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ABSTRACT
Congenital heart disease (CHD) remains a significant global health challenge, partic-
ularly contributing to newborn mortality, with the highest rates observed in middle-
and low-income countries due to limited healthcare resources. Machine learning (ML)
presents a promising solution by developing predictive models that more accurately
assess the risk of mortality associated with CHD. These ML-based models can help
healthcare professionals identify high-risk infants and ensure timely and appropriate
care. In addition, ML algorithms excel at detecting and analyzing complex patterns
that can be overlooked by human clinicians, thereby enhancing diagnostic accuracy.
Despite notable advancements, ongoing research continues to explore the full potential
of ML in the identification of CHD. The proposed article provides a comprehensive
analysis of the ML methods for the diagnosis of CHD in the last eight years. The
study also describes different data sets available for CHD research, discussing their
characteristics, collection methods, and relevance to ML applications. In addition, the
article also evaluates the strengths and weaknesses of existing algorithms, offering a
critical review of their performance and limitations. Finally, the article proposes several
promising directions for future research, with the aim of further improving the efficacy
of ML in the diagnosis and treatment of CHD.

Subjects Bioinformatics, Artificial Intelligence, Computer Vision, Data Mining and Machine
Learning, Neural Networks
Keywords Congenital heart disease, Parental ultrasound, Critical aortic stenosis, Hypoplastic left
heart syndrome, Echocardiography, ML algorithms, Artificial intelligence

INTRODUCTION
Background
Congenital heart disease (CHD) represents a significant global health challenge, impacting
approximately 1% of live births around the world (Boneva et al., 2001; Rosamond et al.,
2007; Pierpont et al., 2007). CHD encompasses a variety of structural anomalies in the heart
and blood vessels, which develop before birth. These defects can vary widely in severity,
from simple problems that can be resolved alone to complex malformations that require
extensive medical intervention. Some common forms of CHD include pulmonary atresia,
critical aortic stenosis, and hypoplastic left heart syndrome, among others.
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The implications of CHD are profound, as the condition can lead to a spectrum of long-
term health problems, including arrhythmias, developmental delays, and even mortality, if
not diagnosed and managed effectively. Early detection and accurate diagnosis are crucial
to improve outcomes. Traditional diagnostic methods, such as fetal echocardiography
(EKG) and parental ultrasound (US) (Chew et al., 2007; Murphy et al., 1975; Friedberg et
al., 2009; Ma et al., 2023; Jiang et al., 2023; Reddy, Van den Eynde & Kutty, 2022; Li et al.,
2019), although effective, are often limited by accessibility, especially in resource-poor
settings. The challenges in early and accurate diagnosis require innovative solutions to
improve the prognosis and quality of life of affected individuals.

CHD refers to a range of birth defects that affect the structure and function of the heart.
These anomalies arise due to the inappropriate development of the heart during fetal
growth. CHD can manifest in various forms, each differing in severity and impact on the
individual’s health. The primary types of CHD include:

Pulmonary atresia (PA): Characterized by an obstruction or complete closure of the
pulmonary valve, impeding blood flow from the right ventricle to the lungs. Severe forms
are associated with an underdeveloped right side of the heart, known as hypoplastic right
heart syndrome (HRHS).

Critical aortic stenosis (CAS): Involves significant narrowing of the aortic valve, which
restricts blood flow from the left ventricle to the aorta and the rest of the body. This
condition often accompanies hypoplastic left heart syndrome (HLHS), where the left side
of the heart is underdeveloped.

Hypoplastic left heart syndrome (HLHS): A severe condition where the left side of the
heart is critically underdeveloped. This defect severely limits the heart’s ability to pump
blood efficiently, often leading to inadequate mixing of oxygenated and deoxygenated
blood.

These congenital defects can lead to significant morbidity and mortality, particularly
in newborns, necessitating early diagnosis and intervention. The visual presentation of
normal heart and CHD is given in Fig. 1. In particular, fetal CHD has recently emerged as
the leading cause of mortality among all congenital disabilities. This increase in fetal CHD
mortality has made it the leading cause of infant mortality, placing increasing burdens on
families and societies alike. In China, infants diagnosed with CHD comprise up to 6%–8%
of all live newborn births. According to statistical reports, an estimated 150,000 infants with
CHD are born annually in China, almost 30% experiencing complications and exhibiting
a poor prognosis, making them currently untreatable with satisfactory results. Therefore,
early detection and screening for fetal CHD are of paramount importance.

Role of AI in CHD
Artificial intelligence (AI), particularly through the use of machine learning (ML) and deep
learning (DL) techniques, has shown tremendous potential to transform the landscape of
CHD diagnosis and treatment. AI systems can analyse vast amounts of complex medical
data, including imaging, genetic, and clinical records, to identify patterns and make
predictions that may be beyond human capabilities. This capability is particularly valuable
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Figure 1 Normal cardiac anatomy in children is shown and is contrasted with the anatomical varia-
tions observed in CHD.

Full-size DOI: 10.7717/peerjcs.2535/fig-1

in the context of CHD, where subtle anomalies in heart structure and function must be
detected with high precision.

The application of AI in CHD research has evolved rapidly over the past decade. Early
AI models focused on basic pattern recognition and statistical analysis, but recent advances
have introduced sophisticated neural networks capable of DL from data. These AI models
are now being used to improve imaging techniques, predict disease progression, and
assist in surgical planning and interventions. For instance, convolutional neural networks
(CNNs) have been used successfully to look at echocardiograms and find structural heart
defects. Recurrent neural networks (RNNs), on the other hand, are used to understand
time series data, like ECGs.

Despite these advances, the integration of AI into clinical practice for CHD is still in its
infancy. Challenges related to data quality, interpretability of AI models, and regulatory
hurdles must be addressed to fully realize the potential of AI to improve CHD outcomes.

Objectives of the survey
The primary objective of this survey is to provide a comprehensive review of the application
of AI in the diagnosis and treatment of CHD in the past 8 years. This survey aims to cover a
broad range of AI techniques used in CHD research, includingML, DL, and hybrid models.
Similarly, this article has focus on renowned research articles that have made significant
contributions to the field. Studies were selected based on their relevance, impact, and
novelty in applying AI to CHD.

The article is structured to first present the background and significance of CHD,
followed by an overview of AI techniques employed in CHD research. Subsequent sections
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will discuss the applications of these techniques in various aspects of CHD treatment,
identify key challenges and limitations, and explore future directions for research.

By synthesising the findings of a decade of research, this survey aims to highlight the
progress made, identify ongoing challenges, and propose future research directions to
improve the role of AI in combating CHD. The ultimate goal is to provide a valuable
resource for researchers, clinicians, and policy makers to understand the current state of
AI in CHD and to promote further advancements in this critical area of healthcare.

SURVEY METHODOLOGY
This article presents a summary of CHD using ML in general and DL in particular. This
work is the first to provide a thorough overview of the CHD using ML techniques, based
on our current understanding. The research article focuses on the work that has been done
for CHD recognition using ML in the last eight years (2016–2024). As we know, there
has been a shift from traditional ML to DL in recent years. Therefore, our work will also
try to focus more on the methods that are using DL. Furthermore, a comprehensive and
structured discussion will be provided for each topic, adhering to a systematic approach.
This is outlined in Fig. 2, which visually represents the organisation of our discussion.

The primary contributions offered by the proposed article are as follows: Firstly, the
article discusses all the sources of signals that physicians and medical practitioners use to
analyze CHD in newborn babies. Similarly, the article presents the importance of each
source, highlighting its contribution to the recognition of CHD. Secondly, the article uses
some standard databases (DBs) to evaluate any ML/DL model. All the DBs that are used
for CHD recognition are reported in the literature and discussed in this article. Third,
the application of AI for CHD recognition presents several significant challenges. The
article reports all these problems in detail. We also discuss some strategies for solving these
problems. Fourth, even though ML-based CHD recognition is not a well-explored area,
researchers have made good progress in the last couple of years. This article discusses and
reports on each of these methods. We also discuss the pros and cons of eachmethod. Lastly,
the discussion concludes with reports and methods for CHD recognition using ML/DL.
We also discuss potential avenues for researchers to explore this field in future work.

We followed a systematic selection of studies for this review article. We conducted
an extensive search on academic DBs such as IEEE Xplore, ACM Digital Library,
ScienceDirect, and Google Scholar. We use keywords such as ‘‘congential heart disease‘‘,
‘‘machine learning’’, ‘‘deep learning’’, ‘‘artificial intelligence’’, ‘‘Cardiac Imaging’’,
‘‘Echocardiography’’, and ‘‘Diagnosis and Prognosis of CHD’’. We restricted our searches
to articles published between 2016 and 2024. This help us to capture the most recent
developments in the field. We also performed forward and backward citation analysis
to identify further relevant articles that we may missed in the initial search results.
Initially, more than 450 results were obtained from the search. These results were then
evaluated for relevancy by comparing the titles and abstracts with the main subject of this
survey. Excluding duplications, a final set of extremely pertinent articles were chosen for
examination. Furthermore, the reference lists of these articles were thoroughly examined to
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Figure 2 A comprehensive overview of congenital heart disease is shown, with a systematic discussion
of each topic involved, presented in a step-by-step manner.

Full-size DOI: 10.7717/peerjcs.2535/fig-2

detect any supplementary sources that were pertinent to the topic. The chosen publications
were carefully examined to extract essential information regarding themethods. Ultimately,
the limits and areas of research that need further exploration were combined to provide a
well-rounded viewpoint.

In the propsed article, we applied rigorous exclusion and inclusion criteria. We included
studies if the articles met certian criteria. Some of the inclusion and exclusion rules were
as follow:

• We focused on articles where ML/DL was the central methodology.
• The proposed article explicitly addressed the application of ML and DL algorithms to
CHD recognition. We did not consider heart problems for aged people. We excluded
studies that focus on adult cardiovascular diseases.
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• We collected information about all validated DBs reported in the literature. None of
the DBs reported so far are synthetic in the literature.
• While including articles, we also selected some quantitative measures such as accuracy,
sensitivity, specificity, F1-score, or AUC.
• We included only peer-reviewed articles in our study. We excluded preprints not
subjected to peer review. We excluded review articles, editorials, and commentaries,
which did not present original research.
• We excluded all studies published in languages other than English.

