
Submitted 20 August 2024
Accepted 29 October 2024
Published 3 December 2024

Corresponding authors
Saad Alahmari,
Saad.alahmari@nbu.edu.sa
Zahid Ullah, zahid.ullah@polimi.it

Academic editor
Massimiliano Fasi

Additional Information and
Declarations can be found on
page 21

DOI 10.7717/peerj-cs.2531

Copyright
2024 Iqbal et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Enhancing task execution: a dual-layer
approach with multi-queue adaptive
priority scheduling
Mansoor Iqbal1, Muhammad Umar Shafiq2, Shouzab Khan2, Obaidullah2,
Saad Alahmari3 and Zahid Ullah4

1Department of Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus
2College of Arts and Sciences, University of Alabama - Birmingham, Birmingham, Alabama, United
States of America

3Department of Computer Science, Northern Border University, Arar, Saudi Arabia
4Dipartimento di Elettronica, Informazione e Bioingeneria, Politecnico di Milano, Milan, Italy

ABSTRACT
Efficient task execution is critical to optimize the usage of computing resources in
process scheduling. Various task scheduling algorithms ensure optimized and efficient
use of computing resources. This article introduces an innovative dual-layer scheduling
algorithm, Multi-Queue Adaptive Priority Scheduling (MQAPS), for task execution.
MQAPS features a dual-layer hierarchy with a ready queue (RQ) and a secondary
queue (SQ). New tasks enter the RQ, where they are prioritized, while the SQ contains
tasks that have already used computing resources at least once, with priorities below
a predefined threshold. The algorithm dynamically calculates the time slice based on
process priorities to ensure efficient CPU utilization. In the RQ, the task’s priority
level defines its prioritization, which ensures that important jobs are completed on
time compared to other conventional methods where priority is fixed or no priority
parameter is defined, resulting in starvation in low-priority jobs. The simulation
results show that MQAPS better utilizes CPU resources and time than traditional
round-robin (RR) and multi-level scheduling. The MQAPS showcases a promising
scheduling technique ensuring a balanced framework for dynamic adjustment of time
quantum and priority. The MQAPS algorithm demonstrated optimization, fairness,
and efficiency in job scheduling.

Subjects Algorithms and Analysis of Algorithms, Operating Systems, Software Engineering
Keywords Job prioritization, Multi-queue threshold, Adjustable time quantum processing,
Dynamic priority scheduling, Time-sensitive systems

INTRODUCTION
Process scheduling is considered to be an integral part of operating systems and plays a
pertinent role in computer systems to execute tasks and processes in an ordered fashion.
The process is an instance of a program that requires system resources for execution. In
the event of a new process creation, the operating system allocates system resources, and
the scheduler adds them to a ready queue. Therefore, the scheduling algorithm defines the
execution order of the process and executes the process. In this regard, various scheduling
algorithms are discussed in the literature to ensure the timely execution of all assigned

How to cite this article Iqbal M, Shafiq MU, Khan S, Obaidullah, Alahmari S, Ullah Z. 2024. Enhancing task execution: a dual-layer ap-
proach with multi-queue adaptive priority scheduling. PeerJ Comput. Sci. 10:e2531 http://doi.org/10.7717/peerj-cs.2531

https://peerj.com/computer-science
mailto:Saad.alahmari@nbu.edu.sa
mailto:zahid.ullah@polimi.it
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2531
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.2531


processes. Therefore, this article presents an innovative scheduling algorithm,Multi-Queue
Adaptive Priority Scheduling (MQAPS), that utilizes the Round Robin (RR) with Adaptive
Priority Scheduling (RRAPS) (Iqbal et al., 2023) scheduling method. The detailed working
flow of the RRAPS algorithm is provided in Iqbal et al. (2023).

MQAPS incorporates a multiple-tiered structure, such as a ready queue (RQ) where
tasks arrive initially and there is a further secondary queue (SQ) excluded or removed
to supplementary SQ where the tasks experienced execution cycles and their priority has
dropped below a given threshold, implemented so that algorithms may increase adaptation
by dynamically altering time slices according to task execution and priorities thus avoiding
starvation of resources. MQAPS speeds up the completion of high-priority jobs by biasing
them, such that they are given priority for execution. Per task execution timings and
priorities, the MQAPS changes dynamically per time quantum (TQ) + Priority. Dynamic
TQ Scheduling is a twist of the classic RR approach, where it gives to each activity a
quantum regarding its behavior.

The multi-queue (Shafi et al., 2020; Zhang et al., 2023; Chen & Jia, 2022) applied several
traditional scheduling methods in separate queues. Algorithms such as first-come, first-
served, shortest job first, RR, and priority scheduling (Bibu & Nwankwo, 2019). The
MQAPS provides a two-level algorithmwith great precision for objectives such as efficiency,
fairness, and high priority in the RR scheduling. To implement an MQAPS, the target is
to reduce system overhead and execution time of tasks as well. You do this by carefully
planning your task scheduling and resource allocations without adding any additional
complexity.We further strengthen the argument forMQAPS by showing through extensive
testing and analysis that it canmaintain minimal system overhead under varying workloads
and conditions. Based on selected tasks, the performance of MQAPS and the results are
compared with RR scheduling. Since it demonstrates substantial improvements in both
execution and resource consumption, a valid way to execute tasks could be MQAPS.
MQAPS’s unique way of modifying priorities and time quantum plays a substantial role
in efficient recourse utilization and achieves fairness (fair allocation of CPU time among
tasks) as compared to RR conventionalmethods and contributes significantly to the existing
literature on schedulingmethods without explicitly referencing the RRAPS algorithm (Iqbal
et al., 2023).

To address the issue of starvation and ensure fairness, both the methods i.e., RRAPS
and MQAPS share a fundamental methodology for process scheduling by adjusting time
quantum (TQ) and process priorities dynamically. In both methods, resource allocation
is optimized by adjusting TQ, which is calculated based on the mean burst time of all the
processes in the queue. Additionally, they both reinsert processes that do not complete
within their assigned TQ back into a queue with adjusted priorities, ensuring that processes
continue to progress toward completion. This adaptive priority management is central
to both RRAPS and MQAPS, as it balances the need for efficiency with the necessity
of preventing any single process from monopolizing CPU time. Despite these shared
principles, MQAPS extends the concept by introducing a dual-queue structure, which
further refines the scheduling process and resource management.

Iqbal et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2531 2/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2531


The key differences between RRAPS and MQAPS lie in their queue structures and
process handling. RRAPS uses a single ready queue (RQ) for all processes, while MQAPS
employs a dual-queue system with a ready queue (RQ) and a secondary queue (SQ). This
allows MQAPS to better manage processes by moving lower-priority tasks to the SQ, thus
ensuring higher-priority tasks in the RQ are executed more efficiently. Additionally, when
the RQ is empty, MQAPS shifts focus to the SQ, unlike RRAPS, which only operates within
the RQ. MQAPS terminates only when both queues are empty, whereas RRAPS concludes
when the RQ is completed. This hierarchical and more granular approach in MQAPS
results in more refined and efficient scheduling compared to RRAPS’s simpler structure.

