
Submitted 23 July 2024
Accepted 4 November 2024
Published 5 December 2024

Corresponding author
Rui Zhou,
23600006140103@st.sdju.edu.cn

Academic editor
Xiangjie Kong

Additional Information and
Declarations can be found on
page 26

DOI 10.7717/peerj-cs.2542

Copyright
2024 Zhu et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Enhancing sentiment analysis of online
comments: a novel approach integrating
topic modeling and deep learning
Yan Zhu1, Rui Zhou1, Gang Chen2 and Baili Zhang3

1 School of Design and Art, Shanghai Dianji University, Shanghai, Shanghai, China
2 Infrastructure Technology Business Group, Ant Group, Hangzhou, Zhejiang, China
3 School of Computer Science and Engineering, Southeast University, Nanjing, Jiangsu, China

ABSTRACT
Traditional statistical learning-based sentiment analysis methods often struggle to
effectively handle text relevance and temporality. To overcome these limitations,
this paper proposes a novel approach integrating Latent Dirichlet Allocation (LDA),
Shuffle-enhanced Real-Valued Non-Volume Preserving (RealNVP), a double-layer
bidirectional improved Long Short-Term Memory (DBiLSTM) network, and a multi-
head self-attention mechanism for sentiment analysis. LDA is employed to extract
latent topics within comment texts, revealing text relevance and providing fine-
grained user feedback. Shuffle enhancement is applied to RealNVP to effectively
model the distribution of text topic features, enhancing performance while avoiding
excessive complexity in model structure and computational overhead. The double-
layer bidirectional improved LSTM, through the coupling of forget and input gates,
captures the dynamic temporal changes in sentiment with greater flexibility. Themulti-
head self-attention mechanism enhances the model’s ability to select and focus on key
information, thereby more accurately reflecting user experiences. Experimental results
on both Chinese and English online comment datasets demonstrate that the proposed
integrated model achieves improved topic coherence compared to traditional LDA
models, effectively mitigating overfitting. Furthermore, the model outperforms single
models and other baselines in sentiment classification tasks, as evidenced by superior
accuracy and F1 scores. These results underscore the model’s effectiveness for both
Chinese and English sentiment analysis in the context of online comments.

Subjects Algorithms and Analysis of Algorithms, Data Mining and Machine Learning, Natural
Language and Speech, Sentiment Analysis
Keywords Sentiment analysis, Text relevance, Temporality, LDA, RealNVP with Shuffle,
Double-Layer improved BiLSTM

INTRODUCTION
In recent years, the exponential growth of User-Generated Content (UGC) (Ali et al., 2022;
Murshed et al., 2022) on platforms like social media, forums, and e-commerce sites has
opened new avenues for a deeper understanding of user experiences. This wealth of UGC,
rich in emotional expressions, holds significant potential for informing decision-making
processes across domains such as brand reputation management (Machado, Miranda &
Baldi, 2022),market trend forecasting (Li et al., 2022b), and public policy development (Fan
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et al., 2021). Nevertheless, the accurate and efficient extraction of emotional information
from the massive volumes of UGC text data presents a persistent challenge.

Traditional sentiment analysis approaches, including rule-based methods (Lin &
Wu, 2022) and those rooted in statistical learning (Liu et al., 2023), demonstrate some
efficacy in processing straightforward text sentiment. However, they often struggle to
account for the complexities of text relevance and temporality. Text relevance refers to the
interconnectedness of texts in terms of topic, content, or context (Li et al., 2023), while
temporality denotes the dynamic nature of sentiment over time (Wang, 2021). These two
factors are particularly salient in UGC contexts such as social media and online comments,
where users frequently engage in topic-focused discussions, and sentiment trajectories can
shift as conversations unfold.

To address the challenges of text relevance and temporality in sentiment analysis,
this study proposes a novel LDA-RealNVP-DBiLSTM-MHSA approach that integrates
Latent Dirichlet Allocation (LDA) (Zhang & Zhang, 2021), Shuffle-enhanced Real-Valued
Non-Volume Preserving (RealNVP) (Draxler, Schnörr & Köthe, 2022), a double-layer
bidirectional improved Long Short-Term Memory (DBiLSTM) network (Dellal-Hedjazi
& Alimazighi, 2022), and Multi-Head Self-Attention mechanism (MHSA) (Raghavendra
et al., 2022). LDA, a well-established topic modeling technique, effectively reveals latent
topic structures within text data, thus elucidating underlying relationships among texts.
However, LDA assumes a static document collection, neglecting temporal changes and
thus failing to capture topic evolution over time.

To overcome LDA’s limitations and effectively bridge the gap between LDA-extracted
topic features and BiLSTM’s temporal modeling, we innovatively introduce Shuffle-
enhanced RealNVP as a feature transformation and enhancement module. RealNVP, a
flow-based generative model, learns reversible transformations to map high-dimensional,
sparse topic features from LDA’s output into a continuous, low-dimensional latent space,
effectively addressing feature sparsity and reducing computational complexity for the
subsequent BiLSTM model. Crucially, the Shuffle operation randomly shuffles feature
dimensions, disrupting potential local correlations in the original feature space and
enhancing the model’s ability to model long-range dependencies in high-dimensional,
complex data, thereby improving feature representation robustness (Dinh, Sohl-Dickstein
& Bengio, 2016). Furthermore, RealNVP’s flow-based nature enables feature generation,
enriching the input to BiLSTM by directly concatenating generated features with the
original topic features. The implicit regularization effect of Shuffle also helps mitigate
overfitting and enhances training stability. Additionally, fixing random seeds ensures
experiment reproducibility, while hyperparameter optimization further controls the
impact of randomness.

To enhance the handling of text temporality, we introduce a structurally optimized
double-layer BiLSTM model. By coupling the forget gate and input gate, this architecture
achieves enhanced information processing efficiency. The deep bidirectional processing
mechanism of the double-layer BiLSTM structure enables it to capture complex patterns
and long-term dependencies in sequential data better, modeling temporal information in
the text at a deeper level, particularly the complex changes in sentiment over time. The

Zhu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2542 2/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2542


choice of a double-layer configuration strikes a balance between model complexity and
operational efficiency, as excessive BiLSTM layers can introduce gradient vanishing or
explosion problems, increasing training difficulty without necessarily yielding significant
performance gains. Moreover, the introduction of the Multi-Head Self-Attention
mechanism allows the model to capture dependencies between any two positions in
the sequence, better modeling long-range dependencies and contextual information in
the text, which is crucial for semantic understanding and sentiment capture in sentiment
analysis tasks (Li et al., 2020).