CURRENT DIAGNOSTIC METHODS
This section discusses the various diagnostic techniques used by medical professionals to
analyse CHD. CHD is a common form of birth abnormalities and a significant contributor
to children’s illness and death (Zimmerman, 2020; Roth et al., 2018). Rapid and precise
identification of afflicted paediatric patients is critical for prompt treatment and successful
surgical outcomes (Tworetzky et al., 2001; Bonnet et al., 1999; Van Velzen, 2015; Morris,
2014). Diagnostic methods such as transthoracic echocardiography (TTE), X-rays, cardiac
magnetic resonance imaging (MRI), and dual-source CT exams are very popular, but have
complicated steps, take a long time, cost a lot and need to be performed by experienced
cardiologists (Corbett, 2022). Unfortunately, there is a widespread occurrence of delayed
diagnosis, even in instances that require urgent attention. This leads to a less ideal clinical
response, particularly in places with lower incomes. A study carried out in a low-income
country has shown that the delay rate can reach 85%.

Due to excellent ML models and the establishment of well-defined datasets for CHD,
the entry of AI-based methods into pediatric diagnostics is now possible. In this section,
we examine data sources that may help identify CHD. Medical professionals use most of
these sources, either individually or in combination for CHD recognition.

Fetal ultrasound
This is the most commonly used prenatal screening method, allowing visualization of the
structure and function of the fetal heart. Despite its widespread use, fetal ultrasound (US)
has limitations in resolution and may miss certain defects.

Themost widely used diagnostic technique for prenatal screening is the fetal USmethod,
which allows visualization of the structure and function of the fetal heart. Despite significant
advances in fetal US imaging technology, the prenatal detection rate for fetal CHD remains
notably inadequate, as evidenced by population-based clinic studies, primarily due to
several challenges (Pierpont et al., 2007; Chew et al., 2007). Firstly, fetal four-chamber (FC)
views often exhibit lower resolution, increased speckles, and artifacts, which presents
considerable obstacles for cardiologists in diagnosing CHD. In FC views, the physical
boundaries between the four chambers may not be clear or may not be present at all,
especially during the moments of opening the mitral valve, the tricuspid valve, and the
atrium. In such cases, the resemblance among the four chambers becomes remarkably high,
necessitating a heavy reliance on the cardiologist’s experience with chamber identification.
Lastly, variations in sonographer experience levels and the fetal position within the uterus
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can introduce inconsistency and lack of repeatability in acquiring US images, further
challenging cardiologists in fetal CHD diagnosis. Because of these big problems, a good
system for diagnosing CHD needs to be able to quickly pick up features that don’t change
based on location or situation and are specific to each person.

Fetal echocardiography
This is a specialized form of ultrasound that provides detailed images of the fetal heart.
Although highly effective, it is labour-intensive and requires specialized expertise, limiting
its availability and use. According to medical practitioners and reported research, this is
the most authentic signal for assessing CHD in a patient’s heart (Oh, 2007; Shamsham &
Mitchell, 2000; Kirkpatrick et al., 2007). However, the main issue with echocardiography
(EKG) machines is that they are not available everywhere. Furthermore, the proper
diagnosis of EKG signals requires expert knowledge. These experts are also not readily
available anywhere, especially in rural areas. Although an EKG is considered the most
reliable method for diagnosing CHD, it typically requires around 10 min to complete the
diagnosis. The new AI-based technologies have almost revolutionized modern medicine
when it comes to obtaining an EKG with great precision. Combining AI-based methods
with EKG signals can help create an efficient prediction system that does not require
extensive knowledge of the fetal EKG. Some methods that use this combination are listed
in Oliveira et al. (2021), Oliveira et al. (2018).

Pulse oximetry
It is a non-invasive method that measures oxygen saturation levels in the blood. It is often
used in conjunction with other screening techniques to identify potential CHD cases.
Although an EKG is the most reliable method for diagnosing CHD, it typically requires
more time and expert knowledge with the equipment for analysis. Alternatively, POX is
user-friendly and can assess findings in a short time frame of 2 to 3min. Figure 3 shows how
Pulse oximetry (POX) can be used to see the output of a pulse. Since its introduction and
establishment, the CHD screening method via POX has been progressively implemented in
clinical practice (Q-m et al., 2014). In addition, the use of POX as a supplement to current
standard practice is expected to be a cost-effective approach based on generally accepted
benchmarks (Roberts et al., 2012; Thangaratinam et al., 2012).

Newborns typically undergoPOX screeningwithin 24 to 48 h after birth as a non-invasive
and cost-effective technique to detect serious CHD. Despite its usefulness in identifying
serious CHD in neonates, this screening method cannot consistently identify all forms of
CHD. POX screening may overlook certain types of congenital cardiac disease because
they may not cause substantial alterations in oxygen saturation. The EKG, which is widely
considered the most reliable technique for detecting CHD, often requires approximately
10 min to complete and may not be practical for every infant, especially in areas with
limited resources. On the other hand, POX offers a convenient and efficient option, as it
only takes 2-3 min to examine the findings (Suvorov et al., 2023).

Khan et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2535 7/43

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2535


Figure 3 The operational mechanism of a pulse oximeter.
Full-size DOI: 10.7717/peerjcs.2535/fig-3

Chest X-rays
It is used to detect structural abnormalities in the heart and lungs. Chest radiographs can
provide initial information, but are often insufficient for a complete diagnosis of CHD.
There are some classic X-ray signs that can help with CHD recognition (a comparison can
be seen in Fig. 4. Some of the signs include a boot-shaped heart, a Smith sign, an egg on a
string, a gooseneck sign, a figure of three (coarctation of the aorta), and a box-shaped heart.
The good thing about chest radiographs is their easy acquisition process. It is simple and
readily available, allowing for a direct diagnostic approach to CHD recognition. We believe
that chest radiographs are not very helpful in CHD recognition; however, initial scanning
with a chest radiograph is the easiest method. Once we diagnose certain abnormalities, we
can refer patients for further investigation.

Electrocardiography
The electrocardiography (ECG) records the electrical activity of the heart and aids in
the detection of arrhythmias and other electrical abnormalities. Although valuable, ECG
interpretation requires significant expertise. ECG has become a widely adopted tool for
prenatal diagnosis, due to its inherent safety, cost effectiveness, non-invasiveness, and
ability to provide real-time imaging (Tworetzky et al., 2001). In particular, ECG stands out
for its effectiveness in assessing both the structure and function of the fetal heart, playing
a crucial role in both the diagnostic process and the ongoing treatment of fetal CHD;
Ultrasound imaging stands as an indispensable tool. Within the realm of prenatal imaging,
the four-chamber (FC) view of the fetal heart is of exceptional importance. This specific
perspective serves as the cornerstone of the diagnosis of fetal CHD and is widely used by
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Figure 4 Comparison of chest X-ray images of a healthy child and a child with CHD. For more in-
formation, visit https://www.radiologymasterclass.co.uk/gallery/chest/cardiac_disease/congenital_heart_
disease.

Full-size DOI: 10.7717/peerjcs.2535/fig-4

clinicians during prenatal evaluations. Using this primary ultrasound image, clinicians gain
unparalleled insight into the intricate developmental morphology of the fetal heart. This
direct visualisation allows meticulous examination of cardiac structures and dynamics,
enabling clinicians to detect anomalies early and devise customised treatment strategies.

Analysing fetal FC views to diagnose fetal CHD requires a profound understanding of the
fetal cardiac anatomical structures among cardiologists. However, accurate identification
of fetal heart disease is a knowledge-intensive endeavour due to the intricate nature of
the structures of the fetal heart, leading to a long learning curve. Consequently, training
cardiologists proficiently in the diagnosis of fetal CHD can be both costly and time
consuming.

Adult cardiology is in some sense, a well-studied and well-explored area by computer
vision and ML researchers. Some relevant articles can be studied in Dong et al. (2019a),
Acharya et al. (2019), Olanrewaju et al. (2021), Li et al. (2020), Jahmunah et al. (2024),
Cheng et al. (2024). Heart failure is a critical condition characterised by the inability of
the heart to adequately provide the body with enough oxygen and nutrients for optimal
functioning. Rapid identification and precise diagnosis of heart failure are crucial in
preventing the progression of the condition.

An ECG is a diagnostic procedure that captures the electrical activity and rhythm of the
heart, mainly used for the detection of heart failure (example, Fig. 5). The ECG detects
abnormalities in heart rhythm or electrical conduction and assesses the presence of previous
heart attacks, ischemia, and other diseases that can trigger heart failure. However, there are
instances where it becomes challenging and time-consuming to decipher the ECG signal,
even for a proficient cardiac specialist. ECG signals are also used for heart diagnosis in
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Figure 5 The ECG of a heart affected by CHD, followed by a detailed interpretation of the ECG output
results. The analysis will highlight key abnormalities and diagnostic indicators specific to CHD.

Full-size DOI: 10.7717/peerjcs.2535/fig-5

infants. Some of the methods that use ECG signals are discussed in detail in ‘Research
Gaps and Future Directions’. ML and DL-based methods are used in conjunction with
ECG signals. We argue that the ECG is a stable signal that can give enough information
about the heart abnormality. However, screening for every one is not possible with ECG.
Furthermore, there are some major issues with the acquisition of the ECG signal that are
not covered in this article.

Imaging sources
Alternative imaging modalities, such as computed tomography, computed tomography
angiography, and cardiac magnetic resonance imaging, can be used to identify CHD in
newborns. However, these methods are not the main imaging modalities for this purpose.
Magnetic resonance images of cardiac patients have also been reported as methods
that are often used for structural and functional evaluation of the heart (Yuan et al., 2021;
Kholmatova, Kharkova & Grjibovski, 2016;Ng et al., 2022). TheMRI acquisition technology
has grown over the years from some conventional methods such as cardiac gating to the
latest and most advanced methods of high-field strength magnets and ultra-fast pulse
sequences.

In the field ofMRI, the advancement and novelty of AI has allowed very short scan times.
By minimising motion artifacts due to the movement of patient, this also reduces errors.
Segmentation of cardiac chambers enhances visualization and aids in diagnosis. Currently,
medical professionals perform the majority of this segmentation process manually. If this
is shifted to AI-based methods, diagnosis will be faster and this will also reduce variations
between different practitioners (Kholmatova, Kharkova & Grjibovski, 2016).

