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ABSTRACT
Background: The best possible treatment planning and patient care depend on the
precise diagnosis of brain diseases made with medical imaging information.
Magnetic resonance imaging (MRI) is increasingly used in clinical score prediction
and computer-aided brain disease (BD) diagnosis due to its outstanding correlation.
Most modern collaborative learning methods require manually created feature
representations for MR images. We present an effective iterative method and
rigorously show its convergence, as the suggested goal is a non-smooth optimization
problem that is challenging to tackle in general. In particular, we extract many image
patches surrounding these landmarks by using data to recognize discriminative
anatomical characteristics in MR images. Our experimental results, which
demonstrated significant increases in key performance metrics with 500 data such as
specificity of 94.18%, sensitivity of 93.19%, accuracy of 96.97%, F1-score of 94.18%,
RMSE of 22.76%, and execution time of 4.875 ms demonstrated the efficiency of the
proposed method, Deep Multi-Task Convolutional Neural Network (DMTCNN).
Methods: In this research present a DMTCNN for combined regression and
classification. The proposed DMTCNN model aims to predict both the presence of
brain diseases and quantitative disease-related measures like tumor volume or
disease severity. Through cooperative learning of several tasks, the model might
make greater use of shared information and improve overall performance. For pre-
processing system uses an edge detector, which is canny edge detector. The proposed
model learns many tasks concurrently, such as categorizing different brain diseases
or anomalies, by extracting features from image patches using convolutional neural
networks (CNNs). Using common representations across tasks, the multi-task
learning (MTL) method enhances model generalization and diagnostic accuracy even
in the absence of sufficient labeled data.
Results:One of our unique discoveries is that, using our datasets, we verified that our
proposed algorithm, DMTCNN, could appropriately categorize dissimilar brain
disorders. Particularly, the proposed DMTCNN model achieves better than state-of-
the-art techniques in precisely identifying brain diseases.
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INTRODUCTION
The human brain, which controls numerous essential processes in the body, is the height of
complexity and importance. Among its many functions, it stimulates creativity, deliberates
on issues, makes decisions, and manages memory and information storage and retrieval.
The entirety of our life’s history is preserved in our physical memory, which is crucial in
forming our identities and character. Dementia-related memory loss and losing our sense
of surroundings can be terrifying experiences (Huang et al., 2020). Alzheimer’s disease
(AD), which makes up about 60–70% of all dementia cases (Castellazzi et al., 2020), is one
of the most mutual types of dementia. Data from the World Alzheimer’s Survey show that
78 million new cases of Alzheimer’s disease will happen by 2030, and an estimated 55
million people will already have the illness. AD not only has terrible effects on the people
who have it and the people who care for them, but it also costs a lot of money. It is thought
that AD-related costs will hit $345 billion in the USA alone by 2023 (Huang, Chao & Hu,
2020). However, this is really just the tip of the iceberg. Our present situation has been
called an AD outbreak (Alzheimer’s Association, 2023), and because the population is
skewed toward older people, costs are expected to triple by 2050.

The main distinction between primary and secondary brain tumors is their origin
within the brain. Of all brain malignancies, 70% are caused by primary tumors, while the
residual 30% are secondary tumors (Akil, Saouli & Kachouri, 2020). Main brain tumors
invent from brain cells, whereas secondary brain malignancies start in another organ and
travel through the bloodstream to the brain. An NBTF study projects that 29,000 new cases
of primary brain tumors are diagnosed in the USA each year, with approximately 13,000 of
those individuals dying from the tumor.

Meningiomas frequently development from the membranes that surround the brain
and spinal cord. These tumors are known for their sluggish improvement and are therefore
considered less dangerous. On the contrary, pituitary tumors develop inside the gland that
produces a variety of hormones and is located close to the base of the brain. Nevertheless,
regularly harmless, they might cause serious importance such as hormone overproduction,
visual impairment, or hormonal deficiencies (AlSaeed & Omar, 2022). Uppermost
detection of pituitary tumors is important and has significant therapeutic implications. If
left undetected, these tumors can be deadly or cause lasting disability. Additionally,
research on brain function has been notably developed by augmentations in medical
imaging, mainly in neuroimaging methods like MRI. Using artificial intelligence to find
AD is hard for researchers for a number of reasons. To begin, the quality of medical images
isn’t always good, and there are mistakes in preparation and brain segmentation. There are
things like noise, artifacts, and technical limits that can lower the quality of medical images
(Weiner et al., 2024), which can make AD detection algorithms less accurate. Also,
mistakes in the pre-processing and segmentation techniques make it even harder to
analyze these pictures accurately.

Another challenge is that there aren’t any complete datasets that include a lot of
different people and biomarkers. To develop powerful AD detection models, you must
have access to a diverse set of datasets that represent different phases of the illness and
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include several indicators (Alsubaie, Luo & Shaukat, 2024). Finding datasets with a
sufficient number of participants can be challenging, which increases the difficulty of
successfully training and testing AI models.

