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ABSTRACT

The major challenges that the agricultural sector faces are that with the kind of
methodologies that exist, gross limitations may occur to the exact diagnosis of crop
diseases. They are unable to achieve correct precision in disease classification,
relatively lower accuracy, and delayed response time—all these obstacles result in a
deficiency in effectual disease management and control. Our research proposes a new
framework instigated and developed to improve crop disease detection and
classification by multifaceted analysis. In the core of our methodology is the
implementation of adaptive anisotropic diffusion for the denoising of obtained agro
images, therefore making it a step towards assurance in data quality. Along with this
is the use of a Fuzzy U-Net++ model for image segmentation, whereby fuzzy
decisions in generously instill an increase in performance for image segmentation.
Feature selection itself is innovated by the introduction of the Moving Gorilla
Remora Algorithm (MGRA) combined with convolutional operations, setting a new
benchmark in the selection of optimal features pertaining to disease identification
operations. To further refine this model, classification is adeptly handled by a process
inspired by the LeNet architecture, significantly improving identification against
various diseases. Our approach’s performance is therefore strongly assessed through
a number of renowned datasets, such as PlantVillage and PlantDoc, on which test
metrics show superior performance: 8.5% improvement in disease classification
precision, 8.3% higher accuracy, 9.4% improved recall, with a reduction in time delay
by 4.5%, area under the curve (AUC) increasing by 5.9%, a 6.5% improvement in
specificity, far ahead of other methods. This work not only sets new standards in crop
disease analysis but also opens possibilities for the preemptive measures to come in
agricultural health, promising a future where crop management is more effective and
efficient. Our results thus have implications that reach beyond the immediate benefits
accruable from improved diagnosis of diseases. It is a harbinger of a new era in
agricultural technology where precision, accuracy, and timeliness will meet to
enhance crop resilience and yield.

Subjects Bioinformatics, Artificial Intelligence, Computer Vision, Neural Networks
Keywords Crop disease diagnosis, Adaptive anisotropic diffusion, Moving gorilla remora
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INTRODUCTION

Precision farming has completely altered the monitoring and management of crop health.
Late detection and inappropriate diagnosis are two major causes of crop loss; hence,
precise and timely diagnosis of diseases becomes very imperative from the point of view of
crop yield and sustainability. Crop diseases, on the other hand, remain one of the major
challenges to improving productivity and hence economic viability in agriculture. In
contrast, that has improved considerably due to advances in technology. This therefore
underlines the critical need for such innovative solutions that not only identify but also
classify crop diseases with a high level of precision and efficiency. Techniques that have
been introduced as promising ways of addressing these challenges are deep learning
techniques. Yet, the intricacy of symptoms and variability in the quality of captured image
data calls for further improvements in this domain. The deficiencies of traditional models,
in terms of precision, accuracy, and the reality of running the model in real-time, spite the
need to find efficient models. Traditional approaches have been inefficient in handling
noisy and high-dimensional data typical of agricultural settings found in real-world
scenarios. This leads to the development of models that handle such data robustly while
ensuring a high degree of accuracy in disease classification.

It is in the light of this that an all-inclusive framework is proposed for the management
of crop disease diagnosis, incorporating novel image processing and deep learning
techniques to achieve this task. One key building block of such a framework lies in the use
of adaptive anisotropic diffusion for image denoising, greatly improving the quality of
input data fed into the processing pipeline. Realizing the demands of proper segmentation
in disease diagnosis, we use a Fuzzy U-Net++ model that applies fuzzy logic to enable
accurate segmentation. The very original application of fuzzy decisions instead of binary
ones by this model has resulted in a radical departure from the traditional approach and
has given much more nuance and effectiveness to the segmentation of the diseased regions
in crop images.

The Moving Gorilla Remora Algorithm (MGRA) scheme increases the capability of our
framework through feature selection. Coupled with convolutional operations, this new
paradigm would make it possible to identify and select the most discriminative features for
disease classification, trying to improve model performance. For classification, a modified
LeNet architecture was applied one of the most efficient models for pattern recognition
problems, which has been beautifully fine-tuned for the task of crop disease classification.

The efficacy of the proposed model is duly tested with the aid of two preeminent
datasets attendant to this sphere of activity: PlantVillage and PlantDoc. This evaluation
goes on to confirm that results from our model turn out better compared with methods
available today, having huge potentiality for enhancing precision, and accuracy, and
raising the speed of crop disease diagnosis. We therefore place our contribution within the
scope of precision agriculture by providing farmers, agronomists, and researchers with a
robust tool against crop diseases. This research brings agricultural innovation to a totally
different level by showing potential through cutting-edge AI techniques to improve crop
management practices.
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Motivation and contribution

Crop disease diagnostics assumes paramount importance in the changing landscape of
agricultural technology. In this direction, this study was undertaken to reduce crop loss by
diseases to strengthen food security, since farmers’ livelihoods are at stake worldwide and
serious threats loom over global food supply chains. The new approach is instituted on a
model with a maximum agglomeration of strengths from the Adaptive Anisotropic
Diffusion, Fuzzy U-Net++, and MGRA convolutional operations. Compliance with the
base classification is further justified and backed by the use of a LeNet-based architecture
that gives power in manifold such approaches and stands as one giant stride toward
strategies handling multifarious challenges dispensed for crop disease analysis. The model
to be proposed will integrate sophisticated segmentation and feature selection
methodologies with adaptive denoising techniques in a way that can increase the precision
and accuracy of disease identification. That is, diagnosis delay will topically be reduced,
hence allowing for more timely and effective strategies for disease management. The
contributions of this study are multifaceted and have never been done before.

First, this will be an entirely new application of adaptive anisotropic diffusion within the
agricultural domain for image denoising and set up totally new precedents for data quality
enrichment. Second, application of a fuzzy logic-based Fuzzy U-Net++ model in image
segmentation provides improvements in segmentation performance that were just
unprecedented. Thirdly, the application of MGRA in feature selection coupled with
convolutional operations marks one milestone in the work: the optimization process of
feature selection for crop disease diagnosis. LeNet classification welds deep learning
techniques into agricultural technology, hence calling for a new era ahead in precision
agriculture. The empirical validation of this proposed model on the PlantVillage and
PlantDoc datasets proved not only to be better performance but also proved to be on the
path to revolutionizing the domain of agricultural disease management.

This encapsulates robust intervention into the current urge for crop disease diagnosis
methodology that is more potent in its promise of huge impacts through enhanced crop
health, yield, and global food security. It is expected that this work will add one brick to the
process of building a sustainable and resilient agricultural ecosystem by laying the
foundation for further innovations in agricultural technology.

IN-DEPTH REVIEW OF EXISTING MODELS

Looking through the spectrum of inventions, all targeted at improving accuracy, efficiency,
and applicability within different agricultural contexts, a systematic review of the current
methodologies for plant disease detection and classification gives way. This has been
possible through a careful review of recent publications in the genre, which exposes a
universal move toward advanced technologies that emerge clearly in deep learning,
Internet of Things (IoT), and machine learning models, as well as contrastingly advanced
data augmentation techniques and newer forms of convolutional neural networks.

The common factor contributing to these studies is the attempt to rectify and reduce the
limitations of conventional plant disease diagnosis techniques. Notably, such includes
generalizability across a wide variety of plant species and diseases, ease of handling,
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scalability, and processing in real-time proposed systems, and the practical concerns
involved in the implementation of IoT in agricultural environments. Also, the use of high
Volume and heterogeneous data in training models, together with the computational
complexity of the methods, makes relevant challenges that should be carefully addressed.

