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ABSTRACT
Defects in printed circuit boards (PCBs) occurring during the production process of
consumer electronic products can have a substantial impact on product quality,
compromising both stability and reliability. Despite considerable efforts in PCB
defect inspection, current detection models struggle with accuracy due to complex
backgrounds and multi-scale characteristics of PCB defects. This article introduces a
novel network, YOLOv8-DSC-EMA-EIoU (YOLOv8-DEE), to address these
challenges by enhancing the YOLOv8-L model. Firstly, an improved backbone
network incorporating depthwise separable convolution (DSC) modules is designed
to enhance the network’s ability to extract PCB defect features. Secondly, an efficient
multi-scale attention (EMA) module is introduced in the network’s neck to improve
contextual information interaction within complex PCB images. Lastly, the original
complete intersection over union (CIoU) is replaced with efficient intersection over
union (EIoU) to better highlight defect locations and accommodate varying sizes and
aspect ratios, thereby enhancing detection accuracy. Experimental results show that
YOLOv8-DEE achieves a mean average precision (mAP) of 97.5% and 98.7% on the
HRIPCB and DeepPCB datasets, respectively, improving by 2.5% and 0.7%
compared to YOLOv8-L. Additionally, YOLOv8-DEE outperforms other state-of-
the-art methods in defect detection, demonstrating significant improvements in
detecting small, medium, and large PCB defects.

Subjects Algorithms and Analysis of Algorithms, Computer Vision, Neural Networks
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INTRODUCTION
Quality control is crucial in the PCB manufacturing process (Wang et al., 2022). PCB
defects can generally be classified into two categories: functional defects and cosmetic
defects (Wu, Wang & Liu, 1996). Functional defects, such as component damage or
missing, critically impact the PCB’s performance and can render it inoperable for end
users. These defects are typically identified through X-ray inspection or power-on testing.
On the other hand, cosmetic or appearance-related defects encompass issues such as open,
short, mousebite, spur, pin-hole, spur. While these primarily affect the visual quality of the
PCB, they can also escalate into functional failures over time with prolonged use.
Effectively detecting appearance defects on PCBs has been a key focus for researchers in
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both industry and academia. Initially, PCB inspection relied on manual methods.
However, manual detection is inefficient and prone to errors, making it inadequate for
industrial production demands (Yang et al., 2020).

With advancements in computer vision field, automated optical inspection (AOI)
methods based on computer image processing technology have been increasingly adopted
by PCB manufacturers (Li & Yang, 2011). AOI systems utilize industrial cameras with
optical lenses to capture images, applying various image processing algorithms such as
edge extraction (Leek et al., 2006), corner detection (Rosten & Drummond, 2006), and line
detection (Aggarwal & Karl, 2006) to analyze these images. These algorithms help identify
the location and type of PCB defects. Despite the effectiveness of AOI technology in
specific applications, its generalization remains challenging. Variations in light intensity,
product types, and background environments often necessitate redesigning and debugging
established PCB algorithms, which is both time-consuming and costly for manufacturers.

The development of artificial intelligence offers new solutions for PCB defect detection.
Data-driven deep learning methods utilize convolutional neural networks (CNNs) to
extract high-dimensional features from images, effectively addressing the generalization
and robustness issues inherent in traditional image processing methods. Currently, deep
learning-based object detection algorithms are mainly categorized into one-stage and two-
stage detection models. In two-stage approaches like Mask R-CNN (He et al., 2017) and
Faster R-CNN (Ren et al., 2016), the process is divided into two distinct phases. First, the
algorithm generates region proposals—a set of candidate regions in the image where
objects might be located. These proposals are typically obtained using a Region Proposal
Network (RPN). In the second stage, each candidate region is classified, and its bounding
box is further refined. Two-stage models are known for their high accuracy due to the
refinement step, making them more suitable for applications where precision is critical.
However, this comes at the cost of increased computational complexity and slower
inference speed, as the detection process involves multiple steps. On the other hand, one-
stage approaches, such as SSD (Liu et al., 2016) and the YOLO (You Only Look Once)
series (Redmon et al., 2016), aim to simplify the detection process by treating object
detection as a single regression problem. These models directly predict the bounding box
coordinates and object class probabilities in a single step without the intermediate region
proposal stage. As a result, one-stage models are significantly faster, making them more
suitable for real-time applications. However, this speed often comes with a trade-off in
accuracy, especially for detecting small objects or objects in densely populated scenes,
where the lack of a refinement stage can lead to missed or imprecise detections. The YOLO
series, as a widely recognized one-stage detection model, excels in detecting defects of
various sizes and types with superior speed compared to two-stage algorithms, achieving a
better balance between detection speed and accuracy. Many researchers have successfully
deployed YOLO algorithms in PCB quality inspection, achieving relatively better detection
accuracy, which is significantly improved compared to existing methods (Santoso et al.,
2022; Mamidi, Sameer & Bayana, 2022; Tang et al., 2023).
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Although considerable progress has been made in PCB defect detection using CNN-
based deep learning methods, the field still faces significant challenges:

1) Small target detection. Some tiny PCB defects are often only a few hundred pixels in
size, which only account for just 0.005–0.07% in a high-resolution PCB image with a
resolution of millions of pixels (Yang et al., 2023). Detecting defects of this scale presents
significant challenges.

