Submitted 28 February 2024
Accepted 5 November 2024
Published 9 December 2024

Corresponding author
Alexandra S. Kogan, akogan@hse.ru

Academic editor
Bilal Alatas

Additional Information and
Declarations can be found on
page 21

DOl 10.7717/peerj-cs.2550

© Copyright
2024 Gromov et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Spot the bot: the inverse problems of
NLP

Vasilii A. Gromov, Quynh Nhu Dang, Alexandra S. Kogan and Assel Yerbolova

HSE University, Moscow, Russia

ABSTRACT

This article concerns the problem of distinguishing human-written and bot-generated
texts. In contrast to the classical problem formulation, in which the focus falls on one
type of bot only, we consider the problem of distinguishing texts written by any person
from those generated by any bot; this involves analysing the large-scale, coarse-grained
structure of the language semantic space. To construct the training and test datasets,
we propose to separate not the texts of bots, but bots themselves, so the test sample
contains the texts of those bots (and people) that were not in the training sample. We
aim to find efficient and versatile features, rather than a complex classification model
architecture that only deals with a particular type of bots. In the study we derive features
for human-written and bot generated texts, using clustering (Wishart and K-Means,

as well as fuzzy variations) and nonlinear dynamic techniques (entropy-complexity

measures). We then deliberately use the simplest of classifiers (support vector machine,
decision tree, random forest) and the derived characteristics to identify whether the text
is human-written or not. The large-scale simulation shows good classification results (a
classification quality of over 96%), although varying for languages of different language
families.

Subjects Artificial Intelligence, Data Science, Natural Language and Speech, Neural Networks
Keywords Bot detection, NLP, Inverse problems, Clustering, Strange attractors

INTRODUCTION

The rapid evolution of artificial intelligence (AI) drives humanity to the post-truth world
(We may see its emergence now). Generative Al (text bots, large language models, etc.),
an important driver of the process, tends to distort human linguistic personality (language
aspect of human identity). Currently, the linguistic personality evolves, influenced by
texts written by humans (mainly, with good intentions)—from childhood fairy tales to
university calculus textbooks. With recent advances in text generation, we will soon find
ourselves immersed, from birth, in a gigantic ocean of texts (‘with a natural-identical
flavour’), generated by bots (Evidently, bots can generate texts at a much greater speed
than humans can write them) distorting a child’s linguistic personality. This makes it
necessary to design Al systems able to distinguish bot-generated and human-written texts
(Spot the Bot).

Frequently, detection methods try to ‘spot’ a particular bot, which does not seem highly
reasonable. This article is a continuation of the previous work Gromov & Dang (2023a) and
Gromov & Kogan (2023), in which structural differences of texts, generated by different
bots and human-written texts were analysed. In the present article, we expand the study
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and examine other languages, as well as other text bot models. Most importantly, we focus

on the task of finding efficient features, that could be used to identify texts, generated by

different types of bots (rather than constructing a classification model that can only detect

a specific bot). For this reason, we propose a modified problem statement: for a given

natural language, separate texts written by people from all texts generated by bots. To

check the performance of the respective classifier and its ability to generalise, we propose
to randomly divide the set of bots into bots used to construct the classifier and those

not used; the latter is employed to generate texts for a test set. Consequently, in order to
construct the classifier, one should utilise the most general features of the semantic space.

In addition, one should validate the respective hypotheses for several languages, preferably

those of various language groups and families.

In the study, we derive features for human-written and bot generated texts, using
clustering (Wishart and K-Means, as well as fuzzy variations) and nonlinear dynamic
techniques (entropy-complexity measures). We then deliberately use the simplest of
classifiers (support vector machine, decision tree, random forest) are the used to distinguish
human-written texts from bot-generated texts. In order to construct classifiers, we consider
the following hypotheses:

1. For the space of word embeddings, the areas ‘haunted’ by bots and those ‘visited’ by
humans coincide—if anything, people and bots share the same dictionary. On the
contrary, for the space of n-grams, one can reveal human and bot areas: humans
tend to produce unexpected sequences of words more than bots (people write more
sophisticatedly, ‘spicier’).

2. Therefore, a large number of n-grams corresponding to bot areas, and a small number
of n-grams corresponding to human ones betrays a bot text.

3. Crisply clustered, bot-generated texts yield more compact clusters of n-gram
embeddings, as compared with those for human-written texts. Also, the characteristics
of human and bot clusterings are statistically significantly different from each other.

4. Fuzzily clustered, bot-generated texts yield less fuzzy clusters, as compared with those
for human-written texts.

5. The non-linear dynamics characteristics of the semantic trajectories statistically
significantly differ for human-written and bot-generated texts.

Natural sciences consider two kinds of problems—the direct problems and the inverse
problems (Groetsch ¢ Groetsch, 1993). The direct problem means that one seeks to solve
a clearly formulated problem. On the contrary, the inverse problem means that one
reconstructs the problem from observations, determining its characteristics. By analogy,
we propose to divide natural language processing problems into the direct and inverse
ones, with pairs like ‘to design a bot—to detect a bot,” ‘to translate text—to automatically
assess translation quality,’ etc.

The rest of this article is organised as follows. The next section reviews recent advances in
bot detection. The third discusses proposed methods of bot detection; the fourth analyses
the classifiers performance. We discuss conclusions and further directions in the final
sections.

Gromov et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2550 2/25


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2550

PeerJ Computer Science

RELATED WORKS

Many articles on the bot detection problem centre on metadata analysis (information
on bot accounts, their profiles, the dynamics of message generation, and other features
not associated with the texts themselves). It is also possible to use information about
interactions between accounts, which can be represented as a graph. Daya et al. (2019)
proposed a graph-based bot detection system for communication graph. Mesnards et al.
(2021) found out that social media bots tend to interact more with humans than with other
bots and this feature (heterophily) can be used to detect them. BotFinder Li et al. (2022)
uses Node2Vec Grover ¢ Leskovec (2016) embeddings and community detection to identify
bots in social media. Pham et al. (2021) proposed Bot2Vec —an improved Node2Vec Grover
¢ Leskovec (2016) algorithm for the bot detection task. There are various models which
utilize graph convolutional networks (GCN): BotRGCN Feng et al. (2021), SqueezeGCN
Fu et al. (2023), SEGCN Liu et al. (2024). Latah (2020), in his review, provides a detailed
classification of such methods. The author concludes, based upon the Defense Advanced
Research Projects Agency (DARPA) bot identification competition, that ‘bot detection had
to be semi-supervised’, that is, algorithms of this class should be verified and corrected by
humans.

In this study, in order to solve the problem of bot detection we employ only texts
generated by bots and written by humans. Usually, the research articles on the algorithms
of this class tend to study a single (a group of) specific bot in order to build a kind of anti-bot,
usually using a neural network model. For example, Garcia-Silva, Berrio ¢» Gomez-Perez
(2021), to identify Twitter bots, employ fine-tuned generative pre-trained transformers
(GPT, GPT-2); pretrained embeddings: global vectors for word representation (GloVe),
Word2Vec, fastText, and contextual embeddings from language model (ELMo) are also
used (Garcia-Silva, Berrio ¢ Gomez-Pérez, 2019).

We believe that the statement of the bot detection problem considered in this article—to
draw the demarcation line between all texts written by people and all texts generated by
bots—is the most reasonable one, both practically and theoretically. Unfortunately, little or
no work deals with the problem of bot detection in this particular statement. At the same
time, one can refer to a number of articles that, without directly touching on the problem,
develop methods to explore the structure of the semantic space of a natural language,
furnishing one with theoretical grounds to solve the problem in question.

