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ABSTRACT
Purpose: This study aims to address the limitations of traditional data processing
methods in predicting agricultural product prices, which is essential for advancing
rural informatization to enhance agricultural efficiency and support rural economic
growth.
Methodology: The RL-CNN-GRU framework combines reinforcement learning
(RL), convolutional neural network (CNN), and gated recurrent unit (GRU) to
improve agricultural price predictions using multidimensional time series data,
including historical prices, weather, soil conditions, and other influencing factors.
Initially, the model employs a 1D-CNN for feature extraction, followed by GRUs to
capture temporal patterns in the data. Reinforcement learning further optimizes the
model, enhancing the analysis and accuracy of multidimensional data inputs for
more reliable price predictions.
Results: Testing on public and proprietary datasets shows that the RL-CNN-GRU
framework significantly outperforms traditional models in predicting prices, with
lower mean squared error (MSE) and mean absolute error (MAE) metrics.
Conclusion: The RL-CNN-GRU framework contributes to rural informatization by
offering a more accurate prediction tool, thereby supporting improved decision-
making in agricultural processes and fostering rural economic development.

Subjects Artificial Intelligence, Computer Education, Data Mining and Machine Learning, Data
Science
Keywords Cloud computing, Rural economy, Intelligent agriculture, Deep learning

INTRODUCTION
Rural economic development has garnered significant attention from governments and
organizations worldwide recently. Efforts have been made to bridge the gap between rural
and urban economies, focusing on enhancing agricultural productivity, improving
infrastructure, and expanding market access. However, rural regions face numerous
challenges, including limited access to modern technology, a shortage of skilled labor, and
inadequate infrastructure, which hinder economic development (Tukhtaboev, 2023). In
this context, rural informatization has emerged as a powerful tool to address these
challenges and promote sustainable development. Rural informatization enhances
agricultural practices by integrating advanced technologies such as the Internet of Things
(IoT) and big data analytics. These technologies allow farmers to make decisions regarding
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crop management and resource allocation, thereby increasing productivity and reducing
environmental impact (Lin et al., 2023). Cloud computing platforms are crucial in
advancing rural informatization by offering the necessary computing power and storage
resources to manage and analyze extensive agricultural data. These platforms perform
complex analytics and generate real-time insights that drive informed decision-making in
agricultural practices. One of the key benefits of cloud platforms is their scalability and
cost-efficiency, allowing farmers to seamlessly access, process, and interpret data from
diverse sources such as sensors, satellites, and weather monitoring systems. Moreover,
these platforms enable efficient data integration and sharing, promoting collaboration
among farmers, researchers, agricultural consultants, and policymakers. This
interconnected network enhances agricultural productivity by enabling predictive
analytics for crop management, optimizing resource allocation, and facilitating the
development of precision agriculture techniques tailored to local conditions. This
collaborative approach fosters innovation and accelerates the dissemination of rural
informatization practices (Morchid et al., 2024). Therefore, integrating cloud computing
platforms and fully utilizing advanced science and technology are crucial for promoting
rural economic development at this stage.