2) Multi-scale detection. The complex PCB manufacturing process is prone to a wide
variety of defects with significant differences in scale. Small defects such as spurs are
often less than 300 pixels, while large defects such as missing components may exceed
hundreds of thousands of pixels.

3) Complex background. Highly integrated PCBs contain numerous components, text,
soldering oil, and wire holes unrelated to defects. These backgrounds can obscure defect
characteristics.

4) Precision. Even a small number of defects, or those at the micrometer scale, can result in
a total loss of PCB functionality. Unlike other inspection tasks, where overall model
accuracy is often the primary focus, PCB defect detection requires not only high overall
accuracy but also emphasizes the precision for each individual defect category. This is
because every type of defect, regardless of its frequency or size, has the potential to cause
significant damage to the PCB and impair its functionality.

5) Real-time detection. High-resolution PCB images significantly increase computational
time for defect detection algorithms. Balancing speed and accuracy with effective
lightweight algorithms by reducing computational complexity and resource demands
is crucial.

To address the second, third and fourth challenges of PCB defect detection tasks, this
article proposes a new PCB defect detection algorithm, which enhances the feature
extraction, feature fusion, and target detection capabilities of the YOLOv8-L model
(Jocher, Chaurasia & Qiu, 2023). The main contributions of this article are as follows:

1) Novel YOLOv8-DSC-EMA-EIoU (YOLOv8-DEE) framework: An improved
YOLOv8-L framework that achieves high detection accuracy across various indicators
in PCB defect detection tasks.

2) Enhanced backbone with depthwise separable convolution (DSC): The integration of
DSC into the model’s backbone significantly improves feature extraction capabilities
while minimally increasing model complexity.

3) Enhanced neck with efficient multi-scale attention (ema) module: The neck of the
model employs the EMA module to enhance feature fusion, improving information
exchange between different feature layers and aiding in detecting small differences
between various PCB defect types.

4) EIoU as the regression loss function: Utilizing EIoU during the training phase
significantly improves prediction regression accuracy, enhancing positioning precision.
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The rest of this article is organized as follows. A review of state-of-the-art (SOTA) PCB
defect detection methods is presented in “RelatedWork”. The details and improvements of
the proposed YOLOv8-DEE model are illustrated in “Methodology”. In “Experiment and
Results”, the proposed algorithm is validated on public datasets and compared with the
performance of other algorithm models. Finally, “Conclusions” summarizes and analyzes
the proposed method and considers directions for future work.

RELATED WORK
Traditional machine learning based methods for PCB defect detection
PCB defect detection algorithms based on machine learning typically integrate image
processing techniques, such as template-based methods (Zhou et al., 2023). These methods
employ image matching or subtraction to identify defect characteristics, which are then
analyzed using machine learning algorithms (Li et al., 2020). Crispin & Rankov (2007)
propose a method for automated PCB component inspection using a genetic algorithm
with template matching. This approach tackles challenges like locating and identifying
multiple components on a PCB image. It employs a normalized cross-correlation for
template matching and a genetic algorithm to optimize the search process, reducing
computational cost compared to exhaustive search. The results demonstrate the
effectiveness of this method in detecting component placement errors on PCBs. Further,
Wu et al. (2013) present a two-stage system for classifying solder joints in electronic
devices. First, features are extracted from images, likely including color and shape
properties. Then, a Bayes classifier efficiently separates good joints from defective ones.
Finally, for defective joints, a support vector machine differentiates between various defect
types. This method improves classification accuracy and efficiency by reducing the number
of features needed for defect type identification. Another method, explored by Hao et al.
(2013), combines a neural network’s ability to learn complex defect patterns with a genetic
algorithm’s optimization capabilities for automated solder joint inspection on printed
circuit boards. This approach aims to improve the accuracy and efficiency of solder joint
defect detection compared to traditional methods.