Here, the first approach concerns itself with the simplest characteristics of the
corresponding texts: for example, Kang, Kim & Woo (2012) employ simple lexical and
syntactic features, such as the frequency of letters or the average length of a word. Cardaioli
et al. (2021) model a Twitter user using a set of stylistic features, and distinguish bot
and human accounts by estimated consistency of their message style. Chakraborty, Das &
Mamidi (2022) combine text feature extraction with graph approaches. Gromov ¢ Dang
(2023b) transform text into a multivariate time series to calculate its entropy and complexity
in order to distinguish bots and humans’ time series. Hernandez-Ferndandez et al. (2022),
(using the example of the Catalan language) summarise the basic laws inherent in texts of
natural languages at the morpheme-word level. Importantly, the overwhelming majority
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of the laws are power ones; Torre ef al. (2019) provide the psychophysiological reasons
for these laws to appear (see also Baixeries, Elvevag ¢~ Ferrer-i Cancho (2013), Gromov &
Migrina (2017)). Wang & Liu (2023) indicate that a power law exponent in Zipf’s law
constitutes a measure of lexical diversity.

The second approach utilises sentiment analysis of texts in order to distinguish human-
written and bot-generated ones: their sequences of emotional characteristics tend to differ
from each other. This approach seems to currently exhibit a surge in publications (Uymaz
& Metin, 2022; Monica ¢ Nagarathna, 2020). Heidari, James Jr & Uzuner (2021) employ
complex sentiment features of tweets (in English and Dutch). Liao et al. (2021) propose a
novel multi-level graph neural network (MLGNN) for text sentiment analysis; Lirn, Kung
& Leu (2022) and Galgoczy et al. (2022) combine Bidirectional Encoder representations
from transformers (BERT) with a text sentiment analysis to identify harmful news. Also
promising are predictive clustering methods (Lira, Xavier ¢ Digiampietri, 20215 Gromov
& Baranov, 2023; Gromov & Borisenko, 2015; Gromov & Konev, 2017; Gromov & Shulga,
2012), which reveal characteristic subsequences (motifs) in a time series. Many articles use
labelled data to train neural networks: for instance, Mu ¢ Aletras (2020) develop a dataset
of Twitter users with retweets from unreliable or reliable news sources, Ren ¢ Ji (2017)
discuss an efficient model to detect spam with a false opinion. Their model demonstrates
good results; however, the authors point out the limitations of supervised learning methods
and the need for research into unsupervised ones.

Tanaka-Ishii, in her monograph (Tanaka-Ishii, 2021) and a series of articles (Tanaka-
Ishii & Aihara, 2015; Tanaka-Ishii ¢ Bunde, 2016; Tanaka-Ishii ¢ Takahashi, 2021),
examines long correlations between words in the text (see also (Altmann & Gerlach,
2016; Altmann, Cristadoro ¢ Esposti, 2012), seemingly, a promising feature to distinguish
human and bot texts. Apparently, it would be extremely difficult for bots (even trained
using very complex neural network models) to feign this kind of sequence (since the
majority of them learn from local information and learn to track only local connections
within one n-gram).

Brown et al. (1992) examine the entropy characteristics of a natural language. Debowski
(2020), in his monograph, explores the main characteristics of natural languages; he
establishes that most characteristics follow power laws. Gromov ¢ Konev (2017) examine
a natural language as a whole (For the Russian and English languages); they reveal that
lengths of texts written in a particular natural language satisfy a power-law distribution;
here, one can detect a bot using not a single text, but many texts simultaneously. To sum up,
these language laws offer promise as bot-detecting tools—it would be difficult for a bot to
generate texts complying with all the laws discussed in these works. The above approaches
deal with sequences of characters in a language. It seems to be more reasonable to deal
with sequences of meanings, given by their embeddings, in the semantic space—semantic
trajectories (Gromov & Dang, 2023b). It is possible to analyse semantic trajectories as those
of dynamic systems (Malinetskii ¢ Potapov, 2000; Kantz ¢ Schreiber, 2004) and to establish
information-theoretic characteristics of these trajectories (Gromov & Dang, 2023b).

To summarise, in natural languages, one can broadly distinguish two groups of features:
local and global (holistic). Local features rely on properties of individual words or n-grams;
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global properties, on those of an entire text or even a language itself. Frequently, local
characteristics fail to distinguish human-written texts and bot-generated texts, whereas
global ones can do the job (Comte de Buffon’s maxim ‘Style is the man’ seems to acquire
a new meaning here).

PROBLEM STATEMENT

For a given natural language, one considers a space of texts €2, both written by humans

and generated by bots. The space is divided into a subspace A = {«y,...,a,} of the texts

written by humans and a subspace M = UJIfZIJ\/Ij of texts generated by bots (Cf. Ancient
Greek GvBponog (a man) and wnxévnuae (a machine).). M; = {,ul, ...,u,mj} comprises text

generated by the j-th bot. The objective is to construct a set features A = {A1,...,Ax} and
to build a classifier R = R(A) with a classification F1-score above threshold rx.

One randomly samples human-written texts in order to construct training and test sets.
Most importantly, in order to construct training and test sets for bot-generated texts, one
does not randomly sample this set of texts, but randomly samples the set of bots themselves
{M] ,j =1..1} into training and test subsets. The former comprises bots generating texts
used to train the classifier; the latter, bots generating texts used to test it. The number of
texts and the distribution of text sizes are approximately the same as those for the training
and test sets for human-written texts.

METHODS

A flowchart of the text classification process is shown in Fig. 1.

Data collection and preprocessing

In order to construct and verify universal bot detection models, we conduct simulations
with the employment of texts of various languages for various language families, as
summarised in Table 1. For each language, Table 1 provides information about its language
group and family; the number of human-written texts in the sample; and the average text
size. To collect human-written texts, we use the national literature corpora: we believe it
is the national literature that embodies the language and associated language processes
best. All texts are collected from open sources (Project Gutenberg and so on). For analysis,
we employ only texts of 100 words and more. Each text is tokenised and lemmatised
(Table 1 summarises the lemmatisation models used). In addition, we replace pronouns,
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Table 1 Human-written corpora details for Russian, English, German, Vietnamese and French lan-

guages.
Language Group Family # texts Avg. text length
Russian East Slavic Indo-European 6,429 14,510
English Germanic Indo-European 11,052 21,744
German Germanic Indo-European 12,503 72,878
Vietnamese Vietic Austroasiatic 1,071 54,496
French Romance Indo-European 8,405 66,946

prepositions, numerals, and proper nouns with the respective tokens, using named entity
recognition and part of speech tagging models.

We employ four bot types of varying complexity to create an effective algorithm for
simple and complex models: long short-term memory (LSTM), GPT-2, multilingual GPT
(mGPT), “Yet Another Language Model” (YaLM). We provide some details on the models
hyperparameters, sizes and text generation process in Appendix A.

WORD EMBEDDINGS

To obtain embeddings, we use two approaches: the first employs singular value
decomposition (SVD) of the term frequency-inverse document frequency (TF-IDF)
matrix for words and texts (Bellegarda, 2022); the second, Word2Vec (Mikolov et al., 2013),
a neural-network model. The methods are widely used to study the semantics of texts:
both SVD and Word2Vec embeddings capture structural relationships between words. We
provide some details on the word embedding techniques in Appendix B.

We obtain embeddings for n-grams by concatenating the ones for words of this n-gram.