The primary research questions addressed in this study are as follows:
(1) How to construct a sentiment analysis model that integrates LDA, Shuffle-enhanced

RealNVP, double-layer BiLSTM, and MHSA to effectively address the challenges of
relevance and temporality in UGC text data;

(2) How to effectively transform the output of the LDAmodel into the input of the BiLSTM
model, achieving seamless integration between the models through Shuffle-enhanced
RealNVP;

(3) How to construct and optimize a double-layer BiLSTM structure to better capture
temporal information in the text.
The remainder of this paper is structured as follows: ‘Related work’ reviews existing

research on text sentiment analysis, emphasizing applications and achievements of LDA,
RealNVP, and LSTMmodels in this field. ‘Methodology’ details the methodology, covering
the integration strategy of LDA, enhanced RealNVP, double-layer BiLSTM, and MHSA,
model selection, and other core aspects to ensure experimental rigor. ‘Experiments’
presents the LDA-RealNVP-DBiLSTM-MHSA model construction, detailing dataset
selection, parameter settings, and evaluation metrics. ‘Results and Discussion’ conducts
a comparative analysis of datasets, validating the proposed model’s superiority over
traditional methods and benchmarks. ‘Conclusions’ concludes by summarizing the study’s
contributions and outlining future research directions.

RELATED WORK
Text sentiment analysis
Text sentiment analysis, a pivotal subfield of natural language processing (NLP), aims to
automatically identify and classify the subjective polarity (positive, negative, or neutral)
expressed in textual data through computational techniques (Deng et al., 2021). This
technology has become increasingly vital for understanding public opinion and tracking
the evolution of societal sentiment. The field has witnessed a methodological evolution,
progressing from traditional lexicon-based approaches to machine learning and, more
recently, deep learning techniques (Chen et al., 2023b).

In text sentiment analysis, the LDA model has been widely recognized for its robust
feature extraction capabilities. It can identify latent topics within textual data, facilitating
the optimization of information resources (Wang &Wu, 2023). Simultaneously, the LSTM
model, a prominent deep learning technique, excels at processing sequential data. It can
directly and accurately predict sentiment labels in text, with applications spanning stock
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index prediction (Xu & Tian, 2021) and enhancing intelligent library services (Zhao et al.,
2023). Both LDA and LSTM models offer unique strengths and when combined, have the
potential to advance the field of text sentiment analysis.

Enhancing the comprehensiveness and accuracy of text sentiment analysis is an active
area of research, with a particular focus on the fusion and complementarity of multiple
models (Chen & Guo, 2024; Zhu et al., 2022). The emergence of numerous datasets and
the application of multimodal methods have provided ample impetus for this trend
(Zhu et al., 2023). For example, He et al. (2023) successfully integrated Bidirectional
Encoder Representations from Transformers (BERT) with the LDA model to improve
sentiment classification. Deng et al. (2021) combined convolutional neural networks,
bidirectional LSTMs, and attention mechanisms for enhanced sentiment analysis. Liu et
al. (2022) incorporated LDA into convulational neural network (CNN) to improve short-
text fault information classification. Additionally, models such as Robustly Optimized
BERT Approach Bidirectional Long-short Term Memory Conditional Random Field
(RoBERTa BiLSTMCRF) (Xu et al., 2023) have gained significant attention for their ability
to effectively capture sentiment information in text, thereby improving classification
accuracy and contributing to new directions in fine-grained sentiment analysis research.

LDA theme model
The LDA model is a foundational technique in the field of text mining. By establishing a
three-layer Bayesian probabilistic framework linking vocabulary, topics, and documents,
LDA uncovers the latent thematic structure inherent within text data. The model operates
under the assumption that the vocabulary within a document is drawn randomly from
latent topics, allowing it to capture the underlying complexity of the text while ensuring
topic coherence (Xue et al., 2024). As depicted in Fig. 1, the LDA process involves several
key steps. Initially, a topic distribution θi is generated for each document through sampling
from a Dirichlet distribution α, thus laying the groundwork for the document’s thematic
content. Subsequently, each word’s topic affiliation is determined by sampling from a
multinomial distribution over topics. Next, a word distribution ϕZi,j is generated for
each topic through another Dirichlet distribution β. Finally, the actual words comprising
the document are generated by sampling from a multinomial distribution over words,
effectively revealing the underlying topic structure of the text (Hu, Han &Wang, 2024).

The LDA model has found widespread application in the realm of text sentiment
analysis. He, Zhou & Zhao (2022) employed LDA to conduct an in-depth analysis of user
comments, extracting sentiment-laden topics that influence user experiences and offering
recommendations for product and service enhancements. In the context of social media
sentiment analysis, Wang, Sun & Wang (2022) leveraged LDA to precisely identify topics
discussed by the public and uncover their corresponding sentiment orientations.Moreover,
LDA has been utilized to analyze user comments from diverse settings such as museums
and theme parks, effectively identifying areas of concern for users and providing actionable
insights for design improvements to management (Fudholi et al., 2023).

As the complexity of text sentiment analysis increases, the limitations of using LDA
models in isolation have become apparent. Consequently, the development of LDA fusion
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Figure 1 LDA topic model structure diagram.
Full-size DOI: 10.7717/peerjcs.2542/fig-1

models, which combine LDA with other machine learning or deep learning models, has
emerged as a crucial strategy for enhancing performance. This approach has demonstrated
significant improvements in topic classification accuracy and sentiment analysis. For
instance, Watanabe & Baturo (2024) proposed a model integrating seed words with
sequential LDAmodeling, resulting in increased precision in topic matching and enhanced
stability of sentence-level topic transitions. Wu & Shen (2024) improved the accuracy
and foresight of LDA in detecting emerging topics by optimizing evaluation methods
and constructing a novel identification framework. Additionally, Wu, Du & Lin (2023)
integrated the Neural Basis Expansion Analysis (N-BEATS) network model with LDA,
improving the accuracy of technological theme prediction. These fusion models highlight
the ongoing relevance and innovative potential of LDA-based approaches in text sentiment
analysis.

Normalized flow’s RealNVP model
Normalized Flows (NFs) (Dias et al., 2020), exemplified by the RealNVP model, have
emerged as a powerful class of generative models capable of transforming simple
distributions into complex data distributions through a series of invertible transformations.
The core strength of RealNVP lies in its coupling layers, which partition and affine-
transform input data, enabling efficient information mixing and the generation of intricate
distributions (Papamakarios et al., 2021). This capacity for complex distribution modeling
has inspired the exploration of leveraging a shuffled RealNVP variant to enhance feature
representations in the context of text analysis, distinct from the broader application of NFs.

The potential of NFs in capturing nuanced emotional expressions within textual data has
been demonstrated in sentiment analysis. Tran et al. (2019) pioneered the application of
NFs to discrete data through their discrete flow model, facilitating effective text sentiment
analysis and sequence dependency modeling. Building on this, Li, Wu &Wang (2020)
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introduced the Flow-Emotion model, leveraging RealNVP to learn sentiment embedding
spaces and incorporating attention mechanisms for context-aware modeling, further
underscoring the efficacy of NFs in sentiment analysis. While these works highlight the
power of NFs in capturing textual nuances, they primarily focus on sentiment classification
and do not explore the integration of NFs with topic modeling techniques like LDA, a gap
addressed in this research.