The development of rural informatization using cloud computing platforms presents
significant potential for enhancing agricultural productivity and ensuring food security. By
harnessing the power of cloud computing, vast amounts of agricultural data can be
collected, stored, and analyzed to provide invaluable insights to farmers. These insights
facilitate the prediction of crop yields, optimization of resource utilization, and real-time
monitoring of crop health (Liu et al., 2023). Machine learning (ML) and deep learning
(DL) technologies are pivotal in analyzing this data and generating precise predictions.
Data collected by IoT sensors in the field can be transmitted to the cloud, which
sophisticated algorithms process and analyze. Machine learning techniques such as
support vector machines (SVM) and Random Forests are employed for crop pest and
disease detection and classification, analyzing image data and sensor inputs to ascertain
crop health. Techniques such as decision tree and gradient boosting machine (GBM) are
utilized for yield prediction and risk assessment, aiding farmers and agricultural managers
in making informed decisions (Dawn et al., 2023). Deep learning methods, including
CNN, are highly effective in image processing and feature extraction, making them suitable
for analyzing remote sensing images and classifying hyperspectral images (Singh & Khan,
2023). Cloud platforms offer vital advantages in processing large-scale agricultural data,
such as scalability, real-time analysis, and integration capabilities. These platforms can
efficiently handle vast datasets from sources like satellites, IoT sensors, and weather
stations, enabling accurate and timely agricultural forecasts. Cloud technologies facilitate
predictive modeling for crop yields, pest outbreaks, and resource management by
providing tools like distributed computing and machine learning frameworks.
Additionally, the centralized nature of cloud platforms allows for seamless collaboration
among farmers, researchers, and policymakers, improving decision-making and
optimizing agricultural productivity. This scalability and efficiency make cloud platforms
invaluable for modern agrarian forecasting.
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The synergy between cloud computing platforms and deep learning methods enhances
the accuracy of agricultural forecasting and significantly fosters rural economic
development. Firstly, precise agricultural price and yield forecasts empower farmers to
devise scientific planting and sales strategies, mitigating market risks and enhancing
economic returns. Secondly, cloud computing platforms are crucial in data processing and
storage, providing a robust data foundation for model training and optimization through
efficient cloud data management. By facilitating more effective data analysis and
management, these platforms contribute to the intense and rapid development of the rural
economy. The specific contributions of this article are as follows:

(1) A forecasting framework incorporating multidimensional influencing factors is
proposed to address the challenge of predicting agricultural commodity prices within the
context of rural economic development.

(2) A reinforcement learning (RL), convolutional neural network (CNN), and gated
recurrent unit (GRU) framework (RL-CNN-GRU), integrating reinforcement learning and
deep learning, is proposed to manage agricultural data’s complexity and time-series
dependence.

(3) The RL-CNN-GRU model significantly outperforms traditional methods such as
CNN and LSTM in price prediction tests on public and proprietary datasets, particularly in
metrics such as mean squared error (MSE) and mean absolute error (MAE).

The article is arranged as follows: “Related Works” reviews related works on cloud
computing in intelligent agriculture and the prediction of agricultural product
information. “Methodology” details the establishment of the proposed RL-CNN-GRU
framework. “Experiment Result and Analysis” presents the experimental results and
practical tests. “Discussion” provides a discussion, and the conclusion is drawn at the end.

RELATED WORKS
Cloud computing and rural informatization
The cloud computing platform aids rural economic development by providing efficient
data processing and analysis capabilities. It collects and analyzes agricultural data in real-
time to optimize resource allocation and improve production efficiency. Additionally,
cloud computing supports market price prediction, assisting farmers in developing better
sales strategies and reducing losses (Cinar & Bharadiya, 2023). The flexibility and
scalability of cloud services also enable rural areas to adapt to technological advances and
achieve sustainable development swiftly. Amazon’s primary offerings (Mark & Bommu,
2024) provide computing and storage services to organizations with storage servers,
bandwidth, and CPU resources. Storage servers and bandwidth are charged according to
capacity, and CPU is charged based on computing time, with options for monthly fees. The
orderly development of foreign cloud computing platforms, specifically for agricultural
industry information platforms, ensures a perfect organizational system that aligns
research with actual needs (Vellela et al., 2023). These customized, innovative agriculture
systems facilitate large-scale coordinated agricultural production models using drones,
sensors, detectors, control systems, and other means for targeted data collection and
automated control. Ammad Uddin et al. (2021) implemented a rural agricultural

Chen and Al-Turjman (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2547 3/19

