between the exploiting of the agent’s knowledge
and the enriching exploration of the agent’s knowledge. Commonly, an agent will usually
behave greedily, but it will choose an action at random with a chance of ε. This kind of
behavior is known as ε-greedy. Reduce ρ over time to get the most out of both exploration
and exploitation.

There are two main ways that reinforcement learning is used in multi-agent systems:
joint action learners or multiple individual learners. Previously, single-agent reinforcement
learning algorithms were used to deploy numerous agents for each task. In the latter case, an
agent watches the activities of other agents and communicates its actions to the others. This
approach comprises specialized algorithms designed for multi-agent scenarios, considering
the interactions between multiple agents.

The environment seems to be dynamic since the likelihood of transition when taking
action in a state varies over time when multiple individual learners believe any other agents
to be a part of the environment. Joint action learners were created to expand their value
function and take into account each state’s potential combination of actions by elements
to overcome the illusion of a dynamic environment. The number of values that need to be
computed increases exponentially with each new addition to the system due to the joint
action consideration. Therefore, our study focuses on many multiagent learners since we
are interested in scalability and minimum communication latency between agents.

The AMARLCAT system comprises two primary components: setting up a database
and the modification of the transmission overhead m. The first step involves obtaining
the best transmission policy under the current transmission overhead by inputting m and
the state after training. This process leads to the creation of an offline database, where the
transmission overhead m range is determined using empirical values. Each m is trained
to collect and store the relative DDPG network attributes θ . Constructing the database
requires trainingM events for every n value, making it a time-intensive process.

However, the second stage of training offers significant time savings. Initially, a starting
transmission overhead of M0 is defined, and the corresponding network parameters θ are
retrieved from the stage 1 database. The contention process is then simulated to determine
the optimal n. Specifically, after completing single-agent training, all terminals use the
existing model parameters for multi-agent training. During this phase, if a terminal detects
an idle channel, it sends data with a probability determined by its current instantaneous
DDPG output. Following each transmission period, the control unit computes the mean
reward and modifies the communication cost according to success/failure signals. The
transmission overhead is significantly increased following pfail consecutive collisions but
modestly decreased after pidle consecutive idle intervals.

The methodology outlined in Algorithm 3 starts with M terminals, where ρ regulates
the number of terminals per iteration, andMtargets is the number of competing terminals.
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Algorithm 3: AMARLCAT

/* Phase 1: Independent Training for Single Agents */

/* Setup */

1 Agents: Initialize parameters2n(n=1,...,N ) using a normal distribution;
2 Control Unit: Definemmax andmmin as upper and lower transmission fees;
3 Assignmmin= 500,mmax= 10000, Ntarget= ρN ;

4 ptx=min
(√

2δ
TsN 2

target
, 1
Ntarget

)
;

5 for q= 1 toM do
6 for n= 1 to N do
7 Perform training of DDPG respecting agent-n with currentm, updating2n;
8 Record the association betweenm and2n in a database;

9 Incrementm bymi;

/* Phase 2: Collaborative Multi-Agent Training */

/* Setup */

10 Agents: Reset parameters2n(n=1,...,N ) to those from initial training withm0;
11 Control Unit: Set initial transmission fee asm0;
12 for event= 1 to T do
13 for n= 1 to N do
14 if Agent-n detects an idle channel and DDPG suggests transmission then
15 Agent-n transmits with probability ptx in the current time slot;
16 else
17 Agent-n remains silent in the current time slot;

18 Rk =Compute the average utility for all agents;
19 if Sequential transmission failures reach qfail then
20 Increasem bymu;
21 else
22 if Channel sensed idle qidle times consecutively then
23 Decreasem bymd ;
24 else
25 Keepm constant and proceed to the next event;

Surveillance & maintenance
Eventually, communication surveillance and maintenance are implemented to amplify
security, thereby minimizing the packet loss rate. For that purpose, at first, the MA will
continuously monitor the network based on three bases: initiating communication threat,
vulnerability analysis, and link state prediction. The initializations of communication
threats indicate the direct transmission of data from one cluster member (CM) to another
CH or CM. Then, the vulnerability analysis is established by analyzing the traffic features
of data transmission to identify anomalies. Following that, the link state prediction is
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accomplished to minimize the packet loss. Here, the link failure is predicted in the next hop
by the received signal strength, energy, response time, and quality of each machine, which
aids in accurate link breakage identification. If the MA identifies any one of these threats
or failures in any of these three bases, then it performs three operations. Communication
from certain machines that initiate threats or vulnerabilities will be blocked if the identified
base is a communication thread or anomaly.

Communication from certain machines that initiate threats or vulnerabilities will be
blocked if the identified base is a communication thread or anomaly. Furthermore, if
the MA identifies link failure, then it executes two operations as re-direct or new secure
channel selection.

Once link breakage is identified, the MA checks whether there is any free secure channel
that already completed its data transmission and re-directs the data to that secure channel.
Otherwise, if the communication in the entire secure is occurring, then the new secure
channel is identified. By performing these processes, the security of data transmission is
amplified, thereby minimizing packet loss.

Homomorphic encryption
Homomorphic encryption (HE) is an encryption method enabling certain computations
on encrypted data without decryption for specificmathematical operations to be performed
on ciphertexts. This process results in the generation of another ciphertext. Importantly,
the outcome of these operations on the encrypted text mirrors that of operations performed
directly on the plaintext. This gives the effect of having conducted the operations on the
plaintext itself without any modification or distortion. The use of this encryption method
enables users to interact with encrypted data without needing access to the actual content
from the sender or the public key for decryption. HE is particularly valuable in preserving
privacy across various applications, including cloud data storage, and in enhancing the
security and transparency of elections. Furthermore, it addresses challenges in maintaining
the privacy of processes and stored data in databases.

Blockchain implementation for trust management
Our blockchain implementation for trust management in M2M communication is based
on a Merkle tree structure, which provides efficient and secure verification of trust data.