Alzheimer’s disease (AD) is an incurable brain illness that affects millions of people
worldwide. Early AD diagnosis is critical for improving patients’ lives and ensuring they
receive the appropriate care and medications. To start the training process, the matched-
filter approach is employed to make 3D images more contrasty and less noisy or outlier-
filled. The ADNI is used, which includes fMRI data from 675 participants. The fMRI data
contains 285 features derived from the robust multitask feature learning approach. The
Mini-Mental State Examination (MMSE) score is used to classify the severity of
Alzheimer’s disease into low, mild, moderate, and severe categories. The sample data for
the deep learning model’s training job includes 285 features extracted from an fMRI
picture as well as the patients’ MMSE scores. The training data contained information
about 800 cases whose characteristics had been standardized. The test group includes 200
sets of features, each with an MMSE score. Following that, the PCA approach is used to
determine which and how many features to include. The results demonstrate that 167
features explain 98% of the variation in all 285 features. To classify the data, a variety of
machine learning methods are utilized, including k-neural network (KNN), support vector
machine (SVM), decision tree (DT), latent Dirichlet allocation (LDA), and random forest.
It becomes found that the KNN, SVM, DT, LDA, RF, and provided CNN algorithms are
accurate 77.5%, 85.8%, 91.7%, 79.5%, and 85.1% of the time respectively
(Veerappampalayam Easwaramoorthy et al., 2022).

This research describes a novel technique to brain illness diagnosis based on DMTCNN.
Our description combines patch extraction methods with a multi-task learning framework,
allowing for concurrent classification and regression. Our system extracts patches from
brain images, capturing the fine-grained characteristics obligatory for effective diagnosis.
The DMTCNN model uses these features to perform simultaneous classification. (e.g.,
illness kind recognition) and regression (e.g., disease progression estimation), subsequent
in advanced diagnostic precision and efficiency. We inspect the design and training
approaches of the DMTCNN, highlighting its capacity to accomplish shared
demonstrations that help both tasks. Through extensive trails on benchmark brain
imaging datasets, we display that our systems outperform conventional single-task models.
Furthermore, we create that combining classification and regression into a single model
decreases computing complexity while improving diagnostic system reliability. Using deep
learning to diagnose brain illnesses has advanced provocatively with the enhancement of
the DMTCNN-based patch extraction technique. It not only progresses diagnostic
accuracy and efficiency but also serves as a scalable framework for future research in multi-
task learning and medical imaging.

Motivation of this research

. Brain imaging data is multidimensional and complex. The hybrid classification and
regression method optimize the use of available data, potentially important to enhanced
diagnostic insights and more robust models.
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. Patch-based extraction approaches can concentrate on crucial areas of brain imaging,
improving the feature extraction process. DMTCNN can successfully acquire and utilize
these properties to enhance diagnostic performance.

. Effective therapy depends on a timely and precise diagnosis of brain diseases. With the
potential to predict sickness progression and identify early signs, the DMTCNN-based
approach enables prompt and suitable therapies.

. The regression portion of DMTCNN can provide unique insights into illness severity
and progression, allowing for customized treatment approaches for individual patients.

The main contribution of this research

. To progress the detection of brain diseases, quantitative disease-related measures like
tumor volume or disease severity are predicted by the proposed DMTCNN model.

. Compared to single-task models, the proposed model that addresses both classification
and regression tasks captures complex patterns, leading to more accurate and
informative diagnoses.

. Targets important regions associated with brain illnesses by minimizing computing
overhead and increasing efficiency through the extraction of smaller, targeted patches
from brain imaging data.

. Faster diagnosis times are achieved by the integration of multi-task learning and patch
extraction, which is crucial in clinical situations where timely decision-making is
essential.

. The proposed model learns many tasks concurrently, such as categorizing different brain
diseases or anomalies, by extracting features from image patches using CNNs.

. Finally, the suggested DMTCNN model performs better at accurately recognizing brain
illnesses than the most advanced methods.

The remainder of our study expands on this structure: The literature evaluation is
covered in “Literature Survey”, and the proposed research is summarized in “Proposed
System”. The datasets, evaluation standards, and experimental findings are shown in
“Result and Discussion”. Finally, “Conclusion” provides a summary of this work’s
conclusions.

LITERATURE SURVEY
In addition to emphasizing the most recent diagnostic methods and technologies, this
literature review investigates the current status of research in brain disease diagnosis. By
analyzing recent studies and breakthroughs, they aim to highlight the positive and negative
aspects of current diagnostic approaches, identify emerging trends, and indicate
prospective areas for future research. This survey will provide an in-depth overview of the
field’s progress and challenges, supporting ongoing efforts to improve brain disease
diagnosis and patient outcomes.

Liu et al. (2020) developed a deep learning framework that uses CNNs to automatically
segment the hippocampal region and classify AD. This author used a 3D densely
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connected convolutional network (3D DenseNet) to extract 3D patch features for
classification using data from hippocampal segmentation. The Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database provided baseline T1-weighted structural MRI
data from 97 AD patients, 233 MCI patients, and 119 NC patients. They evaluated our
technique. Hippocampal segmentation with the proposed approach yields 87.0% Dice
similarity.

Pusparani et al. (2023), certain MRI imaging viewpoints are more accurate in
identifying AD patients. Using the ResNet50 and LeNet designs, they performed multiclass
classification on the ADNI dataset (https://adni.loni.usc.edu/). Our examination included
three different perspectives and classifications. After applying these viewpoints and
classifications to a total of 4,500 MRI slices, our study found that the use of individual
slices, as opposed to whole slices, produced better results for AD classification in MRI
images. The coronal view results were mainly notable as they recognized performance like
to the assessments normally given by medical professionals to diagnose AD.