However, a major challenge with template-based methods is obtaining perfect template
images. Different PCB inspection tasks require distinct template images, resulting in
significant time and cost inefficiencies. Additionally, most machine learning-based PCB
inspection algorithms are limited to defect classification, identifying the type of defect but
not its location. This limitation arises because these algorithms function primarily as
classifiers without positional capabilities.

Another significant traditional method is similarity measure. Annaby, Fouda & Rushdi
(2019) propose an improved normalized cross-correlation (NCC) method for defect
detection in PCBs. The authors enhance the traditional NCC by incorporating image
preprocessing techniques, such as image normalization and noise reduction, to increase
accuracy in detecting defects. They apply a sliding window approach to measure the
similarity between the reference and test images pixel by pixel, using the enhanced NCC to
identify mismatches that indicate defects. However, this method for defect detection is
computationally intensive due to its pixel-by-pixel comparison and sliding window
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approach, making it slower for high-resolution images. It also struggles with variations in
lighting or alignment, reducing its robustness in uncontrolled environments.

To address these issue, deep learning algorithms offer a promising solution. Deep
learning networks can extract high-dimensional features from images, enabling both defect
classification and localization. Thus, the application of deep learning algorithms to PCB
defect detection is likely to be the future trend.

Deep learning based methods for PCB defect detection
In recent years, deep learning-based methods, particularly CNNs, have been widely
adopted for PCB defect detection (Yuan et al., 2024; Ding et al., 2019). Unlike traditional
machine learning methods, CNN-based approaches automatically extract image features
and streamline the preprocessing process, thereby enhancing detection accuracy and
speed. Some studies are devoted to solving the complex background problem in defect
detection tasks to achieve better detection performance. For example, Li et al. (2022)
propose a method to addresses challenges in industrial defect detection, particularly for
small defects with unclear foreground-background separation. It builds upon the YOLO
object detection framework but incorporates an “expanded field of feeling” to capture a
wider range of contextual information. This method also utilizes feature fusion to combine
different levels of detail from the image, enhancing defect characterization. The study
demonstrates that YOLO-RFF achieves high-speed and accurate detection of various
industrial defects.

In order to improve the detection accuracy of the model, some studies have achieved
this by modifying specific convolution modules or adding attention mechanisms in the
baseline model. A model called YOLO-MBBi is proposed by Du et al. (2023) for detecting
surface defects on PCBs using an improved YOLOv5 deep learning model. Authors design
this model to addresses limitations of YOLOv5 in this task, such as lower accuracy and
speed. It incorporates various enhancements like MBConv modules and CBAM attention
for faster and more precise defect recognition. The results show significant improvement
in both accuracy (over 3% higher AP0:5) and processing speed (achieving near 49 FPS)
compared to the original YOLOv5, making YOLO-MBBi a promising solution for real-
time PCB inspection. In the road defect detection task,Wang et al. (2024) introduced C2f-
Faster-EMA and SimSPPF to replace the original C2f and SPPF modules in YOLOv8s,
thereby improving the representation ability of the model and achieving higher accuracy
on related data sets.

Moreover, some studies improve the performance by solving the multi-scale problem
among defects. For example, Wang et al. (2023) introduces a novel multi-scale module to
enhance YOLO-v5 for steel surface defect detection. This new module captures features at
different scales more effectively by incorporating a more robust feature pyramid network,
allowing better detection of small and complex defects. It improves the model’s ability to
handle varying defect sizes by extracting and merging multi-scale features through
adaptive convolutional layers. This results in finer feature representation and greater
accuracy, particularly for subtle defects, while maintaining real-time performance. The
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multi-scale module significantly outperforms the standard version in defect detection tasks
on steel surfaces.

METHODOLOGY
Building on the success of previous YOLO models, YOLOv8 (Jocher, Chaurasia & Qiu,
2023) has gained popularity for various object detection tasks. YOLOv8 improves upon
YOLOv5 (Jocher, 2020), achieving superior results across multiple detection tasks. As a
single-stage object detection framework, YOLOv8 comprises three components: Backbone,
Neck, and Head. The backbone extracts features from the input image, the neck processes
feature information from different convolutional layers, and the Head predicts the object’s
category and location. Specifically, YOLOv8’s backbone adopts the cross stage partial
(CSP) network structure, which includes five feature extraction blocks {P1, P2, P3, P4, P5}.
It replaces YOLOv5’s C3 module with the C2f module, making the network more
lightweight while maintaining feature extraction capabilities. The neck uses the PANet
method based on the feature pyramid network (FPN) architecture and also replaces the
original C3 module with the CSP with focus (C2f) module. In the head, YOLOv8
transitions from the previous anchor-based method to an anchor-free approach with a
decoupled detection head.