Merkle tree-based blockchain structure
The blockchain consists of blocks, each containing:

• Block header:

– Previous block hash
– Merkle root
– Timestamp
– Nonce

• Transactions: Trust evaluation events

Each transaction in a block represents a trust evaluation and includes:
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Figure 4 Merkle tree-based blockchain for trust management inM2M communication.
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• Evaluator ID
• Evaluated ID
• Trust value
• Timestamp
• Evaluation metrics

Merkle tree construction
Figure 4 exhibits the blockchain structure for trust management:
1. Each transaction is hashed using SHA-256. 2. These transaction hashes form the leaves
of the Merkle tree. 3. Pairs of leaf nodes are then hashed together to form parent nodes. 4.
This process continues until a single hash (the Merkle root) is obtained.

The Merkle root, which is part of the block header, offers a concise summary of all the
transactions contained within the block.

Trust value storage and verification
When a machine calculates a new trust value:

1. It creates a transaction and broadcasts it to the network. 2. Nodes validate the
transaction and add it to the current block. 3. Once enough transactions are collected or a
time limit is reached, a new block is created. 4. The Merkle tree for the block is constructed,
and the Merkle root is calculated. 5. The block is then added to the blockchain through the
consensus mechanism.
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Efficient trust value retrieval
The Merkle tree structure allows for efficient verification of trust values:

1. Amachine can request a specific trust value along with its Merkle proof. 2. TheMerkle
proof consists of the transaction and the minimum set of hashes needed to reconstruct the
path to the Merkle root. 3. The requesting machine can verify the transaction’s inclusion
in the block by recalculating the Merkle root using the provided proof.

This process allows for trustless verification of individual transactions without needing
to download the entire blockchain.

Consensus mechanism
We employ a practical Byzantine fault tolerance (PBFT) consensus mechanism, adapted
for our Merkle tree-based structure:

1. A leader node proposes a new block, including the Merkle root in the block header.
2. Validator nodes verify the Merkle root and the block’s validity. 3. If a supermajority of
validators approves, the block is added to the chain.

Trust propagation and utilization
Trust propagation leverages the Merkle tree structure:

1. Machines can efficiently query and verify trust transactions for any node in the
network. 2. Indirect trust is computed by traversing trust relationships, using Merkle
proofs to verify each step in the trust chain.

Before initiating communication, a machine can quickly verify the trustworthiness of
potential partners by requesting relevant trust transactions and their Merkle proofs.

Security measures
The Merkle tree structure enhances security:

• Tamper evidence: Any change in a transaction would alter the Merkle root, making
tampering immediately detectable.
• Efficient auditing: TheMerkle structure allows for quick verification of any transaction’s
integrity.
• Reduced storage: Light nodes can participate in the network by storing only block
headers (including Merkle roots) instead of full blocks.

Scalability considerations
The Merkle tree structure improves scalability:

• Sharding: Each shard maintains its own Merkle tree-based blockchain.
• Cross-shard verification: Merkle proofs allow for efficient verification of trust data
across shards.
• Pruning:Old transactions can be prunedwhilemaintaining theMerkle root for historical
verification.

ThisMerkle tree-based blockchain implementation ensures efficient, secure, and scalable
storage and sharing of trust values in the M2M network. It provides a robust foundation
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for decentralized trust management, capable of handling the dynamic nature of M2M
communications while maintaining high levels of security and efficiency.

Interaction of the components in SAFE-CAST
As depicted in Fig. 5, SAFE-CAST components interacts with each other as follows: M2M
devices send data to the federated clustering module, as the initial input of raw data
from the IoT devices into the SAFE-CAST system. The federated clustering module sends
‘‘Cluster Info’’ to the QDOA channel selection components with details about the formed
clusters, which helps in optimizing channel selection. The federated clustering module
sends meta-data to the blockchain trust management component containing information
about clustering results and node information which is recorded in the blockchain for
trust evaluation. The QDOA channel selection system sends ‘‘Channel Assignments’’
to AMARLCAT. This means that the optimized results from this system are utilized by
AMARLCAT for adaptive transmission. QDOA channel selection provides ‘‘Channel
Quality’’ information to the blockchain trust management, indicating that channel quality
metrics are integral to the trust evaluation process. The blockchain trust management
component sends ‘‘Trust Scores’’ to AMARLCAT, which likely influence the decision-
making process in AMARLCAT for secure and efficient transmission. AMARLCAT sends
‘‘Transmission Data’’ back to the blockchain trust management, creating a feedback
loop that enables the trust management system to update based on actual transmission
performance.
The surveillance &maintenancemodule, sends ‘‘PerformanceMetrics’’ to the blockchain

trust management, ensuring continuous monitoring and updating of trust scores based on
observed system performance, and provides ‘‘Network State’’ information to AMARLCAT,
enabling it to adapt its strategies based on the current state of the network.

These interactions create a comprehensive, self-improving system where the federated
clusteringmodule organizes the network efficiently, andQDOAoptimizes channel selection
based on the network structure. The blockchain trust management component maintains
a secure, decentralized record of trust, while AMARLCAT utilizes trust scores, channel
assignments, and network state to optimize transmissions. Simultaneously, the surveillance
& maintenance module continuously monitors the system, providing feedback that
enhances both performance and security.

Theoretical analysis of efficiency and security
To complement our experimental demonstrations, we present a theoretical analysis of the
efficiency and security aspects of our proposed system. This analysis provides insights into
the expected performance and security enhancements of our approach.

Efficiency analysis
The efficiency of our system can be theoretically analyzed in terms of power consumption
and computational complexity.
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Figure 5 Interaction of the components in SAFE-CAST.
Full-size DOI: 10.7717/peerjcs.2551/fig-5

Power consumption. Let Ptotal be the total power consumption of the system, which can be
expressed as:

Ptotal = Pclustering +Pchannel+Pcommunication+Psurveillance (9)

where:

• Pclustering is the power consumed during federated clustering
• Pchannel is the power consumed for secure channel selection
• Pcommunication is the power consumed during data transmission
• Psurveillance is the power consumed for surveillance and maintenance

Our federated clustering approach reduces Pclustering by distributing the computational
load across multiple nodes. The dual CH selection minimizes Pcommunication by optimizing
intra-cluster and inter-cluster communications. The QDOA for channel selection reduces
Pchannel by efficiently identifying optimal channels.
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Computational complexity. The overall computational complexity of our system can be
expressed as:

O(total)=O(clustering )+O(channel)+O(trust )+O(surveillance) (10)

where each term represents the complexity of the respective component, the use of Lloyd’s
K-means algorithm in federated clustering results in O(clustering )=O(nkdi), where n is
the number of data points, k is the number of clusters, d is the number of dimensions, and
i is the number of iterations.

