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ABSTRACT

With the rapid expansion of global e-commerce, effectively managing supply chains
and optimizing transportation costs has become a key challenge for businesses. This
research proposed a new framework named Intelligent Supply Chain Cost Optimization
(ISCCO). ISCCO integrates deep learning with advanced optimization algorithms. It
focuses on minimizing transportation costs by accurately predicting customer behavior
and dynamically allocating goods. ISCCO significantly enhanced supply chain efficiency
by implementing an innovative customer segmentation system. This system combines
autoencoders with random forests to categorize customers based on their sensitivity
to discounts and likelihood of cancellations. Additionally, ISCCO optimized goods
allocation using a genetic algorithm enhanced integer linear programming model.
By integrating real-time demand data, ISCCO dynamically adjusts the allocation of
resources to minimize transportation inefficiencies. Experimental results show that
this framework increased the accuracy of user classification from 50% to 95.73%, and
reduced the model loss value from 0.75 to 0.2. Furthermore, the framework significantly
reduced order cancellation rates in practical applications by adjusting pre-shipment
policies, thereby optimizing profits and customer satisfaction. Specifically, when the
pre-shipment ratio was 25%, the optimized profit was approximately 7.5% higher
than the actual profit, and the order cancellation rate was reduced from a baseline of
50.79% to 41.39%. These data confirm that the ISCCO framework enhances logistics
distribution efficiency. It also improves transparency and responsiveness across the
supply chain through precise data-driven decisions. This achieves maximum cost-
effectiveness.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Data Science, Databases

Keywords Deep learning, Transportation cost optimization, Pre-shipment policies, Data-Driven
decisions, Intelligent supply chain cost optimization

INTRODUCTION

Background

With the rapid growth of global e-commerce, the efficiency and accuracy of order
fulfillment—the process of completing and delivering customer orders—have become
key indicators of business competitiveness. Optimizing inventory allocation and order
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processing to reduce cost losses due to delivery delays is a current hot topic of research.
According to surveys, up to 69% of consumers state that if the goods purchased are
not delivered within the promised two days, their future purchasing intention would
significantly decrease (Lindner, 2024). Such delivery delays not only harm customer
satisfaction but also increase the operational costs for businesses. Research shows that
72.5% of customers might not recommend a retailer after poor delivery services. Therefore,
optimizing the delivery experience is a crucial strategy for reducing operational costs and
enhancing market competitiveness (Circuit, 2021). Additionally, data indicates that 77%
of respondents rated their delivery experience at least 8 out of 10 in the past six months
(Winters, 2024) proving the importance of effective logistics services in fostering continued
customer purchasing behaviors.

Despite the critical role of optimizing logistics and the delivery process in reducing
cost losses, practical challenges persist. In an e-commerce environment, the large and
highly unstable order volume—especially during periods of sudden demand spikes or
drops—poses a significant challenge for supply chain management (Umar & Wilson,
2024). Supply chain systems need to process vast amounts of frequently updated data
in real-time. Traditional data processing methods often fail to meet the high-efficiency
and accuracy demands of these dynamic environments (Mirbagheri, 2023). Modern
e-commerce platforms use data mining to collect multi-dimensional data on consumer
behavior, which traditional supply chain models often overlook. This limitation prevents
traditional models from achieving personalized resource allocation and optimization
based on deeper insights into customer behavior (Zhang et al., 2022). Complex resource
configurations, such as inventory management and transportation scheduling, require
precise and real-time decision-making support (Wang ¢ Huang, 2022). The pressure to
ensure on-time delivery makes accurate prediction and efficient handling of shipping
strategies both critical and challenging.

Related work
In recent years, the application of machine learning and deep learning in supply chain
management and project cost prediction has garnered increasing attention. However,
existing studies still exhibit certain limitations in terms of feature extraction and nonlinear
feature processing. Bodendorf, Merkl ¢» Franke (2021) explored the use of machine learning
models to estimate procurement part costs in supply chain management. However, this
study did not incorporate advanced feature extraction methods, such as deep learning,
which are crucial for handling complex data structures and improving prediction accuracy.
Similarly, Inan, Narbaev ¢ Hazir (2022) applied a long short-term memory (LSTM) model
for project cost prediction but did not fully utilize nonlinear feature processing techniques,
which limited the accuracy of the prediction model. Another study by Abed, Hasan ¢
Zehawi (2022) assessed machine learning and deep learning applications in construction
cost prediction but highlighted the challenge of feature extraction and handling dynamic
data, which restricted the model’s effectiveness in rapidly changing environments.

An increasing number of researchers have focused on optimizing logistics and supply
chain processes to reduce costs. Several machine learning models have been proposed in the
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Table 1 Comparative analysis of literature.

Author

Application scenario

Research content

Potential shortcomings

Inan, Narbaev ¢ Hazir (2022)

Bodendorf, Merkl ¢ Franke
(2021)

Abed, Hasan ¢» Zehawi (2022)

Wang & Qiu (2023)

Fernandez-Revuelta Perez ¢

Romero Blasco (2022)

Uddin et al. (2023)

Mahdi et al. (2021)

Dang-Trinh et al. (2023)

Project cost prediction

Cost estimation in supply chain

management

Construction cost prediction

Impact of Al on labor costs

Cost estimation decision-making

Project management

Software project management

Factory construction cost esti-
mation

Machine learning model based
on Long Short-Term Memory
for project cost prediction

Estimation of costs for procure-
ment parts using machine learn-
ing

Assessment of machine learning
and deep learning applications in
construction cost prediction

Exploration of Al applications in
labor cost decision-making

Use of data science methods for
cost estimation

Integration of machine learning
and network analysis to simulate
project cost, time, and quality
performance

Discussion of machine learning
applications in software project
management

Use of various machine learning
models to predict initial costs of
factory construction

Method does not fully utilize
nonlinear feature processing
techniques, limiting the accuracy
of the prediction model

Lack of deep learning and feature
extraction methods for complex
data structures, affecting the effi-
ciency of cost prediction

Model lacks capability in feature
extraction and handling dynamic
data sets

Failure to effectively integrate
multidimensional data process-
ing and optimization algorithms,
limiting dynamic adaptability in
decision-making

Lack of effective algorithm op-
timization and nonlinear data
handling strategies, impacting
the accuracy of the cost model
Lack of efficient data feature
learning and model tuning
mechanisms in project
management models

Insufficient handling of variable
and complex data features in
software projects, limiting model
generalization capability

Method lacks adaptability and

efficiency in handling large-scale
and complex data

literature for cost prediction, order management, and logistics optimization (Chong et al.,
2024; Yong-Cai, 20245 Cho et al., 2024). Table 1 summarizes related works and highlights
their limitations. These works primarily focus on predictive modeling and cost estimation
but lack an integrated approach to customer behavior segmentation, real-time dynamic
resource allocation, and optimization based on multiple data features.