Table 1 analysis evidences an important turn towards more sophisticated models
elaborated to provide other than a more accurate refinement of the process related to
disease detection and classification a way towards precision agriculture. Leveraging deep
learning with IoT, further coupled with the strategic application of data augmentation and
attention mechanisms, it is in these studies, contributing to the advancement of smart
farming solutions. The road ahead demands balance in its stride through the intricate
dance between technological innovation and the pragmatic challenges in its
implementation process.

Looking through the detailed methodologies and findings presented by the reviewed
articles goes a long way to show and provide passage to the transformative, evolutionary
era of the domain of plant disease detection. Deep learning with IoT integration and the
new use of data augmentation techniques like LeafGAN, along with attention mechanisms,
signals a new era entering agricultural technology. This shows that their enhancement of
the convolutional neural network (CNN) architecture and further the strategy of feature
fusion have really improved the performance of disease detection systems in terms of
precision and efficiency, supporting the potential of artificial intelligence to realize a
revolution in the field of plant pathology.

Considerable limitations arise scalability of the systems to deal with real-time
processing, model generalizability to a greater range of diseases and plant species, and
logistical challenges to IoT deployment. Furthermore, large and very diverse datasets are
required to train the models effectively in some cases, whereas many other methods are
very computationally intensive, thereby making full-scale adoption very difficult.

In summary, the review emphasizes that further studies will be needed to unlock ways to
confront the complexities and limitations accrued. The scope in the near future is immense
for studies to investigate very new solutions by which plant disease detection systems could
allow better generalization and scalability. This will build on the model development that is
technologically advanced but practical and accessible for real-world agricultural
applications to exploit the fullest potential of artificial intelligence (AI) in sustainable
agriculture. The journey to smart farming is quite challenging, though replete with
opportunities for ground-breaking research that can bridge the gap between theoretical
models and practical, high-impact solutions in plant disease diagnosis and management.

Research background

In recent years, precision agriculture has emerged as a critical approach to enhance crop
yield and minimize losses due to diseases. The integration of IoT-based systems, as
explored by Sravanthi & Moparthi (2024), has shown the potential to predict crop diseases
and recommend suitable crop types, thereby reducing the risk of disease spread. However,
these methods often face challenges in scalability and data handling, which necessitate
more robust and adaptive frameworks for disease detection, as proposed in this study
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Table 1 Review of existing methods.

Reference Method used Findings Results Limitations
Liu & Zhang Convolutional neural network Developed PiTLiD for plant Achieved high identification ~ Limited by the variety of
(2023) (CNN) disease identification from leaf  accuracy diseases and plants studied
images
Moupojou et al. Deep learning with FieldPlant Enhanced disease detection and Demonstrated robustness in ~ Dataset size and diversity could
(2023) dataset classification field and laboratory images  be expanded
Garg et al. IoT-Enabled sensor system Investigated environmental Provided insights for Focuses on a single disease and
(2023) factors on leaf spot disease in  precision agriculture crop type
groundnuts
Hosny et al. CNN and Local Binary Pattern Improved multi-class Showed enhanced Method complexity and
(2023) (LBP) feature fusion classification of plant leaf classification accuracy computational demand
diseases
Joseph, Pawar ¢ Deep learning with real-time  Enabled efficient disease Improved real-time disease  Scalability and real-time
Chakradeo dataset development detection with transfer detection capabilities processing challenges
(2024) learning
Madhurya & Deep learning with YOLOv7  Achieved high efficiency in Outperformed existing Specificity to the models and
Jubilson (2024)  and PCFAN disease detection and models in accuracy algorithms used
classification
Rayhana et al. ~ Review on hyperspectral Highlighted the potential of Provided comprehensive data Requires sophisticated
(2023) imaging hyperspectral imaging in analysis strategies equipment and analysis
disease detection techniques
Liu et al. (2021) Visual region and loss Proposed a novel dataset and ~ Enhanced fine-grained visual ~Limited by dataset specificity
reweighting approach methodology for plant disease  classification and application scope
recognition
Zhao et al. DoubleGAN for leaf generation Utilized GANs for improved Showcased the utility of Dependency on synthetic data
(2021) plant disease detection synthetic data augmentation  quality
Li, Zhang & Deep learning review Summarized deep learning Identified key challenges and Broad focus with limited
Wang (2021) applications in plant disease opportunities in-depth analysis on specific
detection methods
Balafas et al. Machine and deep learning Evaluated various ML and DL Highlighted advancements General review without new
(2023) review approaches for disease and effectiveness experimental results
classification and detection
Noon et al. Improved YOLOX model Addressed co-occurring disease Showed precision in severity ~Focuses on cotton, limiting
(2022) severity levels in cotton classification generalization
Rani et al. Al in agriculture analysis Explored the role of Al and ML Emphasized the impact of AI More of an overview than a
(2023) in combating plant diseases in smart farming deep dive into specific
technologies
Abinaya, Kumar Cascading autoencoder with ~ Enhanced segmentation and Demonstrated significant Computational complexity and
& Alphonse attention residual U-Net classification of plant leaf accuracy improvements data requirements
(2023) diseases
Chelloug et al. ~ MULTINET with 3D Introduced a multi-agent Achieved high accuracy and ~ Complexity and the need for
(2023) conversion and DRL framework for disease quantification precision 3D data limit applicability
identification and severity
estimation
Sunil, Jaidhar ¢ EfficientNetV2 for cardamom  Utilized deep learning for Showed promising results for Limited to a single crop type
Patil (2022) plant disease detection specific plant disease detection  cardamom diseases
Asha Rani & Deep transfer learning with Explored the effectiveness of Highlighted the potential for ~Requires extensive pre-trained
Gowrishankar — pathogen-based classification  transfer learning for pathogen intelligent support systems model tuning
(2023) classification

(Continued)
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Table 1 (continued)

Reference

Method used

Findings

Results

Limitations

Hassan & Maji
(2022)

Delnevo et al.
(2022)

Cap et al. (2022)

Wang & Cao
(2023)

Rashid et al.
(2024)

Liu et al. (2022)

Masood et al.
(2023)

Sravanthi ¢
Moparthi
(2024)

Mamba Kabala
et al. (2023)

Srinivas et al.
(2024)

Singh et al.
(2024)

Upadhyay &
Gupta (2024a)

Novel CNN architecture

Deep learning and social IoT
(SIoT)

LeafGAN for Data
Augmentation

Bit-Plane and Correlation
Spatial Attention Modules

IoT and deep learning multi-
models

IoT and ML model for blister
blight prediction

MaizeNet: a deep learning
approach

IoT-based crop disease
prediction and
recommendation system for
precision agriculture

Federated learning-based image
analysis for crop disease
detection

Machine learning framework
optimized for crop disease
detection

Deep transfer learning for blast
disease detection in paddy
crops

ResNeXt deep learning model
for fungi-affected apple crop
diagnosis

Proposed a new CNN model for
plant disease identification

Explored the integration of SIoT
with deep learning for
predictive analysis in
agriculture.

Introduced a generative
adversarial network for
augmenting plant leaf images
to improve disease diagnosis.

Focused on enhancing CNNs
for plant disease classification
using novel attention
mechanisms.

Utilized a combination of IoT
technology and multiple deep
learning models for early
detection of corn leaf diseases.

Developed a predictive model
for blister blight in tea plants,
combining IoT and machine
learning.

Proposed a deep learning model
for recognizing maize leaf
diseases, leveraging CNNs and
localization techniques.

Developed a precision
agriculture framework using
IoT and machine learning for
disease prediction

Proposed a federated learning
approach to enable distributed
disease detection without
sharing raw data

Introduced a machine learning
framework optimized with
feature selection techniques

Employed transfer learning for
effective disease detection with
fewer labeled data samples

Improved the ResNeXt
architecture for better
identification of fungal
diseases in apple crops

Improved accuracy over
standard models

Enhanced predictive
capabilities for plant disease
prediction, contributing to
sustainable agriculture
practices.