The rest of the article is presented in different sections: the literature review section
reviews the current literature on the MQAPS scheduling algorithm. The methodology
section discusses the proposed solution and its effectiveness. The performance validation
section discusses the MQAPS algorithm’s outcomes. The conclusion and future directions
provide concluding remarks.

LITERATURE REVIEW
The literature showcases the different scheduling methods and systems, focusing on
multi-level, period, and prioritization techniques. For example, in Sharma et al. (2022),
the authors presented a method to compute the time quantum, i.e., Time quantum =
(ProcessesAverage + BurstTimeMedian)/2. This method assigns the time quantum to the
process at the front of the ready queue and is repeated with the entry or exit of a new process
from RQ, providing a new TQ for the execution of processes. The authors in Mostafa &
Amano (2020) described a revolutionary RR technique that capitalized on the benefits of
prioritizing processes with short burst time (BT) while minimizing system performance
and overhead. CPU-based processes are organized in the same group and share the same
TQ. This novel method reduced average waiting and turnaround time and non-context
switch overhead (NCS). Moreover, a CPU-based algorithm is introduced in Chandiramani,
Verma & Sivagami (2019) with the main feature of preemption based on priority as well as
the aging property to prevent starvation. In Ali, Marikal & Anil Kumar (2020), the author
presented a hybrid round-robin scheduling mechanism by using dynamic time quantum,
average. waiting and turnaround, and response time, as well as system overhead, is reduced.
The round robin, shortest job first (SJF), and first come, first serve (FCFS) algorithms’
characteristics are all inherited by this strategy. One of the upgrades and modifications to
the round-robin scheduling algorithm is the novel strategy known as VORR (variant on
round-robin) discussed in Abdelhafiz (2021), which is covered in this work. Establishing
an effective time quantum based on the median of burst times efficiently utilizes the CPU.
The testing results have shown the value of the suggested technique in terms of average
waiting time, average turnaround time, and context switches. Additionally, it improves
various RR algorithms’ response times.

In the round-robin with adaptive priority scheduling (RRAPS) algorithm (Iqbal et al.,
2023), the CPU runs the highest-priority process from the RQ. If the RQ is empty, the
TQ corresponds to the process’s BT; otherwise, it represents the average BT of all RQ

Iqbal et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2531 3/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2531


processes. If a process does not complete inside its TQ, its priority is reduced by one
(if greater than 1), and it returns to the RQ. This cycle will continue until all processes
are completed. The authors in Ghazy et al. (2022) devised a method that combined the
RR, mean, and median. To determine a suitable dynamic TQ, the BT is calculated using
the median and mean of the program instances in each group. The proposed method
led to significant reductions in CPU overhead and utilization. In Alhaidari & Balharith
(2021), the authors automated updating the TQ based on the task’s average TQ and
remaining BT. Experiment results indicate that competing algorithms are outperformed
in terms of latency turnaround time and response time. Moreover, Gupta et al. (2021)
proposed a method called Optimized Round Robin (ORR) that minimized average waiting
time, turnaround time, and the number of context switches while maximizing system
throughput. This approach was created using machine learning and a trained model to
estimate the best TQ value. ORR regularly outperforms RRSA and five upgraded versions of
RRSA in maximizing performance within time-sharing operating systems in experimental
comparisons. The suggested ORR algorithm produces superior results and opens up an
avenue for equitable work scheduling on computers and real systems. Noon, Kalakech &
Kadry (2011) described AN Algorithm, which uses a dynamic-time-quantum technique
to update the time quantum based on the burst times of processes in the ready queue.
Our simulations demonstrate that this strategy overcomes the restrictions of fixed-time
quantum and increases RR performance. A variety of RR scheduling strategies have been
explored, including smallest job first, preemption or non-preemption, and come first
served first algorithms have been investigated in Omar, Jihad & Hussein (2021), Ali et al.
(2021), Omotehinwa (2022) and Vecliuc, Leon & Logofătu (2022) to boost performance,
usage, and throughput of CPU while minimizing system overhead.

The authors in Kim, Kim & Luh (2019) proposed a scheduling algorithm based on the
round-robin heuristic via numerous work queues that outperformed the standard First-
in-First-Out heuristic utilized by current platforms. The proposed algorithm was tested
through an integration process, and statistical approaches confirmed the results. In Rafi et
al. (2018), the proposed approach improved operating system functionality by establishing
multiple queues for various process priorities and orchestrating RR queue scheduling
with dynamic time slicing. Based on user-defined or system-defined criteria, processes are
assigned to specific queues. Several case studies demonstrate the system’s usefulness, and
the results are compared to those achieved using a priority scheduling approach. Zhao
et al. (2019) introduced a new approach called the preemptive multi-queue fair queuing
technique (P-MQFQ). The P-MQFQ efficiently dispatched threads from various programs
based on CPU bandwidth from many cores, improving utilization and performance for
parallel tasks in Linux and Xen. In Manuel et al. (2019), the authors used strategies to
improve the Fittest Job First Dynamic Round Robin (FJFDRR) by leveraging a dual queue
and using the process arrival time as an algorithmic element. The performance of the
proposed approach, dubbed enhanced Fittest Job First Dynamic Round Robin (eFJFDRR)
and the FJFDRR algorithm, was then compared to that of the other CPU scheduling
algorithms. The trial data revealed that the eFJFDRR scheduling algorithm performed
better in terms of minimizing average waiting time, turnaround time, and reaction time in

Iqbal et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2531 4/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2531


various situations. Further, the number of context switches made by the processor during
execution might be balanced. Niu et al. (2023) discussed the Infinite Queue in One Queue
(IQQ) structure with in-queue scheduling approaches and unique procedures to fulfill the
demands of varied flows.

To address the challenges of optimizing system execution time in heterogeneous
computing environments, recent research has focused on advanced co-scheduling strategies
that integrate hardware–software resource allocation with real-time scheduling methods.
One such approach proposes a novel strategy that balances the execution of parallel
workloads across CPUs and FPGAs, utilizing a high-performance heuristic scheduling
algorithm to minimize execution time (Xu, Shi & Chen, 2023). Complementing this, the
development of AnTiQ, a hardware-accelerated priority queue, enables efficient timer
queue management by performing key operations such as PUSH, POP, PEEK, and DROP
in constant time, enhancing scheduling efficiency in embedded systems (Nurmi et al.,
2023). Building on this, schedulers optimized for multi-core CPUs leverage the Earliest
Deadline First (EDF) algorithm, enabling parallel execution of up to four threads while
supporting task suspension, resumption, and inter-task synchronization. By employing
hardware-accelerated priority queues, these schedulers can make scheduling decisions in
just two clock cycles, independent of system load (Norollah et al., 2021). For real-time
many-core systems, hardware schedulers further enhance performance by scheduling
dependent tasks using EDF and grouping related tasks based on dependencies (Lukás̆
& Mach, 2023). Additionally, the HCoD (Hardware coexecution Dispatcher) facilitates
transparent co-execution across heterogeneous SoCs, distributing workloads between
CPU cores and GPU units while dynamically balancing the load to prevent performance
bottlenecks (Perez & Bosque, 2024). Together, these developments underscore the critical
role of hardware acceleration and sophisticated scheduling algorithms in optimizing system
performance for both general-purpose and specialized computing tasks.