Security analysis
The security of our system can be theoretically analyzed in terms of attack resistance and
data privacy.

Attack resistance. Let P(attack) be the probability of a successful attack. Our multi-layered
security approach aims to minimize P(attack) through:

P(attack)= P(bypassclustering ) ·P(bypasschannel) ·P(bypasstrust ) ·P(bypasssurveillance). (11)

Each term represents the probability of bypassing the respective security layer. By
implementing secure federated clustering, channel selection, trust evaluation, and
surveillance, we significantly reduce each of these probabilities, thereby minimizing
the overall P(attack).

Data privacy. The level of data privacy DP can be quantified as:

DP = 1−P(data_leak) (12)

where P(data_leak) is the probability of a data leak occurring, our use of homomorphic
encryption and blockchain technology for trust storage significantly reduces P(data_leak),
thus enhancing overall data privacy.

Trust evaluation. The accuracy of our trust evaluation mechanism can be theoretically
expressed as:

Taccuracy =w1 ·DT+w2 · IDT+w3 ·RT+w4 ·PDR (13)

whereDT , IDT , RT , and PDR represent direct trust, indirect trust, recent trust, and packet
delivery rate, respectively, and w1, w2, w3, and w4 are weighing factors.

This theoretical analysis demonstrates that our proposed system is expected to
significantly reduce power consumption, minimize data leaks, and enhance overall security
in edge-assisted M2M communication. The multi-layered approach to security, combined
with efficient clustering and channel selection mechanisms, provides a robust framework
for secure and efficient M2M communication.

Implementation considerations
The implementation of SAFE-CAST in real-world M2M networks requires careful
consideration of several factors:

Tuncel and Öztoprak (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2551 31/48

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2551


1. Computational resources: While SAFE-CAST offers significant improvements, its
components, such as federated learning and blockchain-based trust management,
require substantial computational resources. Implementation should consider the
capabilities of the target devices and potentially offload heavy computations to edge
servers where possible.

2. Scalability: Our simulations demonstrate SAFE-CAST’s performance with up to 100
devices. For larger networks, implementation may require hierarchical structuring or
sharding techniques to maintain efficiency.

3. Integration with existing systems: SAFE-CAST is designed to be modular, allowing
for phased implementation in existing M2M networks. Initial deployment could
focus on the federated clustering and secure channel selection components, with trust
management and advanced surveillance added in subsequent phases.

4. Regulatory compliance: Implementation must consider data protection regulations
such as GDPR, particularly in the context of trust evaluation and data sharing between
devices, in order to protect personally identifiable information (PII).

5. Maintenance and updates: The dynamic nature ofM2Mnetworks and evolving security
threats necessitate a system for regular updates to the SAFE-CAST components,
particularly the machine learning models used in threat detection and link state
prediction.
These considerations ensure that SAFE-CAST can be effectively implemented and

maintained in diverse M2M environments, maximizing its security and efficiency benefits.

ANALYSIS OF KEY ALGORITHMS IN SAFE-CAST
The careful choice and integration of several critical algorithms underlie the effectiveness
of SAFE-CAST. Each of the algorithms was selected for its particular strengths and
appropriateness for solving the problems of M2M communication. However, it’s also
important to realize that each of these algorithms has its weaknesses. In this section, we
will analyze in detail the reasoning behind the selection of each algorithm and its strengths
and weaknesses.

Lloyd’s K-means algorithm for federated clustering
For its ease of use and effectiveness in performing unsupervised learning tasks, particularly
in an M2M network context, Lloyd’s K-means algorithm was selected. This algorithm is
particularly computationally efficient, which is an important factor in M2M environments
with many devices and large amounts of data. It also works well in a federated learning
context, which is advantageous because privacy is a major concern in distributed M2M
networks. However, the algorithm is sensitive to the placement of the initial centroids
and may converge to suboptimal solutions. Thus, we need to pay attention to the
implementation details when using this algorithm.

Quality diversity optimization algorithm for channel selection
The channel selection problem in M2M communications needs to be solved properly.
It is a task that requires an algorithm to adopt a diverse set of high-quality solutions,
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maintaining the multichannel diversity vital to M2M communication in a dynamic and
progressive selection of channels. One algorithm we have selected for our study is QDOA.
This algorithm offers us several advantages. First, QDOA affords a set of solutions with a
good degree of quality. Next, it exploits a balance between efficiently searching solution
space and maintaining solution diversity. Finally, it is a method that can accommodate our
problem semantically and pragmatically within the algorithmic design of QDOA.

Blockchain for trust management
Blockchain was selected for its decentralized, tamper-proof nature—properties that are
simply vital to maintaining trust in a distributed M2M network. It provides a nicely
transparent and immutable record of trust evaluations, and it could enhance the reliability
of trust data in anM2M environment.Moreover, it is a secure way of achieving a distributed
consensus, which is another way of ‘‘not having a central point of failure’’. All this operates
under the framework that M2M trust evaluations are not centralized, trust values are
privacy-preserved by homomorphic encryption.

Adaptive multi-agent reinforcement learning for context-aware
transmission
AMARLCAT was developed to refine how we communicate in the rapidly changing
environment of dynamic M2M (machine-to-machine) communications. It enables the
adaptive and effective assembly of a dynamically transitioning network of machines—
namely, the IoT devices, which acts as agents. After it learns from the agents, it becomes
more efficient in the long run. We called in M2M communications suboptimal during
the initial learning phase of the AMARLCAT algorithm. To make AMARLCAT problem-
solving more effective over the long run requires tuning some hyperparameters during
its initial setup. Hyperparameter tuning should be done according the properties of the
network, i.e., 5G or 6G. In our experimente we’ve used 6G hyperparameter tunings.

Conclusion of the section
SAFE-CAST achieves security, efficiency, and adaptability in M2M communication by
selecting and integrating algorithms that play to their individual strengths and to the
preferred overall algorithmic structure. The use of federated learning with Lloyd’s K-means
ensures privacy-preserving clustering. A novel and enhanced QDOA provides secure,
robust, and diverse channel selection. Blockchain supplies a secure, transparent trust
management layer that works with our M2M communication system. AMARLCAT
provides the multi-agent reinforcement learning to calculate the trust scores of the agents.
The combined approach constitutes the foundation of SAFE-CAST. The algorithms—some
of which are newly developed and some of which form structures not previously applied
in this domain- constitute the cornerstone of our framework SAFE-CAST.