Duc et al. (2023) conducted an automatic diagnosis of AD using a three-dimensional
CNN model. The MMSE score for Alzheimer’s patients was predicted using tree
regression, support vector regression, linear least square regression, group-independent
component analysis, and bagging-based ensemble regression. Furthermore, the
performance of MMSE regression was enhanced through the application of SVM-based
recursive feature reduction. Three main challenges that the model presented here must
overcome in order to diagnose Alzheimer’s disease are class imbalance, overfitting, and
fading gradient.

Khatri & Kwon (2022) investigated dynamic frequency functional networks at
frequency response time series, which included full-band, slow-4, and slow-5 bands, using
the rs-fMRI data from the ADNI. His team merged four frequency bands with dynamic
frequency features from the functional networks of the brain to help in the early detection
of AD. It also provides early Alzheimer’s detection and a novel viewpoint on the
functioning of the brain network. Achieved results included 94.10% classification accuracy,
96.75% specificity, and 90.95% sensitivity for the author. By utilizing different degrees of
evaluation matrix, the High-Order Dynamic Functional Connectivity model’s
experimental results can enhance the classification performance for AD detection.

To address these issues, Sethuraman et al. (2023) provide a computerized AD diagnosis
method. It makes use of several unique deep learning models for tenfold cross-validation
and objective assessment. The researcher discovered that AD illnesses can be distinguished
from NC by using whole band ranges, slow4 and slow5, or higher and lower frequency
band techniques. The first technique treats AD with SVM and KNN. Second, ADNI
organizations’ rs-fMRI datasets are used with customized AlexNet and Inception blocks.
We modified parameters to try alternative machine learning and deep learning methods
and achieved good accuracy. Our three-band approach performs well without external
feature selection. Our technique distinguishes AD patients from controls with accuracy
(96.61%)/area under the curve (AUC) (0.9663).

El-Assy et al. (2024) developed a CNN design that uses MRI data from the ADNI
dataset. In the classification layer, this network combines two CNN models, each with
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different filter widths and pooling layers. Three, four, and five kinds are used to solve the
multi-class difficult. These great accuracy rates found the network’s ability to extract and
distinguish important elements from MRI images to precisely diagnose AD stages and
subtypes. Through hierarchical convolutional, pooling, and fully connected layers, the
network design extracts local and global patterns from the data to exactly distinguish AD
kinds. Accurate AD classification impacts early detection, particular treatment planning,
disease monitoring, and prognosis.

Multi-Level FC Fusion (MFC) is a novel categorization technique that Liang & Xu
(2022) presented with the objective of distinguishing among numerous brain diseases. To
classify patterns of functional connectivity (FC) in both high- and low-order domains, the
technique begins by increasing an advanced deep neural network (DNN) model that can
extract and improve abstract feature demonstrations. Prototype learning is incorporated
into the procedure during supervised fine-tuning to develop the separability and
compactness of features both within and among classes. The DNN model underwent both
supervised and unsupervised learning stages during its training. They developed an
ensemble classifier to categorize brain illnesses using hierarchical stacking learning. To
develop accuracy, our technique used multi-level abstract FC features. Two large fMRI
datasets were systematically tested.

Khatri & Kwon (2024) suggested combining convolution-attention processes in
transformer-based classifiers for AD brain datasets as a means of enhancing performance
without consuming a lot of processing power. Switching from multi-head attention to
lightweight multi-head self-attention (LMHSA), utilizing inverted residual (IRU) blocks,
and including local feed-forward networks (LFFN) yields the best results. When trained on
AD datasets using a gradient-centralized approach, Adam has a high success rate of
94.31% for multiple class classification, 95.37% for binary classification (AD vs. HC), and
92.15% for HC vs. MCI.

In order to reduce ambiguity in the diagnosis of brain disorders across several centers
with respect to center, feature, and label, Zhu et al. (2023) introduced a novel method
known as the Multi-Discriminator Active Adversarial Network (MDAAN). The first step
in mitigating domain shift caused by adversarial learning is to derive latent invariant
representations of the source and target centers. The method examines the variations in
data distribution between the source and target centers in order to dynamically evaluate
the source center’s fusion contribution. With minimal sample annotation cost, only target
center hard learning samples are labeled. To minimize negative transfer and reinforce the
multi-center model, they lastly employ the chosen samples as the auxiliary domain.

Limitations of existing system

. Large amount of annotated data is needed to train medical DL models for classification
and regression. The model’s robustness and accuracy are limited by the difficulty of
obtaining labeled brain imaging data with diagnostic and severity labels.
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. Despite advances in execution time, MTL model training still demands a lot of computer
power, especially with big, high-resolution brain imaging datasets. This may limit
accessibility in resource-constrained or smaller clinical environment.

. Some diagnostic procedures, such as biopsies, are intrusive and can cause difficulties and
discomfort for patients.

. Some diagnostic approaches, particularly those that require laboratory analysis or
complex imaging, can be time-consuming, delaying diagnosis and treatment.

. Many systems are not equipped to detect brain disorders at the earliest stages, resulting
in inadequate patient outcomes.