While these studies have made significant contributions to cost estimation in specific
domains, they generally fall short of providing an adaptable, real-time solution for
supply chain optimization. Additionally, the majority of the models fail to integrate
multidimensional data sources, which limits their ability to provide comprehensive insights
into customer behavior and resource allocation. This gap underscores the need for a more
integrated and dynamic approach to supply chain cost optimization.

Our contributions
e Multi-dimensional classification of customer behavior: This study introduces an
innovative classification method combining autoencoders with random forests to
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accurately predict users’ sensitivity to discounts and the probability of order cancellation,
as shown in Fig. 1. This method, by learning users’ purchasing behaviors and response
patterns, enhances the accuracy and adaptability of the classification.

o Intelligent goods allocation strategy: This research develops a parallel genetic
algorithm-enhanced integer linear programming model (GA-ILP) specifically for
optimizing goods allocation in pre-shipment, effectively reducing logistics costs caused
by order cancellations.

e Resource optimization and algorithm adaptability: Utilizing parallel genetic
algorithms to dynamically optimize the parameters of the goods allocation model,
adjusting algorithm control parameters such as crossover rate and mutation rate based
on real-time data, enhances the adaptability and flexibility of the algorithm.

THE ISCCO FRAMEWORK

Optimisation problem of supply chain cost control

Firstly, customers are categorized based on their sensitivity to product discounts and their
tendency to cancel orders. We define the customer classification function C which outputs
customer types across four dimensions:

C(X) = Category(X) (1)

where X represents the dataset containing experimental features. Subsequently, the
algorithm optimizes the shipping strategy for goods based on customer type and order data.
We define the goods allocation strategy function S, aiming to minimize the transportation
cost losses L incurred from order cancellations:
N
L= Zw,- -¢;-1(0; = canceled) (2)
i=1
where w; represents the weight of importance of the i-th order, ¢; represents the cost loss
due to cancellation, and 1 is an indicator function that takes the value 1 when order o; is
canceled, otherwise 0. The goods allocation strategy S predicts and minimizes cost losses L
based on the customer type C(X) and other order features Y:

L=S8(C(X),Y;0) (3)

where 6 represents model parameters. The model’s training objective is to minimize the
mean squared error between the predicted and actual cost losses:

1 )

min— Li—L;)". 4

iy > (Li—1) (4)
i=1

Here, L; and L; are the actual and predicted cost losses for the i-th sample, respectively.

The model needs to capture nonlinear relationships and interactions across multiple

dimensions including customer discount sensitivity, cancellation tendency, order delay

risk, geographical location, and order value.
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Figure 1 Four dimensions of user categorization.
Full-size G4l DOI: 10.7717/peerjcs.2537/fig-1

Problem 1 The core problem is how to design an optimization function S that effectively
handles and adapts to multidimensional, nonlinear feature interactions and minimizes the
above mean squared error to accurately predict and reduce the transportation cost losses due
to order cancellations.

min  E[(L—S(C(X), Y))*]. (5)

subject to S must adapt to high — dimensional, nonlinear feature interactions.

Customer dimension classification
Introducing deep learning feature extraction with random forest: achieving
efficient customer classification

e Traditional supply chain management often overlooks the multidimensional
characteristics of customer behavior, limiting the efficiency and precision of resource
allocation (Capd, Pérez ¢ Lozano, 2020). Traditional algorithms also fail to capture this
type of nonlinear similarity, restricting their application in this scenario (Baldassi, 2022;
Ay et al., 2023; Ikotun et al., 2023).
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The extracted features are input into the random forest
model for classification, resulting in the final customer
classification.

Figure 2 Customer classification using autoencoders and random forests.
Full-size & DOI: 10.7717/peerjcs.2537/fig-2

e This study proposes a new customer classification strategy by combining deep learning
with random forests, which not only handles complex nonlinear features but also
effectively extracts key information through autoencoders, greatly enhancing the
accuracy and generalization capability of the classification.

e As shown in Fig. 2, this process combines autoencoders for feature extraction and
random forests for customer classification. The autoencoder compresses the input
data into key features, which are then classified by the random forest model. The
model’s performance is optimized using cross-validation and grid search, aiming to
improve customer segmentation and reduce transportation costs through more accurate
pre-shipment decisions.

Implementing deep learning feature extraction with random forest:
achieving efficient customer classification

In the context of supply chain cost control, we propose a method combining autoencoders
with random forests for customer classification. Autoencoders are used to process input
features and extract key nonlinear information. The encoding process can be extended by
adding multiple layers and including regularization terms, represented by the equation:

hZJ%(WB)fz(W(z)fl (W(l)x—i—b(l))+b(2)+A||W(2)||2)+b(3)). (6)

The decoding process is specifically expressed by the following equation:
x =gy (W% (WP (W o) 4 0@ 2w @) +5) (7)

In these equations, x is the input vector, W® and W’ @ are the weight matrices for
encoding and decoding stages, respectively, b and ¥’ @ are bias vectors, fi and g; are
activation functions, X is a regularization coefficient, h® and x@ represent outputs at each

Li and Chen (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2537 6/27


https://peerj.com
https://doi.org/10.7717/peerjcs.2537/fig-2
http://dx.doi.org/10.7717/peerj-cs.2537