Thus, to construct a sample of n-gram embeddings, one should (1) collect a corpus
of natural language texts; (2) pre-process them; (3) build a dictionary (a set of words
with corresponding embeddings); (4) build an n-gram dictionary for all n-grams of the
language.

Semantic trajectories

Several approaches used in this article rely on the concept of the semantic trajectory of a

text. By a semantic trajectory we mean a sequence of word embeddings (Gromov & Dang,
2023b), thought of as a multidimensional time series. Gromov and Dang reveal the chaotic
nature of semantic trajectories for texts of literary masterpieces for the Russian and English
languages.

Characteristics for text bot detection

This section discusses the characteristics the classifier employs for bot identification. Since
the classifier itself is extremely simple, the performance of the bot-detection algorithms
depends mainly on the characteristics they use.

Entropy and complexity of semantic trajectories
Martin, Plastino, and Rosso (Rosso et al., 2007) proposed a method to distinguish chaotic
series from simple deterministic processes, on the one hand, and stochastic processes, on
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the other. The method employs entropy and complexity of a time series. The procedure
for calculating entropy and complexity is presented in Appendix C.

This method allows one not only to build a classifier, but also (which is important for all
methods discussed in the article) to establish the values of # and d (the number of words in
an n-gram, and the dimension of the embedding space, respectively) for which the semantic
trajectory reflects the true ‘dynamics’ of the text. If the values of these quantities are too
small, the semantic trajectory is mapped to a point on the entropy-complexity plane, which
belongs to the area of purely random processes; as the values of these quantities increase,
the point shifts to the region of chaotic processes; with a further increase, the point moves
to the region of simple deterministic processes. We believe that the true dynamics of a
text are reflected by those values of # and d at which the semantic trajectory is mapped
into the area of chaos (refer to Gromov ¢» Dang (2023b) for details). By way of illustration,
Fig. 2 shows, for the Russian and English languages, the values of n and d, such that most
semantic trajectories of the national literature corpus fall into the area of chaotic processes.

The hypothesis to be tested within this framework is as follows: ‘For certain values of the
number of words in an n-gram, #, and the dimension of the embedding space, d, the points
on the entropy-complexity plane corresponding to the semantic trajectories statistically
significantly differ for human-written and bot-generated texts.” Naturally, all pairs n and
d, such that the hypothesis holds true, belong to the chaos region.

Attractor dimensions of semantic trajectories

This approach also employs the semantic trajectories of texts: to solve the problem in
question, one estimates various characteristics of a dynamic system (and its attractor) that
generate observed (multidimensional) time series (semantic trajectories).

The hypothesis to be tested within this framework is as follows: ‘For certain values of
the number of words in an n-gram, n, and the dimension of the embedding space, d, the
estimated dimensions of the dynamic systems attractors statistically significantly differ
for human-written and bot-generated texts.” In this article, to this end, we use the Renyi
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entropy of a dynamic system (Malinetskii ¢ Potapov, 2000; Kantz ¢ Schreiber, 2004). The
procedure of calculating the attractor dimensions is presented in Appendix D.

Clustering of n-grams and cluster cohesion measures

This section discusses features based on the large-scale, coarse-grained structure of the
semantic embedding space. Interestingly, one cannot trace these differences (discussed
below) for words (n = 1)—after all, bots use the same dictionaries as people do—but can
trace this for bigrams, trigrams, efc. (n >1)—people tend to produce more unexpected,
non-trivial sequences of words. The hypotheses to be tested within this framework are as
follows:

1. For crisp clustering, n-grams of bot-generated texts statistically significantly yield more
compact clusters than those of human-written texts.

2. For fuzzy clustering, n-grams of bot-generated texts statistically significantly yield more
clearly defined cluster cores and smaller fuzzy areas than those of human-written texts.

3. A large-scale simulation reveals areas of semantic space more frequently ‘visited’ by
people, and those more frequently ‘haunted’ by bots. Respectively, the hypothesis to be
tested within this framework is as follows: ‘For bot-generated texts, n-grams belonging
to the ‘bot areas’ appear statistically significantly more frequently as compared to
human-written texts.’

All above hypotheses involve clustering n-gram embeddings, using one or another
clustering algorithm. The clusters of n-gram embeddings tend to exhibit rather whimsical
shapes; moreover, the total number of clusters is unknown a priori. This imposes
demanding requirements on the clustering algorithm used. On the one hand, it should not
require a priori knowledge of the number of clusters; on the other hand, it should allow
clusters of various shapes. Whereas, in order to fulfil the first requirement, one may run the
algorithm for various preset numbers of clusters (within a reasonable range); in order to
fulfil the second requirement, one should employ specific clustering algorithms—it should
be clearly understood that any clustering algorithm implicitly defines what it ‘considers’ to
be a cluster.

In the present, we employ several clustering algorithms: K-Means (MacQueen, 1967);
C-Means (Bezdek, Ehrlich ¢ Full, 1984) (the latter is a fuzzy counterpart of the first); the
Wishart clustering algorithm (Wishart, 1969); the Wishart algorithm with fuzzy numbers
(Novak, Perfilieva ¢ Mockor, 2012). The Wishart algorithm combines graph- and density-
based clustering concepts: this combination makes it possible to identify clusters of almost
any structure and determine their number in the course of the clustering process. We
provide their pseudocodes and detailed descriptions in Appendix E.

With crisp clustering algorithms, we use the following characteristics to estimate the
compactness of crisp clusters:

1. The number of elements (without repetitions) in a cluster: an n-gram can appear in
texts, and thereby in a cluster, many times—however we count it just one time. The
characteristic is normalised to the size of the largest cluster of the clustering.

2. The number of elements (without repetitions) in a cluster. The characteristic is

normalised to the total number of unique vectors in the sample.
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3. The number of elements (with repetitions) in a cluster: here, we count how many times
the n-gram appears in the texts. The characteristic is normalised to the size of the largest
cluster of the clustering (the size here is the number of elements with repetitions).

4. The number of elements (with repetitions) in the cluster. The characteristic is

normalised to the total number of elements (with repetitions) in the clustering.

The maximum distance from a cluster element to the centre of the cluster.

The average distance from a cluster element to the cluster centre.

The maximum distance between elements in a cluster.

® N W

The average distance between elements in a cluster.
In all cases, the Euclidean distance is used. Description of fuzzy numbers and application
of Euclidean distance to them are presented in Appendix F.

The above approaches imply various ways to cluster data, and thereby various clusterings,
produced by both various values of hyperparameters for the same algorithm and different
clustering algorithms. In order to compare the quality of the clusterings, we employ
clustering quality measures (Xiong & Li, 2018).

Training and test data

According to the problem statement, the set of bots M is randomly divided into a set of
bots used to train classifier models and that used to test it. A random selection gave: GPT2
and YaLM for training bots (M;, M), LSTM and mGPT for test ones (M3, My).

The training and test dataset sizes for all languages are identical: the training dataset
consists of 2,000 human-written texts and 2,000 bot-generated texts, the test dataset consists
of 600 human-written texts and 600 bot-generated texts. The distribution of text lengths
for bots and people is also similar; for more details, see Appendix G.

We deliberately consider the simplest models for classification: support vector machine,
decision tree, and random forest. The hyperparameters of each model are selected by
10-fold cross-validation. We set the F1-score threshold * =0.9.