Compared to conventional techniques, the aforementioned studies investigated several
round-robin scheduling algorithms to improve system performance. However, there is
always a need for continuous efforts to provide new types of scheduling algorithms and
enhance performance in certain circumstances. Within this framework, our work suggests
a novel method to enhance process scheduling and execution. Our technique incorporates
multi-queue, adjustable TQ, and priorities into the RR and introduces diminishing
priorities. The detailed comparison is shown in Table 1.

This adaptive method improves resource utilization efficiency and guarantees key
tasks are completed on time. Prioritization of higher-priority activities, which expedites
their execution once they enter the RQ, is a distinguishing feature. Further, the proposed
system incorporates a secondary queue for managing activities that passed through
previous execution cycles and had their priority reduced below a predetermined threshold.
The dynamic decrease of priority for unfinished high-priority processes is another
innovation that keeps low-priority processes from starving. To the authors’ knowledge,
the RR scheduling algorithm is the first to use a multi-tiered queue structure, priorities,
diminishing priorities, and dynamic TQ. Our proposed methodology provides a fresh
and thorough perspective to the current literature and promises to increase efficiency in

Iqbal et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2531 5/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2531


Table 1 Comparison of various scheduling algorithms.

Methods Key features Improvements Comparison toMQAPS

RRAPS (Iqbal et al., 2023) Adaptive TQ and priority Reduced system overhead Adaptive TQ and priority,
Multi-Queue

Sharma (Sharma et al., 2022) Dynamic TQ Calculation New TQ per process
entry/exit

Dynamic TQ, dual queues,
adaptive priorities

Mostafa (Mostafa & Amano, 2020) Prioritizes short BT processes Reduced avg. waiting/
turnaround

Optimizes with secondary
queue

Chandiramani
(Chandiramani, Verma & Sivagami, 2019)

Preemption, aging Prevents starvation Adds dynamic TQ, secondary
queue

Khaji (Ali, Marikal & Anil Kumar, 2020) Hybrid RR with dynamic TQ Reduced avg. waiting/
turnaround

Integrates with multi-tiered
structure

Abdelhafiz (Abdelhafiz, 2021) VORR with effective TQ Improved waiting,
turnaround time

Dynamic TQ, dual queue,
adaptive priorities

Ghazy (Ghazy et al., 2022) Combined RR, mean, median TQ Reduced CPU overhead Dual queues, dynamic
priorities

Alhaidari (Alhaidari & Balharith, 2021) Automated TQ update Better latency, turnaround Dynamic TQ, priority-based
queue

Gupta (Gupta et al., 2021) Optimized RR with ML Minimized waiting,
turnaround

Dynamic priority adjustment,
dual-queue

Noon (Noon, Kalakech & Kadry, 2011) Dynamic TQ Limitation of fixed TQ Dual-queue, Adaptive priority
and TQ

Kim (Kim, Kim & Luh, 2019) RR with multiple queues Outperformed FIFO Multi-queue, dynamic
priorities

Rafi (Rafi et al., 2018) Multiple queues for priorities Improved functionality Refined dual-queue system,
adaptive TQ

Zhao (Zhao et al., 2019) P-MQFQ Better utilization,
performance

Execution efficiency, fairness

Manuel (Manuel et al., 2019) eFJFDRR, dual queue Better waiting, turnaround
times

Dual-queue, dynamic priority
adjustment

Niu (Niu et al., 2023) IQQ structure Met varied flow demands Multi-tier queue for scheduling
efficiency

process scheduling. Given the limitations of traditional multi-queue scheduling algorithms
in balancing efficiency, fairness, and priority, theMulti-QueueAdaptive Priority Scheduling
(MQAPS) algorithm offers an improved solution to address these challenges.

METHODOLOGY
This article presents an MQAPS that dynamically adapts the periods based on the BT and
priority of the processes in the RQ and SQ. The MQAPS tackles the TQ problem. The
TQ is computed using a simple method that takes the average BT for operations in the
queue. This TQ computation affects both the RQ and SQ. After selecting a process, the
CPU runs it for the calculated time. If the procedure is not finished, its priority is reduced
by one. Following that, the process is reviewed, and if its priority falls below or equals the
predefined threshold, it is shifted to the secondary queue; otherwise, it returns to the ready
queue. MQAPS distributes system resources equally. The following subsections define the
proposed algorithm, pseudo code, and flowchart of the proposed algorithm.

Iqbal et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2531 6/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2531


Proposed algorithm
The MQAPS (Multi-Queue Adaptive Priority Scheduling) algorithm is an advanced
scheduling technique leveraging a multi-queue architecture. It operates with two distinct
queues: a ready queue (RQ) and a secondary queue (SQ). Upon the arrival of a new process
in the RQ, the scheduler selects the highest-priority process for execution from the RQ. If
the RQ is non-empty, the time quantum (TQ) is computed as the average burst time (BT)
of all processes within the RQ. Conversely, if the RQ is empty, the TQ is assigned as the
BT of the selected process. Processes execute for the assigned TQ. Upon termination of the
execution, the process is marked as completed. However, if a process is not completed and
its priority exceeds 1, the scheduler decrements its priority by one. If the adjusted priority
exceeds 2, the process remains in the RQ with an updated BT. Otherwise, the process is
migrated to the SQ if the priority is reduced to 2 or below. When the RQ is exhausted,
the scheduler switches to the SQ, selecting the highest-priority process for execution. In
this case, the TQ is determined similarly: if there are processes in the SQ, it is set as the
average BT of all SQ processes; otherwise, the TQ is set to the individual process’s BT.
After execution in the SQ, if the process priority is 2, it is decreased to 1 and returned
to the SQ; if it is already 1, it is returned to the SQ without further modification. Upon
process completion, it is marked as finished. In summary, MQAPS dynamically adjusts
process priority and Time Quantum based on queue conditions, ensuring efficient CPU
utilization across varying workloads while balancing between high- and low-priority tasks.
The algorithm terminates until both queues are empty. Some of the pertinent features of
the MQAPS algorithm are as follows:
• Efficient Allocation for High-Priority Processes. The system will guarantee that critical

processes execute as they arrive in RQ.
• Mitigation of Starvation through Adaptive Priority as low priority process will also

have a fair share of CPU.
• Fair CPU Time Distribution Across Queues. Both queues have a decreased priority

parameter will ensure the process execution.
• Compatibility and Seamless Integration into existing RR scheduling frameworks with

minimal modifications.
The Multi-Queue Adaptive Priority Scheduling (MQAPS) algorithm operates by

managing two critical queues: the RQ and the SQ, as illustrated in Fig. 1. The RQ holds
newly arriving tasks, while the SQ contains previously executed tasks with priorities that
have dropped below a specified threshold.