PROPOSED SYSTEM
This section describes the process of extracting several image patches around these
landmarks by employing anatomical characteristic recognition data from MR images.
After that, we present DMTCNN for combined regression and classification. The presence
of brain diseases and quantitative disease-related measures like tumor volume or disease
severity are predicted by the proposed DMTCNNmodel. Through cooperative learning of
several tasks, the model can make greater use of shared information and improve overall
performance. The proposed model learns many tasks concurrently, such as categorizing
different brain diseases or anomalies, by extracting features from image patches using
CNNs. Using common representations across tasks, the MTL method enhances model
generalization and diagnostic accuracy, even in the absence of sufficient labeled data.
Figure 1 shows the DMTCNN block diagram.

Dataset
We assessed the proposed methodology in this work using two distinct brain MRI datasets.
Our primary dataset, the "Figshare brain tumor dataset," was located at (Cheng, 2017). It is
well known for having one of the biggest collections and for being an essential tool in the
diagnosis of brain cancers. This collection includes 3,064 genuine brain MRI samples from
233 people. Of these, the meningioma class includes 708 samples, the pituitary class
includes 930 examples, and the gliomas class includes 1,426 samples. Every image has the
same dimensions of 512 × 512 pixels. In contrast, the Brain MRI Dataset was reduced in
size and distributed in Kaggle (2020),Wang et al. (2024). There are 253 MRI samples in all,
with a pixel size of 845 by 845. This dataset includes 155 MRI samples with tumors. It is
important to remember that the MRI examples show a variety of structural complexity,
devices employed, noise levels, bias field effects, and other features. The T1-weighted MRI
image collection was chosen because of its contrast-enhanced quality. As a result, it
simplifies distinguishing the tumor-affected areas, making them preferred for treatment
planning. The proposed DMTCNN approach requires brain MRI scans to diagnose
neurological disorders. Weighted according to T1, T2, FLAIR, and Diffusion These photos
include imaging MRI sequences. Each sequence displays different brain tissue features,
helping identify tumors, atrophy, and lesions. T1 scans provide anatomical details, but T2-
and FLAIR images show aberrant brain fluid accumulations, which are frequent in
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multiple sclerosis and strokes. The deep learning model can identify disease-relevant
features for classification (e.g., detecting Alzheimer’s or tumors) and regression (e.g.,
predicting disease severity or progression) by extracting patches from these MRI types,
improving diagnostic accuracy and brain health assessment.

Pre-processing
The Canny edge detector is a pre-processing approach for detecting edges in images. It is
particularly successful in distinguishing significant edges from noise by employing a
number of stages such as Gaussian smoothing, gradient calculation, non-maximum
suppression, and hysteresis thresholding.

In order to assist in the diagnosis of brain disorders, the Canny edge detector advances
the edges of brain pictures, such as MRI or CT scans. This improvement aids in detecting
structural anomalies or lesions that may designate diseases such as tumors, hemorrhages,
or neurodegenerative disorders. The detector is well-defined by the steps below:

1. Gaussian smoothing: Smooths the image to reduce noise and annoying details.

Smoothed Imageðx; yÞ ¼ ðf � GÞðx; yÞ (1)

where f is the original image and G is the Gaussian kernel.
2. Gradient calculation: Computes the gradient magnitude and orientation to find

potential edges.

Gradient Magnitudeðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gxðx; yÞ2 þ Gyðx; yÞ2

q
(2)

Graident Orientationðx; yÞ ¼ tan�1 Gyðx; yÞ
Gxðx; yÞ
� �

(3)

where Gx and Gy are the derivatives of f in the x and y directions.
3. Non-maximum suppression: Thins down the edges to single pixel width to

accurately locate edge points.

Figure 1 Block diagram of DMTCNN. Full-size DOI: 10.7717/peerj-cs.2538/fig-1
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Edge Strengthðx; yÞ ¼ Gradient Magnitudeðx; yÞ if the pixel is a local maxim
0 otherwise

�
(4)

4. Hysteresis thresholding: Decides which edge pixels are part of the actual edges by
applying two thresholds.

Edge Mapðx; yÞ ¼
Strong Edge if Edge Strengthðx; yÞ � High Threshold
Weak Edge if Low Threshold � Edge Strengthðx; yÞ < 1
No Edge Otherwise

8<
: (5)

The first step in the multi-stage process used by the Canny edge detector is Gaussian
smoothing, which smooths and reduces noise in the image to increase edge detection
accuracy. The gradient of the picture is then computed using Sobel operators to ascertain
the direction and size of intensity variations. The identified edges are then thinned via
non-maximum suppression, leaving only the local maxima, aiding in the creation of a
more lucid edge representation. To categorize pixels into strong edges, weak edges, and
non-edges, the algorithm uses double thresholding, making sure that only the most
important edges are kept. Finally, weak edges are eliminated and continuity is ensured by
edge tracking using hysteresis, which links weak edges to strong ones. The Canny edge
detector is an essential tool for a wide range of applications, including object recognition,
image segmentation, and feature extraction in robotics, autonomous systems, and medical
imaging. Its comprehensive approach reduces the likelihood of false edge detection and
yields well-defined, thin edges. Because of its precision and robustness, it has become a
typical technique for edge detection tasks.

Deep multi-task convolutional neural network
However, most practical applications do not enable task grouping ahead of time. The
feature-based grouping approach is limited to measuring task correlation. When several
tasks need to be put together, the situation becomes more difficult. We need a more
universal approach. Additionally, in the context of multi-task learning, collaborative
feature acquisition is more important than the degree of task sharing. Regarding the
output, the objective of supervised learning is to extract and represent the pertinent data
from the input variable. A model has a limited capacity to communicate information.
Thus, if the jointly learned tasks are highly diverse, the model might become overfitted. As
a result, the extent to which activities share information should be variable, particularly in
situations where the relationships between the grouped tasks are not entirely evident.