EXPERIMENTAL RESULTS
The experimental analysis of the suggested work in enhancing privacy and communication
surveillance in M2M is shown in this section. The results demonstrate the suggested
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Table 3 System specification.

Hardware specification Hard Disk 500 GB
RAM Minimum 2 GB

Software specification Simulation Tools NS-3.26
Processor 2.5 GHz and above
OS ubuntu-16.04 LTS (64-bit)

Table 4 Simulation parameters.

Parameters Values

Devices/machines 100
Edge server 2
Cloud server 1
Monitor agent 1
6 G-based base station 1
Packet size 1,024
Number of packets 100
Interval 1.0
Simulation time 300
Beam width 6

strategy’s outstanding effectiveness. This sub-section includes the simulation setup,
comparison analysis, and research summary.

Simulation setup
This sub-section explains the simulation setup and environment surveillance and
maintenance in M2M communication. Table 3 represents the system configuration.

The proposed work is simulated by NS-3.26, Network Simulator, which is a widely
used open-source discrete-event network modeling tool. The purpose of NS-3.26 is to
simulate and researchmultiple aspects of computer networks, including Internet protocols,
communication technologies, and wired and wireless networks. It is an important tool for
network creation, research, and instruction. Table 4 depicts the simulation parameters.

Hyperparameter selection and sensitivity analysis
The performance of SAFE-CAST is influenced by several key hyperparameters. In this
section, we discuss the selection process for these parameters and present a sensitivity
analysis to demonstrate their impact on the experimental metrics.

Hyperparameter selection process
We employed a combination of grid search and manual tuning to select the optimal
hyperparameters for SAFE-CAST. The primary hyperparameters and their selected values
are as follows:

• Number of clusters (k) in Lloyd’s K-means algorithm: 5
• Learning rate for AMARLCAT: 0.001
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Figure 6 Impact of number of clusters (k) on energy consumption and throughput.
Full-size DOI: 10.7717/peerjcs.2551/fig-6

• Discount factor (γ ) for AMARLCAT: 0.99
• Number of hidden layers in DDPG networks: 3
• Neurons per hidden layer in DDPG networks: 256
• Batch size for AMARLCAT training: 64
• Trust update interval: 100 time steps

These values were chosen based on their performance acrossmultiple evaluationmetrics,
including energy efficiency, throughput, security strength, latency, and packet loss rate.

Sensitivity analysis
To understand the influence of key hyperparameters on the experimental metrics, we
conducted a sensitivity analysis by varying each parameter while keeping others constant.
Here, we present the results for two critical parameters: the number of clusters (k) and the
learning rate for AMARLCAT.

Impact of number of clusters (k). We varied the number of clusters from 3 to 7 and
measured its impact on energy consumption and throughput. Figure 6 shows the results
of this analysis.
Impact of number of clusters (k). As observed in Fig. 6, increasing the number of clusters
initially leads to improved energy efficiency and throughput. However, beyond k = 5,
the benefits diminish, and energy consumption starts to increase due to the overhead of
managingmore clusters. This analysis justified our choice of k= 5 for themain experiments.

Impact of learning rate in AMARLCAT. We evaluated the effect of the learning rate on
latency and security strength by varying it from 0.0001 to 0.01. The results are presented
in Fig. 7.
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Figure 7 Impact of AMARLCAT learning rate on latency and security strength.
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Impact of learning rate in AMARLCAT. Figure 7 demonstrates that a learning rate of 0.001
provides the best balance between low latency and high security strength. Lower learning
rates result in slower convergence and higher latency, while higher rates lead to instability
and reduced security strength.

These sensitivity analyses provide insights into the robustness of SAFE-CAST and justify
our hyperparameter choices. They also highlight the importance of careful parameter
tuning in achieving optimal performance across multiple metrics.

Impact of trust update interval. The trust update interval determines how frequently the
system updates the trust values of nodes in the network. This parameter is critical for
balancing the responsiveness of the trust management system with the computational
overhead. We conducted an experiment varying the trust update interval from 50 to 250
time steps and measured its impact on security strength, energy consumption, and latency.

Figure 8 illustrates the trade-offs involved in selecting the trust update interval. A shorter
interval (50 time steps) results in higher security strength (99%), but also increases energy
consumption (J) (8.8J) due to more frequent computations. Conversely, a longer interval
(250 time steps) reduces energy consumption (7.3J), but at the cost of lower security
strength (92%) and increased latency (1.4s).
Impact of trust update interval. Based on these results, we selected a trust update interval of
100 time steps for our main experiments, as it provides a balance between security strength
(98%), energy efficiency (8.2J), and low latency (1.15s). This choice reflects our goal of
maintaining high security while optimizing resource usage in M2M networks.

This experiment demonstrates the importance of carefully tuning the trust update
interval to achieve the desired balance between security and performance in SAFE-CAST.
It also highlights the system’s flexibility in adapting to different security and efficiency
requirements by adjusting this parameter.
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Comparative analysis
The proposed model is contrasted with other existing methods like event-driven duty
cycling (EDDC) (Lokhande & Patil, 2021), long short-term memory (LSTM) (Xu et al.,
2023), and garlic-routing-based secure data exchange framework (GRADE) (Jadav et al.,
2023). Several metrics, including energy consumption, throughput, security strength,
latency, and packet loss rate, are utilized to evaluate the suggested model graphically.

Energy efficiency
Energy efficiency plays a pivotal role in M2M communication, significantly influencing
device longevity and overall performance. To ensure prolonged operation and minimize
the need for frequent battery replacements in M2M devices, the optimization of energy
consumption is of paramount importance. This entails the implementation of low-power
communication protocols, efficient data transmission strategies, and intelligent power
management techniques.

The findings pertaining to energy consumption, as illustrated in Fig. 9 and summarized
in Table 5, reveal noteworthy insights. In comparison to established methods, such as
EDDC with a consumption of 10.2J, LSTM with 12.0J, and the proposed method with
8.0J, it becomes evident that the proposed approach exhibits superior energy efficiency.
The advantages inherent in reduced energy consumption within the realm of M2M
communication are multifaceted. It mitigates the necessity for frequent energy-related
interventions, thereby curbing maintenance expenditures and extending the operational
lifespan of energy-dependent devices. Moreover, diminished energy utilization contributes
to a diminished environmental footprint, thereby enhancing the sustainability quotient of
M2M systems.
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Table 5 Energy consumption (J) based on number of machines.