CLASSIFICATION RESULTS OF NATURAL LANGUAGE
TEXTS

The values for the embedding space dimension d and the number of words in the n-gram
n is of decisive importance for the efficiency of the algorithms under consideration. As
noted earlier, as a criterion to choose the values of these two parameters, we consider that
the points with entropy and complexity coordinates for most semantic trajectories of a
corpus of literary texts fall into the ‘region of chaos’ on the entropy-complexity plane. A
large-scale simulation, for all languages under consideration, established parameters for
which the vast majority of literary texts fall into the region of chaos.

Asan illustration, Fig. 3 exhibits points on the entropy-complexity plane that correspond
to the semantic trajectories of Russian literary texts: it is clear that in the left subplot of
Fig. 3 (n=4,d = 1) the vast majority of points fall into the area of simple random processes
(too small values); in the central subplot of Fig. 3 (n=3,d = 4), into the area of chaotic
processes (optimal values), in the right subplot of Fig. 3 (n=5,d = 4), into the area of
simple deterministic processes (too large values); refer to Appendix H for other languages
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data. We think that smaller and larger # and d, for which most texts seem to belong to the
region of purely random and simple deterministic processes, respectively, do not reflect
the nature of the texts (For larger n, we attribute this to the fact that we cannot adequately
estimate entropy and complexity for very large values of n and d, since trajectories are
limited in size.).

It is of interest that the areas of optimal values can differ significantly for different
languages; for example, for Vietnamese, the area under consideration includes longer
sequences of words; for d = 1, the optimal values of n are from 10 to 14; whereas for
Russian—from 6 to 8, and for English—from 7 to 8. We attribute this with the word order
in the language (free, fixed, intermediate options).

Classification with entropy-complexity measure

Figure 4 presents typical sets of points on the entropy-complexity plane, corresponding to
the semantic trajectories of literary texts. The picture corresponds to the Vietnamese
language: here the blue dots correspond to literary texts, the dots of other colours
correspond to texts generated by the bots in question—the picture allows us to conclude
that it is possible to separate texts using these features.
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Table 2 F1-score values for classification with entropy-complexity measures. SVM stands for Support
Vector Machine; DT, for Decision Tree; RF, for Random Forest

Russian English German French Vietnamese
SVM 0.89 0.64 0.97 0.95 0.95
DT 0.76 0.81 0.97 0.59 0.96
RF 0.78 0.82 0.98 0.87 0.97

Table 2 summarises the results of classifiers based on these characteristics, for a test
sample (for accuracy scores of the classifiers, see Appendix I). It is curious that the optimal
models differ for different languages: for Russian and French, the highest classification
quality is achieved with the support vector machine; for English, German and Vietnamese,
with random forest. At the same time, the F1-score values of the optimal models are
above 0.8, which indicates that even when trained on the texts of one set of bots (GPT2
and YaLM), the model has a generalisation ability and separates literary texts from texts
generated by LSTM and mGPT, which it has not encountered before, when training a
classifier.

Classification with semantic trajectory characteristics

Figure 5 exhibits a characteristic view of the set of values of generalised entropy (¢ =0..20)
for the Vietnamese language. A reader may find similar figures for other languages and
other values of g in Appendix J. Table 3 presents the results of simulation for this type of
feature(for accuracy scores of the classifiers, see Appendix I). The results obtained allow
us to conclude that features of this type give significantly worse results than other types
of features. However, even the worst results for German and Vietnamese languages here
do not drop below 0.5. For the Russian, English, and French languages, the best appear
to be decision trees trained on SVD embeddings; for the German language, a decision
tree trained on CBOW vectors. Importantly, as in the case of entropy-complexity, the
decision tree cannot be called a universally optimal model—for the Vietnamese language
the decision tree is retrained, and the classification quality is higher when using the support
vector machine (on CBOW embeddings).

Classification with characteristics derived from the clustering of
n-grams

Table 4 summarises the simulation results for features based on the Wishart clustering
technique (refer to Sect. Clustering of n-grams and cluster cohesion measures, for accuracy
scores of the classifiers, see Appendix I). For most languages, SVM shows significantly better
results than a decision tree, but the decision tree works much better for the Russian language.
The best embedding also depends on the language. Table 5 contains the corresponding
results for features based on K-Means clustering (for accuracy scores of the classifiers, see
Appendix I). Similarly, SVM produces better results than a decision tree for the majority of
languages. However, for Russian and Vietnamese languages, the decision tree shows notably
better F1 scores. The best embedding for K-Means clustering also cannot be chosen. Thus,
it is impossible to select a specific embedding or a specific architecture for classification
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Figure 5 Generalised entropy values for texts of the Vietnamese language, q ranging from 0 to 20. Blue

line refers to literary texts, purple line - texts generated by GPT-2, orange - texts, generated by LSTM.

Full-size Gl DOI: 10.7717/peerjcs.2550/fig-5

Table 3 F1-score values for classification with semantic trajectory characteristics.

Russian English German French Vietnamese
Support Vector Machine
SVD 0.52 0.50 0.59 0.75 0.52
CBOW 0.00 0.59 0.77 0.00 0.70
Skip-Gram 0.00 0.00 0.65 0.59 0.50
Decision Tree
SVD 0.66 0.78 0.65 0.85 0.67
CBOW 0.02 0.58 0.80 0.00 0.62
Skip-Gram 0.00 0.00 0.62 0.66 0.59
Random Forest
SVD 0.68 0.79 0.63 0.86 0.68
CBOW 0.05 0.56 0.81 0.00 0.68
Skip-Gram 0.00 0.00 0.68 0.74 0.60

using clustering of n-gram text vectors. It is curious that for different languages, the best

results were shown by different combinations of embedding type and classifier variant,

and, most importantly, the variant that is the best for a given language shows the poor

results for languages of other language families.

A large-scale simulation reveals that the classifier performance depends on the clustering

algorithm used. Table 6 summarises classification results for clustering algorithms

used:Wishart, K-Means and their fuzzy variations—Fuzzy Wishart and C-Means (for

accuracy scores of the classifiers, see Appendix I). Intra-cluster distance features were used

for classification (i.e., features 5-8 listed in Sect. Clustering of n-grams and cluster cohesion
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Table 4 F1-score values for Wishart clustering-based classifiers.

Russian English German French Vietnamese
Support Vector Machine

SVD 0.41 0.75 0.92 0.93 0.57

CBOW 0.53 0.87 0.60 0.57 0.76

Skip-Gram 0.61 0.81 0.58 0.96 0.82
Decision Tree

SVD 0.61 0.70 0.81 0.84 0.76

CBOW 0.81 0.75 0.69 0.57 0.32

Skip-Gram 0.79 0.68 0.58 0.64 0.28
Random Forest

SVD 0.48 0.77 0.89 0.48 0.45

CBOW 0.81 0.83 0.64 0.58 0.28

Skip-Gram 0.78 0.76 0.52 0.66 0.31

Table5 F1-score values for K-Means clustering-based classifiers.

Russian English German French Vietnamese
Support Vector Machine
SVD 0.59 0.78 0.92 0.58 0.70
CBOW 0.21 0.95 0.82 0.84 0.44
Skip-Gram 0.40 0.86 0.85 0.85 0.26
Decision Tree
SVD 0.33 0.80 0.87 0.35 0.72
CBOW 0.74 0.87 0.47 0.45 0.27
Skip-Gram 0.84 0.82 0.32 0.71 0.19
Random Forest
SVD 0.50 0.92 0.86 0.83 0.66
CBOW 0.18 0.90 0.38 0.93 0.17
Skip-Gram 0.78 0.86 0.62 0.63 0.22

measures). In general, the Wishart algorithm (in its crisp and fuzzy versions) proved to be
the best algorithm for identifying features for the classifier.