We suggest using the deep multi-task CNN model to address the challenges presented
by multi-task learning issues. The primary dissimilarity amongst this approach and the
traditional CNN model is the number of deep connections between subnets of various
tasks. Within a work group, the lower layers share supervisory signals from the higher
layers. Gradient descent modifies the effect of a guiding signal in a specific lower layer to
facilitate the learning of task transfer connections (TTC). This method automatically
categorizes tasks into nuanced categories during the training phase. As a result, task
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linkages are no longer evaluated in a simple binary framework of related or unconnected;
rather, they are measured based on their level of significance (Rohani, Farsi &
Mohamadzadeh, 2023). The suggested model degenerates into numerous single-task
learning models when the TTCs within a similar subnet apq p ¼ qð Þ are 1 and those across
tasks are 0. The proposed model becomes an average multi-task CNN model when the
TTC factors apq p; q 2 tasksetð Þ are the same.

The function f :ð Þ of weights W and input A represents the standard CNN model:

f A;Wð Þ: (6)

The purpose is to reduce the discrepancy between the output B of f A;Wð Þ and the
ground truth:

min Dð Þ (7)

where:

D ¼ � B ln Fð Þ þ 1� Bð Þ ln 1� Fð Þ½ �: (8)

A function of A, W, and TTC a is used to express the deep multi-task CNNmodel in the
presence of n tasks:

F A1;A2;…:;An;W1;W2;…:;Wn; að Þ: (9)

Additionally, the multi-task model aims to minimize the cost of each task

min
Xn
p¼1

Dp
� � !

(10)

where:

Dp ¼ � Bp ln Fp
� �þ 1 1� Bp

� �
ln 1� Fp
� �� 	

(11)

F Ap;W1;W2;…;Wn; a
� �

: (12)

As the definition of the TTC factor, a is projected to be between 0 and 1. Consequently,
we introduce auxiliary variable b where:

a ¼ sigmoid bð Þ;b 2 �1;þ1ð Þ: (13)

Our multi-task model differs from the traditional CNNmodel primarily in how weights
are updated during training. This is because, in our paradigm, every subnet must consider
supervisory signals from both other subnets and its own subnet. Several optimization
techniques, including adaptive gradient, RMSprop, and stochastic gradient descent, have
varying weight updating details. As such, we only display the generic forms. Weight
updating in the traditional CNN model can be shown as follows:

Wtþ1 ¼ Wt þ Vtþ1: (14)
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Algorithm 1 is used in our framework to update the weights, providing weights for all

apq components in the TTC, n positions, and W1;W2;……;Wn.
The first algorithm uses bpqt as an auxiliary variable, VWpq

tþ1 as the Wp
tþ1 and BPQ update

values for a particular optimization algorithm to determine the cost of task q, apt as the
corresponding t þ 1 factor of bpq to task q, which regulates the effect of the supervisory
signal from task q on task p, and Wp and Wp

t as the weights at iteration t and t þ 1,
respectively.

VWpq

tþ1 ¼ qDq

qWq
:
qWq

qWp
(15)

Vbpq

tþ1 ¼
qDq

qapq
:
qapq

qbpq
: (16)

Particularly, supervisory signals from other subnets will be weaker in order to maintain
the dominance of information from the subnet itself. Consequently, when p ¼ q, apqt is set
to 1. Batch normalization is used to reduce feature value range volatility.

Our model is superior to the conventional training strategy because it can add
additional tasks incrementally while maintaining the completeness of each task branch. As
training progresses, the subnets of the newly assigned tasks link to the taught tasks and
learn their own parameters in the process. The parameters of the associated subnets are
fixed for the tasks that have already been learned. Figure 2 depicts a scenario in which two
tasks have been trained and the model has been updated to include a novel task.

Advantages of proposed method

. Sharing representations across tasks is one way that multitask learning might result in
more effective learning processes. Due to the network’s improved ability to generalize
from the shared data, this can lower the risk of overfitting, particularly in situations with
a lack of labeled data.

. The patch-based extraction technique may improve the network’s capacity to identify
minute alterations linked to brain disorders by concentrating on pertinent local brain
regions. This specialized strategy may result in the identification of anomalies that are
more sensitive and exact.

. The computing cost can be greatly reduced by extracting patches rather than processing
complete brain scans, which makes the technology more practical for large-scale or real-
time applications. Additionally, it makes it possible to analyze particular brain regions in
greater detail and with greater focus. Table 1 shows that description of mathematical
symbols used in this research.

RESULT AND DISCUSSION
This section discusses the experimental setup, followed by a comparison of methodologies,
and finally, the performance measures.
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Algorithm 1 Parameter updates.

Input: Labeled data of task set T .

1: Initialize Wp
0 and apq0 p; q 2 Tð Þ.

2: while not converged do

3: \\Update the weights of each CNN subnet:

4: for p 2 T do

5: Wp
tþ1 ¼ Wp

t þ
Pn

p¼1 a
pq
t VWpq

tþ1

6: end for

7: \\Update the TTC factors:

8: for p 2 T do

9: for q 2 T do

10: bpqtþ1 ¼ bpqt þ Vbpq

tþ1

11: apqtþ1 ¼ sigmoid bpqtþ1

� �
12: end for

13: end for

14: end while

Figure 2 Incremental task transfer learning using two trained tasks and one new task.
Full-size DOI: 10.7717/peerj-cs.2538/fig-2

Table 1 Description of mathematical symbol.