Challenges in current diagnostics
Despite advances in diagnostic technologies, several challenges persist in the detection and
treatment of CHD:
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Resolution and accuracy: Prenatal imaging techniques like fetal US and EKG often suffer
from lower resolution and artifacts, making it difficult to obtain clear and accurate images
of the fetal heart.

Expertise requirement: Techniques such as fetal echocardiography and ECG require
specialized knowledge and experience, limiting their accessibility, especially in low-resource
settings.

Inconsistency and variability: The accuracy of CHD diagnosis can vary based on the
experience of the sonographer and the position of the fetus, leading to inconsistent results.

Resource limitations: In middle- and low-income countries, limited access to advanced
diagnostic tools and specialized medical personnel exacerbates the challenge of early CHD
detection and treatment.

Delayed diagnosis: Often, CHD is not detected until significant symptoms appear
postnatally, which can delay critical interventions and adversely affect outcomes.

Addressing these challenges through innovative approaches, such as the integration of
AI and ML into diagnostic processes, holds promise for improving early detection and
treatment of CHD.

AI TECHNIQUES FOR CHD DETECTION AND TREATMENT
AI, particularly through the use of DL andML techniques, has revolutionized the healthcare
sector, particularly in the detection and treatment of CHD(Liu et al., 2022;Tan et al., 2023).
AI systems can analyze vast amounts of complex medical data, including imaging, genetic,
and clinical records, to identify patterns and make predictions that may be beyond human
capabilities. This capability is particularly valuable in the context of CHD, where subtle
anomalies in heart structure and function must be detected with high precision. This
section provides an overview of various AI techniques used for the detection and treatment
of CHD, highlighting the advances and methodologies used.

The application of AI in CHD research has evolved rapidly over the past decade. Early
AI models focused on basic pattern recognition and statistical analysis, but recent advances
have introduced sophisticated neural networks capable of deep learning from data. Deep
learning (Bengio, Goodfellow & Courville, 2017), a subset of machine learning, refers to a
class of models based on artificial neural networks with many layers (often called deep
neural networks) that are designed to automatically learn complex patterns from large
datasets (Ullah et al., 2024). Unlike traditional machine learning methods that rely on
handcrafted features, deep learning models can extract high-level representations directly
from raw data, making them highly effective in tasks such as image recognition (He et
al., 2016), natural language processing (Deng, 2018), and time-series analysis (Chen et al.,
2023). These AI models are now being used to improve imaging techniques, predict disease
progression, and assist in surgical planning and interventions.

Recent research by Komatsu et al. (2021) proposed SONO, an architecture that uses
CNNs to discern cardiac abnormalities observed in fetal US videos. This method utilizes
timeline visualization to assess the probability of detection and compute anomaly scores.
The evaluation focuses primarily on cardiac structural anomalies, specifically heart and
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vessel anomalies, employs AUC-ROC analysis, and shows better performance relative
to established methodologies. Similarly, Gangadhar et al. (2023) explored the viability of
leveraging DL techniques, particularly artificial neural networks, for the prediction of early
stage coronary artery disease. The objective of the study is to improve cardiac diagnosis
and precautionary actions by effectively analyzing data patterns. In addition, (Gonsalves
et al., 2019) investigated the use of cardiac datasets to predict CHD through various ML
methods. Their study highlights the capacity of naive Bayes probabilistic algorithms to
improve the detection of CHD anomalies.

CNNs stand as a quintessential algorithm in DL. The use of CNNs in medical image
processing is widespread, due to its ability to learn high-level features with enhanced
distinguishability and robustness, thus effectively representing images. For example,
Kuruvilla & Gunavathi (2014) introduced simple feedforward and backpropagation CNNs
to classify lung cancer in CT datasets. Their approach achieved remarkable accuracy.
Similarly, Song et al. (2018) unveiled a sophisticated multitask cascade architecture of
CNNs (MTC-CNN) specifically tailored for the automated recognition and detection of
thyroid anomalies. Their innovative approach marks a significant advancement in image
analysis, promising a more efficient and accurate diagnosis of thyroid-related conditions.
In particular, CNNs have become indispensable tools in automating the diagnosis of the
prevailingCOVID-19 pandemic, asmentioned in researchwork byWu et al., (2021),Farooq
& Hafeez (2020), Zhou, Canu & Ruan (2020). This underscores the critical contribution of
CNNs in addressing the urgent need for efficient and accurate diagnostic solutions amidst
the global health crisis.

Furthermore, obtaining high-resolution fetal FC views holds paramount importance
not only for accurately estimating fetal abdominal circumference but also for effectively
diagnosing fetal deformities. This emphasizes the indispensable role of clear and detailed
FC views in comprehensive prenatal evaluations and early detection of potential fetal
abnormalities. Several previous studies have successfully obtained standard views of fetal
FC with essential anatomical structures through a thorough analysis using CNN (Wu
et al., 2017; Bridge, Ioannou & Noble, 2017; Dong et al., 2019b). Despite these advances,
diagnosing fetal CHD poses significant challenges. To address this, previous research
efforts have proposed diagnostic systems that aim to improve the diagnostic accuracy
of CHD from 65% to 85% (Rocha et al., 2013; Van Velzen et al., 2016; Gong et al., 2019).
However, these systems often encounter two notable drawbacks: first, they may exhibit
relatively lower accuracy, which can undermine their credibility in fetal CHD diagnosis;
second, their diagnostic processes often resemble a CNN’s ‘‘black box’’, insufficiently clear
explanations provided to cardiologists while supporting them inmedical diagnosis, thereby
hindering effective understanding and decision-making processes.

DATASETS FOR CHD RESEARCH
The performance of any ML-based method depends on the dataset used for experimental
validation and testing. In this part of the article, we present an overview of the datasets
introduced so far for CHD recognition using ML. In recent years, the CHD recognition
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Table 1 CHD databases reported in SOA.

S. No. Dataset Year Total
applicants

Data types Dataset
available?

1 ZCHSound (Liu et al., 2022) 2024 941 PCG Yes
2 CHDdECG (Chen et al., 2024) 2024 65,869 EKG No
3 DICOM (Gerke, Minssen & Cohen, 2020) 2024 828 X-rays Yes
4 PhysioNet (Garcia-Canadilla et al., 2020) 2024 33 ECG Yes
5 CMUD (Chen et al., 2024) 2022 475 PCG No
6 POX (Roberts et al., 2012) 2022 44,147 Saturation level No
7 UCI (Arooj et al., 2022) 2022 1,050 EKG Yes
8 HSS (Qiao et al., 2022) 2019 170 PCG Yes
9 Doppler TTe (Hrusca et al., 2016) 2018 1,932 ECG Yes
10 CXRAY (Seah et al., 2019) 2016 46,712 X-rays No
11 HVSMR 2016 12 EKG Yes
12 TCDD (Solvin et al., 2023) 2015 1,568 PCG Yes
13 Digiscope (Kavitha & Renumadhavi, 2022) 2017 29 PCG Yes

datasets using ML have evolved specifically in terms of complexity and diversity. Collecting
data sets for heart disease poses significant challenges due to a variety of subject constraints,
such as infants and toddlers’ age, their tendency to cry and breathe heavily, the presence
of external noise, and the inclusion of pregnant women. Researchers gather these data sets
using various methods, such as CT images, ECG recordings, TTEs, phonocardiograms
(PCGs), and ultrasound images and videos.

Understanding the complexity of CHD often depends on the quality and source of the
research data.When studying this topic, researchers typically opt for one of two approaches:
using publicly available datasets or collecting data straight a way from hospitals or medical
research centers. This section offers a comprehensive overviewof these datasets, highlighting
their evolving nature and the crucial role they play in advancing our understanding of CHD.

Researchers investigating the prediction and detection of CHD employ a variety of
methodologies, leveraging the capabilities of ML models in multiple modalities. Some
researchers (Boneva et al., 2001; Rosamond et al., 2007; Luo et al., 2017) focus on 3D
cardiac MRIs of the heart, taking advantage of the intricate details provided by this
advanced imaging technology. Others explore high-quality 2D EKG images, with detailed
visualizations for their predictive analyzes. Another cohort of researchers examines images
of singleton fetuses or screening videos of pregnant individuals to predict CHDs in unborn
infants. In addition, some researchers focus on ECG signal recordings or heart sounds,
using these physiological markers to develop predictive models. Lastly, other researchers
use classical tabular data with a range of characteristics related to cardiovascular health
to discern patterns and develop predictive algorithms. This multidisciplinary approach
emphasizes the versatility ofML in healthcare care, taking advantage of various data sources
to improve CHD prediction and early detection. All data sets and modalities used for the
recognition of CHD are listed in Table 1.
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ZCHSound (Liu et al., 2022)
Data collection was carried out at the Children’s Hospital of the School of Medicine of
Zhejiang University (ZU) and numerous affiliated institutions in China. The ZU Kids
Hospital is a well-known medical facility in the country that specializes in providing
comprehensive healthcare services to children. All participants who willingly chose to
participate in the study had explicit approval from their guardians/parents.

The heart sound data were acquired using an intelligent stethoscope (frequency: 8,000
Hz). Throughout the procedure, highly trained physicians specializing in specimen
collection and clinical evaluations performed the tasks to ensure the precision of the
data. The stethoscope was placed near the left border of the sternum, between the second
and third ribs, to perform cardiac auscultation.

For each participant, the duration of each recording of heart sounds varied between 11
and 30 s. Gathering cardiac sounds from infants and young people has specific challenges,
as the presence of crying, coughing, intestinal motility, and physical exertion could produce
additional noise. As a result, the heart sound data that is gathered may contain a substantial
quantity of low-quality data that is contaminated with noise. In order to streamline
the process of choosing suitable data for analysis, annotations are provided indicating
the quality of the data. Skilled physicians have examined the heart sound data that was
gathered.

According to the informationwe have, this is the largest andmost authentic databasewith
CHD PCG data. The heart sound data set includes 941 participants, each of whom has one
audio recording. Each audio recording is roughly 20 s long, with a total duration of 5 h. The
data set comprises 473 women and 468 men. The study includes 533 individuals without
heart disease as a control group. However, other individuals have received diagnoses for
ASD, PDA, PFO, and VSD. The number of cases for each disease is 119, 32, 70, and 187,
respectively. The candidate’s ages range from 2 days to 14 years.