The introduction of fuzziness into the Wishart algorithm significantly improves the
classification algorithm performance: it achieves the best results for German, French, and
Vietnamese on random forest models trained on features extracted with the employment
of its fuzzy modification. For both Russian and English languages, one can also observe
the better performance of the model, as compared to the crisp Wishart algorithm. This
is most clearly expressed for the French language—the crisp Wishart gave the value F1 =
0.61; whereas its fuzzy version, F1 = 0.93.

Unified classification model

We also examine a classifier based on all the features discussed above. Table 7 summarises
the classification results (for accuracy scores of the classifiers, see Appendix I). A simulation
shows that mechanical combination of features does not necessarily improve classification
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Table 6 F1-score values for classifiers based on intra-cluster distances.

Russian English German French Vietnamese
Support Vector Machine
Wishart 0.53 0.64 0.54 0.35 0.68
Fuzzy Wishart 0.49 0.84 0.50 0.89 0.60
K-Means 0.95 0.80 0.51 0.63 0.65
C-Means 0.93 0.76 0.52 0.47 0.54
Decision Tree
Wishart 0.53 0.64 0.54 0.35 0.68
Fuzzy Wishart 0.49 0.84 0.50 0.89 0.60
K-Means 0.95 0.80 0.51 0.63 0.65
C-Means 0.93 0.76 0.52 0.47 0.54
Random Forest
Wishart 0.55 0.72 0.71 0.61 0.67
Fuzzy Wishart 0.69 0.85 0.89 0.93 0.81
K-Means 0.98 0.86 0.61 0.51 0.70
C-Means 0.95 0.78 0.60 0.67 0.72

Table7 F1-score values for unified classification model. SVM stands for Support Vector Machine; DT,
for Decision Tree; RF, for Random Forest.

Russian English German French Vietnamese
SVM 0.82 0.98 0.63 0.82 0.74
DT 0.76 0.85 0.55 0.59 0.62
RF 0.86 0.86 0.57 0.68 0.66

quality. For example, for German and Vietnamese, the optimal F1-measure values for the
unified classifier are below 0.75, compared to the entropy-complexity-based classifier (F1 =
0.98 for German and 0.97 for Vietnamese). On the other hand, the quality of classification
of English texts has significantly improved: the F1 value amounts to 0.98, as compared to
the maximum 0.87 of the classifier based on the characteristics of the clusters. At the same
time, it was found that the addition of some features reduces the differentiating ability of
other features, and therefore the model as a whole.

CONCLUSIONS

The present article states the problem of distinguishing all human-written and bot-
generated texts—in our opinion, this formulation of the problem is more reasonable than
the task of identifying an individual bot, no matter how effective and efficient it is. The
training and test samples are formed by randomly separating not the texts of bots and
people, but the bots and people themselves, so the test sample contains the texts of those
bots (and people) that are not in the training sample.

A large-scale simulation reveals that one can solve the problem, but for languages of
different language families, optimal classification algorithms and optimal features can
vary greatly. The article intentionally used the simplest classifiers to comparatively test the
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features used for classification. The following showed themselves to be the best (on the test
sample):

e for the Russian language—random forest; intra-cluster distances from K-Means
clustering; F1—0.98;

e for English—support vector machine; a combination of all signs; F1—0.98;

e for the German language—random forest; entropy-complexity; F1—0.98;

e for French—support vector machine; intra-cluster distances and averaged coordinates
of cluster centres extracted from Wishart clustering; F1—0.96;

e for the Vietnamese language—random forest; entropy-complexity; F1—0.97.

Despite the absence of test-set bots in the training set and the use of simplest classifiers,
a reasonable choice of features for classification made it possible to achieve a classification
quality of over 96% for languages of various language families. A simulation shows that a
mechanical combination of features does not necessarily improve classification quality.

Source code is available in the GitHub repository: https:/github.com/quynhu-d/jstb-
inverse-problems (DOI: https:/doi.org/10.5281/zenodo.10706994).

FUTURE WORKS

The results of this article can be applied in various areas such as education (basic and
higher), parental control, social media analysis as well as cognitive philosophy. As part
of future work, we intend to further investigate our methods on different languages of
different language groups and use classification models that are more effective. We also plan
to use a wider range of bot models, in order to find the link between a model architecture
and the sets of features, which work best for this architecture.
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APPENDIX A. TEXT GENERATION

LSTM models were trained on human-written corpora with the following hyperparameters:
batch size—16, sequence length—256, 10,000 epochs.

The remaining models were used as is from open-sources. We used different GPT-2
models for different languages from the Hugging Face. The particular models and the
number of trainable parameters are in Table S1. The GPT-2 model for the Russian
language is significantly larger than the models for other languages. The pretrained GPT-2
model with 124M and 356M parameters had repetition problems, so it was impossible to
generate long texts. We have opted for a bigger model in order to get homogeneous texts
across all languages. mGPT has 1.4B parameters, and YaLM has 1B parameters.

In order to generate the texts of similar length distribution and content as the human-

written ones we employ the following procedure:
Table S2 provides details about the generated texts. The distribution of generated text

lengths is similar to that of the human-written texts for the respective languages in log-scale.
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Algorithm 1: Algorithm for text generation
Input:
D —corpora of human-written texts in the fixed language,
bot —model for text generation,
I -maximum number of words to generate for on prompt,
n —number of texts to generate
Output: Dy, —corpora of bot-generated texts
Dpot < @
form<«1...n do

# Using random text from the corpora

d < random_choice(D)

i< 1

dy <O

while i <£(d) do

# Generate < lwords

r < bot(d[i],1)

# Add them to the generated text

dp < d,Ur

i<—i+ £(r)

# Add the generated test to the corpora

Diot <= Dot U dp
return Dy,

APPENDIX B. WORD EMBEDDING TECHNIQUES

The SVD method employs the singular values decomposition of the TF-IDF matrix W
(Bellegarda, 2022), constructed for a document set D and a set of words T, with elements
defined as follows:

Wi = TF(t;, d]) x IDF (t;,D);

TF(t,d) = " IDF(t,D) = zhy,

n denotes the number of times the word ¢ occurs in document d.

An m-rank singular decomposition of the matrix W implies that one decomposes the
matrix into a product of three matrices W ~ W' =UAVT. U is an M x m orthonormal
matrix; A is a diagonal matrix, with the list of the singular values of the matrix W,

Al = Ay > o> Ay > 0, as its diagonal; and V is the N x m orthonormal matrix. A
hyperparameter m determines the share of information one retains in the process of the
singular decomposition (if m is equal min(M, N ), one retains all information). The matrix
W’ best approximates W in L,-norm, and preserves the semantic relations reflected in
W. Row vectors of the matrix U constitute word embeddings (t; — u; A, where u; is the
i-th row of the matrix U); row vectors of the matrix V' constitute document embeddings
(d; — v; A, where vj is the j-th row of the matrix V) (Bellegarda, 2022).

Advantageously, in this method, to get embeddings of various dimensions one should
decompose the matrix just once. Namely, if one has obtained m;-dimensional embeddings,
in order to obtain m;-dimensional ones, m, < mj, one should just truncate the former to
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m, components (Bellegarda, 2022). This significantly reduces the computational resources
required to solve the problem considered: it is enough to construct embeddings for a
sufficiently large value of m (Most other methods for obtaining embeddings require
constructing them separately for each dimension.).