http://dx.doi.org/10.7717/peerj-cs.2547
https://peerj.com/computer-science/


information system using edge computing to rapidly address challenging locations to
deploy edge facilities. Raghuvanshi et al. (2022) proposed smart irrigation applications
combining machine learning with extensive data mining and neural networks, suggesting
that cloud computing will further the development of smart agriculture.Oteyo et al. (2021),
through research on smart agriculture systems and cloud computing, provided direction
for the future development of agriculture. Gunjan et al. (2021) emphasized that traditional
agriculture in India must evolve towards science and intelligence, focusing on smart
agriculture to improve current agricultural backwardness through modern information
technology. Gouraud (2014) highlighted the importance of information sharing in
informatized agricultural data, proposing that agricultural community communication
should leverage rapidly developing information technology for knowledge sharing, which
is crucial for regional or national agricultural development. The combination of
agricultural production and information technology is highly prioritized in the United
States. Since as early as 2008, the U.S. has integrated cloud computing with agricultural
information platforms, smart agriculture systems, GIS, remote sensing, database
technology, and multimedia, maximizing information utilization through national-level
data centers and data-sharing platforms to centralize, standardize, and normalize
agricultural data (Mesías-Ruiz et al., 2023). To address this, integrating case studies such as
using Amazon Web Services (AWS) in smart agriculture can be effective. For example,
AWS IoT solutions have been applied in precision farming to monitor soil moisture levels
and optimize irrigation, demonstrating the tangible benefits of cloud platforms in
enhancing agricultural productivity.

Rural economic intelligence forecasting study
In “Cloud computing and rural informatization”, we observe that with the continuous
advancement of rural informatization, people utilize more intelligent methods to predict
agricultural product price trends and other information, achieving more precise data
analysis and facilitating the digital transformation of the rural economy. Various factors
influence the price of agricultural products, and multiple models and methods can be
employed to analyze these factors. Influencing factors include random events, residential
consumption, production logistics, the level of digital agriculture infrastructure, economic
policy, weather conditions, and more. Wawale et al. (2022) employed the Autoregressive
Integrated Moving Average (ARIMA) model to predict rice prices in India from 2016 to
2021, using MSE and mean absolute percentage error (MAPE) to test the accuracy of the
forecasts. Montecillo (2021) constructed ARIMA, vector autoregressive (VAR), and vector
error correction (VEC) models for corn futures prices in Mexico and the U.S. Gu et al.
(2022) proposed a dual input attention long short-term memory (DIA-LSTM) framework
for effective prediction of monthly prices of cabbage and radish. Ye et al. (2021) introduced
an Heterogeneous Graph-enhanced LSTM (HGLTSM)model to predict weekly hog prices.
Historical prices of essential agricultural commodities from recent years were extracted,
and discussions from a specialized online community were used to construct the
heterogeneous graph.Mahto et al. (2021) utilized artificial neural networks for short-term
forecasting of price data for sunflower and soybean seeds in the markets of Maharashtra

Chen and Al-Turjman (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2547 4/19

http://dx.doi.org/10.7717/peerj-cs.2547
https://peerj.com/computer-science/


and Andhra Pradesh, India, comparing the results with those of a conventional ARIMA
model.

The study above demonstrates that cloud computing platforms have significantly
advanced the rural economy by providing efficient data processing and analytical
capabilities. Cloud computing can collect and analyze vast amounts of agricultural data in
real-time, optimize resource allocation, enhance production efficiency, and assist farmers
in developing superior sales strategies and minimizing losses through market price
forecasts. Additionally, the flexibility and scalability of cloud computing allow rural areas
to adapt to technological advances and achieve sustainable development swiftly.

However, more than relying solely on traditional data analysis methods is required for
further improvements in the agricultural economy.With the ongoing development of rural
informatization, more intelligent methods are necessary to predict agricultural price trends
and sales. Modern research indicates that techniques combining extensive data mining and
machine learning, such as ARIMAmodels, LSTM networks, and artificial neural networks,
can more accurately forecast agricultural prices and demand. These advanced prediction
methods can identify multiple factors affecting prices and provide more precise and
reliable decision support, aiding farmers in optimizing their production and sales
strategies, stabilizing the supply and demand of agricultural products, and ultimately
fostering better development of the agricultural economy.

METHODOLOGY
CNN and GRU
CNN can be employed for image processing and effective feature extraction from
multidimensional time series data. These data comprise sequences of multiple variables
over time, from which CNNs can discern significant patterns and features due to their
robust feature extraction capabilities. In these datasets, each dimension represents a
distinct feature or variable; for example, agricultural data may include multiple time series
such as temperature, humidity, and rainfall (Shi et al., 2022).