Flow chart
Upon the arrival of a new process in the RQ, the CPU selects and executes the highest-
priority task. If the RQ is initially empty, the TQ is set to the BT of the incoming process. If
multiple processes are present in the RQ, the TQ is determined by averaging the burst times
of all processes, ensuring a balanced CPU time distribution based on workload demands.
The CPU executes the selected task for the assigned TQ. If the task is completed within this
time frame, it is marked as finished. If not, the task’s priority is reduced by one. Should its

Iqbal et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2531 7/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2531


Figure 1 Flow chart of MQAPS algorithm.
Full-size DOI: 10.7717/peerjcs.2531/fig-1

priority drop to 2, the task is moved to the SQ. Otherwise, the task is returned to the RQ
with an updated burst time.

When the RQ is empty, the scheduler switches to the SQ, executing the highest-priority
task (as all processes in the SQ have priorities of 2 or lower). If the SQ is also empty, the
TQ is set to the burst time of the selected process. If multiple tasks are present in the SQ,
the TQ is calculated by averaging their burst times. The CPU then runs the selected task
for the allocated TQ.

After execution, if the task’s priority is 2, it is reduced to 1 and re-queued in the SQ
for further execution. If the task already has the lowest priority (1), it is re-added to the

Iqbal et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2531 8/24

https://peerj.com
https://doi.org/10.7717/peerjcs.2531/fig-1
http://dx.doi.org/10.7717/peerj-cs.2531


SQ without a priority change. This cycle continues until both the RQ and SQ are empty,
signaling the end of the algorithm’s execution.

Algorithm 1Multi-Queue Adaptive Priority Scheduling (MQAPS)
1: Initialize ReadyQueue (RQ), SecondaryQueue (SQ)
2: Initialization of new process P and enter it into RQ
3: Scheduler picks high-priority P from RQ and loads it to CPU
4: if RQ == ∅ then
5: TQ= P_BT
6: else
7: TQ=Avg (BT_of _P ′s_in_RQ)
8: end if
9: P executed by CPU for specified TQ
10: if P == completed then
11: P mark as job completed
12: end if
13: if P 6= completed then
14: if P.priority > 1 then // lowest priority is 1.
15: P.priority = P.priority − 1
16: end if
17: if P.priority <= 2 then
18: Shift to SQ with modified BT
19: else
20: Return to RQ with modified BT
21: end if
22: Repeat from Step 8 to 22
23: end if
24: if RQ == ∅ then
25: Load high-priority process from SQ to CPU for execution
26: if SQ == ∅ then
27: TQ= P_BT
28: else
29: TQ=Avg (BT_of _P ′s_in_SQ)
30: end if
31: CPU start executing P by specified TQ
32: if P == completed then
33: P Mark as job completed
34: end if
35: if P 6= completed then
36: if P.priority > 1 then //1 is the lowest priority.
37: P.priority = P.priority − 1
38: Return to SQ with modified BT
39: else
40: Return to SQ with modified BT
41: end if
42: end if
43: Repeat Steps 24 to 43
44: end if
45: if RQ == ∅ && SQ == ∅ then
46: End Algorithm
47: else
48: Repeat Steps 3 to 48
49: end if

Pseudo code
Algorithm 1 describes in full how the MQAPS algorithm operates. The process starts with
the initialization of two important structures: the RQ and the SQ. When a new process
enters the system, it is instantly added to the RQ, where the scheduler chooses the most
important job for CPU execution. The TQ for this procedure is then calculated based on
the RQ’s state. If the RQ is empty, the TQ is set to match the selected process’s BT, allowing
it to operate continuously. However, if additional processes are waiting in the RQ, the
TQ is dynamically adjusted to the average burst time of all queued processes, resulting in

Iqbal et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2531 9/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2531


balanced and efficient CPU utilization. The CPU then executes the specified process for
the given TQ, as detailed in steps 1–9.

When a process has finished its execution, it is marked as completed. If the process is
not yet complete, its priority is reduced by one, indicating a lower urgency. If the priority
is lower than 2, the process is routed to the SQ for further execution. This transfer to
the SQ guarantees that lower-priority operations do not use all CPU resources, allowing
higher-priority processes to be performed more efficiently. This procedure is controlled in
a systematic manner, as stated in steps 10 through 22.

Steps 24 to 43 detail the procedure followed when the RQ is empty. In this scenario,
the scheduler shifts focus to the SQ, selecting processes for execution. The TQ for these
processes is dynamically calculated, similar to when processes are selected from the RQ.
Once a process completes its execution, it is marked as completed. If a process has a
priority level of 2, its priority is decreased by 1, and it is returned to the SQ for another
execution cycle. If the process is already at the lowest priority level (priority 1), it is simply
returned to the SQ without any change in priority. This iterative process of selecting,
executing, and adjusting priorities continues seamlessly, ensuring that no process is left
unattended until both the RQ and SQ are entirely emptied of processes. This mechanism
ensures fairness and resource optimization, preventing low-priority processes from being
indefinitely postponed.

Steps 45–49 deal with the finish of the scheduling process. If both the RQ and the SQ are
empty, the algorithm finishes, indicating that all processes were completed.However, if each
queue has any remaining processes, the algorithm will cycle through them, dynamically
selecting and performing tasks. This guarantees that all operations are handled efficiently,
with a focus on maintaining optimal resource utilization and good priority management.

PERFORMANCE VALIDATION
The MQAPS algorithm was tested on a 12th-generation Intel Core i7 CPU clocked at
2.40 GHz and equipped with 16 GB of RAM. To comprehensively compare MQAPS to
the classic round-robin algorithm, a simulation environment was created using MATLAB
2022b. MATLAB was chosen because of its powerful programming tools and advanced
graphical representation capabilities, which are required for effectively viewing and
analyzing scheduling algorithms. Because MQAPS was tested via simulation, all required
data—such as BT, priority levels, and process arrival times—were created programmatically
within MATLAB, ensuring controlled and reproducible testing circumstances.

MQAPS, in contrast to RRAPS (Iqbal et al., 2023), presents an improved simulation
model that takes a list as input containing the number of processes, time of arrival, burst
times, and priority. The logic of our system uses the process’s execution history and priority
to decide whether to add it to the ready or secondary queue. We define and set the priority
reduction parameter to −1. When a process completes execution and its priority is greater
than 1 (it cannot be less than 1), the process priority is dropped by one. This technique
guarantees that non-critical processes get a fair share of the CPU.

The effectiveness and evaluation of the MQAPS algorithm employing four, five, and
ten processes as a sample group with varying burst periods, arrival times, and priority are

Iqbal et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2531 10/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2531


performed similarly to Iqbal et al. (2023). The suggested system’s robustness and efficacy
are also tested using a broader sample of varied processes. The results are compared with
Iqbal et al. (2023), Noon, Kalakech & Kadry (2011), and Rafi et al. (2018), as shown in the
results and discussion section.