Beyond sentiment analysis, RealNVP has found extensive application in modeling
temporal data. Papamakarios, Pavlakou & Murray (2017) combined autoregressive
structures and masking with RealNVP in their Masked Autoregressive Flow (MAF)
model, establishing a foundation for efficient sequential modeling and the application of
NFs in time series analysis. Kim et al. (2022) extended RealNVP to the financial domain,
enabling fast pricing of path-dependent exotic options by simulating stochastic volatility
models. Further highlighting RealNVP’s aptitude for handling complex time series,
Kobyzev, Prince & Brubaker (2021) and Zhao et al. (2024) achieved significant results in
anomaly detection with their Conditional Flow for Anomaly Detection (CFlow-AD)
and Deep Denoising Autoencoder Normalizing Flow (DDANF) models, respectively, by
integrating RealNVPwith conditional normalized flows and denoising autoencoders. These
applications showcase the versatility of RealNVP in diverse domains; however, its potential
for enhancing feature representations derived from topic models like LDA for downstream
tasks like LSTM-based text analysis remains largely unexplored, a direction pursued in this
study.

LSTM model
The LSTMmodel, an advanced recurrent neural network architecture, excels in processing
sequential data due to its unique design. As depicted in Fig. 2, the LSTMmodel incorporates
memory cells and three logical gates: the input gate, forget gate, and output gate. This
architecture enables the LSTM to effectively capture and process long-term dependencies,
making it particularly suitable for tasks requiring contextual understanding (Yu et al.,
2023). By seamlessly connecting long-termmemorywith current input, LSTMaddresses the
challenges of long-term dependencies and gradient vanishing that often plague traditional
recurrent neural networks.

The LSTM model’s exceptional performance in text sentiment analysis is attributed
to its ability to capture sentence structure and semantics, making it a valuable tool for
sentiment classification tasks. By integrating deep learning with time series analysis, LSTM
leverages contextual information effectively, thereby enhancing the model’s scalability
and performance (Dellal-Hedjazi & Alimazighi, 2022; Liu, Wang & Li, 2023). For instance,
a text sentiment polarity classification method based on an improved residual neural
network (ResNet) and LSTM has demonstrated increased classification accuracy while
maintaining operational efficiency (Liu, Yang & Yu, 2023). Furthermore, Xuan & Deng
(2023) enhanced LSTM’s ability to capture textual sentiment by incorporating a deep
attention mechanism and topic embedding strategy.

In scenarios involving complex, long texts, a single LSTM model may fail to retain
crucial information during processing. Consequently, multi-model fusion has emerged as

Zhu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2542 6/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2542


Figure 2 LSTMmodel structure diagram.
Full-size DOI: 10.7717/peerjcs.2542/fig-2

a key strategy for enhancing performance. Khan et al. (2022a) proposed a deep learning
model integrating CNN with LSTM, achieving notable success in sentiment analysis of
social media texts. This hybrid model first extracts local features from the text using CNN
and subsequently processes temporal dependencies using LSTM, effectively combining
the strengths of both architectures: CNN for feature extraction and LSTMs for temporal
modeling.

Numerous studies have explored the fusion of LDA and LSTM models. For instance,
Zeng, Yang & Zhou (2022) employed a combination of LDA and the Attention-
BiLSTM model to reveal the dynamics of online public opinion. Li et al. (2022a)
integrated LDA, BiLSTM, and the Self-attention model, achieving enhanced accuracy
in short text classification. Hu et al. (2022) proposed a CNN-BiLSTM-MHSA-based
electroencephalography (EEG) emotion recognition method, utilizing CNN to extract
local features, BiLSTM to establish a temporal emotion change model, and MHSA to
enhance the focus on key features, significantly improving emotion recognition rates
on the DEAP dataset. These studies underscore the potential of combining models for
improved text classification and sentiment analysis.

METHODOLOGY
Failure to consider the relevance and temporal context of texts during analysis can result in
misinterpretations of sentiment within specific contexts and its trajectory over time. In this
study, we propose a refined approach that integrates topic modeling, feature enhancement,
deep sequential modeling, and attention mechanisms to achieve a more comprehensive
and accurate capture of sentiment in UGC texts. This enhanced model demonstrates better
performance in preserving sparse features inherent in short texts and extracting salient
features from information-rich texts.
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Figure 3 Experiment overall flow chart.
Full-size DOI: 10.7717/peerjcs.2542/fig-3

The proposed LDA-RealNVP-DBiLSTM-MHSA model follows the process illustrated
in Fig. 3.
(1) Comment texts are converted into word vectors for machine processing;
(2) The word vectors are input into the LDA model to create a document-term matrix;
(3) The LDA model is trained to obtain the topic distribution for each document;
(4) Topic features are extracted from the trained LDA model, and a dataset is constructed

that reflects the topical characteristics of each document;
(5) A Shuffle-enhanced RealNVP model is built to obtain an enhanced topic feature

dataset;
(6) The enhanced topic feature dataset and the original word vector sequence are directly

concatenated to obtain a fused feature representation dataset;
(7) A double-layer BiLSTM andMHSAmodel is built, and the effectiveness of the proposed

method is validated;
(8) Model results are evaluated and compared.

Figure 4 illustrates the detailed internal structure of the proposed model, depicting
the complete process from data preparation and word vectorization, through LDA model
processing and RealNVP feature enhancement, to the double-layer BiLSTM and MHSA
model processing. The Shuffle operation, by randomly shuffling the order of feature
dimensions, breaks the potential local correlations in the original feature space, enhancing
the model’s ability to model long-range dependencies in high-dimensional complex data,
thereby improving the robustness of feature representation. Moreover, the flow model
characteristic of RealNVP endows it with generative capabilities. By directly concatenating
the generated features with the original topic features, the feature representation input
to BiLSTM is further enriched. Within the double-layer improved BiLSTM structure, the
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Figure 4 The internal structure of the model.
Full-size DOI: 10.7717/peerjcs.2542/fig-4

first BiLSTM layer is responsible for initial temporal feature extraction while preserving
sequential information integrity. The second BiLSTM layer then performs deeper feature
extraction, compressing the entire sequence into a fixed-size feature vector suitable for
subsequent classification or other downstream tasks. This stacked BiLSTM configuration
enables the model to learn intricate sequence features and contextual relationships. By
coupling the forget gate and the input gate, the processing time of the double-layer BiLSTM
is effectively reduced, and the accuracy of processing is ensured. MHSA empowers the
model to attend tomultiple representation subspaces simultaneously, thereby enhancing its
understanding and modeling of complex semantics. Furthermore, dropout regularization
is applied to mitigate overfitting and enhance the model’s generalization capability.

Word vectorization
Word vectorization, a fundamental technique in NLP, converted words into fixed-
dimensional vectors, encapsulating semantic relationships and reducing feature
dimensionality (Hu, Han &Wang, 2024). This study employed the Skip-grammethod (Xia
et al., 2020) for word vectorization, the principle of which is illustrated in Fig. 5. The core of
Skip-gram lies in predicting a word’s context words to capture their inherent connections.
Utilizing the preprocessed document set St as input, word vectors were generated using
Skip-gram. The similarity between word vectors was quantified by calculating their inner
product, thus inferring the correlation between words. Specifically, the similarity between
any two-word vectors,Wi andWj , was given by:

Similarity
(
Wi,Wj

)
=Wi ·Wj =

n∑
k=1

Wik ·Wjk . (1)
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Figure 5 Skip-grammethod schematic.
Full-size DOI: 10.7717/peerjcs.2542/fig-5

WhereWi andWj represented the vector forms of the two words, n was the dimensionality
of the word vector, and Wik and Wjk represented the k-th component of Wi and Wj ,
respectively.

