
Image-based effective feature generation
for protein structural class and ligand
binding prediction
Nafees Sadique*, Al Amin Neaz Ahmed*, Md Tajul Islam,
Md. Nawshad Pervage and Swakkhar Shatabda

Department of Computer Science and Engineering, United International University, Dhaka,
Bangladesh

* These authors contributed equally to this work.

ABSTRACT
Proteins are the building blocks of all cells in both human and all living creatures of
the world. Most of the work in the living organism is performed by proteins.
Proteins are polymers of amino acid monomers which are biomolecules or
macromolecules. The tertiary structure of protein represents the three-dimensional
shape of a protein. The functions, classification and binding sites are governed by the
protein’s tertiary structure. If two protein structures are alike, then the two proteins
can be of the same kind implying similar structural class and ligand binding
properties. In this paper, we have used the protein tertiary structure to generate
effective features for applications in structural similarity to detect structural class and
ligand binding. Firstly, we have analyzed the effectiveness of a group of image-based
features to predict the structural class of a protein. These features are derived
from the image generated by the distance matrix of the tertiary structure of a given
protein. They include local binary pattern (LBP) histogram, Gabor filtered LBP
histogram, separate row multiplication matrix with uniform LBP histogram,
neighbor block subtraction matrix with uniform LBP histogram and atom bond.
Separate row multiplication matrix and neighbor block subtraction matrix filters, as
well as atom bond, are our novels. The experiments were done on a standard
benchmark dataset. We have demonstrated the effectiveness of these features over a
large variety of supervised machine learning algorithms. Experiments suggest
support vector machines is the best performing classifier on the selected dataset using
the set of features. We believe the excellent performance of Hybrid LBP in terms
of accuracy would motivate the researchers and practitioners to use it to identify
protein structural class. To facilitate that, a classification model using Hybrid LBP is
readily available for use at http://brl.uiu.ac.bd/PL/. Protein-ligand binding is
accountable for managing the tasks of biological receptors that help to cure diseases
and many more. Therefore, binding prediction between protein and ligand is
important for understanding a protein’s activity or to accelerate docking
computations in virtual screening-based drug design. Protein-ligand binding
prediction requires three-dimensional tertiary structure of the target protein to be
searched for ligand binding. In this paper, we have proposed a supervised learning
algorithm for predicting protein-ligand binding, which is a similarity-based
clustering approach using the same set of features. Our algorithm works better than
the most popular and widely used machine learning algorithms.

How to cite this article Sadique N, Ahmed AAN, Islam MT, Pervage MN, Shatabda S. 2020. Image-based effective feature generation for
protein structural class and ligand binding prediction. PeerJ Comput. Sci. 6:e253 DOI 10.7717/peerj-cs.253

Submitted 19 May 2019
Accepted 23 December 2019
Published 3 February 2020

Corresponding author
Swakkhar Shatabda,
swakkhar@cse.uiu.ac.bd

Academic editor
Tzung-Pei Hong

Additional Information and
Declarations can be found on
page 21

DOI 10.7717/peerj-cs.253

© 2020 Sadique et al.

Distributed under
Creative Commons CC-BY 4.0

http://brl.uiu.ac.bd/PL/
http://dx.doi.org/10.7717/peerj-cs.253
mailto:swakkhar@�cse.�uiu.�ac.�bd
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.253
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

Subjects Bioinformatics, Computational Biology, Data Mining and Machine Learning,
Visual Analytics
Keywords Protein structural class prediction, Protein-ligand binding, Image-based features,
Similarity based supervised learning algorithms

INTRODUCTION
Protein tertiary structure comparison is very important in many applications of modern
structural biology, drug design, drug discovery, in studies of protein-ligand binding,
protein-protein interactions, and other fields. This is especially significant because the
structure of a protein is more protected than the protein sequence (Chothia & Lesk, 1986).
Many works have been done to find protein binding (Brady & Stouten, 2000). Comparison
of protein structure has been done in many works of literature by alignment of
distance matrices (Holm & Sander, 1993), using iterated double dynamic programing
(Taylor, 1999), using elastic shape analysis (Srivastava et al., 2016) and many other
techniques. The most common way of comparing protein tertiary structure is to treat the
protein as a three-dimensional object and superimpose one on another. Different distances
are used to calculate the differences between the proteins.