CNNs can capture the complex relationships and temporal dependencies between these
variables through the operations of convolutional and pooling layers. This article uses one-
dimensional convolution (1D convolution) to process time series data, where the
convolutional kernel slides along the time dimension, extracting various time-dependent
features through different convolutional kernels. The convolution operation is
mathematically represented in Eq. (1):

ðI � KÞðtÞ ¼
X
s

Iðt � sÞKðsÞ (1)

where I is the input sequence, K is the convolution kernel, and t is the time step. The
convolutional kernel acts as a sliding window in the convolution operation, capturing local
features as it moves over the input data step by step. In time-series data processing, the
kernel moves along the time steps, computing the weighted sum between the input data
and the kernel at each point to extract patterns and features from the time series. This
process can be seen as applying a weighted filter within a small range to extract localized
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features, thereby capturing local trends and changes in the time series data. In this way, the
convolutional kernel effectively identifies patterns, such as periodic fluctuations or sudden
changes, providing helpful information for subsequent feature extraction and analysis.

Apply a nonlinear activation function (e.g., ReLU) to the output of the convolutional
layer, thereby enhancing the model’s expressive power. Utilize pooling operations (e.g.,
maximum or average pooling) to reduce the temporal dimension, retaining crucial features
while mitigating computation and overfitting risks. Progressively extract higher-level
features by stacking multiple convolutional and pooling layers, capturing intricate time-
dependent patterns. Ultimately, the extracted features are unfolded through the fully
connected layers, preparing them for the final feature representation or classification task.
Following feature extraction via 1DCNN, a GRU layer is appended further to enhance the
performance of the time series classification method.

The GRU is a variant of the RNN designed to address the issues of gradient vanishing
and gradient explosion in traditional RNNs when processing long sequence data by
introducing a gate mechanism. GRUs simplify the structure of LSTMs by having fewer
parameters while effectively capturing long-term dependencies in sequence data. Its
primary structural components include update gates and reset gates, with update gates
regulating the influence of previous memory on the current state and reset gates
determining the extent of past information to discard (Cahuantzi, Chen & Güttel, 2023).
The reset gate controls the incorporation of new input with past memory by deciding
whether to ignore past states or not. When the reset gate is near zero, the GRU effectively
forgets the past state, making it suitable for capturing short-term dependencies. The
update gate, on the other hand, determines how much of the past state (long-term
memory) should be carried forward to the next state. It helps maintain long-term
dependencies by controlling how much of the previous state remains in the current state.
When the update gate is activated, the GRU retains more information from the past,
making it useful for sequences where long-term memory is crucial. This dual mechanism
allows GRUs to efficiently manage memory efficiently, leading to faster training and
reduced complexity compared to LSTM units, which use three gates instead of two.

rt ¼ r Wr � ht�1, xt½ � þ brð Þ (2)

where rt is the output of the reset gate, Wr and br are the weights and biases, r is the
Sigmoid activation function, ht�1 is the hidden state of the previous moment, and xt is the
input of the current moment. The update gate is then shown in Eq. (3):

zt ¼ r Wz � ht�1, xt½ � þ bzð Þ (3)

where zt is the output of the update gate, Wz and b are the weights and biases? According
to the output of the update gate zt and the candidate hidden state ~ht , update the hidden
state ht at the current moment. The GRU effectively addresses the issue of gradient
vanishing in traditional RNNs when processing long sequence data through its reset and
update gate mechanisms. Its relatively simple structure and high computational efficiency
extract valuable features from multidimensional time series data, providing robust support
for classification or regression tasks. Consequently, this article proposes the integration of
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CNN and GRU networks to perform comprehensive data feature extraction, thereby
enhancing the performance of the features and ultimately improving the final prediction
outcomes.

Combining CNN and GRU can be further justified by emphasizing that 1D-CNNs are
particularly efficient for extracting local features and patterns from time-series data as they
apply convolutional operations along the temporal dimension. This enables them to
capture short-term dependencies effectively, which is crucial for tasks involving sequential
data. In contrast, models like Transformers and attention-based mechanisms are more
suited for capturing long-range dependencies but may come with higher computational
costs and complexity. To strengthen the argument, experiments comparing the
performance of 1D-CNN and GRU against Transformer-based models on the same time-
series dataset could provide empirical evidence, demonstrating the advantages of the
chosen architecture regarding accuracy, efficiency, and model interpretability.