Energy consumption (J)

No of machines Proposed EDDC GRADE

20 6.4 8.4 10.4
40 6.8 8.8 10.8
60 7.2 9.3 11.2
80 7.6 9.7 11.6
100 8.0 10.2 12.0

Table 6 Throughput (bits/sec) based on number of machines.

Throughput (bits/sec)

No of machines Proposed EDDC GRADE

20 52,000 46,000 38,000
40 58,000 52,000 48,000
60 66,000 57,000 53,000
80 72,000 64,000 58,000
100 79,000 69,000 65,000

Throughput
Throughput, a pivotal metric in the domain of M2M communication, quantifies the
quantity of data effectively transmitted through the network within a specified time
frame. It serves as a yardstick for assessing the system’s capacity to handle communication
requirements and gauges the efficiency of data transmission. The results pertaining to
throughput are delineated in Table 6 for reference.
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Figure 10 provides a graphical representation of the throughput comparison between
the proposed methodology and established methods. The throughput values are as follows:
69,000 bits per second (bps) for EDDC, 65,000 bps for GRADE, and 79,000 bps for the
proposed method. When juxtaposed with contemporary approaches, it becomes evident
that the suggested approach achieves a superior level of throughput. This heightened
throughput enables devices to engage in more rapid and responsive interactions, thereby
facilitating real-time data exchange and expediting decision-making processes.

Security strengthen
The enhancement of security in M2M communication is imperative to guarantee the
confidentiality, integrity, and availability of transmitted data.

Figure 11 and Table 7 present the results of security enhancement. When compared to
existing methods, the proposed approach achieves significantly higher security strength,
with values of 85% for EDDC, 71% for GRADE, and an impressive 98% for the proposed
method. This heightened security ensures that only authorized devices can engage in
communication, mitigating the risk of unauthorized access. The implementation of robust
authentication and encryption protocols guarantees the safeguarding of data during
transmission, preserving both its integrity and confidentiality.

Latency
In the context of M2M communication, latency refers to the time interval between the
transmission of data from a source device to a destination device and the subsequent
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Table 7 Security strengthens (%) based on number of machines.

Security strengthen

No of machines Proposed EDDC GRADE

20 35 23 20
40 52 38 31
60 68 58 46
80 82 71 59
100 98 85 71

reception of that data. Table 8 provides a comprehensive overview of the latency outcomes
in the experimental results.

Figure 12 provides a visual representation of the latency comparison between the
proposed method and existing approaches in M2M communication. The latency
measurements reveal that the proposed method exhibits a lower latency of 1.09 s, as
opposed to 1.65 s for EDDC and 1.70 s for LSTM. This comparison underscores the
superior performance of the proposed approach in terms of reduced latency. Reduced
latency has significant implications for M2M systems, as it enhances the speed and
efficiency of device interactions. Lower latency facilitates faster data.
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Table 8 Latency (S) based on number of machines.

Latency(S)

No of machines Proposed EDDC LSTM

20 0.62 0.7 0.7
40 0.78 1.0 1.25
60 0.86 1.2 1.31
80 0.95 1.42 1.46
100 1.09 1.65 1.70
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Figure 12 Latency based on the number of machines.
Full-size DOI: 10.7717/peerjcs.2551/fig-12

Packet loss rate
The packet loss rate, a vital metric in M2M communication, quantifies the percentage of
data packets that become lost within the network during transmission. This metric serves
as a critical indicator of the reliability and quality of the communication link. Monitoring
and minimizing packet loss are paramount to ensure uninterrupted data transmission and
maintain the dependability of M2M systems. A low packet loss rate signifies a robust and
efficient communication link, contributing to the overall effectiveness and performance of
M2M networks.

Figure 13 and Table 9 present the results related to the packet loss rate. When comparing
the proposed method with existing approaches, it is evident that the proposed method
exhibits a considerably lower packet loss rate. Specifically, the proposed method achieves
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Table 9 Packet loss rate (bps) based on number of machines.

Packet loss rate (bps)

No of machines Proposed EDDC GRADE

20 1.8 2.4 2.8
40 3.7 4.1 4.9
60 5.1 6.2 6.9
80 6.8 8.0 8.6
100 8.8 10.1 10.6

an impressive packet loss rate of 8.8 bps, whereas EDDC records 10.1 bps, and GRADE
records 10.6 bps.
A reduced packet loss rate means that a significant portion of data packets successfully

reach their intended destination without experiencing loss or corruption during transit.
This is of utmost importance in M2M systems, where the integrity of critical instructions
and real-time data transfers must be preserved. By mitigating the likelihood of delays,
inconsistent data, and potential interruptions within interconnected systems, a low
packet loss rate contributes significantly to enhancing the overall performance of M2M
communication.

Framework validity
The validity of the SAFE-CAST framework is demonstrated through both theoretical
analysis and extensive simulations. Our theoretical analysis, presented in ‘Interaction of
the components in SAFE-CAST’, provides a mathematical foundation for the expected
performance improvements in terms of energy efficiency, attack resistance, and data
privacy. The simulation results, conducted using NS-3.26, corroborate these theoretical
predictions, showing significant improvements across multiple metrics, including energy
consumption (21.6% reduction), throughput (14.5% increase), security strength (15.3%
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enhancement), latency (33.9% decrease), and packet loss rate (12.9% reduction) compared
to state-of-the-art approaches. The consistency between theoretical predictions and
simulation results, along with the comprehensive nature of our testing across various
network sizes and conditions, strongly supports the validity of the SAFE-CAST framework.

Research summary
In this study, we create a network that consists of 100 devices/machines, two edge servers,
one cloud server, one MA, and one to six G-based base stations. Initially, clustering the
machines by using FL based Lloyd’s K-means algorithm and also selecting the two CHs.
Next, select the secure and optimal channel by using the QDOA. Next, the trust evaluation
is performed, and the trust is stored in the blockchain. Next, the data will be encrypted based
on the homomorphic encryption mechanism, and the AMARLCAT scheme-based data
transmission will be performed. Next, the channels and links are monitored. Finally, we
plot the results graph for energy consumption based on number of machines, throughput
based on number of machines, security strengthen based on the number of machines,
latency based on the number of machines, and packet loss rate based on the number
of machines. The performance of the suggested strategy is discussed in this subsection.
Figures 9 to 13 shows the graphical depiction of comparative results.