The distance matrix of α carbon can be seen extensively used in Holm & Sander (1997)
and Singh & Brutlag (1997) as a feature which represents the tertiary structure of a
protein chain. This feature is used as a feature vector which represents the structure of a
protein to measure either similarity or dissimilarity to measure and compare the feature
vectors with one another in pattern recognition literature. A mapped two-dimensional
feature matrix is created from the 3D coordinate data of protein. The intra-molecular
distance is used to make the α carbon distance matrix which mirrors the tertiary structure
of a protein and the conserved elements of the secondary structure in it. With an input
matrix size of N × N, the distance matrix based exact algorithms run in O(N) time
(Karim et al., 2015).

An image is basically a matrix of N × N dimension with corresponding data in each cell.
Thus the distance matrix can be used as an image. Basically, three types of features can
be generated from an image: pixel-based, filter-based and computationally generated
features. Pixel-based features, for example, histograms are simplistic and dependent on the
capability of classification algorithms. Filter-based methodologies transform the original
image to use feature extraction methods. Refined algorithms are used to segment and
other various algorithms are used to detect different features. Using ideas from computer
vision and utilizing it in protein structure retrieval is not uncommon in the field.
ProteinDBS server (Shyu et al., 2004) implement a similar approach in Chi, Scott & Shyu
(2005). Texture features from the original size images and diagonally partitioned images
were extracted by Chi, Scott & Shyu (2005). CoMOGrad and PHOG (Karim et al.,
2015) also used images to extract their two novel feature whereas we are extracting
histograms of local binary pattern (LBP) images from the original image.

The human body uses protein for repairing tissues, making enzymes, hormones, and
other biological chemicals. It is an essential building block of bones, muscles, cartilage,
skin, and blood. On the other hand, a ligand is a material that has the potentiality to bind

Sadique et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.253 2/23

http://dx.doi.org/10.7717/peerj-cs.253
https://peerj.com/computer-science/

to and forms a composite with a biomolecule in order to carry out a biological function.
In protein-ligand binding, the ligand is usually a molecule which produces a signal by
binding to a locus on a target protein. The binding typically results in a change of
conformational isomerism (conformation) of the target protein. The evolution of the
protein’s responsibility depends on the development of specific sites which are designed to
bind ligand molecules. Ligand binding ability is important for the management of
biological functions. Ligand binding interactions change the protein state and function.
Protein-ligand binding prediction is very important in many applications of modern
structural biology, drug design, drug discovery, and other fields.

Many experimental techniques can be used to investigate various aspects of protein-
ligand binding. X-ray crystallography, nuclear magnetic resonance, Laue X-ray diffraction,
small-angle X-ray scattering and cryo-electron microscopy provide atomic-resolution
or near-atomic-resolution structures of the unbound proteins and the protein-ligand
complexes, which can be used to study the changes in structure and/or dynamics between the
free and bound forms as well as relevant binding events. Although experimental techniques
can investigate thermodynamic profiles for a ligand-protein complex, the experimental
procedures for determination of binding affinity are laborious, time-consuming, and
expensive. Modern rational drug design usually involves the HTS of a large compound
library comprising hundreds or thousands of compounds to find the lead molecules, but
this is still not realistic to use experimental methods alone. Different methods like
isothermal titration calorimetry (Chaires, 2008), surface plasmon resonance (Patching,
2014), fluorescence polarization (Rossi & Taylor, 2011), protein-ligand docking (Sousa
et al., 2013), free energy calculations (Steinbrecher & Labahn, 2010), etc., are being used to
predict ligand-binding prediction.

In this paper, we propose the combination of LBP histogram, Gabor Filtered LBP
Histogram, Separate Row Multiplication Matrix with Uniform LBP Histogram, neighbor
Block Subtraction Matrix with Uniform LBP Histogram and Atom Bond features to be
used for protein similarity measurement. We extract the distance matrix of α carbon of a
protein from PDB file and use the distance matrix as an image to extract our first four
features, and the atom bond is extracted from the PDB files. We have used a large variety of
classification algorithms to test the extracted features. We also show the results and
comparative study of different implementation methodology of CoMOGrad and PHOG.
The method we have proposed can produce a better result on some classification algorithm
over the previous methods on the same benchmark. In addition, we have proposed a
supervised learning algorithm for predicting Protein-Ligand Binding which is a similarity-
based clustering approach using the same set of features. Our algorithm works better than
the most popular and widely used machine learning algorithms. Our proposed method
uses the features proposed in this paper.