PeerJ Computer Science

layer. Subsequently, using the compressed features h obtained from the autoencoder, the
classification result of the random forest model C(x) can be defined by:

N
Clx)=Y wi-ci(h)+y - Var(ci(h)). (8)
i=1

Here, N is the number of decision trees, c; is the classification result of the i-th tree
on the compressed feature h, w; represents the weight of the i-th tree, reflecting its
importance in the overall classification, y is an adjustment factor, Var(c;(h)) measures the
variance of the classification results, used to assess the uncertainty of the results. To ensure
model generalization and prevent overfitting, we employ cross-validation techniques and
optimize model hyperparameters through grid search. The overall performance of the
model is evaluated by the weighted average of various metrics under cross-validation, as
expressed below:

n k
J=) a; %ZMetrici(M-,DvaLj) : (9)
i=1 j=1
Here, k is the number of folds in cross-validation, M; is the model trained on the j-th
fold, Dy,j is the corresponding validation set, Metric; represents the i-th evaluation metric,
; is the weight of the corresponding evaluation metric.
Theorem 1 (Optimization of customer classification): By combining autoencoders with
random forests, the accuracy of classification across different customer dimensions can be
significantly enhanced. There exists an optimal set of parameters ©*, W* b* that optimizes
overall model performance:

p(yil®, W, b,x;)

p(yilxi) (10)

N
O, W*,b* = i O,W.,b)—x- i1
o i 10,7033 b
Here, J(©, W ,b) is the model performance evaluation function obtained through cross-
validation, A and «; are adjustment coefficients, where o; represents the importance of the
i-th data point, p(y;|x;) is the probability of category y; given the input x;.

Corollary 1 (Enhancement of cost efficiency): By reasonably allocating goods that can be
shipped in advance based on customer classification, the transportation cost losses caused by
order cancellations can be effectively reduced. By applying the optimized classification model,
goods pre-shipped are allocated more precisely to users across various dimensions, thereby
maximizing cost efficiency:

@:‘ﬁf=argm®in{](®)+y-Var(C(@))}. (11)
Here, J () is the cross-validation performance evaluation based on the model, y is an ad-
justment factor, Var(C(®)) indicates the variance in customer dimension classification using

the random forest model, aimed at measuring the stability and accuracy of the classification
results.

The specific validation process is shown in the appendix.
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Minimization of transportation cost losses in goods allocation
strategy

Enhanced integer linear programming with genetic algorithm:
implementing a cost loss minimization strategy for goods allocation

e Many traditional models rely on a static decision-making environment, assuming
that data do not change over time. This results in significant efficiency reductions
when the model fails to adapt to new requirements once environmental changes
occur (Alfaro, Valencia ¢ Vargas, 2023; Prerna ¢ Sharma, 2022). Moreover, traditional
models often struggle to effectively handle uncertainties in the supply chain, such as
demand fluctuations and supply disruptions, because they lack mechanisms for flexible
decision-making (Dupin, 2022).

e Our proposed integer linear programming model enhanced with a parallel genetic
algorithm (GA-ILP) combines the global search capabilities of genetic algorithms with
the precise optimization of integer linear programming to achieve efficient optimization
of goods allocation in the supply chain. This algorithm not only optimizes total costs
resulting from order cancellations or delays but also significantly enhances computational
efficiency through parallel processing techniques.

e ligure 3 shows a process where a parallel genetic algorithm (GA-ILP) optimizes
an Integer Linear Programming model. It starts by initializing a population, then
calculates fitness values. The algorithm evolves solutions through selection, crossover,
and mutation. If termination conditions are met, the process ends; otherwise, it continues
iterating until the optimal solution is found.

Enhanced integer linear programming with parallel genetic algorithm
(GA-ILP)

Research proposes an algorithm for an enhanced integer linear programming (ILP) model
using a parallel genetic algorithm (GA-ILP), aimed at optimizing goods allocation to
reduce order cancellation rates and transportation costs. The model achieves precise
optimization of goods distribution. Initially, an ILP model is constructed with the
objective of minimizing the total cost incurred from order cancellations or delays,
expressed as:

n m n m
Minimize Z = ZZ(Clj -xij + pij - (1 —x3j)) +)»ZZSij - Xij (12)

i=1 j=1 i=1 j=1

Here, n represents the number of orders, m represents the types of goods. ¢;; is the cost if
item j in order i is canceled, p;; is the penalty if item j in order i is delayed. x;; is a binary
decision variable indicating whether to allocate item j to order i, s;; is the storage or holding
cost, and A is a cost adjustment factor.

- tij - Xij 1 T
Z(XHUT”)S%JF— =i (13)

i—1 i M
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Figure 3 Process of parallel genetic algorithm optimizing integer linear programming model.
Full-size & DOI: 10.7717/peerjcs.2537/fig-3

m

Z<1j+§l l]>_1+ Z mmk (14)
k=1

i=1 min, j

Equation (13) integrates inventory quantities with delivery time constraints.
Equation (14) integrates the requirement that each order must be allocated at least one type
of item, considering order priority to ensure high-priority orders are prioritized during
goods allocation. Decision variable x;; must not only meet integer conditions but also
consider order fulfillment rates and real-time inventory adjustments. Thus, we introduce a
continuous decision variable y;;, representing the probability of fulfilling order 7 with item
7, influenced dynamically by inventory adjustments. The integer condition and fulfillment
probability are formulated as:

xije{o’l}’ yij:XﬁX(l—e_}"tij) VI,V] (15)

where e i represents the decayed fulfillment probability due to the response time t;,
and X is the decay coefficient. To solve this integer linear programming problem, we use a
parallel genetic algorithm for optimization. The algorithm is described as:

Parallel GA(®,x,y) =arg min{a -Z(0,x,y)+ B -Var(x,y)+y -Stab(x,y)}
x,y
subject to & (x,y) <0, h(x,y)=0 Vk,VI. (16)