The CirCor DigiScope dataset (TCDD) (Solvin et al., 2023)
This data set contains heart sound data collected from 2014 to 2015. The data set included
5,282 heart sounds recorded from 1,568 patients, with 787 males and 781 females. The
participants’ ages ranged from three days to thirty years. The sounds were recorded with
a Littmann 3,200 stethoscope for a duration of 30 s. Heart sound data are evaluated for
quality and murmurs. Two separate cardiac physiologists annotate the data to ensure
precision. The samples obtained were segmented with three automated algorithms. Then,
two cardiac physiologists independently assessed the segmentation findings and evaluated
the outcomes that were particular to each algorithm.

Heart sounds Shenzhen corpus (HSS) (Qiao et al., 2022)
The data set comprises heart sound data obtained from 170 participants. Heart sounds
were captured from four standard auscultation sites using a stethoscope and Bluetooth
4.0 technology. Each location was recorded for a duration of 30 s. The data were analyzed
by EKG, which used the area ratio of the mitral valve and the tricuspid valve to predict
regurgitation. The severity of regurgitation was classified as mild, moderate, or severe. The
heart sound data set is categorized into three groups, including severe, mild, and moderate.
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DigiScope2017 (Kavitha & Renumadhavi, 2022)
The heart sound data were obtained from a sample of 29 healthy youngsters, whose ages
ranged from 6 months to 17 years. Heart sounds were obtained at the Royal Portuguese
Hospital, with a recording time ranging from 2 to 20 s. The heart sounds were recorded
at a frequency of 4,000 Hz while the stethoscope was placed in the mitral position. A
cardiovascular physician manually identified the start and end times of S1 and S2 using
specialized software to analyze heart sound data.

Heart ventricles segmentation in MR (Wolterink et al., 2016)
Researchers from Boston Children’s Hospital and MIT worked together to collect the heart
ventricles segmentation in MR (HVSMR) data set. The HVSMR data set consists of 3D
CMR images captured during routine clinical practice. This data set is a valuable resource
for studying CHD, encompassing cases with a diverse range of cardiac abnormalities,
including those that have undergone interventions.

The imaging was performed using a 1.5T magnetic resonance imaging scanner,
employing a steady-state free precession pulse sequence in axial view. During image
acquisition, respiratory navigation and ECG techniques were employed to mitigate
motion artifacts caused by cardiac and respiratory activity. The data set includes manual
segmentations of the blood pool and ventricular myocardium, meticulously performed
and validated by trained raters and clinical experts.

Segmentation was performed primarily in a short-axis view and subsequently
transformed back to the original image space for analysis. Segmentation of the blood
pool includes different heart structures, such as the atria, ventricles, aorta, pulmonary
veins, and vena cavae. However, longer vessel segments are left out to make 3D modelling
of the heart surface better for planning surgery. This dataset, with openly available cropped
and short-axis images for each subject, serves as a critical resource to advance automated
segmentation algorithms and facilitate research in the field of CHD.

The HVSMR-2.0 dataset represents a significant contribution to the field of CHD
research, addressing the critical need for comprehensive CMR datasets with manual
segmentation masks. This data set includes 60 CMR scans accompanied by detailed
manual segmentation masks of the four cardiac chambers and four great vessels.

The images encompass a diverse spectrum of heart defects and surgical interventions,
facilitating the advancement of automated segmentation algorithms and the development
of innovative tools for surgical planning and simulation. In addition, the data set includes
masks that delineate the required and optional extents of the great vessels, enhancing
the validity of comparative analyses among algorithms. HVSMR-2.0 sets the stage for the
development of clinically relevant tools that can significantly impact the care and treatment
of patients with CHD.

Physionet (Garcia-Canadilla et al., 2020)
This data set is collected from pregnant women while recognizing the importance of
detecting CHD during pregnancy. This disease is also very complex and life-threatening, so
early detection is necessary. Data collected for research are in the form of electrocardiogram
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(ECG) signals from pregnant women. For publicly available data, the resource PhysioBank
is used.

The database collected data is both normal and abnormal women. The ECG signals are
collected over an extensive monitoring period of 20 h. The signal is recorded at a frequency
of 250 Hz. The research data set consists of two groups, both pregnant women. The first
group has 15 women, and the next has 18. The women in the first group have children
who have been diagnosed with CHD while the children in the second group are healthy. A
subset of pregnant women are identified within the first group who have severe CHD.

Doppler TTE images (Hrusca et al., 2016)
This data set included 2D and Doppler TTE scans of 1,932 children, collected at Beijing
Children’s Hospital (BCH), collected between 2018 and 2022. The initial data set consisted
of 1,080 children, 823 of whom were healthy controls, 209 had ASD, and 276 had VSD.
The second data set consisted of 624 children, with 432 healthy controls, 83 with ASDs,
and 109 with VSDs. These data sets were obtained from several sonographers at BCH.

Patients in the heart center provided all samples for this study. The TTE data from a
group of 1,932 people who did not have any structural problems with their hearts was used
as healthy control data after the assessment. Individuals diagnosed with ASD or VSD were
selected as positive instances. A minimum of two highly experienced senior sonographers,
a chief physician with over 15 years of experience and over 150 thousand US examinations,
or a final intraoperative diagnosis determined the status of all subjects. The data acquisition
equipment used in this study was the PHILIPS iE 33, iE Elite, and EPIQ 7C US machines
from Philips Electronics Nederland.

DICOM X-rays dataset (Gerke, Minssen & Cohen, 2020)
TheDICOMdata set comprises 828 chest radiograph files obtained from children, classified
into four groups: atrial septal defect (194), ventricular septal defect (210), patent ductus
arteriosus (216) and a control group consisting of individuals with typical characteristics
(208). A cardiac ultrasound report of the corresponding child, which confirms the
absence of additional cardiac or pulmonary disorders, follows each chest radiograph
that corresponds to a particular heart problem. Three experts in US imaging evaluated
cardiac US reports.

Cardiologists compiled data on paediatric patients with CHD who had hospitalizations
and underwent regular post-treatment evaluations, which included chest radiographs
and cardiac ultrasound. The time difference between the cardiac US report and the
chest radiograph is no more than 3 days. Three specialized cardiac ultrasound physicians
examined the cardiac ultrasound reports and confirmed the diagnosis of CHD after initially
storing chest radiograph images in DICOM format.

C-XRAY (Seah et al., 2019)
A total of 103,489 frontal chest radiographs were obtained from the author’s institution.
These radiographs were obtained between January 1, 2007, and December 31, 2016, and
belonged to 46,712 different patients. All radiographs recovered were included in the
study data set, without applying any exclusion criteria. The REASON Cohort Discovery
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Figure 6 Diagram illustrating the sequence of auscultation for heart sounds (Chen et al., 2024) .
Full-size DOI: 10.7717/peerjcs.2535/fig-6

Tool found 7,390 radiographs from 5,232 different patients with a corresponding BNP
value within 36 h of image capture. These radiographs make up the labelled data set. The
unlabelled data set consisted of 96,099 radiographs that did not have a corresponding BNP
result. The radiographs were resized to a resolution of 128×128 pixels.

Chongqing Medical University dataset (Chen et al., 2024)
The Chongqing Medical University dataset (CMUD) included 475 patients with CHD,
aged 4.2± 3.1 years, and 409 patients without structural heart abnormalities, aged 5.3± 2.9
years. A diagram illustrating the sequence of auscultation for heart sounds is shown in Fig.
6. These individuals were hospitalized in the Department of Cardiology at the Children’s
Hospital of the University of Chongqing, China. The data set did not include participants
over 14, those with inherited disorders, or those unable to complete the collection of heart
sounds. Children who were diagnosed with CHD through EKG were classified into the
CHD group, while children without CHD were classified into the control group. The CHD
group was separated into subgroups based on heart disease, including ASD, VSD, PDA,
and combined CHD. These subgroups represent the most frequently observed types of
CHD with a left-to-right shunt.

The collection of all heart sounds was performed using the 3M Littmann Electronic
Stethoscope. Information was collected from five specific regions of the body. These
locations are the mitral auscultation area, the pulmonary auscultation area, the aortic
auscultation area, the second aortic auscultation area, and the tricuspid auscultation area.
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Each region was measured for an average period of 10 s while the individual was lying
on their back, with a 2–3 s gap between neighbouring regions. For a duration of 60 s,
one recording consisted of entire heart sounds from five auscultation regions. All records
were transmitted by Bluetooth to the computer. Two cardiologist physicians with more
than a decade of clinical experience performed the hearing diagnosis. The age, gender,
height, weight, EKG diagnostics, and other pertinent characteristics of each participant
were documented.

POX dataset (Roberts et al., 2012)
The POX dataset is collected over a 2-year study period. The hospital recorded a total of
44,147 live births. Most newborns were born at full term, which means that they were
born between 37 and 40 weeks of gestation. The median birth weight of the newborns was
3,420 grams. A total of 498 infants with CHD were first identified, 27 were detected by
POX screening, and 471 by cardiac auscultation. This resulted in an overall screening rate
of 1.13% among the 44,147 live births. Of the total number of cases, 458 newborns were
verified using ECG, resulting in an overall diagnosis rate of 92% for CHDusing this imaging
technique. This includes 253 male infants and 245 female infants. The predominant forms
of CHD were patent ductus arteriosus (PDA), accounting for 34.3% of cases, atrial septal
defect (ASD), accounting for 20.5% of cases, ventricular septal defect (VSD), accounting
for 8.3% of cases, and combined problems accounting for 34.5% of cases.

The rare CHDs that were observed included coarctation of the aorta (COA), coronary
artery anomalies (CTA), partial anomalous pulmonary venous connection (PAPVC),
total anomalous pulmonary venous connection (TAPVC), transposition of the great
arteries (TGA), and fallot tetralogy (TOF). These conditions accounted for a total of
2.2% of the cases. Of all instances, 74% were attributed to mild CHD, while intermediate
CHD accounted for 15.3% and severe CHD accounted for 10.7%. Of the 458 confirmed
participants with CHD, the majority of 438 cases were recognized alone using cardiac
auscultation, while just 20 instances were identified by pulse oximetry (POX) screening
alone. However, no CHD was detected by auscultation and POX screening. The POX
screening method had a rather poor accuracy of 74.07% in terms of positive predictive
value (PPV). Using only auscultation yielded a high positive predictive value (PPV) and a
negative predictive value (NPV) of 92. 99% and 99. 95%, respectively. However, the use of
pulse oximetry (POX) further enhanced the screening performance, resulting in a 100%
NPV.