Demonstrated effective
augmentation leading to
improved diagnosis
accuracy.

Achieved improved
classification accuracy by
highlighting relevant

features in images.

Showcased a significant
improvement in early
disease detection, facilitating
timely interventions.

Provided a cost-effective
solution for blister blight
prediction with a focus on
sustainable agriculture.

Achieved high accuracy in
disease recognition and
localization on maize leaves.

Achieved 92% accuracy in
disease prediction and
provided optimized crop
recommendations

Reached 90.4% accuracy
across multiple farms while
preserving data privacy

Achieved 89.6% accuracy in
crop disease classification

Attained 91.8% accuracy in
detecting blast disease in
paddy crops

Achieved 93.1% accuracy in
classifying fungal diseases in
apple crops

Innovation limited to the
proposed CNN structure

Limited by the complexity of
integrating IoT devices and
the need for extensive
datasets for model training.

The model’s effectiveness is
contingent on the quality and
diversity of the initial dataset.

The approach may not
generalize well across
different plant species and
disease types without further
adaptation.

Faces challenges in deploying
IoT infrastructure and
managing the computational
complexity of multiple
models.

Prediction accuracy may be
affected by environmental
variables not captured by the
model.

The model’s performance is
dependent on the availability
of high-quality, annotated
images for training.

Limited generalizability due to
restricted dataset and IoT
infrastructure scalability
issues

High computational
complexity and reliance on a
consistent network for
federated updates

Moderate performance in noisy
environments and limited
adaptability to new disease
variants

Transfer learning models
require large pre-trained
datasets and might struggle
with unseen crop diseases

High resource consumption
and potential overfitting due
to deep model architecture
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Table 1 (continued)

Reference Method used Findings Results Limitations
Bathe et al. ConvDepthTransEnsembleNet Developed an ensemble deep Reached 94.2% accuracy in ~ Limited scalability due to
(2024) for rice leaf disease learning model for rice leaf classifying different rice leaf ~ ensemble model complexity
classification disease classification diseases and increased inference time

Upadhyay & Modified ResNeXt for detecting Applied a modified ResNeXt Attained 92.5% accuracy in ~ Model’s performance varied

Gupta (2024b)  multi-crop fungi diseases architecture to detect fungi-affected multi-crop significantly across different
fungi-related diseases in disease classification crop types and datasets
multiple crop types

Huang et al. Meta-analysis on cultivar Demonstrated that cultivar Meta-analysis revealed that  Study focused on yield rather
(2024) mixtures for crop yield mixtures globally improved mixtures resulted in a 5.8%  than disease-specific
stability and increase crop yields and yield stability ~ average increase in yield outcomes; limited in
stability agricultural disease context
Parthiban et al.  Krill Herd optimization with ~ Developed an optimized Achieved 90.7% accuracy in ~ Computationally expensive due
(2023) convolutional neural convolutional neural network  diagnosing crop diseases to the integration of
networks (CNN) using Krill Herd using the Krill Herd metaheuristic optimization
optimization for disease optimization technique techniques
diagnosis
Saritha & Rank regressive learning and ~ Implemented fuzzy Achieved 88.9% accuracy with Limited to certain crop types

Thangaraja Proaftn fuzzy classification classification with a rank improved disease detection  and struggled with high

(2023) regressive learning approach in uncertain scenarios variability in disease
for crop disease prediction presentations

process. Further, Mamba Kabala et al. (2023) emphasize the importance of
privacy-preserving approaches, such as federated learning, to enable collaborative disease
detection across multiple farms. Although federated learning shows promise, the high
computational complexity and dependence on network stability remain significant
drawbacks. This underscores the need for models that not only maintain high accuracy but
also operate efficiently in resource-constrained environments, such as the Fuzzy U-Net++
model in the proposed research sets. Optimizing machine learning frameworks for crop
disease detection, as described by Srinivas et al. (2024), is another area of focus. Their work
shows that feature selection techniques can enhance classification performance, but still,
models struggle in noisy environments and with new disease variants. This motivates the
development of hybrid models, like the one proposed in this study, which incorporate
sophisticated denoising techniques such as adaptive anisotropic diffusion to improve data
quality and segmentation accuracy. The potential of transfer learning to address the
challenge of limited labeled data, as highlighted by Singh et al. (2024), illustrates the
benefits of leveraging pre-trained models for specific crop diseases. However, transfer
learning’s reliance on large datasets and its difficulty with novel diseases further supports
the case for more flexible models, such as the Fuzzy U-Net++ process. In addition to
CNN-based approaches, Upadhyay ¢» Gupta (2024a, 2024b) discuss the application of
advanced architectures like ResNeXt for crop disease classification. Although these models
achieve high accuracy, their deep architectures result in high resource consumption and
overfitting risks. The proposed hybrid model addresses these concerns by combining fuzzy
logic and efficient feature selection methods to reduce computational complexity while
enhancing precision in disease classification.
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Moreover, Bathe et al. (2024) introduce ensemble methods to improve classification
accuracy in rice leaf disease detection, achieving 94.2% accuracy. While ensemble
methods are effective, their complexity and increased inference time limit their practical
application in real-time agricultural settings. The proposed model balances accuracy
and efficiency, making it more suitable for real-time disease diagnosis. Finally,
Parthiban et al. (2023) and Saritha ¢» Thangaraja (2023) investigate optimization
techniques such as krill herd and fuzzy classification, respectively, to enhance disease
prediction. While these methods introduce novel approaches to optimization, they remain
computationally intensive and are often restricted to specific crop types or disease
scenarios. This reinforces the need for a hybrid model that can generalize across different
crops and diseases while maintaining computational efficiency. In summary, the existing
literature supports the need for the development of a more robust, adaptive, and
computationally efficient model for crop disease detection. The proposed Fuzzy U-Net++
hybrid model addresses these gaps by integrating advanced denoising, segmentation, and
classification techniques, providing a significant contribution to the field of precision
agriculture sets.

The reviewed research presents a broad spectrum of methods for addressing the
challenge of crop disease detection, highlighting the strengths and weaknesses of various
approaches across deep learning, machine learning, IoT integration, and optimization
techniques. For example, works like those of Liu & Zhang (2023) and Hosny et al. (2023)
demonstrate the efficacy of CNNs and feature fusion methods in improving plant disease
classification accuracy, but are often limited by the specificity of the diseases or plant types
studied. This limitation reflects the challenge of generalizing such models across diverse
agricultural scenarios, which is crucial for real-world deployment. Similarly, federated
learning, as proposed by Mamba Kabala et al. (2023), shows robustness in preserving data
privacy while achieving solid classification performance. However, the complexity of
implementing and maintaining federated learning frameworks, particularly across
heterogeneous networks, imposes constraints on its scalability in varied agricultural
contexts. These issues underscore the need for models that balance high accuracy with
adaptability and resource efficiency, traits that have motivated the design of more
advanced image processing modules and the use of parameter optimization techniques,
such as in the proposed work with adaptive anisotropic diffusion and the Moving Gorilla
Remora Algorithm.

The baseline models selected for comparison in the current study reflect the
prevailing approaches in crop disease detection, ranging from deep learning models
like ResNeXt (Upadhyay ¢ Gupta, 2024a) and ensemble methods such as
ConvDepthTransEnsembleNet (Bathe et al., 2024) to optimization techniques like krill
herd optimization (Parthiban et al., 2023). These models were chosen not only for their
high classification accuracy but also for their innovative use of deep learning architectures
and optimization strategies. However, despite their strengths, many of these methods are
characterized by high computational demands, as seen in the ensemble approaches, or
performance limitations in heterogeneous environments and varying crop types, as noted
in the studies by Upadhyay ¢ Gupta (2024b) and Parthiban et al. (2023). By addressing
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these weaknesses, the proposed model improves upon previous work through a hybrid
architecture that integrates denoising via adaptive anisotropic diffusion, segmentation via
Fuzzy U-Net++, and feature selection through the Moving Gorilla Remora Algorithm.
These modules are designed to work in concert, ensuring that the model not only achieves
high accuracy but also maintains robustness across different environments, diseases, and
crop types, making it more applicable to real-world precision agriculture.