CONCLUSION AND FUTURE WORK
This study presents SAFE-CAST, a novel framework designed to enhance security and
efficiency in M2M communication. Our approach integrates federated clustering, secure
channel selection, dynamic trust management, and advanced surveillance techniques
to address critical challenges in M2M networks. The experimental results demonstrate
significant improvements in energy efficiency, throughput, security strength, latency, and
packet loss rate compared to existing methods.

Although SAFE-CAST offers substantial advancements, it is important to acknowledge
its limitations. The computational complexity of our approach can pose challenges for
resource-constrained devices in large-scale M2M networks. Furthermore, the effectiveness
of our trust management system is based on the honest participation of network nodes,
which may not always be guaranteed in real-world scenarios.

SAFE-CAST can move in many promising and potentially fruitful directions to better
serve the needs of its stakeholders and improve M2M network performance. The first
direction SAFE-CAST can take is scalability, using nodes in very large networks. Techniques
exist for using similar algorithms in hierarchical or distributed modes—which could be
promising for node performance in SAFE-CAST’s large- and small-scale applications. Yet,
we need more research on them. Another direction is integrating emerging technologies
such as 5G and 6G telecommunications networks. By using their superior bandwidth and
vast node interconnectivity, future SAFE-CAST implementations could achieve better
performance and a near-elimination of latency, or the problematic delay in node-to-node
communication.

Ensuring strong security while maintaining privacy is still the main concern, and this
work should continue to explore how to integrate post-quantum cryptography so that we
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can be sure of long-term security against the sorts of new threats that are likely to arise in
the next decade or so. But just as important and more immediately relevant is the question
of how well SAFE-CAST will do its job in the real world, in the many maritime and smart
industrial environments that are so similar to the M2M and IoT spaces we are working in
and that offer so many opportunities for different sorts of efficiency gains and apparently
for much better security than we have now.

Our additional experiments on the trust update interval further demonstrate the
adaptability of SAFE-CAST to different network requirements. By adjusting this parameter,
network administrators can fine-tune the balance between security strength, energy
efficiency, and latency based on their specific needs.

Future work could explore adaptive trust update intervals that dynamically adjust based
on network conditions and threat levels, further enhancing the flexibility and efficiency of
SAFE-CAST in diverse M2M environments.

AList of Abbreviations

AMARLCATAdaptive Multi-Agent Reinforcement Learning for Context-Aware
Transmission

IoT Internet of Things
M2M Machine-to-Machine
QDOA Quality Diversity Optimization Algorithm
SAFE-
CAST

Secure AI-Federated Enumeration for Clustering-based Automated
Surveillance and Trust

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This study is supported by the Turkish Scientific and Technical Council (TUBITAK) under
Grant 123O739. Kasim Oztoprak is supported by the aforementioned project. The funders
had no role in study design, data collection and analysis, decision to publish, or preparation
of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The Turkish Scientific and Technical Council (TUBITAK): 123O739.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Yusuf Kursat Tuncel conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.
• Kasım Öztoprak conceived and designed the experiments, analyzed the data, authored
or reviewed drafts of the article, and approved the final draft.

Tuncel and Öztoprak (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2551 44/48

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2551


Data Availability
The following information was supplied regarding data availability:

The source code is available in the Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2551#supplemental-information.

REFERENCES
AhmedMTA, Hashim F, Hashim SJ, Abdullah A. 2023. Authentication-chains:

blockchain-inspired lightweight authentication protocol for IoT networks. Electronics
12(4):867 DOI 10.3390/electronics12040867.

Al-ShareedaMA, Manickam S, Laghari SA, Jaisan A. 2022. Replay-attack detection and
prevention mechanism in industry 4.0 landscape for secure SECS/GEM communica-
tions. Sustainability 14(23):15900 DOI 10.3390/su142315900.

AlsultanM, Oztoprak K, Hassanpour R. 2016. Power aware routing protocols in wireless
sensor network. IEICE Transactions on Communications E99.B(7):1481–1491
DOI 10.1587/transcom.2015EBP3453.

Bilami KE, Lorenz P. 2022. Lightweight blockchain-based scheme to secure wireless
M2M area networks. Future Internet 14(5):158 DOI 10.3390/fi14050158.

Butun I, Tuncel YK, Oztoprak K. 2021. Application layer packet processing using PISA
switches. Sensors 21(23):8010 DOI 10.3390/s21238010.

Choudhary D, Pahuja R. 2023. A blockchain-based cyber-security for connected net-
works. Peer-To-Peer Networking and Applications 16:1852–1867
DOI 10.1007/s12083-023-01506-9.

Dehalwar V, KolheML, Deoli S, Jhariya MK. 2022. Blockchain-based trust management
and authentication of devices in smart grid. Cleaner Engineering and Technology
8:100481 DOI 10.1016/j.clet.2022.100481.

Djehaiche R, Aidel S, Sawalmeh A, Saeed N, Alenezi AH. 2023. Adaptive control of
IoT/M2M devices in smart buildings using heterogeneous wireless networks. IEEE
Sensors Journal 23(7):7836–7849 DOI 10.1109/JSEN.2023.3247007.

EjiguMW, Santhosh J. 2020. IoT based comprehensive autonomous home automation
and security system using M2M communication. Recent Advances in Computer Sci-
ence and Communications 14(7):2234–2246 DOI 10.2174/2666255813666200221130553.

Fatani A, Elaziz MA, Dahou A, Al-Qaness MAA, Lu S. 2021. IoT intrusion detection
system using deep learning and enhanced transient search optimization. IEEE Access
9:123448–123464 DOI 10.1109/ACCESS.2021.3109081.

Ghasri MAG, Hemmatyar AMA. 2022. A new dynamic optimal M2M RF interface
setting in relay selection algorithm (DORSA) for IoT applications. IEEE Access
10:5327–5342 DOI 10.1109/ACCESS.2022.3140746.