Here, «, B, and y are weighting factors, used to balance the importance of different
objectives. Z(®,x,y) is the original cost function, Var(x,y) evaluates the variance of the
solution for diversity assessment, and Stab(x,y) is a new stability metric, measuring the
consistency of solutions across multiple runs. The constraints gx(x,y) <0 and h;(x,y) =0
represent the model’s inequality and equality constraints, allowing more precise control
over the feasibility of solutions. The mathematical description of the algorithm is:

GA-ILP(®,x) =arg min{« - Z(0,x) + B - Var(x) + y - Stab(x) + 6 - Cons(x)}
subject to ¢(x) <0, Vi (17)

where © includes the control parameters of the genetic algorithm, the formula’s « controls
the impact of the cost function Z(®,x). B adjusts the variance of the solution Var(x),
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measuring solution diversity. y is the stability metric Stab(x), assessing consistency across
multiple runs. § is the constraint satisfaction metric Cons(x), quantifying the degree of
constraint violation of the solution. ¢;j(x) represents the problem’s constraints, ensuring
the feasibility of the solution. The model not only provides a comprehensive optimization
framework but also enhances the applicability and efficiency of the algorithm in practical
applications through multi-objective and constraint management.

Theorem 2 (Optimizing integer linear programming with parallel genetic algorithm):
There exists an optimal set of parameters ®* that optimizes the model under given cost
functions and constraints: Where Z(0©,x,y) is the cost function, Var(x,y) represents the
variance of the solution, Stab(x,y) is the stability of the solution.

OF = argngn{Z(@,x,y) +B-Var(x,y)+y -Stab(x,y)} (18)

Corollary 2 (Parameter adjustment and system performance enhancement): In the
enhanced integer linear programming model with parallel genetic algorithm, optimizing
parameters © can achieve higher system performance and cost efficiency: Where «, B, and

y are weighting factors, used to balance cost, variance, and stability.

OF = argm@%n{a -Z(©®)+B-Var(C(®))+y -Stab(C(©))} (19)
Details of the computations can be found in the appendix.

ISCCO framework
Overall structure of the ISCCO framework

The core of the ISCCO framework is to efficiently categorize customers using deep
learning and utilize this classification to optimize goods allocation strategies, minimizing
transportation costs and order cancellation rates. The structure of the framework is as
follows:

ISCCO(®,x,y) = arg(gnin {a J(0,x,y)+ B Cost(x,y)+y -Risk(x,y)}
XY
subject to ge(x,y) <0, h(x,y)=0 Vk,VI (20)

where «, B8, and y are weighting factors used to balance the importance of different
objectives. J(®,x,y) is the performance evaluation function based on customer
classification, Cost(x,y) represents the total cost incurred from goods allocation, and
Risk(x,y) represents the risk arising from order cancellations or delays. In the ISCCO
framework, the optimization of customer classification and goods allocation is carried out
interactively. This process is represented by the following mathematical model:

Ofscco Xy = arg(gnir}l, {](@) 4+ X1 -Var(C(®))+ A, - Cost(x,y) + A3 - Risk(x,y)} (21)

where A1, A,, and A3 are adjustment coefficients used to balance the trade-offs among
classification accuracy, cost efficiency, and risk management. C(®) represents the output
of customer classification, Var(C(®)) is the variance of classification results, used to assess
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the stability of classifications. The ISCCO framework must satisfy a series of constraints,
which can be represented as:

n 2
gk(x,}/)=(zxij—q]'> <0, Vj (22)
i1

m

hx.y)=|Y xj—1|=0, Vi (23)

j=1
where g; is the inventory level for the jth type of good, x;; is the decision variable indicating
whether good j is allocated to order i. Based on this, research focuses on minimizing
transportation costs. Initially, users are divided into four dimensions based on their
sensitivity to product discounts and propensity to cancel orders. This can be achieved
through a random forest approach with deep learning feature extraction. The classification
model C can be expressed as:

C(x) =RF(AE(x; W,b); ®) (24)

where AE represents the autoencoder used for feature extraction, W, b are the network
parameters, RF represents the random forest classifier, © is the parameters of the random
forest. Based on the classification results from Eq. (24), we further define a goods allocation
strategy. This strategy aims to minimize the transportation cost losses incurred from
order cancellations. The goods allocation strategy S can be defined by the following
expression:

4
S(C(x),Y;0) =min ZZwi-ci-l(oizcancel) (25)
k=1ieDy
where Dy is the set of orders belonging to the k-th customer class, w; is the weight of an
order, ¢; is the cost incurred from cancelling an order, 1 is an indicator function. Qur
goal is to minimize the total cost L by optimizing the goods allocation strategy S. This
optimization problem can be represented as:

4 4
meln (;Lk> = mgln Z Z w;-¢;-1(0; = cancel). (26)

k=11iinDy,

Here L represents the cost loss caused by the k-th class of users. Finally, the optimization
of pre-shipped orders allocated to four different dimensions of users can be expressed using
the following mathematical formula:

minL:WIXL1+W2XL2+W3XL3+W4XL4 (27)

where wy are weights for the k-th class of users, Ly is the predicted cost loss for that class
of users, these weights may depend on the order cancellation rate of the class or other
business strategy factors.
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Algorithm pseudocode and complexity analysis
Algorithm 1: Optimized Supply Chain Cost Control Algorithm (ISCCO)
Input: Dataset X with features on customer purchase behavior and response pat-

terns, Additional order features Y, Initial parameters ®
Output: Optimized transportation costs L
// Feature extraction and customer classification
1 Function AutoEncoder (X):
2 | Encode features to reduce dimensionality and extract nonlinear patterns using
Eq. 6 and Eq. 7;
3 return encoded features h;

4 Function RandomForestClassifier(h, Ogp):

5 Classify customers into four categories based on encoded features and sensitiv-
ity to discounts and cancellation likelihood using Eq. 8;

6 return customer categories C(X);

// Goods distribution optimization
7 Function IntegerLinearProgramming(C(X), Y, Op):
8 | Optimize goods allocation by minimizing expected cost losses from order
cancellations using a genetic algorithm-enhanced ILP model as per Eq. 12 to
Eq. 17;