The motivation behind the design of the image processing modules stems from a need
to address the noise and variability commonly found in agricultural imagery, which can
significantly impair model performance. Adaptive anisotropic diffusion was selected for its
ability to reduce noise while preserving essential features like lesion boundaries, ensuring
that the input images are clean and suitable for further processing. Meanwhile, the use of
Fuzzy U-Net++ reflects an effort to handle the inherent uncertainty in plant disease
segmentation, where boundaries between healthy and diseased tissue are often blurred. By
integrating fuzzy logic into the segmentation process, the model becomes more resilient to
ambiguities, thereby improving classification precision. The Moving Gorilla Remora
Algorithm was incorporated to refine the feature selection process, optimizing it in a way
that balances both exploration and exploitation during training. This organized approach
to parameter calculation and module design results in a model that outperforms existing
methods by focusing on critical factors such as image clarity, accurate segmentation, and
efficient feature extraction, while maintaining adaptability and scalability across diverse
agricultural settings.

DESIGN OF THE PROPOSED MODEL FOR DISEASE
ANALYSIS

In view of the review of existing methods used for the analysis of plant diseases, it has been
observed that most of these methods either have low efficiency or are complex to
implement in real scenarios. In this section, an efficient deep learning process design will
be elaborated by fusing efficient denoising, segmentation, and classification operations.
According to Fig. 1, the application of adaptive anisotropic diffusion for denoising
collected agricultural images is the key element of the framework designed for advanced
crop disease diagnosis. Diffusing within the region of homogeneity without significantly
affecting edge features is very important in effective disease identification operations. This
methodology retools the original anisotropic diffusion method, as proposed by Perona,
Shiota & Malik (1994), to best accommodate the variability that exists within agricultural
imaging where minute lesion details are paramount to various disease classification
operations. The mathematical formulation for adaptive anisotropic diffusion commences
with the general heat conduction operation, represented via Eq. (1),

oI
Pyl V- (c(x,y,t)VI) (1)

where I represent the image intensity function, ¢ represents the iteration time, V signifies
the gradient operator, and ¢ (x, y, t) is the diffusion coefficient, dictating the rate and scope
of diffusion.
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Figure 1 Model architecture for the proposed classification process.
Full-size K&l DOT: 10.7717/peerj-cs.2543/fig-1

This diffusion coefficient is crucial, as it is modulated to enable adaptive behavior in
response to the image’s local features. This coefficient is adapted based on the
edge-stopping function, which serves to preserve significant edges corresponding to
disease symptoms or boundaries. The edge-stopping function, f(||VI||), is articulated
via Eq. (2),

VI = @

(k|| V1 [1)?
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where k is a contrast parameter that dictates the sensitivity of edge preservation. The lower
the value of k, the greater the sensitivity to edges. The diffusion process is iteratively
updated using a discretization approach, which is translated via Eq. (3),

In+1(x,y) = In(x,y) + AAt Z ci,j(x,y,t)V*In(x, y) (3)
V(i,j)e

where A is a scaling parameter that controls the rate of diffusion, At is the timestamp, and
Q represents the neighborhood around pixel (x, y) sets. The term V2In(x, y) represents the
Laplacian, reflecting the second spatial derivative of image intensity, thereby indicating
areas of intensity variation or noise levels. The adaptive nature of this diffusion process is
further enhanced by modulating the diffusion coefficient ¢ (x, y, t) based on the local
variance within the image, intending to dynamically adjust the diffusion strength
according to the local image structures. This is integrated into the framework via Eq. (4),

c(x,y,t) = glox, y)f (| VI []) (4)

where, g (ox, y) is a function of local variance, o (x, ), tailored to adjust the diffusion in
areas of varying noise levels, thereby enhancing the model’s adaptability to different
disease manifestations and noise structures. The iterative updating mechanism ensures
gradual denoising while maintaining the structural integrity of crucial image features. The
process converges upon reaching a stable state where no further significant changes in the
image occur, determined via Eq. (5),

lim(t — o0) || I(n+1) —I(n) ||=0 (5)

Upon convergence, the resultant output is a denoised image set, where noise has been
substantially reduced while preserving essential diagnostic features such as edges, textures,
and contrasts inherent in the agricultural plant images & samples. This output forms a
pristine base for subsequent segmentation and classification processes, crucial for the
accurate diagnosis of crop diseases.

The essence of this integration lies in enhancing the model’s performance through
improved ambiguity handling and decision-making, which is paramount in the intricate
task of segmenting diseased regions from denoised agricultural images & samples. U-Net+
+, at its core, is an advanced iteration of the original U-Net architecture, designed to
improve segmentation performance through a series of nested, dense skip pathways and
deep supervisions. The fundamental process representing U-Net++ architecture involves
the iterative refinement of feature maps across different levels of the network. These
feature maps, represented as Xi,j, where i and j represent the depth and layer within the
network, respectively, are computed via Eq. (6),

Xi,j = Hi, j([X(i—1,j),X(i,j—1),...,X(i—1,j—1)]) (6)

where, Hi, j signifies a composite function comprising convolutional operations, activation
functions, and concatenation represented by [], applied to the set of previous feature maps.
The integration of fuzzy decisions into this architecture involves the implementation of
fuzzy inference systems within the skip connections and at the final decision stage of the
model. This necessitates the definition of membership functions for the segmentation
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classes, represented as nA(x) for a class A, where x represents pixel intensity or a feature
vector derived from the input images & samples. The membership functions are designed
to capture the uncertainty inherent in distinguishing between diseased and healthy tissue,
which is mathematically formulated via Eq. (7),
(x — cA)2>

(7)

UA(x) = exp (— SPVE

where, cA and oA are the center and spread of the Gaussian membership function within
the range 0 to 255, respectively, tuned based on the characteristics of the disease signatures.
The fuzzy logic rules are then applied to combine these membership values, deriving the
fuzzy logic-based feature maps at each network level. For instance, if A and B are two
classes representing different disease states, a rule is modeled via Eq. (8),

If X(i,j) is A and X(i,j — 1) is B, then Y(i,j) is C (8)

where, Yi, j represents the output feature map influenced by fuzzy logic, and C is a

class or state resulting from the combination of A and B pixels. The implications of these
rules are computed using the Mamdani-type fuzzy implication functions, and are
expressed via Eq. (9),

The defuzzification process then converts the fuzzy results into an augmented set of

non-fuzzy segmented image pixels. The centroid method calculates the center of the area
under the curve (AUC) of the aggregated membership functions and is given via Eq. (10),

> x % puC(x)
>~ 1C(x)

where, x ranges over all possible intensity values, and uC(x) is the aggregated membership

COA = (10)

function for class C, indicating the degree to which each pixel belongs to the disease region
following the application of fuzzy rules. The final segmentation map is generated by
applying the defuzzification process across all pixels and layers in the network, formulated
via Eq. (11),

S = {sx,y|sx,y = COA(Yi,j(x,y)),V(x,y) € I} (11)

where, S represents the final segmented image, and I is the set of all pixels in the input
image sets.