UCI dataset (Arooj et al., 2022)
The heart patient data set used in the proposed technique was obtained from the publicly
available repository of the University of California (UCI, Irvine CA), which can be
accessed on the Kaggle website (https://www.kaggle.com/datasets/redwankarimsony/heart-
diseasedata). The data set was accessed on June 15, 2022. The data set obtained through
Kaggle comprised data from 1,050 patients, covering 76 variables. Among the total of 76
qualities, only 14 were used in the prediction of heart disease. This is because the other
attributes have a lower impact on the disease compared to these attributes.
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Prior to categorization, the data set undergoes a process of cleaning and filtering to
remove missing or redundant variables. The data set was partitioned into training and
testing datasets, with 80% and 20% of the samples, respectively, chosen at random. Among
the 1,025 patient records, 820 were allocated for training purposes, while the remaining
205 samples were reserved for testing.

KEY CHALLENGES AND LIMITATIONS
The integration of ML and DL-based methods into pediatric cardiology presents a number
of challenges. In various areas of paediatric cardiology, these AI-based methods are
beneficial. Some of these methods include examination and clinical diagnosis, image
processing of foetal cardiology, risk stratification and prognosis, planning of cardiac
interventions, and lastly, precision cardiology. ML-based algorithms are promising tools
for diagnosing both critical and noncritical CHDs. However, we believe that significant
effort remains in both the ML and health sector domains. We are far from the point where
ML-based algorithms can diagnose a complex CHD with computers. There are numerous
reasons for this, but we aim to encapsulate these challenges in this section of our article.

Limited Access to high-quality data
The effectiveness of most AI systems is greatly influenced by the quality and volume of
training data. Furthermore, the scanned data exhibit considerable quality variations in
addition to their high cost. The diversity in data quality can hinder the development
of a universal network and present a substantial obstacle to the commercialisation of
AI-driven solutions. The datasets available to ML and DL experts are very limited for CHD
recognition. To train AI-based models, we need sufficient training and testing data. To
assess and, along with that, investigate inherent biases and overfitting, we need sufficient
data. In addition, the heterogeneity in cardiac anatomy and the variety of individual disease
entities make the incorporation of DL-based solutions into this field difficult. To address
this limitation, data from all sources were needed, which is not possible in the near future.
Researchers have not yet tried transfer learning as another strategy to address this issue.

Data acquisition problems
Currently, the healthcare industry is collecting data from multiple facilities and patients
in order to identify CHD. Using these data effectively, doctors can predict more advanced
treatment options and improve the whole healthcare delivery system for this disease.
Unfortunately, the duration of data collection for CHD is very short. Data collection is
necessary immediately after birth. With the passage of time, the disease becomes more
dangerous. Most people scrutinise their children immediately after birth. For proper
treatment, it is necessary to know the disease in the initial days.

Imaging in the paediatric population presents a significant challenge due to their smaller
size and unique movements during the image acquisition process. This also leads to higher
motion artefacts during the acquisition process. This situation leads to a technical challenge
that requires a comparatively higher spatial resolution, specifically in acquiring the MRI
signal (Kholmatova, Kharkova & Grjibovski, 2016). This scenario leads to a situation where
doctors and patients may hesitate to useML/DL to replace the currently available protocols.
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Data privacy concerns
When patient data is collected for research or industrial use, proper documentation is
performed. The applicants sign consent forms, confirming their consent to the use of
data for research or commercial purposes. This practice is also time-consuming, and most
participants hesitate to participate in such activities.

The field of AI is evolving, but there are also growing ethical concerns. Several
considerations include obtaining authorization for data access, ensuring data security
and privacy, addressing fairness and biases in algorithms, and promoting openness (Ng et
al., 2022). The ethical difficulties that can arise from the use of AI in the health industry are
not adequately addressed by existing laws and regulations. This will take time to develop
the proper regulations. However, we believe that AI is rapidly expanding, and with this
growth, we can explore laws that will ensure algorithmic transparency and data privacy.

Limitations in implementing ML
View classification is an essential step in developing a completely automated system.
Currently, there are other obstacles to building a perspective. For example, a classification
model is used to compare paediatric EKG. There are various changes in anatomy, size,
structure, and perspectives between the two (Gearhart et al., 2022). Mathematical models,
along with ML and AI technologies, show promise in predicting outcomes in the paediatric
cardiac ICU by analysing continuously recorded physiological information. As the success
of predictive systems relies on the accuracy of the results they predict, it is essential
to consistently create acceptable endpoints as this technology advances. Although ML
can provide estimates for the likelihood of certain outcomes, it cannot beat the clinical
judgement of physicians when it comes to choosing the most appropriate treatment course
based on clinical circumstances to prevent clinical decompensation (Sakai et al., 2022).

Annotated data scarcity
In order to assess a collection of CHD algorithms, it is necessary to have accurate and
reliable reference data. Ground truth data can be obtained in several ways, but the process of
collecting and annotating these data is challenging, resulting in the presence of inaccuracies
and noisy information inmost ground truth annotations. Potential errorsmay be attributed
to the incorrect behavior of participants during the acquisition process. The acquisition
sensor might also affect the quality of the data.

When dealing with complicated acquisition situations, a viable option to train and
assess a ML-based CHD framework is to utilize synthetic datasets. When using synthetic
datasets, the likelihood of mistakes is lower compared to those obtained in more realistic
scenarios. Unfortunately, the shape and geometry of the heart are very complex. Even
medical professionals are unable to understand the full development of the heart and its
abnormalities. Therefore, the literature lacks synthetic datasets for CHD recognition that
ML/DL algorithms can use.

The annotation of data by medical professionals and neonatologists is another problem.
Humans do most of the annotation and labelling. One of the oldest methods for generating
ground truth data is a practitioner assigning a label based on their personal perception of
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CHD. Labelling small data sets is easy with this strategy; however, it becomes inappropriate
for large databases since the probability of human error is high. Sometimes, the perspectives
of doctors differ, leading to confusion in labelling and annotation. In a nutshell, the creation
of ground-truth data is also a major problem to be explored. Due to this, very few databases
are reported in the literature.

RESEARCH GAPS AND FUTURE DIRECTIONS
CHD is not a mature research area, not only for computer vision and ML experts, but also
for medical practitioners (Mullen et al., 2021; Arooj et al., 2022; Q-m et al., 2014). The area
remains unexplored for many complex reasons. We discussed some possible reasons in
‘Key Challenges and Limitations’ as computer vision and ML experts.

Hospitals generate large amounts of data, encompassing clinical information, genomic
data, and data from electronic health records. The continual progress in big data is critical
in healthcare administration because it allows the analysis of large datasets to improve
illness treatment, determine appropriate therapeutic dosages, and make predictions (Khan,
Ahmad & Uddin, 2023). Healthcare produces a large amount of data, but most of it remains
untapped due to challenges in storing, maintaining, and analysing complex datasets that
often involve multidimensional and nonlinear relationships between variables.

The use of these datasets, particularly in rare conditions such as CHD, with AI predictive
models can be beneficial in identifying individuals who are at risk of having children
with CHD (Khan, Ahmad & Uddin, 2023;Moonesinghe et al., 2013;Min, Yu &Wang, 2019;
Olive & Owens, 2018). Table 2 presents a summary of all the ML and DL-based methods
for the recognition of CHD. Similarly, all data sets used for CHD recognition are also
reported in Table 1.

It is very challenging to organise all the approaches that use ML for CHD recognition
into a single taxonomy. The challenge lies not in the abundance of methods proposed by
ML experts, but in the diversity of data types used for problem analysis. For example, the
techniques used to analyse ECG signals differ from those used to examine MRI images.
Therefore, we are not adapting and do not follow a specific taxonomy. We will endeavour
to associate each model with its corresponding implementation. Establishing connections
between different methods for CHD recognition is a challenge. In the following paragraphs,
we provide a thorough analysis of these methods and scrutinise the scholarly articles that
specifically focus on them. In addition, we offer a thorough assessment of the advantages
and disadvantages associated with each method. Figure 7 summarizes how CHD has been
addressed by researchers.

Conventional ML methods
ConventionalML techniques have employed a variety ofmethods to address the recognition
and classification of CHD. Feature engineering in traditional ML (TML) methods is a more
intricate and labour-intensive process. TML comprises several discrete stages, including
pre-processing, feature extraction, feature selection, and classification.

The study by Huang et al. (2022) uses cardiac signals to categorise CHD. The authors
of this study have identified numerous diverse and comprehensive features. In a random
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Table 2 Year-wise development of CHD from 2016 to 2024.

Year Approaches Method Data type Database Metrics

Liu et al. (Chen et al., 2024) DLM PCG CHDdECG CHDacc , Sen., Spec.
Qiao et al. (Pachiyannan et al., 2024) DLM EKG PhysioNet CHDacc , Sen., Spec.
Cheng et al. (Hrusca et al., 2016) DLM ECG Doppler AUC, CHDacc

2024 Li et al. (Gerke, Minssen & Cohen, 2020) DLM X-rays DICOM CHDacc , ROC, and
CHDmat

Chen et al. (Q-m et al., 2014) DLM ECG CHDdECG CHDacc , Sen., Spec.
Cornforth et al. (Cornforth & Jelinek, 2016) DLM ECG PhysioNet CHDacc , Sen., Spec.
Prabu et al. (Garcia-Canadilla et al., 2020) DLM ECG PhysioNet Sen., Spec.
Xu et al. (Huang et al., 2022) TMLD PCG – CHDacc

2023 Ng et al. (Arafati et al., 2019) TMLD CT images PhysioNet Sen., Spec.
Solven et al. (Jahmunah et al., 2024) TMLD ECG – Sen., Spec.
Kavitha et al. (Jia et al., 2024) DLM ultra sound – CHDacc , RMSE, CHDmat

Gearhart et al. (Gearhart et al., 2022) DLM ECG – CHDmat

Van et al. (Lv et al., 2021) DLM EKG – CHDacc , Sen., Spec.
Xu et al. (Olive & Owens, 2018) DLM ECG – CHDacc , Sen., Spec.