Reinforcement learning DDPG
Deep Deterministic Policy Gradient (DDPG) is a reinforcement learning algorithm for
high-dimensional continuous action spaces. It merges the strengths of Deep Q-Network
(DQN) and policy gradient methods. It effectively manages high-dimensional continuous
action tasks using neural networks to approximate the policy and Q-value functions. In the
DDPG method, the main networks include the policy network and the Q-value network,
the deterministic policy lðsjhlÞ, which outputs the actions s in a given state a (Islam, Ball
& Goodin, 2024). The Q-value Qðs, ajhQÞ for a given state s and action a is also estimated.
Its overall structure is shown in Fig. 1:

The Critic network loss function, i.e., the loss between Q and Q′, for both the policy
network and the target network for a given graph, is computed by the following equation:

L hQ
� � ¼ E yt � Q st , atjhQ

� �� �2h i
(4)

In this deep reinforcement learning framework, network and parameter initialization is
required to initialize the policy lðsjhlÞand Q-value network Qðs, ajhQÞ s and randomly
initialize the parameters hlhQ. Initialize the target network l0 and Q′ and set the
parameters to the same as the primary network, i.e., hl

0  hlhQ
0  hQ. Execute the action

at ¼ lðstjhlÞ þ Nt in the environment, where Nt is exploring the noise. During the
updating process of Q′ network, we need to calculate the target value as follows:

yi ¼ ri þ cQ0ðsiþ1, l0ðsiþ1jhl0 ÞjhQ0 Þ (5)

With the completion of the update of the policy network, the update of the target
network is further realized by employing a soft update, and the update process is as follows:

hQ
0  shQ þ 1� sð ÞhQ0 (6)

hl
0  shl þ 1� sð Þhl0 (7)

Chen and Al-Turjman (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2547 7/19

http://dx.doi.org/10.7717/peerj-cs.2547
https://peerj.com/computer-science/


s a small weighting factor balances the relationship between the coefficients and thus
controls the convergence rate.

The establishment of the RL-CNN-GRU for the price prediction
Upon completing the foundational feature extraction with CNN and GRU, we developed
an RL-CNN-GRU network framework, integrating reinforcement learning for the analysis
and prediction of agricultural product prices in the context of rural economic development
and smart agriculture. This framework initially employs CNN to perform feature
extraction on multidimensional time series data, capturing critical spatial features.
Subsequently, GRU is utilized to identify time-dependent relationships and long-term
dependencies within the series data. Finally, integrating a reinforcement learning strategy
optimizes the price prediction model, enhancing its accuracy and robustness. The overall
structure of the framework is illustrated in Fig. 2.

According to Fig. 2, the framework initially utilizes time series data, such as historical
prices and discrete influences, as feature inputs to create input vectors for the CNN
network’s feature extraction. This article employs a 1DCNN structure, incorporating two
convolutional layers and two pooling layers to enhance model feature performance.
Following the feature extraction by the convolutional layers, the GRU network furthers the
features to strengthen the time series features. Finally, the model is optimized through a
reinforcement learning strategy to enhance the accuracy and robustness of the predictions.
This integrated approach aims to improve the precision of agricultural product price
forecasts, thereby providing a scientific basis and technical support for the advancement of
smart agriculture.

EXPERIMENT RESULT AND ANALYSIS
Dataset and experiment setup
Upon completing the model construction, we proceed to analyze the model using an
appropriate dataset. Given the application context and the prediction needs for agricultural
products, we selected the Global Yield Gap Atlas (Fayazi et al., 2023) dataset (https://
zenodo.org/records/8280551, doi: 10.5281/zenodo.8280551). The Global Yield Gap Atlas
(GYGA) is a comprehensive agronomic database that provides data on up to 13 major food

Figure 1 The update framework for DDPG. Full-size DOI: 10.7717/peerj-cs.2547/fig-1
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crops across 70 countries and six continents. It includes information on actual and
potential crop yields, yield gaps, water productivity, nutrient requirements, and other
relevant agronomic factors such as weather, soil, and crop management systems. This
dataset offers comprehensive global agricultural data, highlighting the disparities between
potential and actual yields of various crops under different climatic and soil conditions. As
a collaborative initiative of international agricultural research institutions, the project aims
to assist policymakers, researchers, and farmers in optimizing agricultural production,
reducing yield gaps, and enhancing food security through scientific data and analysis. The
corresponding yields and their calculated average yields for different regions are illustrated
in Fig. 3.