Gong X, Feng T, Albettar M. 2022. PEASE: a PUF-based efficient authentication
and session establishment protocol for machine-to-machine communication in
industrial IoT. Electronics 11(23):3920 DOI 10.3390/electronics11233920.

Tuncel and Öztoprak (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2551 45/48

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2551#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2551#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2551#supplemental-information
http://dx.doi.org/10.3390/electronics12040867
http://dx.doi.org/10.3390/su142315900
http://dx.doi.org/10.1587/transcom.2015EBP3453
http://dx.doi.org/10.3390/fi14050158
http://dx.doi.org/10.3390/s21238010
http://dx.doi.org/10.1007/s12083-023-01506-9
http://dx.doi.org/10.1016/j.clet.2022.100481
http://dx.doi.org/10.1109/JSEN.2023.3247007
http://dx.doi.org/10.2174/2666255813666200221130553
http://dx.doi.org/10.1109/ACCESS.2021.3109081
http://dx.doi.org/10.1109/ACCESS.2022.3140746
http://dx.doi.org/10.3390/electronics11233920
http://dx.doi.org/10.7717/peerj-cs.2551


Gupta S, Pradhan AK, Chaudhari NS, Singh A. 2023. LS-AKA: a lightweight and
secure authentication and key agreement scheme for enhanced machine type
communication devices in 5G smart environment. Sustainable Energy Technologies
and Assessments 60:103448 DOI 10.1016/j.seta.2023.103448.

Jadav NK, Kakkar R, Mankodiya H, Gupta R, Tanwar S, Agrawal S, Sharma R.
2023. GRADE: deep learning and garlic routing-based secure data sharing frame-
work for IIoT beyond 5G. Digital Communications and Networks 9(2):422–435
DOI 10.1016/j.dcan.2022.11.004.

Jin C, Yang Z, Xiang T, Adepu S, Zhou J. 2023.HMACCE: establishing authenticated
and confidential channel from historical data for industrial Internet of Things. IEEE
Transactions on Information Forensics and Security 18:1080–1094.

Kaushal RK, Bhardwaj R, Kumar N, Aljohani AA, Gupta SK, Singh P, Purohit N. 2022.
Using mobile computing to provide a smart and secure Internet of Things (IoT)
framework for medical applications.Wireless Communications and Mobile Computing
2022:8741357 DOI 10.1155/2022/8741357.

Kazmi SHA, Hassan R, Qamar F, Nisar K, Ibrahim AAA. 2023. Security concepts in
emerging 6G communication: threats, countermeasures, authentication techniques
and research directions. Symmetry 15(6):1147 DOI 10.3390/sym15061147.

Kihtir F, Yazici MA, Oztoprak K, Alpaslan FN. 2022. Next-generation payment
system for device-to-device content and processing sharing. Sensors 22(7):2451
DOI 10.3390/s22072451.

Laghari SUA, Manickam S, Al-Ani AK, Al-ShareedaMA, Karuppayah S. 2023. ES-
SECS/GEM: an efficient security mechanism for SECS/GEM communications. IEEE
Access 11:31813–31828 DOI 10.1109/ACCESS.2023.3262310.

Li F, Xu H, Song Q, Zhang L, Du X, Tong N,Wang D. 2023. BLMA: editable blockchain-
based lightweight massive IIoT device authentication protocol. IEEE Internet of
Things Journal 10(24):21633–21646 DOI 10.1109/JIOT.2023.3308725.

LokhandeMP, Patil DD. 2021. Secured energy efficient machine -to-machine com-
munication for telerobotic system. Informatics in Medicine Unlocked 26:100731
DOI 10.1016/j.imu.2021.100731.

Luo Y, Mao H-K, Li Q, Chen N. 2023. An information-theoretic secure group authen-
tication scheme for quantum key distribution networks. IEEE Transactions on
Communications 71(9):5420–5428 DOI 10.1109/TCOMM.2023.3280561.

Mahdavisharif M, Jamali S, Fotohi R. 2021. Big data-aware intrusion detection system
in communication networks: a deep learning approach. Journal of Grid Computing
19:46 DOI 10.1007/s10723-021-09581-z.

Mazhar MS, Saleem Y, Almogren A, Arshad J, Jaffery MH, Rehman AU, Shafiq M,
HamamH. 2022. Forensic analysis on Internet of Things (IoT) device using
machine-to-machine (M2M) framework. Electronics 11(7):1126
DOI 10.3390/electronics11071126.

Modiri MM,Mohajeri J, SalmasizadehM. 2022. A novel group-based secure lightweight
authentication and key agreement protocol for machine-type communication.
Scientia Iranica 29(6):3273–3287 DOI 10.24200/SCI.2021.54832.3936.

Tuncel and Öztoprak (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2551 46/48

https://peerj.com
http://dx.doi.org/10.1016/j.seta.2023.103448
http://dx.doi.org/10.1016/j.dcan.2022.11.004
http://dx.doi.org/10.1155/2022/8741357
http://dx.doi.org/10.3390/sym15061147
http://dx.doi.org/10.3390/s22072451
http://dx.doi.org/10.1109/ACCESS.2023.3262310
http://dx.doi.org/10.1109/JIOT.2023.3308725
http://dx.doi.org/10.1016/j.imu.2021.100731
http://dx.doi.org/10.1109/TCOMM.2023.3280561
http://dx.doi.org/10.1007/s10723-021-09581-z
http://dx.doi.org/10.3390/electronics11071126
http://dx.doi.org/10.24200/SCI.2021.54832.3936
http://dx.doi.org/10.7717/peerj-cs.2551


Moussa KH, El-Sakka AH, Shaaban S, Kheirallah HN. 2022. Group security authen-
tication and key agreement protocol built by elliptic curve diffie hellman key
exchange for LTE military grade communication. IEEE Access 10:80352–80364
DOI 10.1109/ACCESS.2022.3195304.

Nyangaresi V, Rodrigues A, Abeka S. 2023. Secure algorithm for IoT devices authentica-
tion. In: Cagáňová V, Rodrigues A, eds. Industry 4.0 challenges in smart cities. Cham:
Springer, 1–22 DOI 10.1007/978-3-030-92968-8_1.

Oztoprak K. 2018. fCDN: a novel-energy efficient content delivery architecture over next
generation systems. Politeknik Dergisi 21(4):999–1006 DOI 10.2339/politeknik.470675.