Furthermore, this study employed the softmax function to compute the probability
distribution of each word in the vocabulary being predicted given a central word. The
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softmax function is defined as follows:

P
(
Wj |Wi

)
=

exp
(
Wi ·Wj

)∑m
k=1exp(Wi ·Wk)

. (2)

Where P(W j |W i) represented the probability of wordWj being predicted given the central
wordWi, and m represented the total number of distinct words in the vocabulary.

The probability distribution of each word in the vocabulary being predicted, given a
central word, was obtained by calculating the inner product between their corresponding
word vectors and normalizing the results using the softmax function. Through this word
to vector (Word2Vec) model processing, text data underwent vectorized transformation,
converting high-dimensional textual information into a lower-dimensional set of word
vectors, Dt . The Skip-gram word embedding method was chosen for its ability to capture
nuanced semantic relationships between words, thereby improving the model’s accuracy
(Shobana & Murali, 2021).

As Fig. 5 illustrates, the Skip-gram model acquires distributed representations of words
by predicting context words from a center word. This process maps words into a low-
dimensional dense vector space, where each word vector encodes semantic information.
Semantically similar words are positioned close to each other in this vector space,
effectively capturing their relationships. Upon completion of Skip-gram training, each
word is associated with a low-dimensional dense vector, and the collection of these vectors
constitutes the word vector set Dt (illustrated in Fig. 4). This dimensionality reduction of
the text data furnishes structured semantic input for downstream models.

LDA topic modelling stages
Constructing the document-term matrix
Subsequently, the Dictionary module of the Gensim library (Khan et al., 2022b) was
employed to convert the word-vectorized text dataset Dt into a dictionary. This process
involved traversing all tokenized documents, counting the frequency of each unique
word, and establishing a mapping between words and their corresponding frequencies.
Additionally, detailed word frequency statistics were recorded.

count(W )← count(W )+1. (3)

To further refine the weight matrix, this study utilized the Term Frequency-Inverse
Document Frequency (TF-IDF) algorithm (Liu, Chen & Liu, 2022). TF-IDF quantified the
significance of each word within a specific document by multiplying its term frequency
(TF) with its inverse document frequency (IDF). Term frequency denoted the frequency
of a given word in the current document. Inverse document frequency, calculated as
the logarithm of the ratio between the total number of documents and the number of
documents containing the word (with one added to avoid division by zero), measured the
word’s rarity across the entire corpus.

TF− IDF =TF× IDF . (4)
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TF =
N
M
. (5)

IDF = log
(

X
Y +1

)
. (6)

The resulting document-term matrix, Rt , effectively addressed the challenge of sparse
representation often encountered in textual data. By incorporating both term frequency
within individual documents and inverse document frequency across the entire corpus, this
approach offered amore comprehensive representation of word importance and document
topic characteristics.

LDA models traditionally operate on a document-term matrix, with matrix elements
quantifying term weight or frequency within each document. As depicted in Fig. 4, the LDA
topic modeling phase begins by employing a dictionary to assign unique IDs to the terms
in the word-vectorized Dt . Subsequently, it processes the TF-IDF matrix, representing
each document as a bag-of-words consisting of term IDs and their corresponding TF-IDF
values. Ultimately, the bag-of-words representations for all documents are consolidated
into a document-term matrix Rt , serving as the input corpus for the LDA model, initiating
the training process.

Training the LDA model
To investigate the underlying structure of the text data, this study employed the LDAmodel
to identify latent topics within the documents. To optimize model performance, data were
read from the document-term matrix file Rt and the LDA model was trained with adjusted
parameters.

To identify optimal model parameters, this study employed perplexity and coherence as
evaluation metrics (Ran & Li, 2023). Perplexity, a measure of how well a probability model
predicts a sample, is a key indicator of model fit. It was calculated as follows:

Perplexity(D)= exp

{
−

∑M
d=1 logp(wd)∑M

d=1Nd

}
. (7)

Where D represented the test set in the corpus, containing M reviews. Nd denoted the
number of words in review d, wd represented the words in review d, and p(w)d was the
probability of generating the word wd according to the model. The lowest point, or a point
close to the lowest point, on the perplexity curve was typically considered the optimal
model configuration, as it indicated improved generalization ability.

In addition to perplexity, this study utilized a coherence curve to assess the semantic
coherence among words within the model. The peak of the coherence curve typically
signified the optimal number of topics, where word relationships were strongest and most
meaningful.

By comprehensively considering the analysis results of perplexity and coherence curves,
the optimal number of topics for the LDA model was determined. After establishing
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the optimal configuration, the trained LDA model file Lt and its evaluation results were
produced.Utilizing perplexity and coherence curves not only enhanced the accuracy of LDA
model selection but also ensured the model’s effectiveness in capturing text associations
and temporal dynamics. Moreover, these metrics served as crucial indicators for assessing
the performance of subsequent models in the analysis pipeline.

Topic feature extraction
In this study, the trained LDA model Lt and the processed word vector dataset Dt served
as input for topic feature extraction. To ensure compatibility with the LDA model’s input
requirements, appropriate transformations were applied to the original data. Subsequently,
the Gibbs sampling (Zhao et al., 2021) algorithm was employed for iterative approximation
of the model’s posterior distribution. In each iteration, new parameter values were sampled
based on the current estimates. Core statistics, such as the mean and standard deviation of
model parameters, were then computed from the numerous samples obtained.

In the topic feature extraction process, the number of topics, k, was initialized based on
the analysis of coherence and perplexity curves. To determine the topic distribution for
each document, the probability of observing the remaining words in a document, given
the removal of a specific word, was calculated as follows:

P (Zi= k|w,z− i,α,β)∝
nk,−i+α
n.,−i+Kα

×
nw,k,−i+β
nk,−i+Vβ

. (8)

Where nk, -i represented the number of words assigned to topic k in the current document
after excluding the i-th word; n., -i denoted the total number of topics assigned to all words
in the current document after removing the i-th word; nw, k, -i indicated the number of
times word w was assigned to topic k after excluding the i-th word, and V was the total
number of unique words in the corpus. Through repeated iterations of Gibbs sampling
until vocabulary convergence, the final output was a dataset file Et containing feature
vectors of the topic distribution for each document.

The iterative Gibbs sampling and associated probability calculations facilitated the
accurate extraction of topic features, revealing the underlying semantic structure of the
text.