In the Word2Vec method, in order to construct embeddings, one trains a specific
neural network data. We train two Word2Vec architectures (we use a Python library
gensim): Skip-Gram (the model, given a word, predicts its context) and Continuous Bag of
Words (CBOW) (the model, given a context, predicts the word). Interestingly, Word2Vec
embeddings of similar words are located close to each other in the vector space.

APPENDIX C. ENTROPY AND COMPLEXITY

The method utilises the concept of ordinal patterns. For an n-gram (x,...,x,), an ordinal
pattern is defined as a permutation w = (ry, 1, ...,7,—1) such that x,) <x, <... <x,, holds.
We extend the definition of ordinal patterns to multivariate time series (a sequence of
n-grams) {x;};_,,x; € R?. For the j-th component (j = 1..d) we form the permutation 7;
as in the one-dimensional case. The general permutation for a multidimensional n-gram
sequence is defined as a set of permutations I1 = (771,73, ...,74) (The total number of such
permutations amounts to (n!)d).
Next, one estimates the probability P; for i-th ordinal structure to occur, as the frequency
of its occurrence in the multidimensional time series under consideration (a text) (1); (2)
calculates two characteristics: complexity and entropy; (3) and locates the resultant point
on the entropy-complexity plane in order to determine the type of series at hand. The
method employs Shannon entropy:
n!
S[P1=—) P;-InP;, H[P] =
i=1
Spax =S[P.]=InN; P,=1/N,...,1/N is the uniform distribution;
and MPR-complexity:

ClP]=Qy[P.P.]-H[P]

S[P]

max

Qy is Jenson—-Shannon divergence between P and P,, Qy is the normalising coefficient
0=<Q=1:

Q[P, Pel= Qo (S[(P+P,)/2]—S[P/2] — S[P./2]).

Thereby one maps a semantic trajectory (a text) into a point on the ‘entropy-complexity’
plane. The location of the point, with respect to the theoretical boundaries, determines
the type of series (Rosso et al., 2007). ‘Simple’ stochastic processes correspond to points
in the lower right corner; ‘simple’ deterministic ones, to points in the lower left corner;
chaotic processes, to points close to the apex of the upper theoretical limit (Rosso et al.,
2007). Figure S1 (from Gromov ¢ Dang (2023b)) shows the upper and lower theoretical
boundaries (for the case of a one-dimensional series); points corresponding to typical
chaotic, simple deterministic, and random processes; and conditional boundaries of the
respective regions.
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APPENDIX D. ATTRACTOR DIMENSIONS
The Renyi entropy of a dynamic system:

H;=

1 N
80 pe)™:

A parameter q is the order of entropy; p(x;) is the probability for the state x; of the
dynamical system to occur. One can interpret the Renyi entropy H, as a measure of the
diversity and uncertainty of the system, with the value of g influencing the sensitivity of
this measure to various aspects of the probability distribution. For g = 1, the Renyi entropy
amounts to Shannon entropy, and as g changes, one gains insight on higher orders of
structure and dependencies in the system.

The Renyi entropy Hy is used to estimate the generalised attractor dimension of the
system Dj. In this case, one calculates the Renyi entropy for the range :

& =[In(distyn) + 1; In(dist ey ) — 1]

distyin is the minimum distance between two points and dist,,,, is the average maximum
distance between points along each data dimension. For a given ¢, the probability for
dynamical system states to be in a particular interval is:

1
l—q

N

Hy=——log(}_p(bin(e))?)

i=1
where bin(e); is the probability of the i-th interval of the distribution histogram. For each
&; from the interval, one calculates the entropy. Then one plots the calculated entropies H,
against &; and selects the largest linear segment of this graph in order to estimate its slope,
using the least squares method. The cosine of the slope angle yields the generalised g-order
dimension of the strange attractor D,.

APPENDIX E. CLUSTERING ALGORITHMS

Wishart clustering is a density- and graph-based algorithm. Each point is either included
in a cluster or marked with noise, based on the significance of nearest clusters.

The K-Means algorithm splits objects into K clusters, minimising intra-cluster distances
to cluster centroids.

C-Means is a fuzzy variation of the K-means algorithm and minimises the distances
between objects and cluster centroids.
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Algorithm 2: Wishart clustering
Input: {x; ...x;}—objects, d(x;, x;)—distance function, k, h

1
=

Output: { yi=y (x,-)} ,—cluster labels
di(x;) < distance to k-th nearest neighbour of x;

fori<1tol do
Vi—xex(l)..x(i—1)|d(x(1),x) < dk(x(i))

Ci<y(x)lxeVi
if Ci= o then
generate new cluster ¢
y(i) < ¢
if |C;| =1 then
let C; ={c}
if completed(c) then
¥(i) < noise
else
Y ¢
if |C;| > 1 then
let {C;=ci,..., ¢}
if completed(c;) Vj then
¥(i) < noise
Si < ¢ € Cilcissignificant (h)
if |S;| > 1 then

completed(c) <— True Ve € S;
y(x) < noise Vx € c € G;\ S;

¥(i) < noise
else

merge all clusters from C; and update labels in merged clusters
return y

Algorithm 3: K-Means clustering
Input: x; ...x;—objects, K—number of clusters
Output: { C;,i =1 ..K}—<cluster sets

generate at random K centroids ¢, ...
while not converged do
Ci=x:l|x—ql* < minj_;_x || x—¢l)”

=L
Gi= ] ZxEC,’x

return {C;}

sort objects so that di (x(1)) < ... < di(xq))) the cluster c is defined to be a height-significant
one, with respect to height value h > 0 if maxxixja(p(xi) —p(x)) = hp(x) = ﬁ, Vie(x)—
volume of the minimum hypersphere with its centre at point x containing at least k observa-
tions
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Algorithm 4: Fuzzy C-Means clustering

Input: x; ...x;—objects, K—number of clusters , m—the degree of cluster fuzziness
Output: {wy; = wy (xi)}ﬁ’:KL =1 —coefficient sets with the degree of x; belonging to the k-th
cluster

Each object x is randomly assigned a cluster membership coefficient wy (x),k =1 ..K
while || w1y —wlI* = (or || Cys1y — Cy I =€) do

e =[> wi(x)x1/1> wi"(x)] 1
W) = [ Ceccllx—alx—e )77]

return {wy;}

APPENDIX F. FUZZY NUMBERS

For fuzzy clustering algorithms, a fuzzy LR number is employed (Novak, Perfilieva ¢
Mockor, 2012): for a d-dimensional vector x = (x1,...,x;7) we use a symmetric trapezoidal
membership function p (Fig. S2):

% Xj — M

7 )x; < myj]+[my; < x5 < ma]+R( -
i i

;i (x;) = L( X > my;]
m; and m; are the left and right centres, respectively; L, R are the functions of the left and
right slopes; and /, r are the width of the slopes. We assume that the ;(x;) values fall on
the left slope of the graph of the symmetric (/; =r;) trapezoidal function.

For each word of a given text, one constructs fuzzy numbers component by component.
For the j-the component of a d-dimensional embedding x, we define the value of the

]
maxjnj
component of the vector x in the text. For definiteness, we assume that u;(x;) falls on the

membership function as u;(x;) = , where n; indicates how often one can find the j-th

left slope of the membership function. Then, for given parameters [, rj, Ac = my; —my;
(the distance between the centres m;, m,;), one is able to completely restore the form of
the membership function and thereby construct a fuzzy number. With the fuzzy numbers
for the words thus defined, one can define the fuzzy number for an n-gram as the fuzzy
intersection of its components, namely the minimum of the corresponding membership
functions (Novak, Perfilieva & Mockor, 2012): ju((x,y)) = {min(jj(x), u; (y))}]‘.’lzl.