The simulation is used to test the MQAPS system. The simulation starts with the
list_class by creating a process within the list_class, which includes adding and removing
nodes from the list_class, along with computing turnaround and waiting times. In the
list class, the Random() function is used to generate the burst time, priority, and arrival
time using the InsertNodeMQAPS() method. In the second stage, a process is chosen by
calling SelectProcessFromQueueMQAPS(), which chooses one of the two queues based on
priority and execution history. When the process is chosen, the time quantum is computed
using the TimeQuantumMQAPS() function. The ExecuteProcessMQAPS() method is
used to execute the process for a specified time quantum. After completing a process,
the ReturnTimeMQAPS() function calculates the waiting and turnaround time, and the
processed process is removed using the DeleteNodeMQAPS() function. If the process is
not terminated, the InsertNodeMQAPS() method is called once more. At the end of the
simulation, the average turnaround time and average waiting time for all processes are
calculated and published. This method ensures that MQAPS is extensively assessed in a
simulated environment by providing important insights into performance measurements.

Performance metrics
Certain metrics are crucial for evaluating and examining the performance of an algorithm.
Some of these performance metrics that we used for the evaluation of MQAPS are as
follows:
• Turnaround time: The time it takes for a process to complete its execution. The

turnaround time can be calculated as Turnaround Time = Completion Time −
Submission Time. The turnaround time is in milliseconds. The lesser the time, the
better the turnaround time of the system

• Waiting time: Defines the duration and waiting time of a process in a queue before
execution.Waiting time is calculated asWaiting Time= Execution Time− Submission
Time. Where execution time is when the process enters the CPU. The waiting time
is also measured in milliseconds. Less waiting represents the effectiveness and, again,
property of the system.

• Context switching: This process can be characterized as the number of times a process
switches from one to another and can also be termed system overhead. This process is
time and resource-intensive, affecting system performance. The lesser the number of
context switches, the lesser the system overhead.
A straightforward example is presented to illustrate the functionality of the MQAPS

algorithm. This example highlights the advantages of MQAPS over the traditional RR
algorithm, demonstrating how it more effectively handles task priorities and time quanta.
Specifically, it showcases how MQAPS reduces both waiting and turnaround times
compared to RR, emphasizing its efficiency in task management. Table 2 shows the
process IDs, arrival and burst times, and priorities.

Iqbal et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2531 11/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2531


Table 2 Processes with arrival time, burst time and priority.

Process Arrival time Burst time Priority (1: highest, 5: lowest)

P1 0 15 1
P2 1 10 3
P2 2 5 5

Table 3 Comparative analysis of round robin having TQ= 5.

Process Completion
time (CT)

Turnaround time
(TAT= CT-Arrival Time)

Waiting time
(WT= TAT-BT)

P1 30 30 - 0= 30 30 - 15= 15
P2 25 25 - 1= 24 24 - 10= 14
P2 15 15 - 2= 13 13 - 5= 8

The working of the RR algorithm is as follows: Let us assume a time quantum (TQ) of
5 ms is used in RR scheduling.
• P1 arrives first and runs for 5 ms, leaving 10 ms of burst time.
• P2 arrives at t = 1 and runs for 5 ms, leaving 5 ms of burst time.
• P3 arrives at t = 2, runs for 5 ms, and completes its execution.
• At t = 4, P1 runs for another 5 ms and leaves 5 ms behind.
• At t = 5, P2 runs for another 5 ms and completes its execution.
• At t = 6, P1 runs for another round of 5 ms and completes its execution.
Table 3 illustrates the analysis of the RR algorithm.
Now the working of MQAPS is as follows: The initial setup is given below.
• RQ: Holds newly arriving processes.
• SQ: Holds processes that have undergone execution and had their priority lowered to

a threshold (≤2).

Step 1
P1 arrives at t = 0 and P1 enters the RQ at t = 0 with a burst time of 15 ms and the lowest
priority (1). Since P1 is the only process in the queue, it is selected for execution. The time
quantum (TQ) for P1 is set to its entire burst time (15 ms). Execution: P1 executes for its
entire burst time of 15 ms, completing its execution at t = 15.

Step 2
P2 arrives at t = 1. While P1 runs, P2 arrives at t = 1 with a burst time of 10 ms and a
priority of 3. P2 waits in the RQ.

Step 3
P3 arrives at t = 2, with a burst time of 5 ms and the highest priority (5). P3 is added to
the RQ.

Iqbal et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2531 12/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2531


Table 4 Comparative analysis of MQAPS having dynamic TQ.

Process Completion
time (CT)

Turnaround time
(TAT= CT-Arrival Time)

Waiting time
(WT= TAT-BT)

P1 15 15 - 0= 15 15 - 15= 0
P2 30 30 - 1= 29 29 - 10= 19
P2 20 20 - 2= 18 18 - 5= 13

Table 5 Comparison of RR andMQAPS.

Methods Average turnaround time Average waiting time

RR 22.33 12.33
MQAPS 20.67 10.67

Step 4
P1 completes at t = 15, P1 completes its execution at t = 15, freeing up the CPU. The
scheduler checks the RQ and finds P2 (priority 3) and P3 (priority 5) waiting. P3 has the
highest priority (5), so it is selected for execution.

Step 5
P3 executes (t = 15 to t = 20). The scheduler sets the TQ for P3 to its entire burst time
of 5 ms, as it is the highest priority process. P3 executes for 5 ms from t = 15 to t = 20,
completing its execution.

Step 6
P2 executes (t = 20 to t = 30). After P3 finishes, P2 remains in the RQ. The scheduler sets
the time quantum (TQ) for P2 to its entire burst time of 10 ms, as it is the only process left.
P2 executes for 10 ms from t = 20 to t = 30, completing its execution. Table 4 illustrates
the analysis of the MQAPS method.

Table 5 presents a comparison of the RR and MQAPS methods. The above example
is a simple demonstration of how MQAPS works and compares it with traditional RR
algorithms.

Results and discussion
The performance of MQAPS is evaluated by computing the average times i.e., turnaround
time and waiting time in milliseconds. The system overhead was also tracked by counting
the number of context shifts during process operation. Afterward, the results of MQAPS
with several algorithms are compared, such as RPAPS (Iqbal et al., 2023), AN algorithm
(Noon, Kalakech & Kadry, 2011), and Multi-Queue Priority Scheduling (Rafi et al., 2018)
implemented different scheduling algorithms in different queues, whereas we implemented
the same concept in both the queues. MQAPS exhibited superior efficiency, resulting in
lower average turnaround and waiting times in a multi-process scenario, as illustrated in
the following subsections: Scenario 1, Scenario 2, and Scenario 3. Processes in our study
are prioritized on a scale of 1 to 5, structuring each process as a tuple (burst time, priority).

Iqbal et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2531 13/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2531


Table 6 Scenario 1: different scheduling algorithms analysis.

Methods Context
switching

Turnaround
time (ms)

Waiting
time (ms)

RRAPS (Iqbal et al., 2023) 4 81.7 43
AN Algorithm (Omar, Jihad & Hussein, 2021) 5 90 41.7
Multi-Queue Priority
Scheduling (Zhao et al., 2019)

5 93.3 50

MQAPS 4 81.7 45.2

All the data required to carry out the experiments to analyze MQAPS under the following
three scenarios were generated via simulation.

Scenario 1
To test how well our algorithm handled smaller processes, we purposely selected processes
with relatively short burst periods in the first case. At time t = 0, let us consider the arrival
of four processes: P1 = [15, 4], P2 = [30, 2], P3 = [45, 3], P4 = [63, 5].