9 return minimized cost function Z;
10 Function CostStrategy(C(X), Y, Oc¢s):

11 Distribute pre-shipped goods to different customer categories to minimize
cancellation-related costs using Eq. 23 to Eq. 25;

12 return updated cost L;

13 h < AutoEncoder (X);

14 C(X) < RandomForestClassifier(h, Ogr);

15 Y < Prepare additional order features;

16 Z < IntegerLinearProgramming(C(X), Y, Opp);
17 L < CostStrategy(C(X), Y, Oc¢s);

18 return Optimized transportation costs L;

Considering time complexity, ISCCO is mainly influenced by the number of
features, the number of trees, and decision variables, showing potential efficiency in
applications with high data complexity. According to Algorithm 1, the time complexity
is O(n*+N - logn + m), involving feature dimension reduction, customer classification,
and goods distribution optimization. In terms of space complexity, the algorithm’s space
complexity is O(n? + N - n+m), reflecting the space required to store weights for the
autoencoder, the structure of the random forest, and the linear programming model.

Comparing the ISCCO framework with other models in the same field, as shown
in Table 2, it is evident that the ISCCO framework has a time complexity of
O(n*+ N -logn+m) and a space complexity of O(n* + N - n+ m). Compared to the
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Table 2 Comparison of time and space complexities.

Algorithm Time complexity Space complexity
Belogaev et al. (2020) O(m-logm) O(m+c)

Cao & Liu (2021) o) O(n?)

Raskin et al. (2021) Complex (iterative, non-linear) O(m+c)

Sun et al. (2020) On?-L) O(L-n?)

ISCCO Framework O(n*+N -logn—+m) Om>+N -n+m)

algorithm by Cao & Liu (2021) (time complexity O(n?), space complexity O(n?)), the
ISCCO framework can more efficiently utilize computing resources to reduce time costs
when handling large-scale data. In terms of space complexity, the ISCCO framework’s
complexity is O(n? + N - n+m), which is similar to the algorithm of Sun et al. (2020),
but the ISCCO framework may be more efficient for large data sets. The increased space
requirement is to support more complex data structures and caching mechanisms, thereby
optimizing the execution efficiency and response time of the algorithm.

EXPERIMENTAL RESULTS

Dataset and experimental parameters introduction

Dataset Description: The dataset used in this study is named “DataCo SMART SUPPLY
CHAIN FOR BIG DATA ANALYSIS”, which includes supply chain data utilized by DataCo
Global (https:/tianchi.aliyun.com/dataset/89959). The dataset encompasses activities across
the entire supply chain from procurement, production to sales, and business distribution,
containing both structured and unstructured data, allowing for supply chain-related data
analysis. Our experimental parameters are set as shown in Table 3.

In this study, through comprehensive outlier detection, it was found that some features
involve sensitive information and were processed, resulting in generally anomalous values,
as shown in Fig. 4. The dataset used for this research contains a total of 180,520 samples. The
data was split into training and testing sets with an 80/20 ratio, resulting in 144,416 samples
for training and 36,104 samples for testing. For those features where the proportion of
outliers exceeds 90%, the choice was made to delete them directly, as their high proportion
of outliers would severely disrupt the effectiveness of model training. For other features
containing outliers, the study applied regression imputation methods to correct and fill in
anomalous data points.

It should be noted that all the experimental results, are based on testing samples. This
ensures that the reported performance metrics reflect the model’s ability to generalize to

unseen data.

Model performance analysis

The customer classification results of the model are shown in Fig. 5. Experiments
demonstrate that the ISCCO framework surpasses other models in terms of accuracy
and loss values, as shown in Fig. 6. Notably, in terms of accuracy, the ISCCO framework
improved from 50% to 95.73%, while the artificial neural network (ANN) model, although
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Table 3 Experimental parameters.

Parameter name

Parameter value Parameter name Parameter value

Dataset

Autoencoder layers

Autoencoder activation function
Autoencoder Learning Rate
Autoencoder regularization
Random forest number of trees
Random forest evaluation metrics

Genetic Algorithm Crossover Rate

DataCo smart supply chain Number of training epochs 30

3 (input layer, 2 hidden layers, output Neurons per Layer Input 256, Hidden 150/300/150, Output

layer) 256

ELU Autoencoder optimizer Adam
0.001 Autoencoder Batch Size 128
L1+L2, Parameter=0.05 Autoencoder iterations 50

100 Random forest max depth Unlimited
Precision, F1 score Genetic algorithm population size 100

0.8 Genetic Algorithm Mutation Rate 0.2

Data preprocessing Standardization Loss function Mean squared error
ANN parameters
ANN layers 4 (input layer, 2 hidden layers, output Neurons per Layer Input 256, Hidden 128/64, Output 10
layer)
ANN activation function ReLU ANN optimizer Adam
ANN learning rate 0.001 ANN batch size 64
CNN parameters
CNN layers 5 (convolutional layers + fully connected Filters per Layer 32,64, 128
layers)
CNN kernel size 3x3 CNN activation function ReLU
CNN optimizer Adam CNN batch size 32
CNN learning rate 0.0001 Pooling type Max pooling

improving from 40% to 85%, did not match the enhancement magnitude and final accuracy
of the ISCCO framework. Similarly, the ISCCO version without feature extraction only

improved from 48% to 86%, which is lower than the performance after introducing feature
extraction, confirming the crucial role of feature extraction in enhancing model accuracy.

In terms of loss values, the ISCCO framework rapidly decreased from 0.75 to
0.2, demonstrating its excellent learning efficiency and optimization capabilities. By
comparison, the ANN model reduced from 0.8 to 0.45, with neither the magnitude nor
the speed of loss reduction matching that of the ISCCO framework. The convolutional
neural network (CNN) model performed better than the ANN but still fell short of the
ISCCO framework. These data fully showcase the comprehensive advantages of the ISCCO
framework in feature extraction and random forest classification, particularly in handling
complex data structures and maintaining model stability, as shown in Fig. 7.