Feature enhancement and fusion
Feature enhancement with shuffle
This study introduces the RealNVP model to model and enhance the topic features
generated by LDA. RealNVP’s concise and reversible structure contributes to improved
efficiency in modeling text topic features for sentiment analysis (Dinh, Sohl-Dickstein &
Bengio, 2016). As illustrated in Fig. 6, the RealNVPmodel incorporates the Shuffle operation
within its coupling layer to facilitate data mixing and bolster the model’s generalization
capabilities. The Shuffle operation randomly rearranges the concatenated vectors h1 and h2
from the flow output, where s and t are vector functions parameterized by neural networks
(Su, 2018).

The reversibility inherent to the RealNVP model ensures lossless information
transmission during transformation, providing high-quality feature representations to the
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Figure 6 RealNVP with Shuffle.
Full-size DOI: 10.7717/peerjcs.2542/fig-6

BiLSTMmodel. While preservingmodel reversibility, the Shuffle operation introduces data
perturbation, thereby augmenting the model’s adaptability and robustness for sentiment
classification tasks. Experimental design and hyperparameter tuning mitigate potential
instability arising from this randomness, ensuring stable model output. Furthermore,
aligning the RealNVP model’s hidden layer dimension with that of the LDA topic features
guarantees effective data processing.

When applied to LDA’s topic features, the RealNVP model enhances both expressive
power and robustness, offering an effective feature enhancement strategy for sentiment
analysis. The model’s transformation is defined as:

y1:d = x1:d . (9)

yd+1:D= xd+1:D ·exp(s(x1:d))+ t (x1:d). (10)

Where s and t, parameterized by neural networks, implement nonlinear data
transformations. The corresponding inverse transformation is:

x1:d = y1:d . (11)

xd+1:D=
(
yd+1:D− t (x1:d)

)
·exp(−s(x1:d)). (12)

This transformation preserves data volume while achieving effective data mixing,
furnishing the BiLSTMmodel with rich and uniform feature representations. By processing
the LDA-processed text dataset Et with the RealNVP model’s Shuffle coupling layer
transformation, the data is encouraged to fully integrate contextual information, yielding
an enhanced topic feature dataset Ft .

Feature fusion
Direct concatenation was selected as the feature fusion strategy due to its simplicity, ability
to maintain information integrity, and proven success in multi-modal tasks (Xia, Li & Liu,
2023). By directly concatenating the original word vector sequence Dt with the enhanced
topic feature vector Ft , both the fine-grained semantics of the text and the high-level
topic information are preserved, avoiding the complexity and potential information loss
associated with other fusion methods.

While LDA topic models excel at extracting the topic distribution of a text, they may
overlook crucial semantic details such as word order and subtle nuances in meaning (Liu &
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Wei, 2020). Word vector sequences, through their dense vector representations, effectively
encode this information. Therefore, incorporating the original word vector sequence in
the feature fusion stage compensates for the limitations of the topic model, providing
the BiLSTM model with a richer and more comprehensive text representation, ultimately
leading to improved sentiment classification accuracy.

By concatenating the original word vector sequence Dt and the enhanced topic feature
Ft , effective fusion of multi-modal features is achieved. This strategy not only enhances the
model’s expressive power, enabling it to capture a broader range of textual information,
but also strengthens its understanding of textual sentiment, culminating in a dataset Nt

well-suited for BiLSTM input.

LSTM sentiment analysis model
Data preparation
In this study, a text dataset file Nt , resulting from feature fusion, and its corresponding
sentiment labels were loaded. To ensure themodel’s effectiveness and generalization ability,
a dynamic strategy was employed to partition the dataset into a training set Xt and a testing
set Ct .

To transform the sentiment labels into a numerical format suitable for model
interpretation, one-hot encoding technology (Gu & Sung, 2021) was utilized. This
technique represents each category as a vector, where only one element is 1 and the
remaining elements are 0. The specific encoding scheme was as follows:

Positive evaluation→ [1,0,0]
Neutral evaluation→ [0,1,0]
Negative evaluation→ [0,0,1]
By employing one-hot encoding, positive, neutral, and negative evaluations were

converted into a numerical format that the model could process.

Constructing a double-layer improved LSTM and MHSA model
To delve into the temporal and contextual information within the text data, a double-layer
improved BiLSTM model was constructed, incorporating a MHSA to enhance the model’s
ability to capture complex emotional dynamics and semantic relationships. As shown in
Fig. 4, the network architecture comprised an Embedding layer, two stacked improved
BiLSTM layers (with a Dropout layer following each to mitigate overfitting), an MHSA
layer, and a fully connected Dense layer. This design progressively extracted and processed
text features, enabling the model to effectively capture the intricate nature and temporal
dynamics of textual data.

In contrast to traditional sentiment analysis approaches that employ standard LSTM
networks, this study utilized a modified LSTM variant featuring a coupled forget and input
gate mechanism. The internal architecture of this modification is illustrated in Fig. 7.

In the standard LSTM architecture (Fig. 2), the forget gate’s calculation is governed by
the following equation:

Ft = σ
(
Wf ·

[
Ht−1,Xt

]
+bf

)
. (13)
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Figure 7 Diagram of LSTM structure with coupled oblivion gate and input gate.
Full-size DOI: 10.7717/peerjcs.2542/fig-7

In this equation, the sigmoid activation function ( σ ) compresses the input value into
the range [0, 1], dictating the proportion of information from the previous cell state to be
discarded.Wf , the forget gate’s weight matrix, maps the input to the forget ratio, while bf ,
the forget gate’s bias vector, enables it to maintain a baseline activation level independent
of input. The input gate’s calculation proceeds as follows:

It = σ
(
Wi ·

[
Ht−1,Xt

]
+bi

)
. (14)

Ĉt = tanh
(
Wc ·

[
Ht−1,Xt

]
+bc

)
. (15)

In this expression, Ĉ t denotes the candidate cell state, representing the new information
potentially added to the cell state in the current time step. However, the conventional LSTM
architecture suffers from several drawbacks. First, due to the independent calculation of
the forget and input gates, each gating mechanism requires separate weight matrices and
bias vectors. This increases the model’s parameter count, raising the risk of overfitting,
particularly with limited training data. Second, each gating mechanism necessitates
independent matrix operations and activation function calculations, increasing the model’s
computational complexity. This can become a performance bottleneck for large-scale data
processing or real-time applications. Third, the separate computations of the forget and
input gates may lead to redundant or conflicting decision outcomes. For example, the
information retained by the forget gate might be similar to the new information added
by the input gate, resulting in information redundancy. To mitigate these shortcomings,
this study employed a coupled forget and input gate design, as depicted in Fig. 7. The

Zhu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2542 16/32

https://peerj.com
https://doi.org/10.7717/peerjcs.2542/fig-7
http://dx.doi.org/10.7717/peerj-cs.2542


calculation is defined as follows:

Ct = Ft∗Ct−1+(1−Ft )∗Ĉt . (16)

In this design, 1−Ft can be interpreted as an implicit representation of the input gate.
This coupling strategy allows the forget and input gates to not only share parameters but
also operate synergistically in a complementary fashion. Consequently, this design not only
streamlines the network’s structural complexity but also improves the model’s training
efficiency and response speed by reducing redundant computations and the number of
parameters, while maintaining accuracy.