Where YW and YP denote tons per harvested hectare at standard moisture content,
after introducing the public dataset, we proceeded with the training and testing of the
model, utilizing the following experimental environment as shown in Table 1.

In the process of method comparison, we utilize MSE and MAE indices to evaluate the
overall performance of the proposed method. Various fundamental methods are selected
for model comparison, given the predictive regression nature based on multi-source data.
This article includes multiple time series analysis prediction methods, such as single CNN,
LSTM, and GRU, and combined frameworks like CNN-LSTM (Kim & Cho, 2019) and
CNN-GRU (Sajjad et al., 2020). This approach aims to achieve a more accurate evaluation
of model performance. For the model’s parameters, we added two pooling layers after the
two convolutional layers in the convolutional layer, with a kernel size of 3 and a GRU of 64
units in two layers. The Actor and Critic learning rates in DDPG reinforcement learning
were 0.0001 and 0.001, respectively. The model was trained on 50 epochs using the Adam
optimizer.

Model comparison and result analysis
We have compared the performance of the models using the public dataset and employed
MSE and MAE metrics to evaluate and compare the performance of various methods.
Figure 4 presents the final values of the loss function changes and MSE observed during
training.

Figure 2 Framework for the RL-CNN-GRU. Full-size DOI: 10.7717/peerj-cs.2547/fig-2
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In Fig. 4, we observe that the initial loss values of the models are similar, attributable to
the relatively small amount of data and the smoother trend. For the RL-CNN-GRU
proposed, integrating the reinforcement learning module improves dynamic interaction,
allowing quicker convergence and iteration. Compared to other methods, it demonstrates
a faster and smoother overall iteration process. The final MSE value for the proposed
framework is 1.91, significantly outperforming the 2.12 observed without the
reinforcement learning module and other traditional methods. To provide a more intuitive
analysis of the model’s performance, we calculated and compared its MAE and overall
computation time with the results depicted in Table 2 and Fig. 5.

In Fig. 5, since the MAE metric does not involve the calculation of the square, its overall
value is slightly lower than that of the MSE metric. The MAE of the proposed method is
1.87, still outperforming other methods. Additionally, we recorded the training times of
different models, as detailed in Table 2. The proposed method’s training time exceeds
13 min due to the addition of the reinforcement learning module, which results in a longer
runtime compared to traditional methods like CNN-GRU. However, the rapid
convergence capability of the reinforcement learning module minimizes this time
difference. In smart agriculture, ensuring a better fitting performance is more critical.
Furthermore, in terms of traditional methods, the GRU model significantly improves the
computational speed by using only two gates for control, making it noticeably faster than
the LSTM method. Therefore, integrating reinforcement learning with multiple models
effectively meets the yield prediction requirements in smart agriculture.

Cloud platform data collection and model testing
For cloud platform data, this article utilizes OpenStack, an open-source cloud computing
platform, to analyze regional agricultural data. OpenStack comprises a suite of
interconnected services that manage and control extensive computing, storage, and
networking resources, which are crucial for storing and managing various collected data.
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Figure 3 The data from the public dataset. Full-size DOI: 10.7717/peerj-cs.2547/fig-3

Chen and Al-Turjman (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2547 10/19

http://dx.doi.org/10.7717/peerj-cs.2547/fig-3
http://dx.doi.org/10.7717/peerj-cs.2547
https://peerj.com/computer-science/


Agricultural production data encompasses soil data (e.g., soil moisture, temperature, pH,
and nutrient content), meteorological data (e.g., temperature, humidity, rainfall, and wind
speed), crop growth data (e.g., growth stage, leaf area index, pest and disease information),
and agricultural machinery operations data (e.g., time of use, location, area of operation,
and fuel consumption). Timely data collection and storage are essential for effective
analysis and decision-making. To test the model, this study collected data from a regional
smart agriculture production area over 100 observation periods for over 10 crops. The
collected information includes Soil Moisture, Soil Temperature, Soil pH, Nutrient Content,
Temperature, Humidity, Irrigation, Wind Speed, and Product Price. An example of a row
of various types of information at the observation time is presented in Fig. 6.