Overall framework of YOLOv8-DEE
Although YOLOv8 has demonstrated impressive results on the COCO dataset (Lin et al.,
2014), recent studies have shown its generalization potential across various application
domains. For instance, YOLOv8 has been successfully applied to insulator defect detection
(Jiang, Hou & Wang, 2024), battery inspection (Tzelepakis et al., 2023), and steel surface
inspection (Kong & You, 2024). These findings further support the network’s versatility
and robustness in different industrial contexts. In PCB defect detection, defect shapes and
textures, such as spurs and open circuits, are often less distinct compared to typical images.
Therefore, developing a high-precision PCB defect detection model based on YOLOv8 is
crucial. This study proposes a novel detection model for PCB defects, termed YOLOv8-
DEE. Figure 1 illustrates the YOLOv8-DEE framework. Based on YOLOv8-L, this model
incorporates an enhanced backbone network using the DSC module and an improved
neck based on the EMA module. Additionally, an efficient intersection over union (EIoU)
loss function for bounding box regression replaces the original complete intersection over
union (CIoU) loss in the head.

Enhanced backbone with DSC module
In PCB defect detection, many areas are defect-free, and defects often exhibit only slight
differences in texture, shape, and size compared to defect-free regions. This subtlety poses
a significant challenge to the feature extraction capabilities of detection models. To address
this issue, an improved backbone incorporating the DSC module (Chollet, 2017) is
proposed in this article, which enhances the model’s feature extraction ability.

As shown in Fig. 2, DSC module comprises two components: depthwise convolution
and pointwise convolution. Depthwise convolution applies a separate convolution kernel
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to each channel of the input feature map, then concatenates the outputs to form the final
result. With N input channels, N separate convolution kernels produce N output channels,
which are then concatenated to create the final output feature map with N channels.
Pointwise convolution, a 1� 1 convolution, serves two purposes in DSC: it allows the
number of output channels to be adjusted freely and performs channel fusion on the
feature map produced by depthwise convolution.

The DSC module performs a convolution operation on one feature map at a time and
then uses a 1� 1 convolution for output after fusion. This process significantly reduces
computational complexity compared to standard convolution operations, with minimal
loss of accuracy. Consequently, many studies adopt the DSC module as a replacement for
traditional convolutional structures, making it an effective tool for developing lightweight
networks (Hung, Zhang & Jiang, 2019; Wang et al., 2020).

Unlike most research, the proposed backbone in this article does not use DSC modules
as replacements for traditional convolutions but integrates them directly into the backbone
network. Specifically, DSC modules are added to layers P2 to P5. In layers P2 to P4, the
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Figure 1 Framework of YOLOv8-DEE. Full-size DOI: 10.7717/peerj-cs.2548/fig-1
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DSC module follows the C2f module, while in P5, it is placed between the C2f and spatial
pyramid pooling-fast (SPPF) modules. Experiments demonstrate that these modifications
minimally increase the network’s computational load while significantly enhancing its
nonlinear expression capability, thereby improving the network’s ability to fit complex
functions and boosting detection performance.

Enhanced neck with EMA module
The original YOLOv8 model uses the Path Aggregation Network (PANet) structure based
on the FPN architecture to enhance feature extraction. Unlike the traditional FPN, PANet
fuses both top-to-bottom and bottom-to-top feature maps. However, PCB images often
contain complex backgrounds with many elements irrelevant to defects, such as text,
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Figure 2 Diagram of DSC module. Full-size DOI: 10.7717/peerj-cs.2548/fig-2
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copper wires, mimeographs, and tin foil. The traditional neck structure and even PANet
structure are insufficient to focus on defect features amid such cluttered background
information. In other words, effectively integrating feature maps from different
convolutional layers is crucial for designing enhanced feature extraction networks. To
meet this challenge, an improved neck based on the efficient multi-scale attention (EMA)
module (Ouyang et al., 2023) is proposed. Figure 3 presents the basic process of EMA
module. The EMA module enhances interaction capabilities between different feature
layers, improving the model’s detection performance. Specially, EMA employs a cross-
space learning method to establish short and long information dependencies via a multi-
scale parallel sub-network. It reshapes some channels into batch dimensions and designs
two mutually learning sub-networks to learn input features across spaces, finally fusing
their outputs. Compared to other attention modules, EMA offers superior performance
with lower computational overhead.

In enhanced neck design, two EMAmodules are incorporated into the upsampling stage
of the original PANet. The first EMAmodule is positioned after the Concat module, which
merges the upsampled P5 feature map with the P4 feature map. This EMA module further
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extracts high-dimensional feature information from the fused feature using an attention
mechanism. The second EMA module is placed after another Concat module, which
merges the P3 stage feature map with the upsampled features from the first EMA module.
This module further extracts feature information from the upsampled features integrated
with lower-level features.