MATERIALS AND METHODS
Our methodology is divided into two parts. Firstly, we have generated image-based
features using protein tertiary structures and performed feature analysis based on the
prediction power on the structural class prediction problem. In this section, we present the

Sadique et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.253 3/23

http://dx.doi.org/10.7717/peerj-cs.253
https://peerj.com/computer-science/

materials and methods for both of the problems. The dataset, features, necessary
algorithms and performance measurements are described accordingly for each of the
problems.

Structural class prediction
In this section, we present the methodology of structural class prediction. Atom bond
features are generated from the protein tertiary structures given as PDB files. Images are
created from the distance matrix calculated using α carbon atom coordinates of the amino
acids of the protein structures in the given dataset. From each image of protein, we
have derived five features. Stratified Remove Folds was used to test the capability and
efficiency of the dataset. There are in total seven different classes of protein structures.
Synthetic minority over-sampling technique (SMOTE) is used to handle class imbalance
problem. The block diagram of the methodology is given in Fig. 1.

Structural class prediction dataset
We have used 40 percent ID filtered subset of PDB-style files for SCOPe domains version
2.03 (Fox, Brenner & Chandonia, 2013) as our dataset. It contains a total of 12,119 PDB
files. Each PDB files contains SCOP(e) concise classification string (sccs) which
respectively describes class, fold, superfamily, and family. In this paper, we are going to
experiment only with the class of the protein. In the dataset, there are total seven protein
structural classes. For benchmark analysis with CoMOGrad and Phog, the common
PDB files were used as dataset. The common PDB files are total of 11,052. The details
of the protein structural classes are given in Table 1. This dataset is widely used as
a benchmark in the literature for protein structural similarity prediction (Karim
et al., 2015).

Image generation
We have generated images of protein structures according to the methodology described in
CoMOGrad and PHOG (Karim et al., 2015). Only α carbons of the amino acids in the
protein structure are considered for image generation. From the three dimensional
coordinates of the α carbon atoms, a distance matrix is generated by taking the Euclidean
distance among all pairs. This distance matrix converts a 3D structure of a protein to a 2D
matrix. Euclidean distance is applied as the distance measure because it exceeds the
popularly applied costly alignment distance measure of α carbon distance matrices. Thus
only half of the matrix contains redundant information due to symmetry. The matrix can
be further regarded as an image.

Scaling of images

The dimension of protein images is based on the total number of α carbon they have. So,
every individual protein images are different from the other in dimension. Therefore, the
images were scaled to the same dimension. CoMOGrad and PHOG have used Bi-cubic
interpolation and wavelet transform to scale all the protein images into 128 × 128
dimension (Karim et al., 2015). During the Bi-cubic interpolation step, most of the images
were in 128 × 128 dimension so in the wavelet transform step they scaled all the images to

Sadique et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.253 4/23

http://dx.doi.org/10.7717/peerj-cs.253
https://peerj.com/computer-science/

that dimension. Thus, we have directly scaled the images to 128 × 128 dimension. We have
used both real and scaled images to examine the differences in their predictive power.
Sample rescaled images of protein structures are given in Fig. 2.

Figure 1 Block diagram of the methodology used in structural class prediction.
Full-size DOI: 10.7717/peerj-cs.253/fig-1

Sadique et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.253 5/23

http://dx.doi.org/10.7717/peerj-cs.253/fig-1
http://dx.doi.org/10.7717/peerj-cs.253
https://peerj.com/computer-science/

Feature extraction
We have generated five different feature groups. Our first four feature groups are different
types of histograms and the fifth feature group is about the prognosis of the atoms. The
histograms were taken from both scaled and unscaled images.

Local binary pattern histogram
Local binary pattern histogram was first proposed by Ojala, Pietikainen & Harwood (1994)
and popularized by the work of Ojala, Pietikainen & Maenpaa (2002). LBP computes the
local representation of the texture of an image as a texture descriptor. Comparing each
pixel with its neighboring pixels the local representation is created. The image is
transformed into a grayscale image. In a 3 × 3 neighborhood, the center pixel value is
calculated by comparing with its eight neighboring pixels. Each comparison gives a
result of either 0 if the center pixel value is greater than the comparing neighbor pixel or
1 for the latter. A clockwise direction starting from the top-left one provides a binary
number. The binary number is converted to a decimal number and the value is placed in
the center pixel. LBP codes or LBPs are the obtained binary numbers. An example of a

Table 1 Protein classes and its corresponding instances.