The Euclidean distance between two fuzzy numbers is defined as:

~ o~ 2 2
d(x;,%j) = ||my; — myj ||~ + | |mg; — mo;] |+

|[(m1i = AL;) — (myj — M2+ | (i + pri) — (maj + pry) ||F) /2

APPENDIX G. DATA DISTRIBUTION

Length distributions of texts (in words) are provided in Figs. S3-55.
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APPENDIX H. ENTROPY-COMPLEXITY FOR OTHER
LANGUAGES

Points corresponding to texts of English, German, French and Vietnamese texts on the
entropy-complexity plane are provided in Figs. S6-S9.

APPENDIX |. ACCURACY SCORE VALUES

Accuracy score values for classification with entropy-complexity measures, semantic
trajectory characteristics, Wishart clustering-based classifiers, K-Means clustering-based
classifiers, classifiers based on intra-cluster distances and unified classification model are
provided in Tables 53-58.

APPENDIX J. GENERALISED ENTROPY VALUES

Generalised entropy values for texts of the English and Russian languages are provided in
Figs. S10-S11.
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/Idoi.org/10.5281/zenodo.10706994.

Supplemental Information
Supplemental information for this article can be found online at http:/dx.doi.org/10.7717/
peerj-cs.2550#supplemental-information.

REFERENCES

Altmann EG, Cristadoro G, Esposti MD. 2012. On the origin of long-range correlations
in texts. Proceedings of the National Academy of Sciences of the United States of
America 109(29):11582—-11587 DOI 10.1073/pnas.1117723109.

Altmann EG, Gerlach M. 2016. Statistical laws in linguistics. In: Creativity and universal-
ity in language. Cham: Springer, 7-26.

Baixeries J, Elvevag B, Ferrer-i Cancho R. 2013. The evolution of the exponent of zipf’s
law in language ontogeny. PLOS ONE 8(3):e53227
DOI 10.1371/journal.pone.0053227.

Bellegarda JR. 2022. Latent semantic mapping: principles and applications. England:
Springer Nature.

Bezdek JC, Ehrlich R, Full W. 1984. Fcm: the fuzzy c-means clustering algorithm.
Computers & Geosciences 10(2-3):191-203 DOT 10.1016/0098-3004(84)90020-7.

Brown PF, Della Pietra SA, Della Pietra VJ, Lai JC, Mercer RL. 1992. An estimate of an
upper bound for the entropy of english. Computational Linguistics 18(1):31—40.

Cardaioli M, Conti M, Di Sorbo A, Fabrizio E, Laudanna S, Visaggio CA. 2021. It’s
a matter of style: detecting social bots through writing style consistency. In: 2021
international conference on computer communications and networks (ICCCN).
Piscataway: IEEE, 1-9.

Chakraborty M, Das S, Mamidi R. 2022. Detection of fake users in twitter using network
representation and nlp. In: 2022 14th international conference on communication
systems & NETworkS (COMSNETS). Piscataway: IEEE, 754-758.

Daya AA, Salahuddin MA, Limam N, Boutaba R. 2019. A graph-based machine learning
approach for bot detection. In: 2019 IFIP/IEEE symposium on integrated network and
service management (IM). 144—152. ArXiv arXiv:1902.08538.

Debowski L. 2020. Information theory meets power laws: stochastic processes and language
models. United States: John Wiley & Sons.

Feng S, Wan H, Wang N, Luo M. 2021. Botrgcn: twitter bot detection with relational
graph convolutional networks. In: Proceedings of the 2021 IEEE/ACM international
conference on advances in social networks analysis and mining, ASONAM *21. ACM.

Gromov et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2550 22/25


https://peerj.com
https://github.com/quynhu-d/stb-inverse-problems
https://doi.org/10.5281/zenodo.10706994
https://doi.org/10.5281/zenodo.10706994
http://dx.doi.org/10.7717/peerj-cs.2550#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2550#supplemental-information
http://dx.doi.org/10.1073/pnas.1117723109
http://dx.doi.org/10.1371/journal.pone.0053227
http://dx.doi.org/10.1016/0098-3004(84)90020-7
http://arXiv.org/abs/1902.08538
http://dx.doi.org/10.7717/peerj-cs.2550

PeerJ Computer Science

Fu G, Shi S, Zhang Y, Zhang Y, Chen J, Yan B, Qiao K. 2023. Squeezegcn: adaptive
neighborhood aggregation with squeeze module for twitter bot detection based on
gen. Electronics 13:56 DOI 10.3390/electronics13010056.

Galgoczy MC, Phatak A, Vinson D, Mago VK, Giabbanelli PJ. 2022. (re) shaping online
narratives: when bots promote the message of president trump during his first
impeachment. Peer] Computer Science 8:947 DOI 10.5281/zenodo.10706994.

Garcia-Silva A, Berrio C, Gomez-Pérez JM. 2019. An empirical study on pre-
trained embeddings and language models for bot detection. In: Proceedings of
the 4th workshop on representation learning for NLP (RepL4NLP-2019). 148—155
DOI 10.18653/v1/W19-4317.

Garcia-Silva A, Berrio C, Gomez-Perez JM. 2021. Understanding transformers for bot
detection in twitter. ArXiv arXiv:2104.06182.

Groetsch CW, Groetsch C. 1993. Inverse problems in the mathematical sciences. Vol. 52.
Germany: Springer.

Gromov VA, Baranov PS. 2023. Prediction after a horizon of predictability: nonpre-
dictable points and partial multistep prediction for chaotic time series. Complexity
2023:6689371.

Gromov VA, Borisenko E. 2015. Predictive clustering on non-successive observations for
multi-step ahead chaotic time series prediction. Neural Computing and Applications
26:1827-1838 DOI 10.1007/s00521-015-1845-8.

Gromov V, Dang QN. 2023a. Spot the bot: distinguishing human-written and bot-
generated texts using clustering and information theory techniques. In: International
conference on pattern recognition and machine intelligence. Cham: Springer, 20-27.

Gromov VA, Dang QN. 2023b. Semantic and sentiment trajectories of literary master-
pieces. Chaos, Solitons ¢ Fractals 175:113934 DOI 10.1016/j.chaos.2023.113934.

Gromov VA, Kogan AS. 2023. Spot the bot: coarse-grained partition of semantic paths
for bots and humans. In: International conference on pattern recognition and machine
intelligence. Cham: Springer, 348-355.

Gromov VA, Konev AS. 2017. Precocious identification of popular topics on twitter
with the employment of predictive clustering. Neural Computing and Applications
28:3317-3322 DOI 10.1007/s00521-016-2256-1.

Gromov VA, Migrina AM. 2017. A language as a self-organized critical system. Complex-
ity 2017:1-7.

Gromov VA, Shulga AN. 2012. Chaotic time series prediction with employment
of ant colony optimization. Expert Systems with Applications 39(9):8474-8478
DOI10.1016/j.eswa.2012.01.171.

Grover A, Leskovec J. 2016. node2vec: scalable feature learning for networks. In:
Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery
and data mining, KDD’16. New York, NY: Association for Computing Machinery,
855-864.

Heidari M, James Jr H, Uzuner O. 2021. An empirical study of machine learning
algorithms for social media bot detection. In: 2021 IEEE international IOT, electronics
and mechatronics conference (IEMTRONICS). Piscataway: IEEE, 1-5.