After completing data collection, denoising, and outlier removal, we analyzed the daily
price prediction and production on the corresponding date. As previously described, the
model initialization was performed by migrating model parameters. Based on this, we
divided the data into a training set and a test set with the classic ratio, i.e., 70% for training
and 30% for test. The corresponding results are displayed in Figs. 7 and 8.

In Fig. 7, we present the corresponding price prediction data. The overall trend is
relatively smooth, indicating a good fit for the price fluctuation characteristics and
accurately capturing the general upward trend. The MSE and MAE are 0.19 and 0.15,

Table 1 The experiment environment information.

Environment Information

CPU I5-13500

GPUs RTX 2080

Language Python 3.5

Framework Tensorflow
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Figure 4 Training loss and MSE on public dataset. Full-size DOI: 10.7717/peerj-cs.2547/fig-4

Chen and Al-Turjman (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2547 11/19

http://dx.doi.org/10.7717/peerj-cs.2547/fig-4
http://dx.doi.org/10.7717/peerj-cs.2547
https://peerj.com/computer-science/


respectively, demonstrating an excellent fit for the smaller and less volatile price data.
Building on this, we also predicted the production, with the results as follows:

Figure 8 shows that the prediction results for production and product price are similar,
effectively fitting the data under fluctuating scenarios. The MSE and MAE for the
prediction fitting are 19.01 and 15.33, respectively, which is favorable for production data
with a mean value of around 1,000. To analyze the model’s performance further under the
cloud computing platform data stream, we also compared the MSE and MAE results of
different methods, as shown in Fig. 9.

In Fig. 9, the proposed method outperforms other price and yield prediction
approaches. This demonstrates that, in the context of cloud computing, our model
effectively predicts the production and prices of agricultural products using
multidimensional data. The performance is significantly better than that of single
traditional methods, indicating a potential contribution to the advancement of the rural
economy.
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Figure 5 MAE and training time on the public dataset. Full-size DOI: 10.7717/peerj-cs.2547/fig-5

Table 2 Training time.

Method Training time (min)

CNN 10.8

LSTM 12.5

GRU 12.1

CNN-LSTM 13.6

CNN-GRU 13.1

Ours 13.3
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DISCUSSION
With the development of rural informatization and the application of big data technology,
agricultural product price and yield prediction have become crucial means to enhance
agricultural production efficiency and farmers’ profitability. The RL-CNN-GRU
framework proposed in this study demonstrates significant advantages in agricultural
product price and yield prediction. Compared to traditional methods such as CNN, LSTM,
GRU, and their combinations, the RL-CNN-GRU framework substantially improves the
model’s prediction accuracy by integrating multi-level feature extraction and
reinforcement learning strategies. In this framework, the 1D convolutional neural network
(1DCNN) serves as the first feature extraction layer, efficiently capturing patterns from
historical price data and discrete factors through its convolutional and pooling layers. This
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architecture enhances the model’s capacity to detect local dependencies and short-term
trends in the time series data. Building on this, the GRU network is employed to further
process the extracted features, improving the model’s ability to capture both short- and
long-term dependencies, which is essential for understanding the temporal dynamics of
agricultural prices. Adding a reinforcement learning strategy significantly optimizes the
model by dynamically adjusting to changing data patterns, improving the prediction
accuracy and robustness of the price forecasting model. This combination of CNN, GRU,
and reinforcement learning results in a robust, multi-layered framework capable of
capturing complex nonlinear relationships and time dependencies more effectively than
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standalone methods. Compared to using CNN or GRU alone, this hybrid model takes
advantage of CNN’s strength in local feature extraction and GRU’s capability of handling
temporal data, providing better performance in tasks with complex time-series data.
Furthermore, while CNN-LSTM and CNN-GRU models can capture sequential
dependencies, the integration of reinforcement learning adds an adaptive layer of
optimization, allowing for continuous learning and improvement as new data becomes
available. This ensures that the RL-CNN-GRU framework consistently outperforms
traditional models like CNN, GRU, CNN-LSTM, and CNN-GRU, particularly in terms of
reducing error metrics like MSE and MAE, making it more suitable for real-world
agricultural forecasting where accuracy and adaptability are key.