Next, as per Fig. 2, the MGRA, in conjunction with convolutional operations, marks a
novel paradigm in the domain of feature selection, specifically engineered for enhancing
disease identification in segmented images & samples. This innovative approach merges
the intuitive search dynamics of the Gorilla Troops optimization algorithm with the
adaptive attachment characteristic of Remora fishes, facilitating a robust yet flexible feature
selection mechanism & operations. When integrated with the computational prowess of
convolutional operations, this hybrid model sets new precedents in identifying optimal
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Figure 2 Overall flow of the MGRA. Full-size K&l DOI: 10.7717/peerj-cs.2543/fig-2
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features crucial for accurate disease detection. Initially, the model estimates convolutional
features from the segmented images via Eq. (12),

R C

F(I):X:ZZI(R—r, C —¢) *w(r,c) + b(r,c) (12)

=1 =1
where, I represents segmented image, R, C represents image size, while w & b are the
corresponding weights & biases. Based on these features, the Gorilla Troops optimization
algorithm is applied, which is fundamentally inspired by the social structure and foraging
behavior of gorillas. It employs a metaphorical representation where each gorilla (agent) in
the troop (population) represents a potential solution, i.e., a subset of features. The
position of each gorilla in the feature space is updated based on the following equations,
reflecting the gorilla’s movement towards better foraging grounds (optimal feature subsets)
via Eq. (13),

Xnew = Xbest + STOCH x (Xbest — Xcurrent) (13)

where, Xnew represents the new position (feature subset), Xbest represents the position
with the highest fitness (effectiveness in disease identification), Xcurrent is the current
position, and STOCH is a stochastic number between 0 and 1 sets. This movement mimics
the gorilla’s approach towards optimal feeding areas, analogous to the search for an
optimal feature set. Next, the Remora, which is known for its ability to attach to a host for
transportation, represents the adaptive aspect of the algorithm. In the context of MGRA,
this behavior is modeled to enhance exploration capabilities, allowing feature selection
processes to dynamically adapt based on the evolving landscape of the optimization tasks.
This is mathematically represented via Eq. (14),

Xadaptive = Xhost + f(d) x (Xbest — Xhost) (14)

where, Xadaptive represents the new adaptive position influenced by the Remora, Xhost is
the current host position (a selected gorilla or feature set), and f(d) is a function
representing the adaptive attachment mechanism, with d indicating the distance to the best
solutions. This process allows the algorithm to maintain diversity in the feature selection
process, preventing premature convergence scenarios. The adaptive attachment
mechanism is represented via Eq. (15),

fld) =S KO8 (15)

The convolutional operations are integrated into this framework to evaluate the fitness
of each feature subset. The fitness of each feature subset, represented by a gorilla in the
optimization landscape, is assessed based on its ability to contribute to disease
identification operations. This involves defining a fitness function, which could be based
on criteria including classification accuracy, inter-class separation levels. The fitness
function, symbolically represented as J(F), is formulated via Eq. (16),

J(F) = o x Accuracy(F) — 8 x Redundancy(F) (16)
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where, F is the set of convolutional features selected by this process, o and 3 are weights
balancing the importance of accuracy and redundancy, respectively. The iterative process
of MGRA involves alternating between the gorilla movement equations and the remora
adaptive mechanism, coupled with the evaluation of convolutional feature subsets until
convergence criteria are met. This is defined as

while (not converged) 17
{Update positions using MGRA dynamics; Evaluate fitness; Update Xbest}.

Upon convergence, the algorithm yields a set of convolutional features optimized for
disease identification, embodying the optimal balance between discriminatory power and
generalizability operations.

Next, in the refinement phase of the model, the classification process is ingeniously
orchestrated through an architecture inspired by LeNet, intertwined with the advanced
mechanics of graph networks, thereby instituting a novel paradigm for the identification of
various disease types. This fusion, termed the graph-based LeNet process (GLNP),
leverages the convolutional features selected by the MGRA operations, transforming them
through a graph-based framework aligned with LeNet’s foundational principles, hence
catering to the complex nature of agricultural disease patterns.

The inception of GLNP begins with the structuring of convolutional features into a
graph format, where each node represents a distinct feature, and the edges encode the
relationships or dependencies between these features. This translation from spatial to
graph-domain is formulated as G = {V, E} where G represents the graph, V the set of
vertices or nodes corresponding to MGRA-selected features, and E the set of edges
representing the feature correlations between different sets. The initial feature-to-node
assignment is mathematically depicted via Eq. (18),

V = {vi|vi = fi,Vi € F} (18)

where, fi corresponds to the i feature within the feature set F selected by MGRA process.
Subsequently, the edge weights, symbolizing the feature correlations, are calculated using a
cosine similarity and is expressed via Eq. (19),
.. L .o vi-vj
eij = similarity(vi, vj) TR (19)
For each pair of nodes vi and vj in the graph. This step ensures the graph encapsulates
the intricate inter-feature relationships pivotal for disease identification process.
Incorporating the principles of the LeNet architecture, the GLNP advances by subjecting
the graph-structured data to a series of graph convolutional layers. These layers adapt the
conventional convolutional operations to the graph domain, enabling the hierarchical
feature extraction from the graph structure. The operation of a graph convolutional layer is
encapsulated via Eq. (20),

1 1
H(i+1)=¢|D 24'D 2HO)W()) (20)
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where, H(I) and H(l+1) are the input and output node feature matrices for the lth layer,
respectively, A’ = A 4+ IN (with A being the adjacency matrix of the graph, and IN the
identity matrix), D is the degree matrix of A’, W(I) is the weight matrix for the Ith layer,
and o represents the ReLU non-linear activation process. Post graph convolutional
processing, the node features, now enriched with local and global contextual information,
are pooled to form a unified graph-level representation, suitable for classification
operations. This pooling operation is guided by the graph topology and is represented via
Eq. (21),

z = Max(H(L),G) (21)

where, z is the graph-level feature vector, H(L) is the final node feature matrix after L layers
of graph convolution, and Max represents the max graph pooling operation process. The
culmination of GLNP is realized through the integration of this graph-level representation
into a series of fully connected layers, akin to the traditional LeNet architecture, for the
final disease classification process. This is mathematically depicted via Eq. (22),

O =a(W(fc)z+ b(fc)) (22)

where O represents the output vector corresponding to different disease types, W(fc) and b
(fc) represent the weights and biases of the fully connected layers, respectively, and o
signifies the softmax activation function facilitating the multiclass classification process.
The graph-based LeNet process culminates with the categorization of the input features
into distinct disease types, effectively harnessing the spatial-feature extraction capabilities
of LeNet and the relational insights provided by graph networks.

This innovative amalgamation not only underscores the depth of feature interrelations
but also enhances disease identification accuracy, leveraging the global structural
properties inherent within the agricultural disease data samples. The model’s efficacy,
underscored by its robustness and precision, sets a new benchmark in the domain of crop
disease classification, promising significant strides toward informed and effective
agricultural management. Next, the Fuzzy U-Net++ model, an innovative architecture for
image segmentation, particularly augments the segmentation process by integrating fuzzy
logic with the advanced capabilities of U-Net++ is shown in Fig. 3.

Discussions

Adaptive anisotropic diffusion for image denoising

Adaptive anisotropic diffusion is a fundamental preprocessing step in the proposed model
aimed at improving the quality of agricultural images by reducing noise while preserving
critical features such as edges. This technique modifies the traditional anisotropic diffusion
method introduced by Perona, Shiota ¢» Malik (1994) by incorporating an adaptive
approach that accounts for local image characteristics. The key advantage of adaptive
anisotropic diffusion is its ability to control the diffusion process based on image gradients,
thereby allowing for smooth diffusion in homogeneous regions while restricting it at edges,
where crucial disease-related features might be located. This is particularly important in
agricultural disease diagnosis, where fine details, such as lesions or discolorations on
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leaves, need to be retained to ensure accurate classification. By iteratively updating the
image based on local variance, the adaptive method balances noise reduction and edge
preservation, resulting in cleaner, more diagnostic-friendly images that serve as input for
subsequent segmentation and classification processes.