As shown in Table 4, the ISCCO framework excels in all indicators. This reflects the
powerful effects of integrating autoencoder feature extraction with the random forest
algorithm. Particularly in comparison to the ISCCO version without feature extraction,
there was a significant improvement in accuracy, precision, and recall, proving the
importance of feature extraction in enhancing the overall performance of the model.
While the ANN and CNN also showed good performance, they still lag behind the ISCCO
framework. The ANN model performed worse than the ISCCO framework across all
three indicators, likely due to its lack of effective feature processing mechanisms. The
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Figure 4 Information on anomalous data in the dataset.
Full-size Gl DOI: 10.7717/peerjcs.2537/fig-4

CNN performed slightly better than the ANN but was still less capable than the ISCCO
Framework in handling complex data structure classification tasks.

We conducted 10-fold cross-validation to ensure model robustness. The ISCCO
Framework achieved an average accuracy of 95.73%, demonstrating consistent performance
across different data splits. ANN and CNN models yielded average accuracies of 72.00%
and 77.59%, respectively.

Practical application results of the ISCCO framework

To comprehensively assess the impact of pre-shipment strategies on order cancellation
rates and profits, this study designed a series of simulations with fixed order quantities.
By randomly selecting a fixed proportion of orders from the overall order dataset as the
experimental group for early shipment, we systematically analyzed and compared the
specific effects of different pre-shipment proportions on operational outcomes while
controlling other variables. As shown in Table 5, the ISCCO framework strategically
increases the proportion of early shipments to optimize profits. As the pre-shipment
proportion increases, the optimized profits generally rise. At 5% early shipment, the profit
is slightly lower than the actual profit, but as the proportion increases, the optimized profits
exceed the actual profits, particularly at 25% early shipment, where the profit increase is
significant. This indicates that the algorithm effectively identifies which shipments benefit
most from early dispatch.
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Distribution of Customer Classifications

No sensitivity to discounts

Have order closing-behavior Sensitlivity to discounts

No order closing behavior

Figure 5 User classification results.
Full-size & DOI: 10.7717/peerjcs.2537/fig-5

Table 6 shows that under the ISCCO framework, the cancellation rate continues to
decline compared to the baseline rate. The algorithm’s ability to reduce order cancellations
is significant, as each prevented cancellation not only saves costs associated with handling
returns but also stabilizes revenue streams. By predicting and managing cancellation risks,
the ISCCO framework enhances customer satisfaction and retention by ensuring timely
product delivery.

Discussion
This study focuses on minimizing transportation cost losses, particularly through customer
segmentation and optimized early goods allocation to reduce costs associated with order
cancellations. The experimental results further validate the effectiveness of these strategies.
As shown in Fig. 6 and Table 4, the ISCCO framework significantly outperforms other
models in terms of accuracy, precision, and recall, achieving a notable improvement from
50% to 95.73% in classification accuracy. This improvement demonstrates the crucial role
of feature extraction combined with random forest classification in customer segmentation
and prediction accuracy.

(1) Our analysis revealed a strong relationship between sensitivity to discounts and
cancellation behavior across different customer groups. Customers with higher price
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Table 4 Detailed performance comparison of models for customer classification task.

Model name Accuracy (%) Precision (%) Recall (%)
ANN 72.00 70.29 68.67
CNN 77.59 75.21 73.97
ISCCO without Feature Extraction 86.00 83.15 81.83
ISCCO Framework 95.73 93.34 90.45

Table 5 Profits generated by the ISCCO framework in practical application through allocation strat-
egy.

Early shipment (%) Actual profit ISCCO optimized profit Improvement
5 $114,476.38 $114,311.24 —$165.14
10 $113,753.07 $115,079.72 $1,326.65
15 $114,648.36 $117,094.41 $2,446.05
20 $115,645.46 $118,384.11 $2,738.65
25 $113,643.84 $121,204.11 $7,560.27

Table 6 Probability of order cancellation in practical application through allocation strategy by the
ISCCO framework.

Early shipment (%) Base cancellation rate (%) ISCCO optimized cancellation rate (%)
5 57.93 52.43
10 56.93 49.67
15 55.04 46.91
20 54.67 44.15
25 50.79 41.39

sensitivity, especially in e-commerce and fast-moving consumer goods industries, showed
a greater likelihood of order cancellations, particularly during periods of economic
instability. These findings are supported by the superior performance of the ISCCO
framework in accurately classifying such customer segments. As the classification results
highlight, businesses must adopt flexible pricing strategies and adjust resource allocations
dynamically to mitigate potential cost losses due to cancellations.

(2) For customer groups with higher cancellation rates, our simulations (refer to Table 6)
indicate that optimized early shipments, guided by the ISCCO framework, significantly
reduce cancellation rates, resulting in improved operational efficiency and profit margins.
The ISCCO framework’s capacity to identify optimal pre-shipment strategies underscores
its potential for practical applications in reducing cancellations and enhancing overall
profitability.

(3) Although the ISCCO framework performs well in reducing transportation cost
losses, its limitations should not be overlooked. The quality of data is crucial to the model’s
performance, and incomplete or inaccurate data can affect the accuracy of predictions. The
framework focuses on reducing order cancellations and is limited in addressing issues such
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as inventory shortages or sudden demand spikes. Future work could consider expanding
the model to tackle a wider range of logistical challenges.

In conclusion, the experimental data support the hypothesis that customer segmentation
based on sensitivity to discounts and cancellation behavior, coupled with optimized early
allocation strategies, plays a key role in minimizing transportation cost losses and improving
market competitiveness.

CONCLUSION

The ISCCO framework proposed in this study effectively integrates deep learning and
optimization algorithms, significantly enhancing the efficiency and accuracy of goods
allocation within the supply chain. Through an in-depth analysis of large-scale supply
chain data, we have demonstrated the effectiveness of the predictive model in reducing
order cancellations and optimizing transportation costs. The customer classification
strategy, which combines autoencoders with random forests, supports precise goods
allocation decisions, resulting in significant cost reduction and enhanced service efficiency.
Experimental results indicate that the pre-shipment strategy effectively reduces order
cancellation rates, thereby increasing overall profits and customer satisfaction. Additionally,
the ISCCO framework exhibits low time and space complexity when handling large datasets,
making it suitable for deployment in real-world complex environments.