The double-layer improved BiLSTM architecture enhanced the model’s capacity to
process complex text data, particularly long sequences with deep-level dependencies. The
first BiLSTM layer extracted initial temporal features while preserving the output at each
time step to ensure comprehensive temporal information transfer. The second BiLSTM
layer further refined these features, focusing on capturing long-term dependencies within
the text. During model construction, careful consideration was given to the dimensionality
of each layer. The output dimension of the first BiLSTM layer was set to be sufficiently large
to capture the rich features present in the text, while the second layer’s output dimension
was tailored for core feature extraction. The model’s input dimension was aligned with the
output dimension of the preceding LDA model to facilitate effective information flow.

Subsequently, MHSA was employed to comprehensively capture the intricate
interactions within the text features. MHSA’s multiple attention heads enable parallel
processing of different parts of the input sequence, effectively capturing both global and
local contextual information (Xiao et al., 2020). This multi-level attention mechanism
not only enhances the model’s sensitivity to global information but also facilitates a
deeper understanding of semantic associations and contextual dependencies within
the text, crucial for tasks like sentiment analysis. Compared to other self-attention
mechanisms, MHSA’s multi-head structure allows it to capture multi-scale features in
parallel, improving the model’s expressive power while mitigating the risk of overfitting
through attention dispersion (Xiao et al., 2020). The multi-head mechanism empowers
MHSA to simultaneously focus on various aspects and granularities of the input sequence,
striking a balance between global semantics and local details. This multi-granularity
feature extraction capability is essential for in-depth understanding of textual semantics,
particularly for sentiment analysis. Additionally, the fusion of multi-head outputs further
enhances the model’s expressive power, enabling it to learn more complex and abstract
text feature representations. As depicted in Fig. 4, MHSA takes the output sequence of the
second BiLSTM layer as input and generates Query, Key, and Value vectors through linear
transformations (Tan et al., 2023), which are then used to calculate attention weights.

Q=XWQ,K =XW K ,V =XW V

whereWQ,W K , andW V represent the parameters learned by themodel. For each attention
head, themodel computes attention scores and normalizes themusing the softmax function

Zhu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2542 17/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2542


to derive the attention weights.

headh=Attention
(
QWQh,KW Kh,VW Vh)

= softmax

(
QWQh(KW Kh)T

√
dk

)
VW Vh. (17)

Finally, the outputs from all attention heads are concatenated and then transformed via
a linear layer to produce the final output of the MHSA layer.

MultiHead (Q,K ,V )=Concat (head1,head2,...,headh)W o. (18)

WhereW o is a trainable weight matrix used for dimension adjustment.
At the output stage, a fully connectedDense layer integrated the features processed by the

MHSA and employed a softmax activation function for three-class sentiment classification.
This ensured that the output results were both probability distributions and mutually
exclusive across categories. To mitigate overfitting and enhance the model’s generalization
ability, Dropout layers (Chen et al., 2023a) were incorporated between the BiLSTM layers
and between the MHSA layer and the Dense layer. Dropout layers randomly deactivated a
proportion of neuron connections during training, reducing complex co-adaptations and
promoting the development of more robust features.

Regarding loss function selection, this study employed the sparse_categorical_crossentropy
loss function, which was well-suited for multi-class classification problems with softmax
activation. This function quantified the dissimilarity between the predicted probability
distribution and the true probability distribution. Themathematical formula for categorical
cross-entropy loss is:

loss=−
1
m

m∑
j=1

k∑
j=1

yij log
(
y̌ij
)
. (19)

Where m represented the number of samples, and k represented the number of categories.
The Adam optimizer was selected for model optimization in this study. Adam utilizes

adaptive learning rates and incorporates bias correction, resulting in a stable learning
rate range across iterations. This enhanced the stability and convergence speed of model
training.

The double-layer improved BiLSTM architecture (Lt ) increased the model’s capacity to
represent and analyze complex text data effectively.

Model training and validation
Dataset Et and BiLSTM model Lt were utilized for model evaluation and optimization.
The data were divided into training set Xt , and a test set Ct to assess model performance
and ensure generalizability.

To optimize the model’s ability to process text and capture temporal dynamics, the
model structure, parameters, and learning rate were iteratively refined. This process aimed
to address the limitations of the LDA model and leverage the strengths of the fusion
approach. Through analysis of performance metrics during training and referencing the
training set performance report, optimal model parameters were identified and saved as a
Qt file.
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Model evaluation and validation
The model was evaluated by loading the training dataset Xt and the previously optimized
model weightsQt . Inferences were performed on the optimizedmodel using the test dataset
Ct , generating updated coherence and perplexity curves for visual assessment of model
performance.

Key performance indicators (KPIs), including accuracy and F1 score (Santhiran,
Varathan & Chiam, 2024), were calculated for both the original and improved models.
Comparison of these KPIs demonstrates the enhanced performance of the improved
model across multiple dimensions.

EXPERIMENTS
The research was conducted utilizing a Windows 11 operating system environment.
Hardware specifications included an Intel(R) Core (TM) i5-8265U CPU with a processing
speed of 1.60 GHz (up to 1.80 GHz). The programming language platform employed was
Python version 3.6.8. Software tools for development and analysis encompassed PyCharm
Community Edition 2023.1.3 and Jupyter Notebook.

Datasets
In this study, an in-depth analysis of online comment data from visitors was conducted.
A total of 7,991 core comments were collected from Dianping.com (Zhang & Long, 2024)
through the utilization of web crawling technology (Zhang & Wu, 2022). Additionally,
publicly available datasets (comprising 8,186 Chinese product reviews (IDataScience, 2022)
and 50,000 English movie and TV show reviews (Ni, Li & McAuley, 2019)) were used
to validate the model’s cross-lingual generalization capabilities. Given the correlation
between star ratings and user sentiment, comments with 4 or 5 stars were classified as
positive evaluations, those with 2 to 3.5 stars as neutral evaluations, and those with 1.5
stars or below as negative evaluations. The detailed classification is presented in Table 1.

In the data processing stage, regular expressions were first utilized to remove special
symbols and extraneous punctuation from the text. Subsequently, the jieba library
was employed for word segmentation, and stop words were eliminated. Following
preprocessing, the dataset was randomly partitioned into a training set and a testing
set at a ratio of 80%/20%. These sets were then used for model training and performance
evaluation, respectively.

Hyperparameter setting
The number of topics in the LDA model significantly influenced its performance. By
plotting the coherence curve (Fig. 8A) and the perplexity curve (Fig. 8B) for each dataset,
the optimal number of topics was determined. For the Shanghai Astronomy Museum
dataset, coherence peaked at four topics, with perplexity (after inversion) also being
relatively high, indicating the model’s optimal generalization ability. For the mobile
phone products dataset, coherence was highest at six topics, with good perplexity (after
inversion). For the Amazon movie and TV review dataset, both coherence and perplexity
(after inversion) reached their highest points at seven topics. The traditional LDA model
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Table 1 Data classification table.