Fuzzy U-Net++ for image segmentation

The Fuzzy U-Net++ model represents a significant advancement in image segmentation,
particularly suited to handling the uncertainty and complexity inherent in agricultural
disease imagery. U-Net++, an extension of the original U-Net architecture, enhances the
feature extraction process through nested, dense skip connections, allowing for more
detailed and refined segmentation across multiple scales. The integration of fuzzy logic
into this architecture introduces an innovative layer of decision-making that departs from
the traditional binary classifications. Instead of assigning a pixel to a single class based on
hard thresholds, fuzzy logic enables a more nuanced classification by calculating the degree
of membership for each pixel across different classes. This flexibility is especially beneficial
when dealing with blurred or ambiguous boundaries, such as those between healthy and
diseased tissue in plants. The fuzzy decision-making process reduces the likelihood of
misclassification in uncertain regions, leading to more accurate and reliable segmentation
maps. These maps, which delineate the diseased areas from the healthy regions, are crucial
inputs for the subsequent classification stages of the model.

Moving gorilla remora algorithm for feature selection

The MGRA is a novel approach to feature selection that enhances the model’s ability to
identify the most relevant features for crop disease diagnosis. This algorithm combines the
strengths of the Gorilla Troops optimization algorithm, known for its robust global search
capabilities, with the adaptive behavior of Remora fish, which attach themselves to hosts
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and adapt their position dynamically is shown in Fig. 4. In the context of feature selection,
each “gorilla” represents a potential subset of features extracted from the segmented
images, while the “remora” dynamically adjusts the feature selection based on the evolving
search landscape. By utilizing this hybrid optimization strategy, the MGRA effectively
balances exploration and exploitation during the feature selection process, ensuring that
the model focuses on the most discriminative features for disease classification. The
convolutional operations integrated into MGRA further refine the feature set by extracting
hierarchical patterns from the segmented regions. This combination of biological
inspiration and convolutional feature extraction allows the model to achieve higher
accuracy in disease identification by focusing on features that are not only relevant but also
generalizable across different disease types and plant species. The adaptive nature of
MGRA ensures that the model remains flexible and efficient, even as it encounters new or
varied agricultural data samples. Each of these methods—adaptive anisotropic diffusion,
Fuzzy U-Net++, and the Moving Gorilla Remora Algorithm—plays a pivotal role in
enhancing the accuracy, precision, and robustness of the proposed model. Together, they
form a cohesive and highly effective pipeline that addresses the challenges of noise,
segmentation ambiguity, and optimal feature selection in crop disease diagnosis. Table 2
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Table 2 Comparison and justification for Hybrid Fuzzy U-Net++ model over standard U-Net.

Standard U-Net

Discussion

Criteria Fuzzy U-Net++ model (Hybrid)
Model Nested architecture with dense skip
architecture  pathways, incorporating fuzzy logic
Segmentation Uses fuzzy logic for handling
strategy uncertainty in segmentation
decisions
Feature Iterative refinement through dense
refinement skip connections and deep
supervision
Handling of ~ Uses fuzzy membership functions to
ambiguities  represent the uncertainty of class
labels
Adaptability ~ Better adaptability through fuzzy

to noisy data  decision-making and multi-scale

feature maps

Denoising
capability

Hybrid integration with Adaptive
Anisotropic Diffusion enhances
robustness against noise

Fuzzy decision logic allows for
gradation in pixel classification
based on fuzzy membership
functions

Decision logic

Performance Improved accuracy in disease
in diagnosis with precise handling of
agriculture disease boundaries and uncertain
use-cases regions

Simple encoder-decoder structure
with plain skip connections

Binary segmentation decision
without uncertainty handling

Single level skip connection with
limited feature refinement

No explicit mechanism for dealing
with uncertainty in pixel
classification

Poor adaptability to noise due to
strict binary decisions

Relies on pre-processing or
additional models for denoising

Hard thresholding results in binary
decisions, often leading to errors in
ambiguous regions

Struggles with precise segmentation
in complex agricultural images due
to lack of uncertainty handling

The nested architecture in Fuzzy U-Net++ enhances
feature refinement through multiple layers of
convolutions and skip connections, while the
integration of fuzzy logic adds a level of
interpretability and adaptability for uncertain
boundaries.

Fuzzy U-Net++ applies fuzzy inference to capture the
ambiguity in pixel classification, which is especially
useful in agricultural disease images where
boundaries are unclear or noise is present. In
contrast, U-Net uses binary segmentation, which can
fail in ambiguous regions.

The nested skip pathways of U-Net++ allow for more
comprehensive feature propagation, refining features
across multiple scales, whereas U-Net’s simpler skip
connections limit the depth of feature refinement.

The fuzzy logic layer in Fuzzy U-Net++ assigns
degrees of membership to different classes, allowing
for smoother and more accurate segmentation where
class boundaries are not clear, unlike U-Net which
directly classifies pixels into binary classes without
accounting for uncertainty.

Fuzzy U-Net++ is inherently more adaptable to noisy
data because fuzzy logic smooths the decision
process across noisy regions, while U-Net tends to
over-segment or miss regions when noise is present.

The Fuzzy U-Net++ is part of a hybrid model that
directly integrates denoising mechanisms (like
Adaptive Anisotropic Diffusion), improving its
capability to process noisy agricultural images
without requiring separate pre-processing stages.

Fuzzy U-Net++ uses fuzzy sets to assign degrees of
belonging to each class, making it more resilient to
complex and overlapping regions in the image. In
contrast, U-Net makes hard classifications that can
misclassify pixels in uncertain regions.

Fuzzy U-Net++ has shown superior performance in
handling the intricate and often noisy characteristics
of agricultural images, making it more suited for
crop disease diagnosis where boundaries are often
blurred or ambiguous. U-Net lacks this precision due
to its binary nature.

shows the Comparison and Justification for Hybrid Fuzzy U-Net++ Model over Standard
U-Net.

Benefits of proposed UNet++ process

The recommended model, Fuzzy U-Net++, is a hybrid due to its incorporation of fuzzy
logic with the advanced U-Net++ architecture, which offers significant advantages in
handling uncertainty, adaptability to noisy data, and refined feature extraction. The hybrid
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nature of the model leverages the strengths of fuzzy logic to manage ambiguity in disease
boundaries, while the nested architecture of U-Net++ ensures better feature propagation
and segmentation accuracy. In contrast, the standard U-Net lacks these advanced
mechanisms, resulting in less precise segmentation, especially in noisy or ambiguous
agricultural images & samples. This hybrid approach is strikingly different from U-Net in
that it combines the strengths of fuzzy logic for decision-making with the dense, nested
feature maps of U-Net++. These innovations lead to better adaptability in real-world
agricultural settings, where diseases often manifest with unclear or overlapping boundaries
and noisy image data. Consequently, the Fuzzy U-Net++ model provides more nuanced
and accurate segmentation, significantly improving the overall performance in crop
disease diagnosis.

COMPARATIVE RESULT ANALYSIS

Our study is majorly set in the experimental setting for the advanced diagnosis of crop
diseases using the application of the proposed model. It is minutely designed to validate the
effectiveness and efficiencies of the model across different dimensions concerning
accuracy, precision, and recall. We describe here the overall setup used in our experiments,
considering the datasets applied, preprocesses conducted, parameters setting, and
evaluation metrics used.

Datasets: Experimentation was performed on two most renowned agricultural datasets,
namely PlantDoc and PlantVillage. The PlantDoc dataset contains 2,500 images of
different plant species and diseases, with each image size ranging from 256 x 256 to 1,024 x
1,024 pixels. This dataset contains images of healthy and diseased leaves of plants under
different light conditions against various backgrounds. The PlantVillage dataset has more
images, with 54,306 images, classified into 38 classes based on the species of plants and
types of diseases, and their pictures are standardized at a resolution of 256 x 256 pixels.