APPENDIX: MATHEMATICAL THEOREMS AND COROLLARY
PROOFS

Theorem 1 (Customer classification optimization): By integrating autoencoder and
random forest methods, the classification accuracy across various customer dimensions can be
significantly improved. There exists an optimal set of parameters ©®*, W* b* that maximizes
the overall classification performance of the model:

ril®, W, b,x;)

plyilxi) (28)

N
O, W*,b* = i ®,W.,b)—x- i-1
Wb =arg min 17(6, W, D) X;az og
1
Here, ] (©, W, ) is the model performance evaluation function based on cross-validation, i
and o; are adjustment coefficients, where o; represents the importance of the i-th data point,
p(ilx;) is the probability of category y; given input x;.

Proof 1 Consider a model that integrates an autoencoder with a random forest for classifying
customers in a multidimensional feature space. The autoencoder component is responsible

for extracting useful nonlinear features from high-dimensional data, while the random forest
component is used for classification and prediction. Each Metric; represents a performance
metric used to evaluate the model, such as accuracy, recall, F1-score, etc. Its definition is as
follows:

Metric;(M, D) = Specific Measurement Method(M, D) (29)

where M denotes the model, and D represents the dataset. During the j-th fold of cross-
validation, the performance of model M; on the corresponding validation set D, j is
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calculated using Metric;:
Performance;; = Metric;(M;, Dy, ) (30)

For each evaluation metric i, the average performance over all k folds is computed:

k
1
Average Performance; = % ZPerformanceij (31)
j=1
This reflects the model’s average performance across different validation sets under that
metric. The overall performance J(©, W ,b) is the weighted average of all metrics, with
weights determined by o;:

n

J(©,W,b)= Zai - Average Performance, (32)

i=1
where a; reflects the importance of each performance metric. ] explicitly depends on the
model parameters ©, W, b since each fold’s model M; is trained using these parameters.
This dependency highlights the impact of different parameter configurations on model
performance. First, define the performance evaluation function J to measure the model’s
performance across different cross-validation sets as follows:

n k
1
J(O,W.b)= E o % E Metric;(M;, Dya ;). (33)
i=1 i=1

Here, a; represents the weight of each performance metric, M; denotes the model obtained
from the j-th fold cross-validation, D, j is the corresponding validation dataset, and
Metric; is the performance evaluation metric. Next, introduce a regularization term based on
Bayesian information criterion, aimed at balancing model fit and complexity. We define the
conditional probability p(yi|®, W, b, x;) and the marginal probability p(y;|x;):

p(yil®, W, b,x;) = Probability of predicting (y;) given the model parameters and input (x;)

(34)
p(yilxi) = Marginal probability of (y;) based only on input (x;),
independent of the model parameters. (35)
Compute the log-likelihood ratio, a measure of how the model provides better predictions
relative to a simple probability model (dependent only on the input data):
10, W, b,x;
r(il Xi) (36)
p(yilxi)

The logarithm of this ratio represents the information gain or loss between model predictions
and simple predictions. Multiply each data point’s log-likelihood ratio by weight «;, reflecting
the importance of different data points in model training:

ril®, W, b,x;)

il
airos p(yilxi)

(37)
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Sum the weighted log-likelihood ratios of all data points to form an overall regularization

term:

N (y:|©, W, b, x;)

Zai.logl’)”’—”l (38)
— p(yilxi)

Multiply the overall expression by a negative regularization coefficient A to get the final
regularization term:

N

pil®, W, b,x;)

_)\’ Oli'lO - (39)
; & pyilxi)

This negative sign indicates that we are penalizing high log-likelihood ratios, meaning that
the higher the model complexity, the greater the penalty. This helps enhance the model’s
generalization ability. Based on the above equations, we summarize as follows:

N

pyil®, W, b,x;)

—A- o;-log———-——— (40)
; 8 pyilxi)

Here, ) is the regularization coefficient, p(y;|®, W, b, x;) represents the conditional proba-
bility of predicting y; given the model parameters and input x;, and p(y;|x;) is the marginal
probability of y;. Combining these components, we form the final optimization problem:

ril®, W, b,x;)

plyilxi) (41

N
* * 1% .

e W* b =arg®rrlv{]1}b J(©,W,b) —)v;oti-log

This optimization objective aims to find parameters ©, W, b that maximize the model’s cross-

validation performance while ensuring the model does not overfit the training data, achieving

optimal generalization.

Corollary 3 (Cost-effectiveness enhancement): By properly allocating goods that can
be shipped ahead of schedule based on customer classification, transportation cost losses
caused by canceled orders can be effectively reduced. By applying the optimized classification
model, goods shipped ahead of time can be more accurately allocated to users across various
dimensions, thus maximizing cost-effectiveness:

o =argmin{J(©)+y - Var(C())} (42)

Here, ] (®) is the cross-validation performance evaluation based on the model, y is a tuning
factor, Var(C(©)) represents the variance based on the random forest model’s classification of
various customer dimensions, intended to measure the stability and accuracy of classification
outcomes.

Proof The cross-validation performance evaluation function J is calculated as follows:

n k
1
J(©,W.b)=) ai| > Metrici(M;, Dyaj) (43)
i=1 j=1
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where «; are the weights of the evaluation metrics, ensuring that performance across various
aspects is considered. The gradient V] is the derivative of the loss function ] with respect to the
parameters O, indicating the direction of steepest increase in the parameter space:

aJ] 9] 9]

VI (©o1a, Wold, boia) = (— — _b> (44)
00 IW 3b/ (Ootds Wotd, bola)

Model parameters are adjusted through the following optimization step:

Onew = Oota =NV (Ootd, Woid boia) (45)

n is the learning rate, determining the step size for parameter updates. Through this param-
eter optimization process, we expect @*, W* b* to effectively reduce the objective function
value, thereby enhancing the model’s accuracy and generalization capabilities. The inference
focuses on how the optimized model can reduce transportation costs by properly allocating
goods based on classification:

O =argmin{J(©) +y - Var(C(©))} (46)

y is a tuning factor, and Var(C(®)) represents the variance of classification outcomes, used to
evaluate the stability and accuracy of classification.