Symbol Description

f ð�Þ Function

W Weights

A Input

B Output

f ðA;WÞ Ground truth

n Tasks

Wp
tþ1 Updated weights

t þ 1 Iteration

q Task
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Experimental setup
The Python development environment utilized for the studies was the Google
Colaboratory Pro (Google Colaboratory, 2019) platform, also known as Colab Pro. With
this cloud service from Google, users can create and run Python programs on a hosted
GPU. A ratio that can be used is 70% of the data for training, 15% for validation, and 15%
for testing. The model is capable of learning features for both classification and regression
tasks from the training set, which contains the majority of the data. This ensures that the
DMTCNN model can generalize effectively to new data. During the training phase, the
validation set is employed to evaluate the model on unobserved data in order to fine-tune
hyperparameters and prevent overfitting. Lastly, the model’s performance on both
classification and regression tasks in a real-world context is evaluated using the test set,
which is entirely isolated from the training process. The model’s robust performance when
applied to new, unseen cases is critical for reliable brain disease diagnosis, and this
balanced approach ensures that it not only learns efficiently but also performs robustly. In
Table 2 shows outlines typical parameter values for DMTCNN model using conventional
patch extraction for brain disease diagnosis.

Comparative methods
Deep neural network (DNN) (El-Assy et al., 2024): Prototype learning was added to the
supervised and unsupervised learning stages of the DNNmodel’s fine-tuning procedure in
order to improve both intra-class similarity and inter-class differentiation in feature
representations.

Deep convolutional neural network (DCNN) (Islam & Zhang, 2018): A recent
approach uses a binary classifier to gain more efficiency in early-stage analysis and to
correctly identify different stages of AD.

Alzheimer’s disease diagnosis using enhanced manta ray foraging optimization
based deep learning (ADD-EMRFODL) (Pusparani et al., 2023):GF is used in the ADD-
EMRFODL method as an initial processing step. Additionally, it generates feature vectors
using the DenseNet-121 model.

Mask region-based convolution neural network mask R-CNN (He et al., 2017):
Tumor delineation accuracy is greatly improved by this technique, which uses area-based
segmentation to create a mask rather than relying on a threshold or border model for
precise segmentation.

Performance metrics
True positives (TP) are instances in which the classifier accurately detects positive cases.
True positives (TP) are situations that have been appropriately identified as positive. False
positives (FPs) occur when negative cases are incorrectly labeled as positive. FP stands for
false positives. True negatives (TN) are occasions in which the classifier correctly detects
negative cases. The count of true negatives is referred to as TN. Positive occurrences that
are wrongly labeled as negative are known as false negatives (FN). The number of false
negatives is indicated by FN.
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Accuracy: In contrast to the total number of samples evaluated, it assesses the
proportion of correctly classified samples, both positive and negative.

ACC ¼ TP þ TNð Þ= TP þ TN þ FP þ FNð Þ: (17)

Sensitivity: It evaluates the accuracy with which positive samples are identified.

SEN ¼ TP= TP þ FNð Þ: (18)

Specificity: With regard to the total, it evaluates the capacity to identify negative
samples.

SPE ¼ TP= TP þ FPð Þ: (19)

F-measure: The variance is computed by subtracting the total number of false positives
from the total number of genuine positives.

F �Measure ¼ 2 � precision � recallð Þ
precisionþ recallð Þ (20)

Comparative analysis of performance metrics
Figure 3 and Table 3 shows comparative analysis of performance metrics of the DMTCNN
methods with other approaches. The graph establishes the improved specificity, sensitivity,
f-measure and accuracy of the DL method. The specificity for the DNN, DCNN, ADD-
EMRFODL, and Mask R-CNN models are 70.98%, 74.12%, 86.34%, and 70.12%,
respectively, compared to the DMTCNN model’s specificity of 94.18%. Similar, the recall
for the DNN, DCNN, ADD-EMRFODL, and Mask R-CNN models are 81.78%, 70.77%,
67.23%, and 81.24%, respectively, compared to the DMTCNN model’s recall of 93.19%.
Like, the f-measure for the DNN, DCNN, ADD-EMRFODL, and Mask R-CNNmodels are
89.16%, 61.14%, 79.98%, and 79.18%, respectively, compared to the DMTCNN model’s f-
measure of 94.18%. Finally, the accuracy for the DNN, DCNN, ADD-EMRFODL, and
Mask R-CNN models are 80.98%, 79.98%, 75.56%, and 71.23%, respectively, compared to
the DMTCNN model’s accuracy of 96.97%.

Table 2 Parameter values for DMTCNN model.