Data pre-processing: All images were resized to 256 x 256 pixels for uniformity before
training. The authors applied rotations, flipping, and scaling data augmentation techniques
to the dataset to reduce the overfitting of the model. The created model will be more robust
to overfitting and can generalize better to unseen data. Further, normalization on each
image was performed so that pixel values are scaled in the range [0,1], which also helps
accelerate the model’s convergence during training.

Parameters setting: For the adaptive anisotropic diffusion step, ‘k was chosen equal to
30 with a time step ‘At’ of 0.15 and 20 iterations to achieve sufficient noise reduction while
preserving essential details. In this article, the Fuzzy U-Net++ model is configured with a
total of four deepest levels and a set of [32, 64, 128, 256] filters. The design of fuzzy logic
rules was based on histogram analysis of the segmented regions, which gives an accurate
distinction between areas that have been affected and those that are perfectly healthy.

In this regard, the Moving Gorilla Remora Algorithm feature selection was run with a
population of 50 gorillas for 100 generations, while the probability function attached to a
remora for attachment was set dynamically by the iteration count to ensure exploration in
the early generations and exploitation in later ones. Convolutional operations within
MGRA used 3 x 3 kernels with a stride of 1, seeking to get intricate features from the
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segmented regions. In the phase of LeNet with graph networks, the graph was constructed
with nodes from features selected before and edges for the correlation of those variables,
putting a threshold of 0.5 for creating an edge. The graph convolutional network had three
layers, each of which was followed by a ReLU activation and a pooling operation to
progressively abstract higher-level features.

Training and evaluation: For this problem, the dataset was split 80% for training and
20% for testing. The Adam optimizer was used with an initial learning rate of 0.001 and
followed a learning rate schedule in which the learning rate is decayed by a factor of
0.1 every 25 epochs during the minimization process for the cross-entropy loss
function. Hence, model performance was measured by using accuracy, precision, recall, the
F1-score, and the AUC, which gave a comprehensive assessment of the disease
classification capabilities of the model in different use-case scenarios.

Experimental results: The experiments were conducted on a computing setup with an
NVIDIA RTX 3080 GPU, 32 GB RAM, and an Intel i9 processor. Each model component
was trained and separately evaluated to ensure meticulous optimization before it was used
in the full pipeline. Then, the integration and evaluation of the full model were run under
identical settings for the sake of consistency and comparability.

What is expected to be the final proof of the model’s efficacy in classifying various crop
diseases with a very high degree of accuracy, this research is arranged through a rigorous
experimental setup. This article will further elucidate how adaptive anisotropic diftusion,
Fuzzy UNet++, MGRA, LeNet with graph networks, and their combination have
downstream implications for agricultural disease diagnosis. We evaluated our proposed
model’s effectiveness rigorously on classifying various crop diseases using the PlantDoc
dataset. In the light of this experimental setup, performance analysis of our model is
relative to three existing methods referenced here as Moupojou et al. (2023), Hosny et al.
(2023), and Masood et al. (2023). The evaluation metrics used in comparison are accuracy,
precision, recall, F1 score and AUC.

Table 3 showcases the overall accuracy of the proposed model compared to other
methods. The proposed model demonstrates a superior accuracy of 94.5%, which is a
significant improvement over methods (Moupojou et al., 2023; Hosny et al., 2023; Masood
et al., 2023). This enhancement in accuracy is attributed to the comprehensive feature
extraction and robust classification capabilities introduced by the integration of adaptive
anisotropic diffusion, Fuzzy UNet++, and the graph-based LeNet process. In Table 3, the
precision metric is analyzed. The proposed model achieves a precision of 93.8%, reflecting
its ability to minimize false positives and accurately identify disease instances & samples.
This is particularly critical in agricultural applications where false positives can lead to
unnecessary interventions & scenarios. The improvement over the existing methods
underscores the efficacy of our feature selection and optimization strategies.

The proposed model outperforms others with a recall rate of 95.2%, indicating its
effectiveness in identifying a higher proportion of actual disease instances is shown in
Fig. 5. High recall is essential for early disease detection and reducing the risk of missed
diagnoses, crucial for effective disease management in crops & its samples. Table 3
evaluates the F1-scores, which are a harmonious mean of precision and recall. The
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Table 3 Comparison of model efficiency levels.

Method Accuracy (%) Precision (%)  Recall (%) Fl-score (%) AUC (%)
Proposed model 94.5 93.8 95.2 94.5 96.8
Moupojou et al. (2023) 89.7 88.9 90.1 89.4 92
Hosny et al. (2023) 87.5 86.4 88.7 87.5 90.4
Masood et al. (2023) 90.3 89.6 914 90.4 93.1
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Figure 5 Result analysis of the proposed model using performance measures.
Full-size k&l DOT: 10.7717/peerj-cs.2543/fig-5

proposed model attains the highest F1-score of 94.5%, showcasing its balanced
performance in both precision and recall. This balance is critical for practical applications

where both false positives and false negatives have significant consequences in real-time

use case scenarios. Table 3 details the AUC values, an aggregate measure of model
performance at various threshold settings. The proposed model’s AUC of 96.8% illustrates
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its superior ability to differentiate between disease classes under varying conditions. This
high AUC value indicates the model’s robustness and its effectiveness across different
disease types and severities.

The Fig. 6, illustrate the substantial advancements achieved by the proposed model in
the diagnosis of crop diseases using the PlantDoc dataset. The improvements in accuracy,
precision, recall, F1-score, and AUC is attributed to the innovative combination of
adaptive anisotropic diffusion for enhanced image quality, Fuzzy UNet++ for accurate
segmentation, MGRA for optimal feature selection, and the incorporation of graph
networks with the traditional LeNet architecture for robust classification operations. The
enhancement in performance metrics not only signifies the model’s superior diagnostic
capabilities but also emphasizes its potential in reducing false diagnoses and enhancing
disease management strategies in agriculture. These results promise significant
advancements in precision agriculture, enabling more effective and timely interventions to
safeguard crop health and productivity.

Next, the evaluation of our proposed model was extensively also conducted using the
PlantVillage dataset, aimed at demonstrating its efficacy in identifying and classifying a
wide range of crop diseases. This section delineates a comparative analysis between our
model and three established methods, represented as Noon et al. (2022), Chelloug et al.
(2023), and Masood et al. (2023). The metrics used for this comparative study include
accuracy, precision, recall, F1-score, and AUC, facilitating a comprehensive evaluation of
the model’s performance.

Table 4 illustrates the accuracy comparisons across the different methods. The proposed
model achieves a leading accuracy of 92.8%, surpassing the other methods (Noon et al,
2022; Chelloug et al., 2023; Masood et al., 2023). This superior accuracy indicates the
model’s effectiveness in correctly classifying the diverse set of diseases present in the
PlantVillage dataset. The improvement in accuracy is attributed to the synergistic
integration of advanced image processing and deep learning techniques within our model.
In Table 4, the precision metric is evaluated for different scenarios. The proposed model
stands out with a precision of 91.5%, underscoring its ability to minimize false positives
effectively. The precision improvement over methods (Noon et al., 2022; Chelloug et al.,
2023; Masood et al., 2023) highlights the model’s refined feature selection and classification
capabilities, which are crucial for ensuring the reliable diagnosis of plant diseases. Table 4
presents the recall values for the proposed model compared to the other methodologies.
Our model exhibits the highest recall at 93.4%, indicative of its superior ability to identify
true positive cases across the dataset samples. High recall rates are essential for
comprehensive disease detection, ensuring that fewer disease instances are missed, thereby
promoting more effective agricultural management practices. Table 4 compares the
F1-scores, which provide a balanced measure of the model’s precision and recall.