EIoU loss
The original YOLOv8 framework utilizes CIoU loss and distribution focal loss (DFL)
technology for bounding box regression and binary cross-entropy (BCE) for classification
prediction. CIoU loss serves as the loss function for target positioning, effectively
measuring the model’s accuracy in detecting the target’s position and size, thereby
enhancing performance evaluation. The formula for CIoU loss is as follows:

LCIoU ¼ 1� IoU þ q2ðb; bgtÞ
c

þ at (1)

where IoU denotes intersection over union, b and bgt denote the centroids of the predicted
bounding box and the true bounding box, respectively; q denotes the Euclidean distance
between the two centroids; c denotes the diagonal length of the smallest closed rectangle
containing the predicted bounding box and the true bounding box; t is used to quantify the
consistency of the aspect ratio; and a is a weight function. The equations for a and t are as
follows:

a ¼ t
ð1� IoUÞ þ t

(2)

t ¼ 4
p2

arctan
wgt

hgt
� arctan

w
h

� �
(3)

where wgt and hgt denote the width and height of the ground-truth bounding box, and w
and h denote the width and height of the prediction bounding box, respectively.

Although CIoU loss considers both the width-height ratio of the regression box and the
distance between the centroids of the true and predicted bounding boxes, it has a
limitation: it only uses the width-height ratio as an influencing factor. If two bounding
boxes have the same center points and width-height ratio but different dimensions, CIoU
loss may produce consistent results that do not align with the regression target. This
deficiency becomes more pronounced in PCB defect detection tasks, where a large
detection scale can exacerbate missed detections. To address this, EIoU loss (Zhang et al.,
2022) was introduced. EIoU loss separates the influencing factors of the aspect ratio of the
predicted and true bounding boxes, calculating their height and width independently.
EIoU loss consists of three components: IoU loss (LIoU ), distance loss (Ldis), and height-
width loss (Lasp), which account for the overlapping area, the distance between center
points, and the aspect ratio. The height-width loss directly minimizes the difference in
height and width between the predicted and true bounding boxes, enabling faster
convergence and improved positioning accuracy. In addition to its use in PCB defect
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detection, the EIoU loss function has also been successfully applied in various other
domains (Jiao & Xing, 2024; Trinh et al., 2024). The formula for EIoU loss is as follows:

LEIoU ¼ LIoU þ Ldis þ Lasp

¼ 1� IoU þ q2ðb; bgtÞ
ðcwÞ2 þ ðchÞ2

þ q2ðw;wgtÞ
ðcwÞ2

þ q2ðh; hgtÞ
ðchÞ2

(4)

where cw and ch denote the width and height of the minimum enclosing box of ground-
truth bounding box and prediction bounding box, respectively. Figure 4 shows the
schematic diagram of EIoU loss.

EXPERIMENT AND RESULTS
Experimental configuration
The experiments are conducted on a high-performance computing environment. The
system is equipped with an AMD EPYC 7742 64-Core processor and an NVIDIA A100-
SXM4-40GB GPU, running Ubuntu 20.04.2 as the operating system. The deep learning
models are implemented using PyTorch version 1.8.1 and Python 3.8.10. For optimal
hardware utilization, CUDA version 12.2 is employed to accelerate GPU computation.
During the training process, the batch size is set to 32, and the models are trained for
300 epochs to ensure sufficient learning and convergence of the algorithms.

Dataset
HRIPCB dataset
The public PCB defects dataset HRIPCB (Huang et al., 2020) from Peking University
contains 693 images of six defect types, with an average pixel size of 2,777� 2,188. Due to

wgt

hgt
bgt

b

w

h

cw

ch

wgt

hgt
bgt

b

w

h

cw

ch

Figure 4 Schematic diagram of EIoU loss. Full-size DOI: 10.7717/peerj-cs.2548/fig-4
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the large size of the original images compared to the input size of typical object detection
models, images are cropped into sub-images with 640� 640 pixels size by using sliding
window technique. To prevent target frames from being segmented during cropping, some
sliding windows are adjusted appropriately. A total of 4,205 images are obtained after
cropping, each containing 1–4 defects. Figure 5 introduces the six types of defects on the
cropped HRIPCB dataset. The training set and test set are divided in a 9:1 ratio. The
number of each defect category is shown in Table 1.