Gromov et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2550 23/25


https://peerj.com
http://dx.doi.org/10.3390/electronics13010056
http://dx.doi.org/10.5281/zenodo.10706994
http://dx.doi.org/10.18653/v1/W19-4317
http://arXiv.org/abs/2104.06182
http://dx.doi.org/10.1007/s00521-015-1845-8
http://dx.doi.org/10.1016/j.chaos.2023.113934
http://dx.doi.org/10.1007/s00521-016-2256-1
http://dx.doi.org/10.1016/j.eswa.2012.01.171
http://dx.doi.org/10.7717/peerj-cs.2550

PeerJ Computer Science

Hernandez-Fernaandez A, Garrido JM, Luque B, Torre IG. 2022. Linguistic laws in
catalan. Quantitative Approaches To Universality and Individuality in Language 75:49
DOI 10.1515/9783110763560-005.

Kang AR, Kim HK, Woo J. 2012. Chatting pattern based game bot detection: do they talk
like us? KSII Transactions on Internet & Information Systems 6(11):4-7.

Kantz H, Schreiber T. 2004. Nonlinear time series analysis. Vol. 7. England: Cambridge
University Press.

Latah M. 2020. Detection of malicious social bots: a survey and a refined taxonomy.
Expert Systems with Applications 151:113383 DOT 10.1016/j.eswa.2020.113383.

Li S, Zhao C, Li Q, Huang J, Zhao D, Zhu P. 2022. Botfinder: a novel framework for
social bots detection in online social networks based on graph embedding and
community detection. World Wide Web 26:1-17 DOI 10.21203/rs.3.rs-1871702/v1.

Liao W, Zeng B, Liu J, Wei P, Cheng X, Zhang W. 2021. Multi-level graph neural
network for text sentiment analysis. Computers & Electrical Engineering 92:107096
DOI 10.1016/j.compeleceng.2021.107096.

Lin S-Y, Kung Y-C, Leu F-Y. 2022. Predictive intelligence in harmful news identification
by bert-based ensemble learning model with text sentiment analysis. Information
Processing & Management 59(2):102872 DOI 10.1016/j.ipm.2022.102872.

Lira DB, Xavier F, Digiampietri LA. 2021. Combining clustering and classification algo-
rithms for automatic bot detection: a case study on posts about covid-19. In: XVII
Brazilian symposium on information systems. 1-7 DOI 10.1145/3466933.3466970.

LiuF, LiZ, Yang C, Gong D, Lu H, Liu F. 2024. Segcn: a subgraph encoding based
graph convolutional network model for social bot detection. Scientific Reports 14
DOI 10.1038/541598-024-54809-z.

MacQueen J. 1967. Some methods for classification and analysis of multivariate obser-
vations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and
probability, vol. 1. Oakland, CA, 281-297.

Malinetskii G, Potapov A. 2000. Modern problems of nonlinear dynamics. M.: Editorial
URSS, 204-207.

Mesnards N, Hunter D, Hjouji Z, Zaman T. 2021. Detecting bots and assessing their
impact in social networks. Operations Research 70:1-22.

Mikolov T, Chen K, Corrado G, Dean J. 2013. Efficient estimation of word representa-
tions in vector space. ArXiv arXiv:1301.3781.

Monica C, Nagarathna N. 2020. Detection of fake tweets using sentiment analysis. SN
Computer Science 1:1-7 DOI 10.1007/s42979-020-0110-0.

MuY, Aletras N. 2020. Identifying twitter users who repost unreliable news sources with
linguistic information. Peer] Computer Science 6:€325 DOI 10.7717/peerj-cs.325.

Novak V, Perfilieva I, Mockor J. 2012. Mathematical principles of fuzzy logic. Vol. 517.
Germany: Springer Science & Business Media.

Pham P, Nguyen L, Vo B, Yun U. 2021. Bot2vec: a general approach of intra-community
oriented representation learning for bot detection in different types of social
networks. Information Systems 103:101771 DOI 10.1016/5.15.2021.101771.

Gromov et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2550 24/25


https://peerj.com
http://dx.doi.org/10.1515/9783110763560-005
http://dx.doi.org/10.1016/j.eswa.2020.113383
http://dx.doi.org/10.21203/rs.3.rs-1871702/v1
http://dx.doi.org/10.1016/j.compeleceng.2021.107096
http://dx.doi.org/10.1016/j.ipm.2022.102872
http://dx.doi.org/10.1145/3466933.3466970
http://dx.doi.org/10.1038/s41598-024-54809-z
http://arXiv.org/abs/1301.3781
http://dx.doi.org/10.1007/s42979-020-0110-0
http://dx.doi.org/10.7717/peerj-cs.325
http://dx.doi.org/10.1016/j.is.2021.101771
http://dx.doi.org/10.7717/peerj-cs.2550

PeerJ Computer Science

RenY, Ji D. 2017. Neural networks for deceptive opinion spam detection: an empirical
study. Information Sciences 385:213-224 DOI 10.1016/j.ins.2017.01.015.

Rosso OA, Larrondo H, Martin MT, Plastino A, Fuentes MA. 2007. Distinguishing noise
from chaos. Physical Review Letters 99(15):154102 DOI 10.1103/PhysRevLett.99.154102.

Tanaka-Ishii K. 2021. Statistical universals of language: mathematical chance vs. Human
choice. Cham: Springer Nature.

Tanaka-Ishii K, Aihara S. 2015. Computational constancy measures of texts—yule’s k
and renyi’s entropy. Computational Linguistics 41(3):481-502
DOI10.1162/COLI_a_00228.

Tanaka-Ishii K, Bunde A. 2016. Long-range memory in literary texts: on the universal
clustering of the rare words. PLOS ONE 11(11):e0164658
DOI 10.1371/journal.pone.0164658.

Tanaka-Ishii K, Takahashi S. 2021. A comparison of two fluctuation analyses for natural
language clustering phenomena—taylor vs. ebeling & neiman methods—. Fractals
29(02):2150033 DOI 10.1142/50218348X2150033X.

Torre IG, Luque B, Lacasa L, Kello CT, Hernandez-Fernandez A. 2019. On the physical
origin of linguistic laws and lognormality in speech. Royal Society Open Science
6(8):191023 DOI 10.1098/rs0s.191023.

Uymaz HA, Metin SK. 2022. Vector based sentiment and emotion analysis from
text: a survey. Engineering Applications of Artificial Intelligence 113:104922
DOI10.1016/j.engappai.2022.104922.

Wang Y, Liu H. 2023. Revisiting Zipf’s law: a new indicator of lexical diversity. Berlin,
Boston: De Gruyter Mouton, 193-202.

Wishart D. 1969. Numerical classification method for deriving natural classes. Nature
221(5175):97-98 DOI 10.1038/221097a0.

Xiong H, Li Z. 2018. Clustering validation measures. In: Data clustering. United States:
Chapman and Hall/CRC, 571-606.

Gromov et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2550 25/25


https://peerj.com
http://dx.doi.org/10.1016/j.ins.2017.01.015
http://dx.doi.org/10.1103/PhysRevLett.99.154102
http://dx.doi.org/10.1162/COLI_a_00228
http://dx.doi.org/10.1371/journal.pone.0164658
http://dx.doi.org/10.1142/S0218348X2150033X
http://dx.doi.org/10.1098/rsos.191023
http://dx.doi.org/10.1016/j.engappai.2022.104922
http://dx.doi.org/10.1038/221097a0
http://dx.doi.org/10.7717/peerj-cs.2550