Class name Total instances

Small proteins 640

All α proteins 2,195

α and β proteins (a/b) 3,305

α and β proteins (a + b) 3,006

Membrane and cell surface proteins and peptides 204

All β proteins 1,485

Multi-domain proteins (α and β) 219

Figure 2 Sample images of protein structures after rescaling (A) showing diagonal and (B)
symmetric textures. Full-size DOI: 10.7717/peerj-cs.253/fig-2

Sadique et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.253 6/23

http://dx.doi.org/10.7717/peerj-cs.253/fig-2
http://dx.doi.org/10.7717/peerj-cs.253
https://peerj.com/computer-science/

basic LBP is given in Fig. 3. After calculating the value for each pixel of the image, a
histogram is calculated. A 3 × 3 neighborhood has 28 = 256 possible patterns, thus the
values range from 0 to maximum 255 in each pixel of the image. The total number of bins
of the histogram is thus 256. We would get 256 attributes from each image. We have used
zero-padding technique to generate LBP.

Gabor filtered local binary pattern histogram
Gabor Filter is titled after Dennis Gabor. It is used for texture segmentation (Jain &
Farrokhnia, 1991), optical character recognition (Jain & Bhattacharjee, 1992), edge
detection (Mehrotra, Namuduri & Ranganathan, 1992), and so on. It is a linear filter that
examines if there is any particular frequency content in the image in specific areas in a
localized region throughout the point. In spatial and frequency domain, the Gabor
filter has been determined to own optimal localization properties (Jain, Ratha &
Lakshmanan, 1997). Gabor filter lets a particular band of frequencies while discarding
others and that is why it is designated as a bandpass filter. It resembles the features of
simple visual cortical cells (Dunn & Higgins, 1995). It provides the largest response
where texture changes at edges and at points. The multiplication of a sinusoid and a
Gaussian is called the Gabor filter. The filter has a real and an imaginary segment
rendering orthogonal directions. The two segments can be set into a complex number or
used individually. Various shapes, sizes and smoothness levels in an image can be
detected by Gabor filter.

gðx; y;�; u;f;gÞ ¼ exp

�
� x02 þ g2y02

2s2

�
exp

�
{

�
2p

x0

�
þ f

��
(1)

gðx; y;�; u;f;gÞ ¼ exp

�
� x02 þ g2y02

2s2

�
cos

�
2p

x0

�
þ f

�
(2)

gðx; y;�; u;f; gÞ ¼ exp

�
� x02 þ g2y02

2s2

�
sin

�
2p

x0

�
þ f

�
(3)

Equation 1 is the complex version of the Gabor function and Eqs. (2) and (3) are real
and imaginary version respectively. The shape and size of the Gabor function is regulated
by its five parameters. Here, λ controls the wavelength of this sinusoid, θ is the angle of the
normal to the sinusoid, ϕ is the phase shift of the sinusoid, γ controls the aspect ratio, The
spatial envelope or the standard deviation of the Gaussian is σ. For our experiments, we
have used λ = 10, θ = 0, ϕ = 0, γ = 0.02 and σ = 5. After applying the Gabor filter, LBP
techniques are applied to the image to get 256 attributes.

Figure 3 An example of basic LBP. Full-size DOI: 10.7717/peerj-cs.253/fig-3

Sadique et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.253 7/23

http://dx.doi.org/10.7717/peerj-cs.253/fig-3
http://dx.doi.org/10.7717/peerj-cs.253
https://peerj.com/computer-science/

Atomic bond features
First of all, we’ve identified unique atoms amidst all the protein PDB files. From each
protein PDB file, we’ve counted occurrences of each atom. Then we’ve taken the
percentage as features of each atom among all the atoms that each protein has. Then we’ve
taken the first 100 sequential atoms and used their atomic mass as the feature. Then we’ve
counted the bond that each pair of atoms has in a particular protein using atomic
distance based on a threshold value. Finally, we’ve taken the percentage as the feature of
the bond of each unique pair of atoms among all the bonds that the protein has.

Separate row multiplication matrix with uniform LBP histogram
The image is split into 3 × 3 matrices. From each matrix, we get three rows with the
dimension of 1 × 3. By multiplying each row with the same 3 × 3 matrix, we get three result
matrix consisting of 1 × 3 dimension. Each cell is divided by 100. The results are then
put in the 3 × 3 matrix in accordance with the row numbers. The color intensity of an
image is between 0 to 255. So, if the value of any cell of the result matrix is greater than 255,
then the value is replaced with 255. After applying this technique, the uniform LBP is
applied. From Fig. 4, (a) presents a 3 × 3 section of matrix and the rows, (b) exhibits the
result of multiplication, (c) shows the value after dividing by 100, (d) shows the
replacement result of value greater than 255 and (e) shows a 3 × 3 matrix section after
SRM-Matrix transformation.