Table 6 offers a thorough examination of four different scheduling algorithms: MQAPS,
AN Algorithm (Noon, Kalakech & Kadry, 2011), RRAPS (Iqbal et al., 2023), and Multi-
Queue Priority Scheduling (Rafi et al., 2018). Turnaround time: MQAPS and RRAPS
provide the same ideal results at 81.7, beating multi-queue priority scheduling (93.3) and
the AN Algorithm (90). This shows that MQAPS controls task completion times while
keeping the RRAPS baseline in line. In terms of waiting time, RRAPS is marginally better
than MQAPS, scoring 43 instead of 45.2. But both beat multi-queue priority scheduling
(50), whereas AN Algorithm shows a better waiting time of 41.7 because it lacks a priority
parameter, and that’s why it performs better in terms of waiting time. Figure 2 compares
the turnaround and waiting time of these four different methods. Interestingly, MQAPS
and RRAPS show the lowest context switching times at 4, indicating how well they switch
between tasks. In this case, the performance of RRAPS is marginally better, with less waiting
time because of a single queue, compared to MQAPS, having two queues and a threshold
check on the SQ.

On the other hand, with values of 5, the AN Algorithm and multi-queue priority
scheduling necessitate more context switching. The present investigation highlights the
competitive performance ofMQAPS, demonstrating its ability tomanage context switching
effectively and yield reduced turnaround and waiting times. This highlights the platform’s
potential for process scheduling optimization.

Scenario 2
In this case, five processes arrive at different times, i.e., p1 and p2 arrived at time = 0 and
time = 3, respectively, where at time 5, p3 arrived, p4 arrived when the time is 6, and p5
time of arrival is 7. Processes BT and priority are given by: P1 = [25, 4], P2 = [38, 1], P3
= [58, 2], P4 = [77, 5], and P5 = [92, 3].

Table 7 highlights the performance analysis distinctive features of each algorithm. RRAPS
displays efficiency with a turnaround and waiting time of 85.4 and 48, respectively. The
AN Algorithm is somewhat efficient, with a turnaround time of 103 and a superior waiting

Iqbal et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2531 14/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2531


Figure 2 Turnaround and waiting time for four processes are compared.
Full-size DOI: 10.7717/peerjcs.2531/fig-2

Table 7 Scenario 2: results of different algorithmic methods.

Methods Context
switching

Turnaround
time (ms)

Waiting
time (ms)

RRAPS (Iqbal et al., 2023) 5 85.4 48
AN Algorithm (Omar, Jihad & Hussein, 2021) 7 103 44
Multi-Queue Priority
Scheduling (Zhao et al., 2019)

8 108.2 56.5

MQAPS 6 84 47

time of 44. Multi-queue priority scheduling has much higher processing times (turnaround
time: 108.2, waiting time: 56.5). MQAPS stands out with an efficient turnaround time of
84 and a waiting time of 47 as shown in Fig. 3. In terms of context switching, RRAPS has
five, AN Algorithm has seven, Multi-Queue Priority Scheduling has eight, and MQAPS
has a balanced count of six. MQAPS emerges as a viable method, displaying efficiency in
turnaround, waiting time, and context switching, making it a remarkable contender for
efficient task execution.

Scenario 3
In Scenario 3, we have 10 processes arrive at different times i.e., P1 and P2 arrived at time
= 0, and time = 2 respectively, where at time = 4 P3 arrived, P4 arrived when the time is
5, and P5 time of arrival is 7. P6, P7, and 86 arrive when time is 10, 12, and 15, respectively.
P9 arrived at 8, whereas P10 arrived at 13. These 10 processes are P1 = [18, 5], P2 = [39,
2] and P3= [63, 1], P4= [77,4], P5= [99,2]. P6= [16, 1], P7= [35, 4] and P8= [61, 3].
P9 = [9, 4] and P10 = [51, 5]. The evaluation of scenario 3 for each of the algorithms is
given in Table 8.

Iqbal et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2531 15/24

https://peerj.com
https://doi.org/10.7717/peerjcs.2531/fig-2
http://dx.doi.org/10.7717/peerj-cs.2531


Figure 3 Turnaround and waiting time comparison for five processes.
Full-size DOI: 10.7717/peerjcs.2531/fig-3

Table 8 Scenario 3: evaluation of various algorithmic techniques’ outcomes.

Methods Context
switching

Turnaround
time (ms)

Waiting
time (ms)

RRAPS (Iqbal et al., 2023) 10 106 81.1
AN Algorithm (Omar, Jihad & Hussein, 2021) 12 120 75
Multi-Queue Priority
Scheduling (Zhao et al., 2019)

14 119 79.3

MQAPS 9 98.8 83

The simulation in Scenario 3 increases processes to ten, each arriving at a distinct time.
The analysis in Table 8 identifies MQAPS as the most efficient scheduling algorithm among
the choices studied. With a turnaround time of 98.8 as illustrated in Fig. 4, it outperforms
RRAPS (106), AN Algorithm (120), and multi-queue priority scheduling (119). MQAPS
also outshines the other methods with a competitive waiting time of 83 and minimal
context flipping of 9. This demonstrates the efficiency of MQAPS in optimizing process
execution, responsiveness, and resource consumption in process scheduling.

MQAPS performance was evaluated using a detailed examination of a dataset containing
100 different processes with varying priority levels and BT. As shown in Figs. 5, 6 and
Table 9, the results demonstrated MQAPS as a superior performer, excelling in turnaround
time metrics. It is worth noting, however, that the AN Algorithm (Noon, Kalakech &
Kadry, 2011) executed admirably in terms of wait time. This distinction results from the
AN algorithm’s impartial handling of all processes, which does not discriminate between
critical or non-critical things. MQAPS, on the other hand, introduces a secondary queue

Iqbal et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2531 16/24

https://peerj.com
https://doi.org/10.7717/peerjcs.2531/fig-3
http://dx.doi.org/10.7717/peerj-cs.2531


Figure 4 Turnaround and waiting time comparison for 10 processes.
Full-size DOI: 10.7717/peerjcs.2531/fig-4

and priority threshold, resulting in long wait times for low-priority activities while high-
priority processes are completed. These findings highlight the advantages and disadvantages
of various scheduling strategies. Even though low-priority activities require longer wait
times, MQAPS is a valuable method for process scheduling optimization in intricate and
dynamic systems. Table 9 presents the statistical analysis demonstrating that MQAPS
achieves superior results with large datasets.

Comparative analysis of resources utilization
Context switching plays a pivotal role in resource utilization. When a process is switched,
its current state is kept and restored to another process state, which adds significant system
overhead, as stated in the performance validation section. All this information about
the process’s current state and resources used is saved and restored for another process.
For MQAPS, 100 processes are simulated, and a full examination of context switching
between MQAPS, (Iqbal et al., 2023; Noon, Kalakech & Kadry, 2011), and (Rafi et al., 2018)
is shown in Fig. 7 and Table 5. When compared to other scheduling algorithms, MQAPS
has less context switching, which implies that resource usage is very effective, there is less
system overhead, and the CPU spends more time on execution rather than just switching
processes.