Parameter Description Typical values

Patch size Size of the patches extracted from brain imaging data 32 × 32, 64 × 64 pixels

Learning rate Step size used for updating model weights during training 0.001–0.0001

Batch size Number of samples processed before model update 16, 32, 64

Epochs Number of complete passes through the training dataset 100–500

Activation function Function applied to model outputs to introduce non-linearity ReLU, Leaky ReLU

Validation split Proportion of data set aside for validation 15%

Test split Proportion of data set aside for final testing 15%
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RMSE analysis
Figure 4 and Table 4 show an RMSE comparison of the DMTCNN strategy to other well-
known methods. The graph demonstrates that the machine learning technique performs
better with a lower RMSE. For example, the DMTCNN model has an RMSE value of
21.67% for 100 data, while the DNN, DCNN, ADD-EMRFODL, and Mask R-CNNmodels
have RMSE values of 49.18%, 40.77%, 37.18%, and 28.19%, respectively. Moreover, the
DMTCNN model has demonstrated superior performance for a wide range of data sizes
with low RMSE values. Similarly, for 500 data, the RMSE score for the DMTCNN is
22.76%, whereas the DNN, DCNN, ADD-EMRFODL, and Mask R-CNN models are
46.11%, 41.87%, 38.16%, and 33.19%, respectively.

Execution time analysis
The database execution time of the proposed DMTCNN approach is compared to known
methods in Table 5 and Fig. 5. The statistics display that the proposed DMTCNN method
outperformed all other approaches collectively. The suggested DMTCNN technique has

Figure 3 Comparative analysis of performance metrics.
Full-size DOI: 10.7717/peerj-cs.2538/fig-3

Table 3 Comparative analysis of performance metrics.

Methods Specificity Recall F-measure Accuracy

DNN 70.98 81.78 89.16 80.98

DCNN 74.12 70.77 61.14 79.98

ADD-EMRFODL 86.34 67.23 79.98 75.56

Mask R-CNN 70.12 81.24 79.18 71.23

DMCTNN 94.18 93.19 94.18 96.97
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taken only 3.876 ms to execute, whereas other existing methods such as DNN, DCNN,
ADD-EMRFODL, and Mask R-CNN took 15.176, 12.165, 10.432, and 5,188 ms,
respectively, for 100 data their execution time. Likewise, the suggested DMTCNN
technique executes in 4.875 ms for 500 data, but existing techniques such as DNN, DCNN,
ADD-EMRFODL, and Mask R-CNN take 17.876, 14.176, 9.721, and 9.432 ms,
correspondingly. In clinical contexts, where timely and accurate diagnoses are essential for

Figure 4 RMSE analysis for DMTCNN method. Full-size DOI: 10.7717/peerj-cs.2538/fig-4

Table 4 RMSE analysis for DMTCNN method.

Number of data from dataset DNN DCNN ADD-EMRFODL Mask R-CNN DMTCNN

100 49.18 40.77 37.18 28.19 21.67

200 47.18 42.18 34.19 31.29 24.96

300 49.87 43.78 39.98 28.98 24.19

400 50.98 45.18 39.76 32.87 25.19

500 46.11 41.87 38.16 33.19 22.76

Table 5 Execution time analysis for DMTCNN technique.

Number of data from dataset DNN DCNN ADD-EMRFODL Mask R-CNN DMTCNN

100 15.176 12.165 10.432 5.188 3.876

200 14.977 13.198 10.876 7.789 3.287

300 15.118 13.665 11.231 6.165 2.567

400 16.113 12.245 10.987 8.843 3.987

500 17.876 14.176 9.721 9.432 4.875
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patient care, this reduced execution time is particularly advantageous. In the context of
swiftly progressing diseases such as brain disease diagnosis, faster inference not only
enhances patient throughput but also enables more immediate interventions. DMTCNN is
a practical and scalable solution for large-scale diagnostic applications due to its efficiency.

Brain disease diagnosis analysis
Figure 6 shows the brain disease diagnosis analysis. In this work, we evaluated the
suggested method on two different brain MRI datasets. Our main dataset, the Figshare
brain tumor dataset, is one of the most comprehensive sets of data out there and is essential
for the identification of brain tumors. 3,064 real brain MRI samples from 233 people are
included in this collection. Of these, the meningioma class includes 708 samples, the
pituitary class includes 930 examples, and the gliomas class includes 1,426 samples.

Discussion
The improved efficacy of DMTCNN underscores the possible advantages of combining
classification and regression assignments into a single, cohesive framework for diagnosing
brain disorders. The network can classify more subtle patterns in the data and produce
more reliable and thorough diagnostic insights by concurrently learning from many tasks.
By concentrating the model’s attention on relevant brain regions, the patch extraction
technique suggestively progresses diagnostic accuracy. Following research endeavors ought
to concentrate on the model’s ability to scale and adapt to numerous clinical environments.
To further ensure that the model’s outputs are reliable and useful, investigating
DMTCNN’s interpretability may proposal useful data for clinical decision-making. The
proposed DMTCNN framework, as established by experimental results, exhibits

Figure 5 Execution time analysis for DMTCNN technique.
Full-size DOI: 10.7717/peerj-cs.2538/fig-5
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exceptional performance with segmentation analysis accuracy at 96.97%, sensitivity at
93.19%, specificity at 94.18%, f-measure at 94.18%, RMSE at 22.76%, and an execution
time of 4.875 ms.

Ablation study
In the recommended model, every module is important. In this section, we inspect the
framework for the proposed DMTCNN and associate it to recognized models such as
DNN, DCNN, ADD-EMRFODL, and Mask R-CNN. This comparative study is carried out
through a series of ablation studies using the Brain MRI Dataset to investigate the
performance development and establish the motivations behind our proposed DMTCNN.