DeepPCB dataset
All images on DeepPCB defect dataset (Tang et al., 2019) were obtained from a linear scan
CCD. The original size of the test images is about 16k� 16k pixels, and then they are
cropped into many sub-images of size 640� 640, a total of 1,500 pairs of template and
tested images with annotations, including six common PCB defect types: open, short,
mousebite, spur, pin-hole, spur. Figure 6 introduces the six types of defects on the
DeepPCB dataset. The number of each defect category is shown in Table 2.

Evaluation metrics
To evaluate the model’s performance, the common metrics in object detection tasks are
used in this article, which include precision (P), recall (R), F1 score (F1), average precision
(AP), and mean average precision (mAP). The formulas for these metrics are as follows:

P ¼ TP
TP þ FP

(5)

R ¼ TP
TP þ FN

(6)

F1 ¼ 2 � P � R
P þ R

(7)

AP ¼
Z 1

0
pðrÞdr (8)

mAP ¼ 1
N

XN
i¼0

APi (9)

where TP represents the number of targets detected correctly; FP represents the number of
targets detected incorrectly; FN represents the number of defect samples falsely detected; P
represents precision; R represents recall; AP values are the area enclosed under the curves
of P and R, mAP represents the sum of AP values of all categories, and N represents the
total number of categories.

To further evaluate the model’s accuracy at different IoU thresholds and target sizes,
several performance metrics from the COCO dataset, including AP0:5, AP0:75, AP0:5:0:95,
APS, APM , and APL are also used as evaluating indicators in the comparison experiments.
AP0:5 is the average precision for each category at an IoU threshold of 0.50, and AP0:75 is
the average precision at an IoU threshold of 0.75. AP0:5:0:95 is the average precision across
IoU thresholds from 0.50 to 0.95 in 0.05 increments. APS represents the average precision
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for small objects (area <32� 32), APM for medium objects (area between 32� 32 and
96� 96), and APL for large objects (area >96� 96).

Experiment result
Ablation results
To evaluate the impact of the improvements on the YOLOv8-L model, ablation
experiments are conducted on the three enhancements (Backbone, Neck, Loss) using the
cropped HRIPCB dataset. Table 3 presents the results of these experiments based on the
original YOLOv8-L model and its improved components. The base YOLOv8-L model
achieved a commendable precision of 96.64% and a recall of 94.22%. Integrating DSC
alone boosted recall to an impressive 96.00%, the highest among individual enhancements,
and improved AP across all scales, demonstrating enhanced effectiveness in detecting
objects of varying sizes.

Missing Hole Mouse Bite Open Circuit

Short Spur Spurious Copper

Missing Hole Mouse Bite Open Circuit

Short Spur Spurious Copper

Figure 5 Cropped HRIPCB dataset defect diagram. Full-size DOI: 10.7717/peerj-cs.2548/fig-5

Table 1 Number of each defect category on HRIPCB dataset.

Category Numbers

Missing hole 748

Mouse bite 756

Open circuit 706

Short 782

Spur 741

Spurious copper 772
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Figure 6 DeepPCB dataset defect diagram. Full-size DOI: 10.7717/peerj-cs.2548/fig-6

Table 2 Number of each defect category on the DeepPCB dataset.

Category Numbers

Pin-hole 1,320

Mousebite 1,748

Open 1,702

Short 1,317

Spur 1,445

Copper 1,321

Table 3 Ablation experiment results. The bold entries show the best results of different models under
this evaluation metric.

Model P R AP0:5:0:95 AP0:5 APS APM APL

YOLOv8-L 96.64% 94.22% 52.6% 95.0% 34.5% 52.4% 60.2%

YOLOv8 + DSC 96.70% 96.00% 59.2% 96.5% 63.8% 58.9% 66.5%

YOLOv8 + EMA 96.88% 95.80% 58.7% 97.0% 61.3% 58.6% 67.7%

YOLOv8 + EIoU 97.30% 95.01% 60.2% 97.0% 64.7% 60.0% 68.9%

YOLOv8 + DSC + EMA 96.86% 95.80% 58.4% 96.7% 57.5% 58.2% 67.3%

YOLOv8 + DSC + EIoU 97.03% 94.84% 60.2% 96.6% 59.0% 60.1% 65.8%

YOLOv8 + EMA + EIoU 97.59% 93.45% 59.7% 97.3% 57.7% 59.6% 64.7%

YOLOv8-DEE 97.65% 95.43% 60.4% 97.4% 69.5% 60.2% 71.1%
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Adding the EMA module slightly increased precision to 96.88% and improved AP for
medium (APM) and large (APL) objects, indicating its effectiveness in handling different
object scales. EIoU, focused on refining bounding box accuracy, raised precision to 97.30%
and significantly enhanced performance for larger objects, achieving an AP of 68.9%.