Another variation of the LBP is called uniform pattern (Ojala, Pietikainen & Maenpaa,
2002). Some binary patterns occur more generally in texture images. If the binary pattern
comprises at most two 0-1 or 1-0 transitions when the bit pattern is held circular then
the pattern is called uniform. For instance, 01000000 has two transitions, 00000111
has two transitions which are uniform pattern on the other hand 01010100 has six
transitions,11001001 has four transitions which are not uniform. A neighborhood with a
dimension of 3 × 3 has 28 = 256 possible patterns with 58 of them being uniform. For
estimating the histogram, every uniform pattern gets a separate bin while a single bin is
allotted for all non-uniform patterns. Therefore, from a uniform binary pattern, we get the
histogram of the total bin size of 59.

Neighbor block subtraction matrix with uniform LBP histogram

Blocks are of the same dimension, 3 × 3. Two blocks of matrices are considered neighbors
for this method if the center cells are neighboring. Because of this, the value of the last two
columns of the first block and the first two columns of the second block are the same.
The two blocks of matrices are subtracted and the result is set in the place of the first block.
If any of the cells have any negative number, then 0 is placed instead of the negative
value. The replacement of value is made because the histogram bin begins from zero.
Uniform LBP is then used to compute the histogram.

Summary of all the feature groups used in this paper is given in Table 2.

Handling imbalance in data
From Table 1 it can be noted that the classes are imbalanced. To balance the classes,
we have used SMOTE (Chawla et al., 2002). The percentage of SMOTE indicates that how

Sadique et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.253 8/23

http://dx.doi.org/10.7717/peerj-cs.253
https://peerj.com/computer-science/

Figure 4 An example of separate row multiplication matrix with uniform local binary pattern
histogram (A) sample figure and matrix; (B) after multiplication; (C) and (D) separation of the
matrices and (E) finally showing the filtered image. Full-size DOI: 10.7717/peerj-cs.253/fig-4

Table 2 Feature groups.

Identifier Feature group name Number of features

A LBP-Hist 256

B GfLBP-Hist 256

C Atom Bond 116

D SRMMat-ULBP-Hist 59

E NBSMat-ULBP-Hist 59

Sadique et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.253 9/23

http://dx.doi.org/10.7717/peerj-cs.253/fig-4
http://dx.doi.org/10.7717/peerj-cs.253
https://peerj.com/computer-science/

many more instances would be generated. We have over-sampled our instances close to
the highest number of instances among all the classes. If x denotes the highest number of
instances among all the classes and y is denoted by a class which we will SMOTE, then
the expression for the percentage calculation is x�y

y � 100. We have used five nearest
neighbors to generate the over-sampled instances.

It is to be noted that SMOTE was used on only train dataset after separating the train
and test dataset. So, there are no artificial instances in the test dataset.

Classifiers used
We have used five classifiers for the analysis of features applied to solve structural class
prediction problem: K-Nearest Neighbor (KNN), Naive Bayesian Classifier, support vector
machines (SVM), Adaptive Boosting (AdaBoost) and Random Forest. A concise
description of the classifiers is given in this section.

K-nearest neighbor
K-nearest neighbor algorithm (KNN) (Aha, Kibler & Albert, 1991) is a similarity-based
classification technique. It is a lazy classification technique. Distance metrics are used for
each instance of the whole dataset for calculating the KNN. The labels of the nearest
neighbors decide the label of the test instances. It works poorly for high dimensional data.
Euclidean distance, Hamming distance, Manhattan distance, Minkowski distance,
Tanimoto distance and Jaccard distance are used for similarity measures.

Naive Bayesian classifier

Naive Bayesian classifier (Maron, 1961) is based on probabilistic inference of samples
observed where the decision variable and the features form a very naive structure of
Bayesian Network. Naive Bayesian classifiers work best for image recognition and text
mining.

Support vector machine

Support vector machine (Cortes & Vapnik, 1995) works by creating and separating
hyperplane for a given dataset by sampling different classes which are separated by
maximum width.