In contrast, the MQAPS algorithm, on the other hand, resolves this problem by
setting the TQ to the process’s remaining BT. The TQ corresponds to the amount of
time required for the execution of a single process while it is in the ready queue, avoiding
unnecessary context shifts. By doing this, over-scheduling is avoided, which lowers OS
overhead. The method dynamically modifies the time quantum and queues based on
process requirements. It minimizes needless context switches and makes it more efficient
than round-robin adaptive priority scheduling and conventional round-robin variations.

Iqbal et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2531 17/24

https://peerj.com
https://doi.org/10.7717/peerjcs.2531/fig-4
http://dx.doi.org/10.7717/peerj-cs.2531


Figure 5 Comparative analysis of turnaround time for 100 processes using various algorithms.
Full-size DOI: 10.7717/peerjcs.2531/fig-5

Figure 6 Comparative analysis of waiting time for 100 processes using various algorithms.
Full-size DOI: 10.7717/peerjcs.2531/fig-6

Iqbal et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2531 18/24

https://peerj.com
https://doi.org/10.7717/peerjcs.2531/fig-5
https://doi.org/10.7717/peerjcs.2531/fig-6
http://dx.doi.org/10.7717/peerj-cs.2531


Table 9 Statistical analysis of 100 processes using different techniques.

Methods Turnaround
time (ms)

Waiting
time (ms)

Context
switching

RRAPS (Iqbal et al., 2023) 865 705 58
AN Algorithm (Iqbal et al., 2023) 925 675 63
Multi-Queue Priority
Scheduling (Zhao et al., 2019)

910 695 68

MQAPS 837 722 56

Figure 7 Analyzing context switching among algorithms with 100 processes.
Full-size DOI: 10.7717/peerjcs.2531/fig-7

REAL-WORLD APPLICATIONS AND INTEGRATION
POTENTIAL
Real-world applications
TheMQAPS algorithm is well-suited for real-time systems requiring precise task scheduling
and resource management. Potential use cases include:

Embedded systems
In IoT and medical devices, MQAPS minimizes latency for high-priority tasks (e.g., heart
rate monitoring) while deferring lower-priority operations.

Cloud computing
MQAPS optimizes resource allocation by dynamically adjusting time quanta, prioritizing
critical workloads and reducing overhead.

Iqbal et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2531 19/24

https://peerj.com
https://doi.org/10.7717/peerjcs.2531/fig-7
http://dx.doi.org/10.7717/peerj-cs.2531


Autonomous vehicle
MQAPS enhances response times for critical tasks (e.g., collision avoidance) by prioritizing
real-time sensor data processing and efficiently managing non-critical tasks.

Integration potential
The MQAPS algorithm can be seamlessly integrated into widely used operating systems
like FreeRTOS and Linux due to its flexible architecture and compatibility with existing
scheduling frameworks.

FreeRTOS
FreeRTOS currently employs a static priority-based preemptive scheduler. Integrating
MQAPS could enhance this by enabling dynamic priority adjustments and adaptive
time quanta, improving responsiveness to workload variations. This would optimize task
scheduling in embedded and IoT applications where real-time performance is crucial,
resulting in lower system overhead and more efficient CPU utilization compared to the
existing fixed-priority scheduler.

Linux
Linux, especially with the PREEMPT_RT real-time patch, relies on fixed priorities for
real-time tasks. Incorporating MQAPS as an extension of the Linux real-time scheduler
would provide a more flexible mechanism for managing time-sensitive tasks. Its dual-
queue structure and dynamic time quantum adjustments would effectively balance high-
priority real-time tasks with lower-priority background processes, enhancing overall system
responsiveness and reducing the risk of starvation.

LIMITATIONS OF MULTI-QUEUE ADAPTIVE PRIORITY
SCHEDULING
The MQAPS algorithm optimizes task scheduling but faces scalability issues under heavy
loads. Increasing task prioritization complexity and dynamic adjustments to time quantum
introduces computational overhead, which can degrade efficiency in high-demand real-
time systems.

CONCLUSIONS AND FUTURE DIRECTIONS
The dual-tiered design of the MQAPS has better scheduling and effective resource use.
By looking at the process’s priority and execution history, the MQAPS specially handles
processes. In contrast, a new process is added to the ready queue independent of its
execution history or priority. Because of this implementation, CPU time is equitably
distributed across all the processes in the ready and secondary queues, preserving process
hunger. Efficiency, cost, and system overhead are all balanced byMQAPS.When comparing
the results of 100 processes between algorithms, the performance of MQAPS outclasses
other methods in terms of turnaround time, context switching, and efficient waiting time.
MQAPS is engineered to maintain system equilibrium while expeditiously completing
high-priority tasks, augmenting overall throughput. The MQAPS has the potential to

Iqbal et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2531 20/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2531


address low-priority task starvation, but it may still encounter delays if high-priority tasks
continuously arrive and monopolize CPU resources, leading to diminished service for less
critical processes.

In the future, we will optimize these limitations and expand the queue to higher levels to
incorporate the multi-queue priority scheduling method into the high-level queues. This
connection will make MQAPS more flexible and responsive.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received funding for this work from the Deanship of Scientific Research at
Northern Border University, Arar, KSA through the project number ‘‘NBU-FFR-2024-
451-04’’. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Deanship of Scientific Research at Northern Border University, Arar, KSA: NBU-FFR-
2024-451-04.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Mansoor Iqbal conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.
• Muhammad Umar Shafiq conceived and designed the experiments, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.
• Shouzab Khan performed the experiments, analyzed the data, authored or reviewed
drafts of the article, and approved the final draft.
• Obaidullah performed the experiments, analyzed the data, prepared figures and/or
tables, and approved the final draft.
• Saad Alahmari performed the computation work, authored or reviewed drafts of the
article, and approved the final draft.
• Zahid Ullah conceived and designed the experiments, analyzed the data, performed the
computation work, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available in the Supplemental Files.

Iqbal et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2531 21/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2531#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2531


Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2531#supplemental-information.

REFERENCES
Abdelhafiz AA. 2021. VORR: a new round robin scheduling algorithm. Al-Azhar Bulletin

of Science 32(2–B):5–54.
Alhaidari F, Balharith TZ. 2021. Enhanced round-robin algorithm in the cloud

computing environment for optimal task scheduling. Computers 10(5):63
DOI 10.3390/computers10050063.

Ali S, Alshahrani R, Hadadi A, Alghamdi T, Almuhsin F, Sharawy EE. 2021. A review
on the CPU scheduling algorithms: comparative study. International Journal of
Computer Science and Network Security 21(1):19–26.

Ali KF, Marikal A, Anil Kumar K. 2020. A hybrid round robin scheduling mechanism
for process management. International Journal of Computer Applications 975:8887
DOI 10.5120/ijca2020919851.

Bibu GD, Nwankwo GC. 2019. Comparative analysis between first-come-first-serve
(FCFS) and shortest-job-first (SJF) scheduling algorithms. International Journal of
Computer Science and Mobile Computing 8(5):176–181.