However, when DSC and EMA are combined, their individual contributions to
improving feature extraction may overlap in terms of spatial focus. DSC’s ability to reduce
the model’s complexity while retaining spatial information might already capture the same
aspects that EMA is designed to enhance. As a result, the combined effect does not lead to a
significantly higher improvement compared to when each module is applied individually,
suggesting that they may be optimizing similar aspects of the feature map. In contrast,
pairing DSC and EIoU achieved an AP of 60.2%, indicating that structural model changes
and bounding box accuracy enhancements complement each other well.

The final model, YOLOv8-DEE, which incorporates all three enhancements–DSC,
EMA, and EIoU–outperforms all others. This model achieves the highest metrics across
most categories, excelling particularly in detecting small objects (APS at 69.5%) and large
objects (APL at 71.1%). This comprehensive enhancement strategy demonstrates how
simultaneous architectural and functional upgrades can substantially elevate a detection
model’s performance, especially under varying object detection challenges.

Comparison experiment with YOLOv8-L

To further verify the effectiveness of the model, a comparation experiment is conducted
between the YOLOv8 baseline model and the enhanced YOLOv8-DEE on different types
of defects on the cropped HRIPCB dataset. The experimental results are shown in Table 4.
On average, YOLOv8-DEE outperforms YOLOv8-L across all metrics, including precision,
recall, F1-score, and AP.

In the ‘Mouse Bite’ category, YOLOv8-DEE improves precision by nearly two
percentage points and recall by almost two percentage points, resulting in a higher
F1-score and a substantial boost in AP. This indicates that YOLOv8-DEE better detects
irregular and less distinct features. For ‘Missing Hole’, the baseline model slightly

Table 4 Compare experiment results with YOLOv8-L baseline model. The bold entries show the best
detection results of the defect type by the YOLOv8-L baseline model and our proposed YOLOv8-DEE
model under the same evaluation metric.

Category YOLOv8-L YOLOv8-DEE

P R F1 AP P R F1 AP

Missing hole 96.85% 99.19% 98.01% 99.00% 96.34% 98.75% 97.53% 98.31%

Mouse bite 95.83% 94.52% 95.17% 95.73% 97.59% 96.43% 97.01% 99.13%

Open circuit 97.03% 95.15% 96.08% 97.40% 100.00% 97.53% 98.75% 98.74%

Short 96.00% 96.00% 96.00% 94.39% 96.51% 94.32% 95.40% 97.17%

Spur 98.32% 86.03% 91.76% 92.26% 100.00% 86.75% 92.90% 96.23%

Spurious copper 95.80% 94.48% 95.14% 94.89% 95.45% 98.82% 97.11% 99.30%

Average 96.64% 94.22% 95.36% 95.61% 97.65% 95.43% 96.45% 98.15%
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outperforms YOLOv8-DEE across all metrics, suggesting that for highly predictable
defects with consistent features, the baseline model may be sufficiently robust.

In the ‘Open Circuit’ category, YOLOv8-DEE achieves perfect precision and
significantly improves recall and AP, showcasing its superior capability to identify open
circuit defects, which are often challenging due to their fine and dispersed nature. For
’Short’ defects, both models perform comparably in precision, but YOLOv8-DEE shows a
marginal improvement in AP, indicating slight enhancements in detecting and delineating
connected circuit paths.

In the ‘Spur’ category, YOLOv8-DEE achieves perfect precision and slightly higher
recall, significantly improving both F1-score and AP. For ‘Spurious Copper’, recall
increases remarkably from 94.48% to 98.82% with YOLOv8-DEE, along with
corresponding rises in F1-score and AP, which are crucial for detecting random,
unexpected copper deposits.

These results clearly demonstrate that YOLOv8-DEE provides a more robust solution
for detecting diverse PCB defects compared to the baseline model, particularly in
categories that benefit from enhanced attention mechanisms and improved bounding box
accuracy. The consistent improvements across most categories suggest that the integrated
approach of YOLOv8-DEE effectively enhances the model’s overall performance,
validating the incorporation of these advanced modules into the detection framework.

Figure 7 Comparisons between YOLOv8-DEE and state-of-the-arts on the HRIPCB dataset. Full-size DOI: 10.7717/peerj-cs.2548/fig-7
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Comparison experiment on the cropped HRIPCB dataset
In addition, this study compared the performance of our model with other state-of-the-art
models, including YOLOv5-L, YOLOv7-L (Wang, Bochkovskiy & Liao, 2023), YOLOv8-X,
Faster-RCNN, and DETR (Carion et al., 2020) on cropped HRIPCB dataset. The
comparative performance of these models, including the proposed YOLOv8-DEE, is
detailed in Fig. 7. This analysis focuses on several key metrics: AP at different IoU
thresholds (AP0:5, AP0:75, AP0:5:0:95), and average precision for small (APS), medium
(APM), and large (APL) objects. The YOLOv8-DEE model demonstrates a clear advantage
across all specified metrics, underscoring its robustness and efficiency in object detection
tasks across varying scales and complexities.