2022 Chang et al. (Chang et al., 2022) Random-forest ECG unkown CHDmat

Arooj et al. (Arooj et al., 2022) CNNs EKG UCI CHDacc , CHDmat

Vayadande et al. (Vayadande et al., 2022) TML EKG UCI CHDacc , CHDmat

Botros et al.
(Botros, Mourad-Chehade & Laplanche, 2022)

CNNs and TML ECG Physionet CHDacc , Sen., Spec.

Van et al. (Thomford et al., 2020) CNNs PCG – CHDacc , Sen., Spec.
Hoodatasethoy et al. (Hoodbhoy et al., 2021) review paper – – –

2021 Morris et al. (Morris & Lopez, 2021) CNNs ECG – CHDacc

Eltrass et al. (Eltrass, Tayel & Ammar, 2021) CNNs ECG MIT, BIDMC CHDacc , Sen., Spec.
Hussain et al. (Hussain et al., 2021) TML ECG – ROC, AUC, Sen., Spec.
Thomfard et al. (Zhang et al., 2015) review article – – –
Ning et al. (Ning et al., 2020) CNNs, RCNNs ECG Data from internet Sen., Spec.
Chang et al. (Chang Junior et al., 2020) TML ECG – Sen., Spec.

2020 Jonnavithula et al. (Jonnavithula et al., 2020) TML EKG – CHDacc

Diller et al. (Diller et al., 2020) PG-GAN,U-Net MRI – CHDacc

Rani et al. (Rani & Masood, 2020) TML ECG Shanxi CHD CHDacc

Porumb et al. (Porumb et al., 2020) CNNs EKG MIT, Physionet CHDacc , Sen., Spec.
Garcia et al. (Garcia-Canadilla et al., 2020) review article – – –
Acharya et al. (Acharya et al., 2019) CNNs EKG PhysioBank CHDacc , Sen., Spec.
Bhurane et al. (Bhurane et al., 2019) TML, Wavelet ECG Physionet, BIDMC CHDacc , Sen., Spec.
Wang et al. (Wang et al., 2019) deep ensemble EKG BID-MC, MIT-BIH CHDacc

2019 Combi et al. (Combi & Pozzi, 2019) review article
Seah et al. (Seah et al., 2019) Neural netowrk X-rays CXRAY AUC, ROC
Isler et al. (Isler et al., 2019) LSTM, TML ECG Physionet CHDacc , Sen., Spec.
Liu et al. (Liu & Kim, 2018) LSTM ECG Physionet CHDacc

2018 Kaouter et al. (Masetic & Subasi, 2016) CNNs ECG MIT-BIH, BIDMC CHDacc

Li et al. (Kaouter et al., 2019) CNNs DDM Physionet CHDacc

(continued on next page)
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Table 2 (continued)

Year Approaches Method Data type Database Metrics

Li et al. (Li et al., 2017) BPNN ECG – CHDacc , Sen., Spec.
2017 Meystre et al. (Meystre et al., 2017) TML notes – CHDacc , Sen., Spec.

Masetic et al. (Masetic & Subasi, 2016) TML ECG Physionet Sen., Spec., ROC
Chen et al. (Li et al., 2018) Auto-encoder ECG Physionet CHDacc

2016 Luo et al. (Chen et al., 2017) TML ECG – CHDacc

Pace et al. (Pace et al., 2015) TML EKG – CHDacc

Figure 7 Overview of machine learning and deep learning techniques for CHD detection. This diagram
illustrates key methods such as Random Forest, Support Vector Machines, and Decision Trees within ML,
and Convolutional Neural Networks, LSTM, and Attention Mechanisms within DL, highlighting their re-
spective roles in CHD detection and classification.

Full-size DOI: 10.7717/peerjcs.2535/fig-7

forest, the authors used information from the frequency domain and wavelets to build
conventional classifiers. The authors of the article assert that state-of-the-art (SOA) datasets
have significantly improved outcomes. The authors conducted a cohort study from May
2020 to December 2021. The researchers simulated the anatomical structures of the hearts
and major blood vessels of 29 children with congenital heart defects. Among these 29
individuals, 26 were infants who were born at the clinic of St. Petersburg State Paediatric
Medical University. The patients were in two groups. Consents forms were taken from
the parents of the kids for this study. They were informed about this examination and
treatment for scientific research.

Some pre-processing and post-processing methods have been applied to the collected
data, which are listed in Chang (2019), Sreedhar et al. (2005), Jahmunah et al. (2024),
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respectively. Similarly, Ng et al. (Arafati et al., 2019) designed a framework for complex
CHD classification by leveraging retinal images. The authors of this article have introduced
a very innovative and distinctive feature extraction method. This work combines both
colour and texture-based features. Then, the authors apply conventional ML (support
vector machines) to the extracted features for risk classification. The authors compare the
results with previously implemented frameworks and report improvements.

Pachiyannan et al. (2024) proposed a residual learning-based system they called RLDS.
The method employs a residual learning strategy, which is designed for cases of fetal
CHD. The RLDS extracts distinctive features from images of EKG. The RLDS generates
attentionmaps, which assign importance scores to each feature. This helps in enhancing the
understanding of the diagnostic process for medical professionals. The authors reported
better accuracy on SOA dataset.

As stated by the authors in Bhurane et al. (2019), the ECG is not reliable for diagnosing
CHD for medical practitioners. Analysing the ECG signal to detect CHD requires manual
effort and the ability to identify subtle abnormalities in the heart’s electrical activity,
which demands expertise and skill. The authors suggested using ML to expedite and
enhance the identification of various ECG signal abnormalities associated with CHD. The
authors propose an automated method for diagnosing CHD by analysing ECG signals.
The proposed methodology was assessed using four separate collections of CHD (ECG
signals) datasets. The experiments were conducted using short (2 s) ECG segments. Five
unique attributes (fuzzy entropy, Renyi entropy, Higuchi’s fractal dimension, Kraskov
entropy, and energy) were obtained through the wavelet decomposition of ECG segments
using frequency-localized filter banks. They utilised a quadratic support vector machine
for both training and classification purposes. They conducted an evaluation using a 10-fold
cross-validation technique. Accuracy, Sensitivity (Sen), Specificity (Spec). were calculated
for all four datasets. Hospitals can implement the technique to streamline the diagnosis of
CHD. However, we contend that the current implementation is not feasible. Developing
this area to a more advanced stage will require a significant amount of time.

The study proposed inHussain et al. (2021) involved the ranking of multimodal features
collected from people with CHD and normal sinus rhythm. Using the values of empirical
receiver operating characteristics, the proposed method classified the features into five
groups, ranging from 1 to 5. Instead of utilising all multimodal features, authors employ
only the most highly ranked aspects to detect CHD and normal patients. The study
employed resilient ML methods such as decision tree, naïve Bayes, SVM (Gaussian, RBF,
and polynomial). The performance was assessed using sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV), accuracy, false positive rate, and
AUC-ROC.

The SVM-Gaussian model achieved the best detection performance in terms of accuracy
and AUC when using all multimodal features. The model had a sensitivity of 93.06%,
specificity of 81.82%, an accuracy of 88.79%, and an AUC of 0.95. The highest performance
was achieved using SVMGaussian with the top five ranked features, resulting in an accuracy
of 84.48% and anAUCof 0.86.When usingDecision Tree andNaïve Bayes with the top nine
ranked features, the accuracy and AUC remained the same at 84.48% and 0.88, respectively.
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Lastly, when using SVM polynomial with the last thirteen ranked features, the accuracy
dropped to 80.17% and the AUC decreased to 0.84. The results suggest that the proposed
method, which includes feature rating, can be highly beneficial for automatically detecting
patients with congestive heart failure. This approach can also greatly assist clinicians and
physicians in making informed decisions to reduce the death rate.

Deep learning based methods
The advancement of DL algorithms has greatly revolutionised computer vision techniques.
In the past, computer vision primarily relied on manually crafted features and methods to
interpret visual data, sometimes leading to limited performance in complex tasks. However,
the implementation of DL, particularly convolutional neural networks (CNNs), has entirely
revolutionised this field of research. DLmodels have the capability to independently acquire
hierarchical representations from raw data, hence improving their ability to effectively
capture intricate patterns and features. The implementation of this novel methodology has
significantly enhanced the accuracy, robustness, and scalability of computer vision systems
across various domains, such as object detection, image categorization, facial identification,
and medical imaging.

DL has greatly enhanced computer vision by leveraging enormous amounts of annotated
data and high-performance computational resources. This has led to unprecedented levels
of performance and generated potential for a wide range of innovative applications and
solutions. Similar to other methods, DL-based algorithms for CHD recognition have
also shown increased performance compared to previous approaches using SOA datasets.
Table 2 reveals that the majority of algorithms employed in current research are based on
DLM.

These DLM, specifically those based on CNNs, outperform conventional feature-based
methods. The shift from conventional ML to DL methods has mitigated many drawbacks
and serious limitations of traditional approaches. A DL-based method is proposed in Chen
et al. (2024). The proposed method, which the authors named CHDdECG, utilises DL to
diagnose CHD by extracting features from paediatric ECG and wavelet transformation
characteristics. The authors then combine these features with important human-concept
variables. CHDdECG was tested on a dataset of 65,869 instances and achieved a ROC-AUC
of 0.915 and a specificity of 0.881 on a real-world test set consisting of 12,000 patients. In
addition, the proposed algorithm was tested on two separate external datasets consisting of
7,137 and 8,121 instances; the overall ROC-AUC values were 0.917 and 0.907, respectively.
The specificities achieved were 0.937 and 0.907. CHDdECG outperformed cardiologists in
detecting CHD, as indicated by the comparison of their performance. The extracted ECG
features’ importance scores suggested that they have a greater impact on CHD detection
compared to human-concept features. This implies that CHDdECGmay possess knowledge
that goes beyond human understanding. The proposed work has a direct influence on the
identification of CHD using paediatric ECG. In this study, the authors make use of the
PCG signals. One of the main drawbacks of this method is that the proposed framework is
limited to one type of CHD. It also depends on the high-quality heart sound data.
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Early detection and diagnosis are crucial for the effective treatment of CHD, a complex
medical issue. This is because CHD can manifest in various ways and have mild symptoms
that are present from birth. The research article proposed in Pachiyannan et al. (2024)
presents a revolutionary healthcare application called the ML-based CHD Prediction
Method (ML-CHDPM). The purpose of this method is to overcome the difficulties and
speed up the accurate detection and categorization of CHD in pregnant women. The
ML-CHDPM model utilises cutting-edge ML techniques to classify cases of CHD, using
relevant clinical and demographic parameters. The model has been trained on a rich
dataset, enabling it to accurately grasp subtle patterns and correlations, leading to precise
predictions and classifications. The assessment of the model’s performance includes
sensitivity, specificity, accuracy, and the area under the receiver operating characteristic
curve. The findings highlight the ML-CHDPM’s exceptional performance in six key
metrics: accuracy, precision, recall, specificity, false positive rate, and false negative rate.
The approach attains an average accuracy rate of 94.28%, precision of 87.54%, recall
rate of 96.25%, specificity rate of 91.74%, false positive rate of 8.26%, and false negative
rate of 3.75%. This research represents a notable advancement in the field of ECG signal
processing, utilising sophisticated ML algorithms to enable the early identification and
diagnosis of medical conditions, with a specific focus on pregnant women.