Influence of the DMTCNN
The implementation of DMTCNN for patch extraction suggestively augments brain
disease diagnosis by improving the accuracy and effectiveness of medical image analysis.
DMTCNNs are capable of simultaneously handling multiple related tasks, such as
segmentation and classification, which permits for a more comprehensive and nuanced
understanding of brain abnormalities. By extracting and analyzing image patches, these
networks can focus on relevant regions of interest, thereby growing diagnostic precision
and decreasing the time necessary for manual inspection. This multi-task method not only
streamlines the diagnostic procedure but also leads to better patient outcomes through
previous and more accurate detection of brain diseases. Lastly, the DMTCNN model
accomplished a performance accuracy of 96.97% for our input data. In contrast, the
existing DNN, DCNN, ADD-EMRFODL, and Mask R-CNN models found accuracy
performances of 80.98%, 79.98%, 75.56%, and 71.23% correspondingly.

Figure 6 Brain disease diagnosis analysis. Full-size DOI: 10.7717/peerj-cs.2538/fig-6
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Influence of the K-fold cross validation
In DMTCNN-based brain disease diagnosis, the implementation of 10-fold cross-
validation substantially improves model robustness and dependability. Ten subsets of the
dataset are created as part of the statistical technique known as cross-validation. There are
ten subsets: one is for training, and the other nine are for validation. The proposed
DMTCNN model outperformed, obtaining 96.97% accuracy on our input data using 10-
fold cross-validation. In comparison, the current DT, RF, KNN, and NB models have
accuracy performances of 70.14%, 78.39%, 87.48%, and 85.26%, respectively (Table 6).

Table 6 10-fold cross validation of DMTCNN analysis.

K-folds DMTCNN accuracy

1-Fold 0.97

2-Fold 0.96

3-Fold 0.95

4-Fold 0.96

Fold-5 0.97

Fold-6 0.98

Fold-7 0.98

Fold-8 0.97

Fold-9 0.97

Fold-10 0.97

10-Fold mean 0.96

Figure 7 Comparing the recommended model to state-of-the-art methodologies.
Full-size DOI: 10.7717/peerj-cs.2538/fig-7
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Figure 7 shows the comparison of proposed method with existing model. Table 7 shows
association of the proposed method to current approaches and Table 8 shows association
of the suggested model with innovative accuracy analysis approaches.

CONCLUSION
In conclusion, DMTCNN’s combined classification and regression for brain disease
detection through patch extraction may improve diagnostic accuracy and clinical decision-
making. The purpose of the DMTCNN method to develop a more comprehensive and
effective diagnostic tool that simultaneously classifies brain diseases and predicts the
progression or severity of these conditions. This dual-task approach allows the model to
provide richer insights, going beyond simple disease detection to also gauge the severity of
neural degeneration or progression over time. The key objectives of the suggested model
are to increase the interpretability of model predictions, increase the computational
efficiency of traditional patch extraction methods that target meaningful and localized
regions in brain images, and improve diagnostic accuracy by utilizing both classification
and regression tasks in a single framework. Using a Canny edge detector for preprocessing
and cooperative learning, DMTCNN is highly effective in predicting the existence of brain
illness and quantitative metrics such as tumor volume. By optimizing numerous objectives,
the model learns to extract significant features from neuroimaging data, including
discriminative patterns for classification and quantitative associates for regression. The
patch-based extraction technique also permits localized analysis of brain images to detect
small anomalies that may not be visible globally. The efficiency of the proposed method
DMTCNN was recognized by our experimental results, which showed notable gains in

Table 7 Comparison of the proposed model to current approaches (Wang et al., 2024).

Methods Evaluation methods Accuracy (%) F-measure(%)

CNN (Ahmed et al., 2020) 10-fold cross validation 70.14 89.48

SVM (Collij et al., 2016) 10-fold cross validation 78.39 90.34

DT (Vidushi & Shrivastava, 2019) 10-fold cross validation 87.48 91.29

RF (Vidushi & Shrivastava, 2019) 10-fold cross validation 85.26 92.34

Proposed DMTCNN 10-fold cross validation 96.97 94.18

Table 8 Comparison of the suggested model with innovative accuracy anlysis approaches.

Authors Classifier Database Accuracy (%) F-measure (%)

Raghavendra et al. (2021) PNN (Probabilistic Neural Network) Brain CT 94.37% –

Ozaltin et al. (2022) VGG-19 Brain CT 97.06% 87.43%

Marbun & Andayani (2018) CNN Brain CT 90% –

Shalikar, Ashouri & Shahraki (2014) SVM Brain CT 90% –

Chin et al. (2017) CNN Brain CT 90% –

Proposed model DMTCNN Brain CT 96.97% 94.18
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important performance metrics with 500 data like specificity is 94.18%, sensitivity is
93.19%, accuracy is 96.97%, F1-score is 94.18%, RMSE is 22.76%, and execution time 4.875
ms. This fine-grained analysis progresses the time and accuracy of brain illness diagnosis
and characterization. Deep learning in healthcare can be additional expanded by
examining how this technique might be applied to numerous medical imaging modalities
and kinds of illnesses in future studies. To provide a more entire diagnosis, the model
might integrate multi-modal data such genetic data, patient history, and cognitive scores.
Finally, healthcare uptake of the model will depend on its application to other neurological
disorders, interpretability, and robustness in real-world clinical settings with varied
populations.
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