Comment Source Language Sentence
properties

Sentence
number

Percentage

Positive 42468 84.94%
Neutral 5024 10.04%

Movies and TV series
on Amazon platforms

English

Negative 2508 5.02%
Positive 3042 37.16%
Neutral 2487 30.38%Mobile Phone Prod-

ucts
Chinese

Negative 2657 32.46%
Positive 7069 88.46%
Neutral 600 7.51%Shanghai Astronomy

Museum
Chinese

Negative 322 4.03%

Figure 8 (A) LDA consistency curves across datasets; (B) LDA perplexity curves across datasets.
Full-size DOI: 10.7717/peerjcs.2542/fig-8

exhibited some overfitting when processing the Chinese datasets, with perplexity increasing
as the number of topics rose. However, the exponential upward trend of the perplexity
curve also hinted at the limitations of the LDA model in handling complex contexts and
temporal sequences. Therefore, next studies may consider integrating other models to
enhance overall performance and address the overfitting issue.

The number of topics in the LDA model was optimized by evaluating coherence and
perplexity on the respective datasets. The RealNVPmodel utilized 4 flows to balance model
complexity and expressiveness, and was trained using maximum likelihood estimation
and the Adam optimizer. The double-layered BiLSTM model employed 128-dimensional
word vectors, with 128 and 64 units in its respective layers, to achieve progressive feature
abstraction. The model incorporated four attention heads to capture multifaceted semantic
information, with the attention dimension aligned with the BiLSTM output dimension.
During training, a dropout ratio of 0.5 and a batch size of 32 were employed. Categorical
cross-entropy was used as the loss function, and the Adam optimizer was utilized for
optimization. Other parameter settings were as follows: a random seed of 42, a document
processing batch size of 100, and 15 corpus iterations.
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Evaluation metrics
For model evaluation, this study employed multiple metrics to comprehensively assess
model performance. The effectiveness of model improvements was demonstrated by
comparing coherence and perplexity curves.

To further quantify model performance, accuracy (ACC) (Bello, Ng & Leung, 2023) was
selected as the primary evaluation metric. Accuracy measured the proportion of correctly
classified instances out of the total number of instances. It was calculated as follows:

Accuracy=
TP+TN

TP+TN +FP+FN
. (20)

Where TP and TN represented true positives and true negatives, respectively, indicating
correctly predicted positive and negative instances. FP and FN, on the other hand,
represented false positives and false negatives, which were incorrectly predicted positive
and negative instances.

In addition to accuracy, the F1 score (Hsieh & Zeng, 2022) was included as a
supplementary evaluation metric to account for both precision and recall. The F1 score
was the harmonic mean of precision and recall, providing a balanced measure of a model’s
performance, particularly in cases of imbalanced class distributions (Powers, 2011). It was
calculated as follows:

F1=
2∗TP

2∗TP+FP+FN
. (21)

By utilizing multiple evaluation metrics, including accuracy and F1 score, this study
conducted a comprehensive analysis of model performance from various perspectives.

RESULTS AND DISCUSSION
Comparison of model performance results
This study compared and analyzed the performance of several models for sentiment
analysis: the traditional LDA model, the LSTM model, the LDA-CNN model (Liu et al.,
2022), the CNN-LSTM model (Khan et al., 2022a), and the proposed LDA-RealNVP-
DBiLSTM-MHSA model. The LDA-CNN model enhanced short text classification by
integrating global topic information with local contextual features. The CNN-LSTMmodel
has demonstrated strong performance in sentiment analysis of English and Roman Urdu
social media texts. This study addressed the challenges of text relevance and temporality
in sentiment analysis by optimizing topic selection and model structure, incorporating
RealNVP with Shuffle operation to enhance LDA topic features, utilizing a double-layered
improved BiLSTM tomodel text temporality, and integratingMHSA to capture multi-scale
semantic relationships.

To objectively evaluate model performance, all models were trained and tested on the
same dataset (80% training set, 20% testing set). Comparing coherence and perplexity
across models (Fig. 9) revealed consistent improvements in coherence for the optimized
LDA-RealNVP-DBiLSTM-MHSAmodel across all datasets, with a notable improvement of
approximately 10% on the Shanghai Astronomy Museum dataset. Additionally, the model
demonstrated good performance in terms of perplexity. The incorporation of strategies
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Figure 9 (A) LDA-RealNVP-DBiLSTM-MHSA consistency curves across datasets; (B) LDA-RealNVP-
DBiLSTM-MHSA perplexity curves across datasets.

Full-size DOI: 10.7717/peerjcs.2542/fig-9

Table 2 Comparison of 80% training set model evaluationmetrics.

Comment Source Model ACC F1

LSTM 86.41% 85.31%
LDA-CNN 85.12% 87.92%
CNN-LSTM 86.52% 87.78%

Movies and TV series
on Amazon platforms

LDA-RealNVP-DBiLSTM-MHSA 89.33% 88.81%
LSTM 86.33% 85.21%
LDA-CNN 82.56% 81.09%
CNN-LSTM 78.31% 77.93%

Mobile Phone Prod-
ucts

LDA-RealNVP-DBiLSTM-MHSA 87.03% 85.91%
LSTM 87.14% 85.19%
LDA-CNN 87.48% 83.94%
CNN-LSTM 81.13% 79.92%

Shanghai Astronomy
Museum

LDA-RealNVP-DBiLSTM-MHSA 88.62% 87.86%

such as RealNVP with Shuffle operation, the double-layer improved BiLSTM, and MHSA
effectively enhanced the overall performance of the model in handling text. This mitigated
the limitations of the traditional LDA model in modeling complex contextual temporality
and also alleviated the issue of overfitting.

The results of the multi-model performance comparison were presented in Table 2. The
optimized LDA-RealNVP-DBiLSTM-MHSA model outperformed the LSTM, LDA-CNN,
and CNN-LSTM models in terms of both ACC and F1 score. Notably, while the CNN-
LSTM model has demonstrated strong performance in processing English and Roman
Urdu data, its performance was comparatively lower on the Chinese dataset used in this
study, as reflected in its ACC and F1 scores. LSTM outperforms LDA-CNN in online
comment sentiment analysis primarily because LSTM can effectively capture long-range
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Table 3 Comparison of 20% testing set model evaluationmetrics.

Comment source Model ACC F1

LSTM 85.21% 83.96%
LDA-CNN 84.65% 87.07%
CNN-LSTM 85.41% 86.78%

Movies and TV series
on Amazon platforms

LDA-RealNVP-DBiLSTM-MHSA 88.76% 88.09%
LSTM 85.07% 83.86%
LDA-CNN 82.19% 80.72%
CNN-LSTM 76.95% 75.89%

Mobile phone prod-
ucts

LDA-RealNVP-DBiLSTM-MHSA 86.12% 84.16%
LSTM 87.17% 83.10%
LDA-CNN 87.74% 84.13%
CNN-LSTM 80.12% 79.56%

Shanghai Astronomy
Museum

LDA-RealNVP-DBiLSTM-MHSA 87.93% 87.37%

dependencies and contextual information in sequential data, thereby better understanding
complex sentence structures and emotional expressions.