Theorem 4 (Optimizing integer linear programming with parallel genetic algorithm):
There exists an optimal set of parameters ©* that optimizes the model under given cost
functions and constraints:

OF = argngn {Z(@,x,y) +B-Var(x,y)+y- Stab(x,y)} (47)

Where Z(©,x,y) is the cost function, Var(x,y) represents the variance of the solution,
Stab(x,y) is the stability of the solution.

Proof The cost function Z(©,x,y) represents the total cost in an integer linear programming
problem, which includes costs due to order cancellations, delivery delays, and storage. We

will explain and verify this cost function step by step with the following equations. The cost

of order cancellations and non-cancellations are expressed as:

noom
anncel(®’x»)’):ZZCij'xij (48)

i=1 j=1
where cjj is the cost incurred when item j in order i is cancelled, and x;; is a binary decision

variable indicating whether item j is assigned to order i. The calculation of penalties for
delayed shipments is as follows:

Zaehay(©,%,) =Y > pij- (1—x;) (49)

i=1 j=1

where p;; is the penalty if item j in order i is delayed. Next, we compute the storage cost:

noom
Zstorage(®’x,y) =)\ZZSU - Xij (50)

i=1 j=1
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where s;; is the cost of storing or keeping item j in order i, and X is a cost adjustment factor
that adjusts the weight of storage costs in the total cost. Then, integrating all cost components:

Z(®’xa)’) = anncel(®ax,y) +Zdelay(®»x»y) +Zst0rage(®7x7y) (51)

This equation consolidates all costs arising from order cancellations, delays, and storage. It
calculates the total cost by taking into account the costs of order cancellations, delay penalties,
and storage. Thus, the cost function expression is:

n m n m
Z(0,x,y) =) ¥ (cij-xij+pij- (1=x5)) +1D_ > sij-xj (52)
i=1 j=1 i=1 j=1
The cost function Z includes the direct costs of item cancellations and delays c;; and py;, as well
as storage costs sj;.

Corollary 4 (Parameter tuning and system performance enhancement): In the integer
linear programming model enhanced with a parallel genetic algorithm, optimizing parameters
© can achieve higher system performance and cost-effectiveness:

OF = argngn{a -Z(®)+B-Var(C(®))+y -Stab(C(®))} (53)
Here, o, B, and y are weight factors used to balance cost, variance, and stability.

Proof The optimization problem is defined as finding a set of parameters ® that minimize
the given composite objective function. This objective function combines the cost function Z,
the variance of solutions Var, and stability Stab. The definition of variance Var(x,y) is:

1 N
Var(x,y) = NZ(J’i—M)Z (54)
i=1

where y; represents a specific metric of the ith solution, and | is the average of all solutions.
Variance is used to evaluate the diversity of the solution set. The definition of stability
Stab(x,y) is:

Var(x,y)

Stab(x,y)=1— > (55)
o

where 6% is the possible maximum variance, expressing the stability of the solution, i.e., the
consistency of the solution under different runs or conditions. The composite objective function
is:

F(©,x,y)=Z(®,x,y) +B-Var(x,y) + - Stab(x.y). (56)

This formula combines costs, diversity of solutions, and stability. By adjusting the weights 8
and y, it is possible to balance the importance of these metrics. The ultimate goal is to find the
optimal parameter set ®*:

%= in{F(©®,x,y){. 57
argmén{ (®,x y)} (57)
This equation expresses the optimization goal to find the parameter set ® that minimizes the

composite objective function F, ensuring the lowest cost while maintaining the diversity and
stability of the solutions. The objective function for a genetic algorithm:

OF = argrrgin{Z(@,x,y) +B-Var(x,y)+y -Stab(x,y)}. (58)
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Here, Var(x,y) measures the diversity of solutions, and Stab(x,y) measures the stability of
solutions. The mathematical expression for variance:

1 ¢ O 2
Var(x,y):;Z:(xi—x) +;21:(yj—y) (59)
i= j=
where X and y are the means of x and y respectively. Subsequently, the calculation for
stability:
V k)
Stab(x,y)zl—w (60)
o

where 62 represents the maximum possible variance. The selection, crossover, and mutation
operations of a genetic algorithm:

g (x,y) <0, h(x,y)=0 (61)

These are the constraints of the algorithm, ensuring the feasibility of the solutions. Balancing
the weight factors:

a-Z(0)+ B-Var(x)+y - Stab(x) (62)

By adjusting o, B, and y to find the optimal solution. Minimizing the objective function:

O©* =argmin{a - Z(0,x)+ - Var(x)+ y - Stab(x) 48 - Cons(x)} (63)
X

Here, § controls the degree of constraint satisfaction.Calculation of constraint satisfaction:

Cons(x) = Zmax(o, ¢i(x)) (64)
i

This represents the sum of all unsatisfied constraints. Verification of systemic performance

improvement:

OF = argm@%n{a -Z(®)+B-Var(C(®))+y -Stab(C(©))} (65)

Optimizing these parameters can enhance system performance and cost-effectiveness. The
multi-objective optimization problem:

min  Z(0,x,y)
subjectto  gx(x,y) <0, hi(x,y)=0 (66)

This ensures multi-objective and multi-constraint management of the solution. Balancing and
trade-offs during the optimization process:

GA-ILP(®,x) = argmxin{oz -Z(0,x)+ B-Var(x)+y - Stab(x)} (67)

This expresses how to balance costs, variance, and stability. The combination of integer linear
programming and genetic algorithms:

xijE{O,l}, yij:xijx(l—e_“”f) (68)

This reflects the integer nature of the decision variables and the dynamic adjustment of
fulfillment probabilities.
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