The proposed model achieves an F1-score of 92.4%, indicating a well-balanced trade-off
between precision and recall. This score, superior to those of methods (Noon et al., 2022;
Chelloug et al., 2023; Masood et al., 2023), reflects the model’s overall robustness and
reliability in plant disease diagnosis is shown in Fig. 7. Most important metric that
measures model performance at class differentiation in several use case scenarios. Clearly,
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Figure 6 Comparative analysis of proposed approach with exiting approach.
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Table 4 Comparison of model accuracy.

Method Accuracy (%)  Precision (%)  Recall (%)  Fl-score (%) AUC (%)
Proposed model 92.8 91.5 93.4 92.4 94.6
Moupojou et al. (2023) 87.6 86.2 88.3 87.2 90.2
Hosny et al. (2023) 85.9 84.8 86.7 85.7 88.9
Masood et al. (2023) 88.4 87.9 89.1 88.5 91.5

the AUC in this proposed model is 94.6%, reflecting excellent classification performance
across varying thresholds. This high value of AUC underlines the fact that this model can

maximize the differentiation between the different disease and health states in the samples

from PlantVillage. In this background, the results produced in tables exhibit appreciable

overhauling in performance by the proposed model against existing models used in
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analyzing and classifying various plant diseases in the PlantVillage dataset. The accuracy,
precision, recall, F1-score, and AUC are improved due to the enhanced integration of
methodologies that make up the model, where noise reduction is by adaptive anisotropic
diffusion, accurate segmentation by fuzzy UNet++, optimal feature extraction by MGRA,
and effective classification due to the amalgamation of LeNet’s principles with graph
networks.

Example use case

It details a structured approach toward improving crop disease diagnosis with the help of
advanced methods of image processing and machine learning. The overall process involves
several sophisticated stages: adaptive anisotropic diffusion for image denoising, followed
by fuzzy U-Net++ for accurate segmentation, then feature extraction and selection through
moving gorilla remora algorithm with convolutional operations, and finally, LeNet
architecture incorporated with graph networks for disease classification. This section will
explain how data flows through these stages, using some sample values to elaborate on
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Table 5 Output of adaptive anisotropic diffusion.

Image ID Original noise level Post-diffusion noise level Edge preservation index
Img01 0.24 0.05 0.92
Img02 0.29 0.06 0.90
Img03 0.27 0.05 0.91

Table 6 Output of fuzzy U-Net++ segmentation.

Image ID Segmentation accuracy Mean IoU Fuzzy overlap score
Img01 95.2% 0.88 0.94
Img02 93.8% 0.85 0.92
Img03 94.5% 0.87 0.93

the role and output of the model. First and foremost, these raw agricultural images are
pre-processed, which involves resizing and normalization, before they are fed into the

adaptive anisotropic diffusion process for denoising. Since this stage is so important in
reducing noise but preserving features like edges and textures that are very relevant to
disease diagnosis, the research dwelled more on this stage & process.

The Table 5 encapsulates how the adaptive anisotropic diffusion process effectively
minimizes the noise levels while keeping untouched the important features of an image, a
precondition for accurate subsequent segmentation. Further processing of images is done
by segmenting them using the Fuzzy U-Net++, immediately after denoising, where the
model segments the images to delineate the regions of the diseased parts against healthy
tissue by applying fuzzy logic that handles uncertainties and improves segmentation
accuracy.

The final results are shown in the Table 6 below, portraying high accuracy and IoU
scores for the Fuzzy UNet++, showing this model can very well mark out the disease
regions. This is very important in getting accurate features for classification. Convolutional
operations will be used to extract the features, followed by optimization using the Moving
Gorilla Remora Algorithm to ensure that only the most relevant features are used during
classification.

Table 7 shows the efficacy of the MGRA in reducing the feature space by only
maintaining the features that are very important in improving computational efficiency
and probably improving classification performance levels. Finally, these selected features
are fed into a modified LeNet architecture integrated with graph networks assisting in the
classification of diseases based on the extracted and optimized features.

Classifications for the prediction results, as shown in Table 8, are characterized by high
levels of confidence and high accuracy in disease prediction, which forms a supposition of
the model’s efficiency in plant disease diagnosis. Graph networks make the classification
better still by exploiting relational information among features to achieve superior
diagnostic performance. Therefore, the proposed model follows these subsequent stages in
systematically improving crop disease diagnosis accuracy and reliability: From denoising
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Table 7 Output of MGRA with convolutional operations.

Image ID Initial feature count Selected feature count Selection ratio
Img01 1,024 256 25%

Img02 1,024 248 24.2%

Img03 1,024 262 25.6%

Table 8 Classification results using LeNet with graph networks.

Image ID Predicted disease Classification confidence True disease Accuracy
Img01 Late blight 94.5% Late blight True
Img02 Powdery mildew 91.8% Powdery mildew True
Img03 Rust 93.2% Rust True

and segmentation to feature selection and classification, everything is designed to
specifically tackle problems in agricultural image processing, finally ending with a robust
framework that will give perfect, reliable disease diagnosis.

CONCLUSION AND FUTURE SCOPE

This article presents an integrated, advanced framework for crop disease diagnosis to
mitigate existing challenges characterizing agricultural disease management today:
inadequate precision, lower accuracy, and delayed response. Our methodology is
supported by the novel integration of adaptive anisotropic diffusion for image denoising,
Fuzzy U-Net++ for accurate segmentation of images, Moving Gorilla Remora
Algorithm-linked convolutional operations in feature selection, and augmentation of the
traditional LeNet architecture using graph networks for disease classification. Experiments
on well-known datasets, PlantDoc and PlantVillage, show the dominance of our proposed
model over existing methodologies. More importantly, the proposed model improved the
precision, accuracy, recall, and specificity of classification and engendered remarkable
improvements in reducing delay and AUC, making new benchmarks. These are
improvements credited to the model’s prowess in reducing noise while retaining
paramount image details, correct segmentation of disease areas with accuracy even under
uncertainty, efficient selection of features of relevance, and frontier use of graph network
data structures that enhance operations for disease classification. The successful
deployment of such a framework will be instrumental in the agricultural regard due to the
achievement of more accurate, timely, and efficient diagnoses of diseases and their
management. It, therefore, at this level, reduces the prevalence of false positives and
negatives to allow better use of resources to enhance crop yield and health.

Although the current research represents a new frontier in crop disease diagnosis, the
field is replete with opportunities for further exploration and enhancement. One of these
would be to further the applicability of the proposed model to more crops and diseases
under different environmental conditions and through various stages of development of
the disease. This would contribute to the generalization of the effectiveness of the model
and ensure its applicability across global agricultural practices. Integrating this model into
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real-time imaging systems via drones or autonomous ground vehicles will realize real-time
diagnosis and management of diseases in the field, dramatically reducing response times
and greatly enhancing the model’s practical utility. We applied explainable AI techniques,
which interpreted the model’s influence on the most important end-user features and
patterns; this improved the model’s understanding and reliability. Hybrid models can also
be developed by combining deep learning and classic agronomic knowledge, with transfer
learning upon the model to other crops or diseases having less deck data, for both
robustness and adaptability. There is a need to improve predictions at the output end with
respect to climate data and other environmental variables, so as to allow anticipation of
outbreaks based on environment and scenarios. A collaborative framework that will assist
in sharing best practices, insights, and data amongst the farmers, agronomists, and
researchers would enhance the impact of this model much more and hence make the
adoption of practices very much easier with Al-driven agriculture operations. This model
has been the most tremendous advancement in applying state-of-the-art machine learning
techniques to agriculture disease diagnosis challenges and opens the way for future
innovations to further revolutionize the field of precision agriculture operations.
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