The research undertaken by Cheng et al. (2024) includes examining the 2D and Doppler
TTEs of children from two different clinical groups at BCH. The data was gathered from
2018 to 2022. A DL framework was developed with the purpose of identifying cardiac
views, integrating data from various perspectives and modalities, visualising the high-risk
region, and estimating the probability of an individual being healthy or having an ASD
or a VSD. The DL model attained a mean accuracy of 0.989 for view classification. The
CHD screening approach employs both 2D and Doppler TTEs, which capture 5 distinct
perspectives. The model attained a mean AUC of 0.996 and an accuracy of 0.994 when
evaluated within the same centre. When evaluated in several centres, the model had a mean
AUC of 0.990 and an accuracy of 0.993.

The model achieved a mean accuracy of 0.991 and 0.986 for within-centre and cross-
centre evaluation, respectively, in classifying healthy, ASD, and VSD. The DL models
that combine many modalities and scanning viewpoints achieved better performance,
approaching that of professional sonographers. By incorporating various perspectives and
methods of transthoracic EKG TTEs into the model, it becomes possible to accurately
identify children with CHD in a way that does not require invasive procedures. This
suggests that there is potential to improve the performance of CHD detection and simplify
the screening process.

According to the study in Tan et al. (2023), an AI-driven CHD diagnosis network
called CHDNet is created. It is a binary classification model that looks at EKG videos to
decide if they show heart problems or not. According to the authors, the CHDNets have
demonstrated comparable or superior performance to medical specialists. The authors
suggest two approaches: Bayesian inference (BI) and dynamic neuronal feedatasetack. These
methods are employed to precisely evaluate and improve the diagnostic dependability of
AI. The first approach enables the neural network to generate a measure of its dependability
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rather than a solitary prediction result. On the other hand, the latter approach refers to
a computational neural feedforward cell, which allows the neural network to transmit
information from the output layer to the shallow levels. This allows the neural network to
selectively stimulate certain neurons. To evaluate the effectiveness of these two techniques,
the authors provided training on 4,151 EKG signals that have three CHDs. The trained
CHDNets were assessed using an internal test set including 1,037 EKG movies and an
external set of 692 videos gathered from various cardiovascular imaging devices. Each EKG
film is linked to a distinct patient. This study demonstrates the impact of BI on various
neural network structures and quantifies the significant disparity in performance between
internal and external test sets.

There are thirty-five different types of CHD that involve various abnormalities in the
heart, such as defective, incomplete, or missing sections of the heart. Likewise, there are
valves that allow leakage and openings in the heart chamber’s partitions. Luo et al. (2017)
proposed a novel DL model called the Cardiac Deep Learning Model (CDLM) that can
efficiently and accurately identify this anomaly in its early stages using CT-scanned images.
The authors employ a segmentation model to divide the four chambers of the heart,
followed by the blood pool stage. To extract connection data and determine the categories
of all the boats, the authors use a graph-matching technique. A publicly accessible dataset
consisting of 68 CT images of the heart has been used for experimental work. According
to the authors, the proposed strategy yielded superior outcomes in comparison to the
previously published results.

A recent publication on CHD recognition using DL is proposed in Garcia-Canadilla
et al. (2020). This article presents an ML-based CHD recognition method called ML-
CHDPM. This method investigated the integration of long-short-term memory (LSTM)
and specific attention mechanisms (AM). This work also introduces a method where CNN,
Bi-directional LSTM, andAMare combined.With this strategy, improvements in the results
have been noticed. The method uses the ECG signals obtained from pregnant women. The
ML-CHDPM is trained on a comprehensive dataset consisting of 33 applicants. The first
15 are those mothers who have an abnormal kid in the feuoutus and then the next 18 are
normal. The first 15 patient group are again classified into CHD and severe CHD patients.
The proposed model captures some good patterns and relationships in the data, which
resulted in precise classification. The model has been evaluated with sensitivity, accuracy,
specificity, and area under the receiver operating characteristic curve. According to the
authors, previously reported results have been improved with the proposed model.

Jia et al., (2024) introduced an approach they calledmultilayer deep detection perception
(DLDDP). The article’s authors used ultrasonic images for their analysis. Both healthy and
CHD patients were considered in the training and testing phases. The model extracts
features through a multilayer deep learning framework with multiple perceptron layers.
The authors claim excellent performance with the proposed model on the SOA dataset.
The authors reported their results in root means square error (RMSE).

DL based methods are not new to ML-based applications, but we notice that for CHD
recognition, these methods are new. The use of these methods has been sporadic so far. We
still need to evaluate their complete potential for CHD recognition. Our research focusses
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on the latest advancements in employing AI for CHD recognition over the past eight years.
The following paragraphs present a compilation of observations that emerged from this
study:

• Datasets problems: The lack of public datasets is a major barrier to exploring CHD
classification usingML. Very few datasets are available for CHD recognition, with limited
data. Most of these datasets are not good for DL based methods, as the data required for
DL is too much. Table 1 provides details about the datasets reported so far. The reported
datasets are for all kinds of data (X-rays, POX, EKG, ECG, etc.). Collecting these datasets
within the first few days of birth is rare. Conversely, early recognition of CHD is crucial.
One of themain reasons for the scarcity of datasets is the difficulty of acquiring them. The
time available for researchers to obtain and collect data is very short. People normally
hesitate to expose their kids to the equipment and rays. The other reasons are privacy
and ethical concerns. It is not easy to make the data available for research without proper
written consent from the parents and guardians. Table 1 shows that very few datasets are
available for free download. Most DL algorithms require a significant amount of data
for training and testing. While the number of CHD datasets has grown over time, only a
small number of them are currently suitable for implementing a DL framework. Hence,
it is essential to establish an initial measure by creating a comprehensive dataset that
encompasses all the different aspects, such as session duration, ethnicity, age, gender, and
many other complex parameters. However, we have noticed some gradual improvement
in the quality of ground truth data over the last couple of years.

In the seminal work on CHD recognition, errors were present in the ground truth
data. The manual process is one possible cause of these errors. We contend that the
creation of ground truth data may not be a forefront research field, but it remains just as
crucial as any suggested solution for computer vision applications. Accurate verification
and assessment of any algorithm is impossible without the prior preparation of ground
truth data. Improved analysis can only be achievedwithmore accurate ground truth data.
The data’s accuracy and preparation are dependent on the specific task at hand. In the
context of 3D image reconstruction, it is crucial to precisely identify the characteristics
of the ground truth data for every task. Generating accurate data for certain tasks, such
as gender, ethnicity, and expression classification, is quite straightforward. Humans or
machines can either annotate or automate the labeling procedure. Generating accurate
reference data for CHD might be challenging. Previously, a human performed manual
annotation to generate ground truth. In this procedure, a person assigns a precise label.
Generating accurate data with this approach is simple for smaller databases; however,
as the size of the databases grows, it becomes a laborious and time-consuming process.
Furthermore, these methods are more prone to human mistakes. There have been more
than 35 types of CHD introduced so far. Classification and recognition of 35 CHDs is
not easy for medical practitioners and neonatologists. This is also a possible reason why
most of the ground truth data contains errors.
• Limitations of existing feature extraction: Limitations of existing feature extraction
methods are also a problem computer vision and ML experts are facing when addressing
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CHD with conventional ML. The activities of pre-processing and feature extraction
are crucial in the development of an ML algorithm. The choice of the best appropriate
technique for pre-processing is contingent upon the characteristics of the dataset.
Out of various strategies, the one that is most appropriate for a particular acquisition
typically fulfils the intended objective. The methods reported so far across various
modules exhibit a wide range of variation. We have noticed comparable observations
for several feature extraction strategies. The establishment and implementation of
standardised techniques for reporting remain unresolved and unfinished. One possible
reason is the diversity of data for CHD recognition. For example, a method that works
for images will, of course, not be suitable for audio or tabular data.
• The classification module presents challenges: The detection and diagnosis of CHD
have been a prominent focus of research for an extended period of time. Researchers
have obtained highly satisfactory results despite using a limited amount of data for both
training and testing. Researchers in this field are investigating numerous classifiers. The
study found that backpropagation neural networks, SVM, and discriminant analysis
(specifically linear) outperformed other methods. Afterwards, researchers employed
Naive Bayes, random forest, K-nearest neighbour, and multilayer perceptron. However,
the introduction of optimised deep neural networks has significantly enhanced the
most advanced outcomes. Enhanced use of deep CNNs can optimise outcomes for large
datasets.
• Limitations of available systems: We argue that a system’s performance is highly
dependent on the quality of its training data. In CHD recognition, it is the training
data and certain extracted features, that significantly affect the performance of a system.
High-quality data training enhances the performance of a system. However, to perform
accurately, most existing systems must meet a specific set of requirements.
If the system fails to meet some of these constraints, it may produce inaccurate
results, which could ultimately lead to incorrect disease detection. For instance,
overfitting is a common issue with most DL-based methods, especially conventional
ML methods. Researchers need to consider designing adaptive systems with more
flexible requirements. Additionally, adapting some generalised methods to work in
heterogeneous environments is crucial. To improve efficiency, in-depth knowledge of
the methods and proper use of the tools are also required.
• Evaluationmetrics: We can use various metrics to evaluate and compare different
models for CHD recognition. Four terminologies provide the basis for these
measurements:

F1= 2 ·
Precision ·Recall
Precision+Recall

. (1)

1. The number of correctly detected infected samples is known as true-positive (TP).
2. True-negative (TN) refers to correctly identified unhealthy data samples.
3. Similarly, we refer to false-positives (FPs) as instances where we mistakenly label

healthy samples as infectious ones.
4. Lastly, an incorrect classification of infected samples as healthy is known as a

false-negative (FN).
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CHD accuracy is defined as the proportion of correct classifications (TP+FP) to the
total number of classifications (TP+FP+TN +FN ). Precision is a measure of how
accurately infected samples are identified. We calculate it by dividing the number of
correctly detected infected samples by the total number of samples identified as infected
(the sum of TP and FP). In a similar way, recall is defined as the ratio of TP to the total
number of infected samples, which is the sumofTP andFNas given in theTable 3. Finally,
the F-measure is a statistical metric that calculates the harmonic mean of precision and
recall as show in the Eq. (1). Based on these terms, some further methodologies are
defined, such as accuracy (CHD_acc), sensitivity, ROC, and specificity. Different terms
are used, as can be seen from Table 2 by different authors.
• Research methods progress and comparison: CHD recognition and classification
using ML and DL is an active area of research. However, we must comment here that it
is not a mature research area specifically for ML experts. The number of articles reported
on the topic is not excessive. Researchers have used very limited methods to explore this
topic. Table 2 reports the performance results for every method in the last eight years.
Table 2 presents a concise overview of the CHD recognition research conducted between
2016 and 2024. The data shown in Table 2 clearly demonstrates a gradual improvement.
Upon examining the results in Table 2, it is evident that the performance for CHD
recognition differs between classic ML approaches and recently developed DL methods.
Based on the data from (Cornforth & Jelinek, 2016; Chang et al., 2022; Pace et al., 2015;
Chessa et al., 2022; Hoodbhoy et al., 2021; Morris & Lopez, 2021), it is evident that DL
modelling methods outperform standard ML-based methods.

Furthermore, in certain instances, systems that rely on influence demonstrate superior
performance compared tomethods based on DL. Hence, we assert that there is a pressing
need for a more comprehensive comprehension of the DL algorithm techniques and
their applications. DL algorithms demonstrate significantly enhanced outcomes for
difficult databases, such as (Chen et al., 2024; Pachiyannan et al., 2024). Nevertheless,
DL has exhibited significantly superior performance when applied to the identical set
of datasets. Table 2 demonstrates a varied response in CHD recognition when it comes
to the performance of classic ML techniques. Hybrid models demonstrate significantly
improved outcomes, as evidenced by the data presented in Table 2.
• Knowledge transfer (KT) and data augmentation:Weanticipate that CHD recognition
and classification are shifting towards novel DL methods in search of emerging trends
in computer vision. DL approaches encounter training difficulties due to limited
ground truth data. Accurate knowledge transfer (KT) is a potential solution to this issue
(Hoffman et al., 2014). One recommendation is to explore options such as self-directed
learning and supervised learning (Zhou, 2018). Another potential area for improvement
includes the implementation of data augmentation techniques (Wang et al., 2015) and
the utilisation of foveated architectural methodologies (Karpathy et al., 2014). In DL
architectures, data augmentation helps to mitigate the issue of limited data.

Furthermore, we would like to mention that heterogeneous domain adoption is a
relatively underexplored area for knowledge transfer in DL. KT is highly effective in
transferring knowledge from the training phase to the testing phase, especially when
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Table 3 Confusionmatrix.

Predicted

Positive Negative

Actual positive TP FN
Actual negative FP TN

qualities exhibit some degree of variation. This significantly reduces the amount of work
required to label the training data. Recent advancements in deep learning techniques
indicate a need for further exploration of concepts such as temporal pooling, LSTM
networks, optical flow frames, and 3D convolution in the analysis of CHDdata. Although
academics are already investigating some of the strategies indicated above, further study
is necessary to enhance the performance of these activities for CHD recognition.

Healthcare challenges in MLICs
Healthcare Challenges in middle- and low-income countries MLICs often face significant
barriers to effective healthcare delivery, including limited financial resources, inadequate
infrastructure, and a shortage of skilled healthcare professionals. These factors contribute
to delayed diagnosis and treatment, especially for chronic conditions like congenital
heart disease (CHD). Machine learning has the potential to bridge some of these gaps by
providing scalable, cost-effective diagnostic tools.
1. Challenges specific to MLICs:

• Data availability and quality: In many MLICs, healthcare data is scarce, poorly
documented, or fragmented across different platforms. The lack of standardized,
high-quality medical datasets makes it challenging to develop and train accurate ML
models.
• Technological infrastructure: Many healthcare facilities lack the technological
infrastructure needed to deploy advanced ML-based systems, including reliable
internet access, modern diagnostic equipment, and sufficient computational
resources.
• Limited ML expertise: A shortage of trained data scientists and ML practitioners
in MLICs makes it difficult to locally develop and implement machine learning
solutions. Reliance on external expertise can slow the adoption of ML in healthcare.
• Healthcare disparities: ML systems trained on data from high-income countries may
not be generalizable to MLICs, where the distribution of diseases, socioeconomic
factors, and healthcare practices are different. This can lead to biased or inaccurate
predictions in these regions.

2. Applications of ML inMLICs healthcare systems: Despite the challenges, ML has
demonstrated its potential to transform healthcare in resource-constrained settings.
Several successful ML applications can serve as a foundation for CHD diagnosis in
MLICs:
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• ML-based diagnostic tools can be integrated into telemedicine platforms to provide
real-time, remote consultations. This is especially valuable in rural or underserved
areas where access to specialized cardiologists is limited.
• Automated image analysis: ML algorithms, such as convolutional neural networks
(CNNs), can analyze medical images (e.g., echocardiograms or X-rays) to detect
heart abnormalities. In regions where radiologists or cardiologists are scarce, these
tools can assist non-specialist healthcare workers in making accurate diagnoses.
• Predictive analytics: ML models can analyze patient records and risk factors to
predict the likelihood of CHD, enabling earlier interventions. These tools can also
help prioritize high-risk patients for treatment in overburdened healthcare systems.
• Mobile health (mHealth) applications: Mobile phone-based ML applications can
be used to collect and analyze patient data remotely, facilitating early diagnosis and
monitoring of CHD patients without the need for frequent hospital visits. Mobile
health solutions are particularly effective in MLICs, where mobile phone penetration
is high, even in remote areas.

3. Ethical implications and risks:WhileML can improve healthcare access and outcomes
in MLICs, there are several ethical concerns that must be addressed:

• Data privacy:Many MLICs lack robust data protection laws, and the collection and
use of sensitive health data by ML systems could raise privacy concerns. Ensuring
patient consent and protecting data from misuse is critical.
• Algorithmic bias: If ML models are trained on data from high-income countries or
specific ethnic groups, they may not perform well in MLIC populations, potentially
leading to misdiagnoses or unequal access to care.
• Human oversight: While ML can assist in decision-making, it is important to
ensure that healthcare professionals remain involved in the diagnostic process to
avoid over-reliance on algorithms, especially in critical areas like CHD diagnosis.

CONCLUSION
The integration of AI into the field of CHD research and treatment has demonstrated
substantial progress and potential over the last decade. This survey has highlighted the
various AI techniques applied in CHD, the significant advancements made, and the impact
these technologies have had on improving the diagnosis, prognosis, and treatment of CHD.

Summary of key findings
AI, particularly ML and DL, has shown remarkable effectiveness in analyzing complex
medical data. We believe that the next revolution in the medical sector is the incorporation
of AI in healthcare. In addition to easing the workload of physicians, AI provides new
directions for researchers in the fields of AI and ML. Pediatric cardiology, with its demand
for high cognitive ability and interpretive skills, is particularly well-suited for AI integration.
AI has been effectively incorporated into various aspects of pediatric cardiology, including
clinical examination, image analysis, diagnosis, prognosis, risk evaluation, precision
medicine, and treatment. The emergence of AI has enhanced accuracy and precision in
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the medical field. However, it is important to note that AI in medicine is still evolving and
faces various challenges and constraints. Despite these obstacles, we confidently believe
that AI, at its current rate of progress, will continue to improve and simplify methods in
pediatric cardiology.

This article provides a comprehensive analysis of methods used for identifying CHD,
along with a compilation of publicly accessible datasets. We investigated different aspects
of existing solutions for CHD recognition with ML. First, we reviewed state-of-the-art
(SOA) methods based on simple and hand-crafted representations. We then moved on to
recently introduced DL frameworks. Additionally, we conducted a thorough evaluation
of the performance of the SOA methods reported so far. Ultimately, we have reported
numerous unresolved issues in the recognition of CHD. Specifically, we anticipate more
assessments of the recently introduced DL algorithms on the most challenging datasets. We
hope that this overview study will serve as a catalyst for the exploration of novel research
avenues in this field and advance methodologies by providing a comprehensive list of
datasets, methods, and algorithms.

Final thoughts on the impact of AI in combating CHD
The future of AI in CHD research and treatment is promising. Emerging technologies such
as federated learning and edge AI offer new possibilities for handling sensitive medical data
and enabling real-time analysis. Integrating AI with other advanced technologies, such as
robotics and the Internet of Things (IoT), can further enhance CHD care by providing
precise surgical assistance and continuous health monitoring.

Multidisciplinary collaborations will be key to driving innovation in this field. Bringing
together AI researchers, clinicians, bioinformaticians, and industry partners will foster the
development of clinically relevant AI solutions that address real-world challenges. These
collaborations will help bridge the gap between technological advancements and practical
applications, ensuring that AI tools are designed with patient outcomes in mind.

Ultimately, AI holds the potential to revolutionize CHD care by moving towards
personalized medicine. Using patient-specific data, AI can tailor treatment plans to
individual needs, improving efficacy and outcomes. Predictive models can identify which
patients are most likely to benefit from specific treatments, reducing trial-and-error
approaches, and enhancing the precision of medical interventions.

In conclusion, while significant progress has been made, the journey toward fully
integratingAI intoCHDcare is ongoing. Continued research, innovation, and collaboration
are essential to unlock the full potential of AI in combating congenital heart disease. By
addressing current challenges and embracing future opportunities, AI can transform the
care of CHD, improving the lives of countless patients around the world.
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