Comparison of experimental results
To process the comment data more effectively, the study employed Skip-gram and the
LDA model to reduce the dimensionality of high-dimensional word vectors. RealNVP was
then utilized for feature enhancement, and the resulting vectors were input into a double-
layer improved BiLSTM and MHSA model for refined processing. The experimental
results, as shown in Table 3, demonstrate the exceptional performance of the proposed
LDA-RealNVP-DBiLSTM-MHSA model in processing online review data. It significantly
outperformed other models in both accuracy and F1 evaluation metrics. This outcome
confirms the effectiveness and practicality of the LDA-RealNVP-DBiLSTM-MHSA model,
particularly in handling complex text relevance and temporality.

To further illustrate the advantages of the LDA-RealNVP-DBiLSTM-MHSA model,
Fig. 10 presents comparisons of ACC and F1 values for various models across different
datasets. The results consistently confirmed the superiority of the proposed model over the
baseline models in terms of all evaluation metrics. On the English review dataset, as shown
in Fig. 10B, although the F1 value of the proposed model was close to that of the LDA-CNN
model, it still achieved the highest score. This can be attributed to the incorporation of
RealNVP with Shuffle operation after LDA in the proposed model, which enabled it to
better capture text relevance. The experimental results fully substantiate the superiority
of the LDA-RealNVP-DBiLSTM-MHSA model in processing both Chinese and English
online review data.

Discussion
The LDA-RealNVP-DBiLSTM-MHSAmodel proposed in this study outperformed existing
LDA fusion models and LSTM fusion models in both accuracy and F1 score.
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Figure 10 (A) Accuracy on Amazonmovie and TV show comments; (B) F1 score on Amazonmovie
and TV show comments; (C) Accuracy onmobile phone product comments; (D) F1 score onmobile
phone product comments; (E) Accuracy on Shanghai AstronomyMuseum comments.

Full-size DOI: 10.7717/peerjcs.2542/fig-10
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At the level of LDA fusion, building upon previous research (He, Zhou & Zhao, 2022; Liu
et al., 2022; Wang, Sun & Wang, 2022; Watanabe & Baturo, 2024; Wu & Shen, 2024; Wu,
Du & Lin, 2023), this study further enhanced the analysis of text relevance and temporality.
Unlike previous approaches that directly input LDA topic features into subsequent models,
this study innovatively introduces a Shuffle-enhanced RealNVP to deeply express and
enhance LDA topic features. RealNVP maps high-dimensional, sparse topic features
to a continuous, low-dimensional latent space through reversible transformations. The
Shuffle operation further breaks local correlations, enhancing the model’s ability to
model long-range dependencies in high-dimensional complex data, thereby improving
the robustness of feature representation. This direct concatenation approach not only
compensates for the shortcomings of traditional LDA models in capturing key semantic
information such as word order and subtle differences in word meaning, but also ensures
the preservation of fine-grained semantic and high-level topic information of the text,
thereby effectively enhancing the relevance of the text. Compared to the LDA-CNN
model (Liu et al., 2022), this model achieved a significant improvement in accuracy. This
improvement was primarily attributed to the deep optimization of LDA topic features by
the Shuffle-enhanced RealNVP, as well as the effective temporal modeling and semantic
association capture of the enhanced features by the double-layer BiLSTM and MHSA.

In the realm of LSTM fusionmodels, building upon prior research on time series analysis
(Liu, Wang & Li, 2023), topic embedding (Xuan & Deng, 2023), CNN and LSTM fusion
(Khan et al., 2022a), and the combination of LDA and single-layer LSTM (Zeng, Yang &
Zhou, 2022), this study adopted a Shuffle-enhanced RealNVP, a double-layer BiLSTM
structure integrating forget gates and input gates, and MHSA. The progressive processing
mechanism of the double-layer BiLSTM enables a deeper exploration of the temporal
features and long-term dependencies embedded within the RealNVP-enhanced feature
vectors, effectively addressing the issue of text temporality and mitigating overfitting.
MHSA, by simultaneously attending to different aspects and granularities of the input
sequence, achieves a balance between global semantics and local details, resulting in
significant advancements in semantic understanding.

The proposed LDA-RealNVP-DBiLSTM-MHSA model, with its core innovation being
the introduction of Shuffle-enhanced RealNVP, effectively improved the accuracy and F1
score of sentiment analysis on online review texts. By integrating LDA’s topic modeling
capabilities, the enhanced RealNVP, and the enhanced sequence processing abilities of
the double-layer BiLSTM and MHSA, the model effectively addressed the overfitting
issue of traditional LDA models on Chinese comment data, enhanced the capture of text
relevance and temporality, and provided a novel approach and methodology for Chinese
text sentiment analysis.

CONCLUSIONS
Addressing the limitations of traditional sentiment analysis models in handling text
relevance and temporality, this study proposed a method integrating LDA, Shuffle-
enhanced RealNVP, a double-layer improved BiLSTM, and MHSA, effectively improving
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the efficacy of text sentiment analysis. By introducing the Shuffle mechanism to enhance
RealNVP, a deep expression and enhancement of LDA topic features was achieved,
providing higher-quality input for subsequent temporal modeling. Simultaneously, by
coupling the LSTM’s forget gate and input gate, the processing rate was appropriately
mitigated while maintaining accuracy. This approach proved particularly suitable for
datasets with a predominance of positive comments, fully leveraging BiLSTM’s advantages
in temporal data processing. Compared to traditional models such as LDA, LSTM, LDA-
CNN, and CNN-LSTM, it demonstrated superior performance in terms of accuracy, F1
score, and other metrics.

The proposed LDA-RealNVP-DBiLSTM-MHSA fusion model exhibited advantages
in accurately capturing comment topic information. It could extract valuable sentiment
information from massive user comments more quickly and accurately, providing precise
decision support for brand reputationmanagement, market trend forecasting, public policy
formulation, and venue design improvement, ultimately contributing to the continuous
improvement of user satisfaction and the sustainable development of data resources.

However, the processing of high-dimensional Chinese comment data using this
method still presented certain challenges. Significant memory consumption and longer
processing time somewhat limited its application to ultra-large Chinese comment datasets.
Additionally, variants of the LSTM structure might not be universally suitable. While the
coupling design performed exceptionally well on specific tasks, it might not be applicable
to others. For instance, in scenarios requiring precise control over information retention
and addition, traditional independent gate designs might prove advantageous.

Therefore, this study proposes the following directions for future work:
(1) Enhancing the Skip-gram model: Incorporating deeper linguistic features, such as

part-of-speech tags and dependency relations, into the Skip-gram model to enrich
word vector representations and more comprehensively capture the semantic nuances
of text.

(2) Optimizing network structure: Investigating the replacement of fully connected layers
in the LSTM with locally connected layers to reduce the number of parameters and
computational complexity, potentially mitigating memory constraints and improving
processing speed.

(3) Introducing multimodal features: Considering the fusion of multimodal features such
as text, audio, and video, and adopting new fusion methods to further improve the
accuracy and efficiency of sentiment analysis.
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