Oztoprak K, Tuncel YK. 2023.Holistic security approach in cybersecurity services
for datacenters and telecommunication operators. In: 2023 IEEE international
performance, computing, and communications conference (IPCCC). Piscataway: IEEE,
470–474 DOI 10.1109/IPCCC59175.2023.10253840.

Oztoprak K, Tuncel YK, Butun I. 2023. Technological transformation of telco
operators towards seamless IoT edge-cloud continuum. Sensors 23(2):1004
DOI 10.3390/s23021004.

Panda S, Mondal S, Kumar N. 2022. SLAP: a secure and lightweight authentication
protocol for machine-to-machine communication in industry 4.0. Computers &
Electrical Engineering 98:107669 DOI 10.1016/j.compeleceng.2021.107669.

Prabhakara Rao T, SatyanarayanaMurthy B. 2023. Extended group-based verification
approach for secure M2M communications. International Journal of Information
Technology 15(5):2479–2488 DOI 10.1007/s41870-023-01284-w.

Railkar PN, Mahalle PN, Shinde GR. 2021. Scalable trust management model for
machine to machine communication in Internet of Things using fuzzy approach.
Turkish Journal of Computer and Mathematics Education 12(6):2483–2495
DOI 10.17762/turcomat.v12i6.5691.

SamyMM, AnisWR, Abdel-Hafez AA, Eldemerdash HD. 2021. An optimized protocol
of M2M authentication for internet of things (IoT). International Journal of Com-
puter Network and Information Security 13(2):29–38 DOI 10.5815/IJCNIS.2021.02.03.

Sanober S, Alam I, Pande S, Arslan F, Rane KP, Singh BK, Khamparia A, ShabazM.
2021. An enhanced secure deep learning algorithm for fraud detection in wireless
communication.Wireless Communications and Mobile Computing 2021:6079582
DOI 10.1155/2021/6079582.

Santhanakrishnan C, Annapurani K, Pradeep S, Senthilkumar T, RamyaM.
2022. Physical features based authentication technique and key manage-
ment for IoT networks.Wireless Personal Communications 127:1809–1825
DOI 10.1007/s11277-021-08724-5.

Sasikumar A, Ravi L, DevarajanM, Vairavasundaram S, Selvalakshmi A, Kotecha K,
Abraham A. 2023. A decentralized resource allocation in edge computing for secure
IoT environments. IEEE Access 11:117177–117189
DOI 10.1109/ACCESS.2023.3325056.

Tuncel and Öztoprak (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2551 47/48

https://peerj.com
http://dx.doi.org/10.1109/ACCESS.2022.3195304
http://dx.doi.org/10.1007/978-3-030-92968-8_1
http://dx.doi.org/10.2339/politeknik.470675
http://dx.doi.org/10.1109/IPCCC59175.2023.10253840
http://dx.doi.org/10.3390/s23021004
http://dx.doi.org/10.1016/j.compeleceng.2021.107669
http://dx.doi.org/10.1007/s41870-023-01284-w
http://dx.doi.org/10.17762/turcomat.v12i6.5691
http://dx.doi.org/10.5815/IJCNIS.2021.02.03
http://dx.doi.org/10.1155/2021/6079582
http://dx.doi.org/10.1007/s11277-021-08724-5
http://dx.doi.org/10.1109/ACCESS.2023.3325056
http://dx.doi.org/10.7717/peerj-cs.2551


Shahzad K, AlamM, Javaid N,Waheed A, Chaudhry SA, Mansoor N, Zareei M. 2022.
SF-LAP: secure M2M communication in IIoT with a single-factor lightweight au-
thentication protocol. Journal of Sensors 2022:1309402 DOI 10.1155/2022/1309402.

Umran SM, Lu SF, Abduljabbar ZA, Nyangaresi VO. 2023.Multi-chain blockchain
based secure data-sharing framework for industrial IoTs smart devices in petroleum
industry. Internet of Things 24:100969 DOI 10.1016/j.iot.2023.100969.

WazidM, Das AK, Shetty S. 2022. TACAS-IoT: trust aggregation certificate-based
authentication scheme for edge-enabled IoT systems. IEEE Internet of Things Journal
9(22):22643–22656 DOI 10.1109/JIOT.2022.3181610.

Weng J, Weng J, Zhang J, Li M, Zhang Y, LuoW. 2019. DeepChain: auditable and
privacy-preserving deep learning with blockchain-based incentive. IEEE Transactions
on Dependable and Secure Computing 18(5):2438–2455
DOI 10.1109/TDSC.2019.2952332.

Xu C, Qu Y, Luan TH, Eklund PW, Xiang Y, Gao L. 2022. A lightweight and attack-proof
bidirectional blockchain paradigm for Internet of Things. IEEE Internet of Things
Journal 9(6):4371–4384 DOI 10.1109/JIOT.2021.3103275.

Xu YH, Sun QM, Xu XR, ZhouW, Yu G. 2023. Energy efficiency and delay determinacy
tradeoff in energy harvesting-powered zero-touch deterministic industrial M2M
communications. Engineering Applications of Artificial Intelligence 121:105997
DOI 10.1016/j.engappai.2023.105997.

Zhang S, Yao T, Koe Arthur Sandor VK,Weng T-H, LiangW, Su J. 2021. A novel
blockchain-based privacy-preserving framework for online social networks. Con-
nection Science 33(3):555–575 DOI 10.1080/09540091.2020.1854181.

Zukarnain ZA, Muneer A, Ab Aziz MK. 2022. Authentication securing methods
for mobile identity: issues, solutions, and challenges. Symmetry 14(4):821
DOI 10.3390/sym14040821.

Tuncel and Öztoprak (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2551 48/48

https://peerj.com
http://dx.doi.org/10.1155/2022/1309402
http://dx.doi.org/10.1016/j.iot.2023.100969
http://dx.doi.org/10.1109/JIOT.2022.3181610
http://dx.doi.org/10.1109/TDSC.2019.2952332
http://dx.doi.org/10.1109/JIOT.2021.3103275
http://dx.doi.org/10.1016/j.engappai.2023.105997
http://dx.doi.org/10.1080/09540091.2020.1854181
http://dx.doi.org/10.3390/sym14040821
http://dx.doi.org/10.7717/peerj-cs.2551