Chandiramani K, Verma R, SivagamiM. 2019. A modified priority preemp-
tive algorithm for CPU scheduling. Procedia Computer Science 165:363–369
DOI 10.1016/j.procs.2020.01.037.

Chen Y, Jia Y. 2022. A hierarchical scheduling algorithm for real-time systems us-
ing a combination of RR and FCFS scheduling. Journal of Real-Time Systems
55(3):426–447.

Ghazy N, Abdelkader A, Zaki MS, ElDahshan KA. 2022. A new round robin algorithm
for task scheduling in real-time system. International Journal of Intelligent Engineering
& Systems 15(5):691 DOI 10.22266/ijies2022.1031.59.

Gupta AK, Mathur P, Travieso-Gonzalez CM, GargM, Goyal D. 2021. ORR: optimized
round Robin CPU scheduling algorithm. In: Proceedings of the international
conference on data science, machine learning and artificial intelligence. 296–304
DOI 10.1145/3484824.3484917.

Iqbal M, Ullah Z, Ahmad Khan I, Aslam S, Shaheer H, HumayonM, Salahuddin
MA,Mehmood A. 2023. Optimizing task execution: the impact of dynamic time
quantum and priorities on round Robin scheduling. Future Internet 15(3):104
DOI 10.3390/fi15030104.

Kim J, Kim B, Luh H. 2019. Analysis of a Markovian feedback queue with multi-
class customers and its application to the weighted round-robin queue. Annals of
Operations Research 277:137–159 DOI 10.1007/s10479-018-2917-9.

Iqbal et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2531 22/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2531#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2531#supplemental-information
http://dx.doi.org/10.3390/computers10050063
http://dx.doi.org/10.5120/ijca2020919851
http://dx.doi.org/10.1016/j.procs.2020.01.037
http://dx.doi.org/10.22266/ijies2022.1031.59
http://dx.doi.org/10.1145/3484824.3484917
http://dx.doi.org/10.3390/fi15030104
http://dx.doi.org/10.1007/s10479-018-2917-9
http://dx.doi.org/10.7717/peerj-cs.2531


Lukás̆ K, Mach J. 2023. A new FPGA-based task scheduler for real-time systems.
Electronics 12(8):1870 DOI 10.3390/electronics12081870.

Manuel JIC, Baquirin RBM, Guevara KS, Tandingan DR. 2019. Fittest job first dynamic
round robin (FJFDRR) scheduling algorithm using dual queue and arrival time
factor: a comparison. IOP Conference Series: Materials Science and Engineering
482(1):012046 DOI 10.1088/1757-899X/482/1/012046.

Mostafa SM, Amano H. 2020. Dynamic round robin CPU scheduling algorithm based on
K-means clustering technique. Applied Sciences 10(15):5134 DOI 10.3390/app10155134.

Niu T, Yang F, Cui M, Huang T. 2023. IQQ: infinite Queues in one Queue. ICT Express
9(6):1209–1214 DOI 10.1016/j.icte.2023.05.003.

Noon A, Kalakech A, Kadry S. 2011. A new round-robin based scheduling algo-
rithm for operating systems: dynamic quantum using the mean average. ArXiv
arXiv:1111.5348.

Norollah A, Kazemi Z, Sayadi N, Beitollahi H, Fazeli M, Hely D. 2021. Efficient
scheduling of dependent tasks in many-core real-time system using a hardware
scheduler. In: 2021 IEEE high-performance extreme computing conference (HPEC).
Piscataway: IEEE, 1–7.

Nurmi A, Lindgren P, Szymkowiak T, Hämäläinen TD. 2023. AnTiQ: a hardware-
accelerated priority queue design with constant time arbitrary element removal. In:
2023 26th Euromicro conference on digital system design (DSD). Piscataway: IEEE,
462–469.

Omar HK, Jihad KH, Hussein SF. 2021. Comparative analysis of the essential
CPU scheduling algorithms. Bulletin of Electrical Engineering and Informatics
10(5):2742–2750 DOI 10.11591/eei.v10i5.2812.

Omotehinwa TO. 2022. Examining the developments in scheduling algorithms research:
a bibliometric approach. Heliyon 8(5) DOI 10.1016/j.heliyon.2022.e09510.

Perez B, Bosque JL. 2024.Hardware scheduler for balanced co-execution on integrated
GPUs. In: Proc. Jornadas SARTECO 2024, La Coruña, Spain.

Rafi U, Azam ZiaM, Razzaq A, Ali S, SaleemMA. 2018.Multi-queue priority based
algorithm for CPU process scheduling. In: Proceedings of the eleventh international
conference on management science and engineering management, vol. 11. Cham:
Springer International Publishing, 47–62 DOI 10.1007/978-3-319-59280-0_4.

Shafi U, Ali ShahM,Wahid A, Abbasi K, Javaid Q, Asghar MN, Haider M. 2020. A
novel amended dynamic round robin scheduling algorithm for timeshared systems.
The International Arab Journal of Information Technology 17(1):90–98.

Sharma C, Sharma S, Kautish S, Alsallami SAM, Khalil EM, Mohamed AW. 2022.
A new median-average round Robin scheduling algorithm: an optimal approach
for reducing turnaround and waiting time. Alexandria Engineering Journal
61(12):10527–10538 DOI 10.1016/j.aej.2022.04.006.

Iqbal et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2531 23/24

https://peerj.com
http://dx.doi.org/10.3390/electronics12081870
http://dx.doi.org/10.1088/1757-899X/482/1/012046
http://dx.doi.org/10.3390/app10155134
http://dx.doi.org/10.1016/j.icte.2023.05.003
http://arXiv.org/abs/1111.5348
http://dx.doi.org/10.11591/eei.v10i5.2812
http://dx.doi.org/10.1016/j.heliyon.2022.e09510
http://dx.doi.org/10.1007/978-3-319-59280-0_4
http://dx.doi.org/10.1016/j.aej.2022.04.006
http://dx.doi.org/10.7717/peerj-cs.2531


Vecliuc D-D, Leon F, Logofătu D. 2022. A comparison between task distribution
strategies for load balancing using a multi-agent system. Computation 10(12):223
DOI 10.3390/computation10120223.

Xu J, Shi H, Chen Y. 2023. Efficient tasks scheduling in multicore systems integrated
with hardware accelerators. The Journal of Supercomputing 79(7):7244–7271
DOI 10.1007/s11227-022-04955-w.

Zhang Z,Wang Z, Li S, Wang F. 2023. A hierarchical scheduling algorithm for real-time
systems. Journal of Computer Science and Technology 28(5):1101–1112.

Zhao Y, Suo K,Wu X, Rao J, Wu S, Jin H. 2019. Preemptive multi-queue fair queuing.
In: Proceedings of the 28th international symposium on high-performance parallel and
distributed computing. 147–158 DOI 10.1145/3307681.3326605.

Iqbal et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2531 24/24

https://peerj.com
http://dx.doi.org/10.3390/computation10120223
http://dx.doi.org/10.1007/s11227-022-04955-w
http://dx.doi.org/10.1145/3307681.3326605
http://dx.doi.org/10.7717/peerj-cs.2531