With the continuous development of rural informatization and the maturity of cloud
computing technology, this framework holds excellent significance for rural economic
development. Firstly, accurate price and yield forecasts of agricultural products can assist
farmers in devising more scientific planting and marketing strategies, thereby reducing
market risks and enhancing economic returns. Secondly, the cloud computing platform
plays a pivotal role in this study, enabling efficient collection and analysis of substantial
agricultural data through cloud data processing and storage, thus providing a robust data
foundation for model training and optimization. The flexibility and scalability of the cloud
platform allow rural areas to quickly adapt to technological advancements, promoting the
development of rural informatization. In future applications, it is crucial to focus on the
data’s quality and integrity to ensure the input data’s accuracy and timeliness. The
completeness of the data collected via cloud computing must be closely monitored.
Additionally, model parameters and training strategies should be adjusted flexibly
according to the specific conditions of agricultural production to leverage the model’s
predictive capabilities fully. In the future, with the incorporation of more real-time data
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and sensor data, the RL-CNN-GRU framework is expected to improve prediction accuracy
and application scope further. This will provide more substantial technical support for
rural informatization, aiding the rural economy’s comprehensive revitalization and
sustainable development. Cloud technology enhances data analysis efficiency and
scalability by delivering on-demand computing power and storage. For real-time data
processing, cloud platforms offer distributed computing frameworks like Apache Spark,
which can manage large-scale data streams efficiently. This capability ensures that models
can ingest and analyze data continuously, enabling timely updates and actionable insights.
Moreover, cloud services like AWS, Azure, and Google Cloud provide specialized tools
such as auto-scaling and load balancing, which dynamically allocate resources to maintain
performance even as data volumes fluctuate. However, potential issues include latency,
especially when handling real-time updates across geographically dispersed cloud servers.
Additionally, ensuring data security and maintaining compliance with privacy regulations
(e.g., GDPR) can be challenging, as data transmission over networks may expose sensitive
information. Moreover, high computational demands and data storage costs can escalate,
necessitating efficient resource management strategies to optimize cloud expenses. Cloud
technology can only be better applied to efficient agricultural data analysis by solving the
above problems.

CONCLUSION
The RL-CNN-GRU framework based on reinforcement learning, CNN, and GRU
proposed in this study provides an effective solution for agricultural price prediction in
smart agriculture. By integrating CNN and GRU techniques with reinforcement learning
strategies, we have constructed a prediction system capable of processing and analyzing
multidimensional agricultural data. This approach successfully achieves deep modeling of
multiple influencing factors, such as historical prices, meteorological conditions, soil
conditions, and agricultural management, thereby significantly enhancing the model’s
prediction accuracy and reliability. The experimental results confirm the superior
performance of the framework in practical applications, outperforming traditional
methods like CNN, LSTM, and GRU and combined methods such as CNN-LSTM and
CNN-GRU in terms of MSE and MAE. In the analysis based on the self-constructed
dataset collected from the cloud computing platform, the RL-CNN-GRU framework also
excels in practical application indices such as prediction accuracy and robustness. Its MSE
indices for price and yield prediction are 0.19 and 19.01, respectively, nearly 10% better
than the traditional optimal methods, demonstrating its potential in rural economic
development. This research advances economic intelligence analysis and provides new
technical means and strategic support for revitalizing the rural economy.

In future research, we plan to expand the framework’s application by integrating
additional meteorological, soil, and crop growth data to enhance its value in smart
agriculture further. Specifically, we will utilize diverse data sources such as real-time
weather stations, sensor networks, and satellite-based technologies like hyperspectral
imaging for accurate and comprehensive data collection. Additionally, we aim to leverage
advanced AI techniques, including meta-learning and adaptive algorithms, to improve the
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framework’s adaptability and generalization capabilities across different agricultural
environments. These enhancements will strengthen the model’s performance and offer
more reliable technical support for agricultural production management and decision-
making, driving sustainable development in smart agriculture.
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