In AP metrics at different IoU thresholds, the proposed YOLOv8-DEE model
significantly outperforms all other models, achieving an AP0:5 of 97.5%. The closest
competitors, YOLOv5-L and Faster-RCNN, show competitive but lower performance.

Figure 8 Detection effect on different models. Full-size DOI: 10.7717/peerj-cs.2548/fig-8
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Additionally, YOLOv8-DEE leads in more stringent metrics, with AP0:75 at 68.6% and
AP0:5:0:95 at 60.4%. This indicates that YOLOv8-DEE not only identifies objects more
accurately but also aligns better with the ground truth, a critical factor in applications
requiring high precision. The visualization results of detection effect on these models are
displayed in Fig. 8. It can be clearly seen that PCB defects only account for a small
proportion of the board. YOLOv8-DEE can detect all defect types and obtain more
accurate defect locations than other models.

Regarding performance across object sizes, YOLOv8-DEE demonstrates a remarkable
ability to detect small objects, achieving an APS of 71.4%, significantly higher than any
other model. This performance is crucial for scenarios where small object detection is
essential, such as PCB defect detection, medical imaging, and satellite imagery. For
medium-sized objects (APM), while the improvements are less dramatic, YOLOv8-DEE
still matches the best of the other models, showing balanced performance across object
sizes. Furthermore, for large objects, YOLOv8-DEE excels with anAPL of 70.2%, indicating
robust performance in detecting larger objects, which is often challenging due to higher
variability in appearance.

Comparison experiment on DeepPCB dataset

To further validated the performance of YOLOv8-DEE, a comparion experiment is
conducted on the DeepPCB dataset. Figure 9 presents the comparison of the experimental
results for various models, including YOLOv5-L, YOLOv7-L, YOLOv8-L, YOLOv8-X,

Figure 9 Comparisons between YOLOv8-DEE and state-of-the-arts on the DeepPCB dataset. Full-size DOI: 10.7717/peerj-cs.2548/fig-9
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Faster-RCNN, DETR, and the proposed YOLOv8-DEE. The evaluation metrics used are
AP0:5, AP0:75, AP0:5:0:95, APS, APM , and APL.

In terms of AP0:5, the YOLOv8-DEE achieved the highest score at 98.7%, outperforming
all other models. Although YOLOv8-X has a more complex feature extraction network, its
detection performance is still slightly lower than the proposed model. On the other hand,
all anchor-based models (YOLOv5-L, YOLOv7-L,Faster-RCNN) perform significantly
worse than anchor-free models (YOLOv8-L, YOLOv8-X, DETR, YOLOv8-DEE),
especially Faster-RCNN, which achieves the lowest detection accuracy on all detection
metrics. This indicates that anchor-free type detection heads may be more suitable for
detecting multi-scale PCB defects. The visual result of YOLOv8-DEE on DeepPCB is
shown in Fig. 10.

Regarding the AP metrics of different sizes, the YOLOv8 series models have achieved a
greater advantage compared to other detection models. The proposed model shows
stronger performance in detecting small object defects and large object defects compared
to YOLOv8-L and YOLOv8-X.

CONCLUSIONS
To address the challenges of insufficient detection accuracy and complex backgrounds in
PCB defect detection, this article proposes the YOLOv8-DEE algorithm, an enhancement
of YOLOv8-L. The integration of DSC, EMA, and EIoU modules in this model
significantly improves performance compared to existing architectures such as YOLOv5-L,

Ground Truth YOLOv8-DEE

Figure 10 Visual result of YOLOv8-DEE on the DeepPCB dataset. Full-size DOI: 10.7717/peerj-cs.2548/fig-10
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YOLOv7-L, YOLOv8-X, Faster R-CNN, and DETR. Through extensive experiments on
the HRIPCB and DeepPCB datasets, YOLOv8-DEE demonstrates superior performance,
achieving mAP scores of 97.5% and 98.7%, respectively. These results outperform state-of-
the-art methods, particularly in the detection of both small and large PCB defects.
Moreover, ablation studies verify the robustness of YOLOv8-DEE. However, the algorithm
lacks lightweight processing techniques such as cropping and knowledge distillation,
resulting in a relatively large number of parameters and no significant improvement in
inference time. Future optimization efforts should focus on reducing the model’s size and
computational demands without compromising detection accuracy.
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