Adaptive boosting
Adaptive Boosting classifier (Freund & Schapire, 1997) is a meta-classifier which aims to
make a strong classifier using a set of weak classifiers. The classifiers whose performance is
marginally better than random classifiers are called weak classifiers.

Random forest
Random Forest (Ho, 1995) is an ensemble classifier. A decision tree is created in each
iteration with features taken randomly. It samples selected features using bootstrap
aggregating.

Ligand-binding prediction
Protein-ligand binding prediction is a binary class classification problem. We have used
image-based features for each protein and ligand dataset. Our methodology learns

Sadique et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.253 10/23

http://dx.doi.org/10.7717/peerj-cs.253
https://peerj.com/computer-science/

threshold values from the training data and uses these in test data prediction. We have
used the same set of features that were generated and analyzed for the structural class
prediction problem to solve the ligand-binding problem. In this section, we present the
necessary materials and methods that were used for the ligand-binding problem.

Ligand-binding dataset
We’ve used Computer Vision and Pattern Discovery for Bioimages Group @ BII as our
dataset. In our dataset, 3,000 protein-ligand complexes were determined experimentally
with 3D structures available. Each protein and its ligand are of one-to-one correspondence,
that is, they can bind to each other and make Protein-Ligand complex. The dataset
has 3,000 pairs of protein and ligand where the same name/ID of protein and ligand
interacts/binds with each other.

We’ve used OpenCV (Bradski & Kaehler, 2008) library to create images from PDB files.
For protein, we’ve considered the coordinates of only the alpha-carbons to generate the
distance matrix to create an image. Because alpha-carbon can represent the structural
information of protein quite well. But the given ligands were small in terms of atom
number. So, while creating ligand images, we’ve considered all the atom’s coordinates for
generating distance matrix.

Among the PDB files, 33 ligands have only one atom, which will create a 1 × 1 image
having no significance for feature extraction. So, we had to compromise those 33 ligands as
well as 33 corresponding proteins from training. Figure 5 shows a sample non-scaled
and scaled image of a ligand.

(a) (b)

Figure 5 Images of ligand structures: (A) non-scaled and (B) scaled.
Full-size DOI: 10.7717/peerj-cs.253/fig-5

Sadique et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.253 11/23

http://dx.doi.org/10.7717/peerj-cs.253/fig-5
http://dx.doi.org/10.7717/peerj-cs.253
https://peerj.com/computer-science/

Handling imbalance
The given dataset has only positive instances (the pairs of protein and ligand where they
bind with each other). But there were no negative instances (the pairs of protein and ligand
where they do not bind with each other). The missing negative instances have created
our dataset highly imbalanced. To overcome this imbalance, we’ve generated negative
instances in two different ways.

1. Random Negative Undersampling: We have 2,967 protein PDB and 2,967 ligand PDB
where 8,803,089 pairs are possible. Among these, 2,967 pairs are given as positive
instances and the rest 8,800,122 pairs are unknown/unseen instances. From the unseen
pairs, we’ve taken 2,967 pairs randomly as negative instances to make our dataset
balanced.

2. Clustering-Based Undersampling: Using the positive instances (2,967 pairs), we’ve
created 10 clusters. Then we’ve searched for 2,967 unseen pairs randomly as negative
instances where they belong to those 10 clusters. We’ve made sure that each cluster has
the same number of positive and negative instances to make the dataset balanced
(See Fig. 6).

Similarity-based classifier
We’ve developed a similarity-based clustering method to predict the binding class.
Distance is used to measure similarity. Our methodology is given in Fig. 7 and the
pseudo-code in Algorithm 1.

From the PDB dataset of proteins and ligands, firstly we have generated images and
converted to 128 × 128 images for each protein and ligand. From these images, we have
generated two different features.

Figure 6 Clustering-based undersampling. Full-size DOI: 10.7717/peerj-cs.253/fig-6

Sadique et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.253 12/23

http://dx.doi.org/10.7717/peerj-cs.253/fig-6
http://dx.doi.org/10.7717/peerj-cs.253
https://peerj.com/computer-science/

1. CoMOGrad and PHOG: CoMOGrad stands for Co-occurrence Matrix of the Oriented
Gradient of Distance Matrices and PHOG stands for Pyramid Histogram of Oriented
Gradient (Karim et al., 2015). This methodology also uses the α carbon distance
matrix of protein. The dimension of all distance matrix is converted to 128 × 128.
In CoMOGrad, the gradient angle and magnitude is computed from the distance matrix
and the values are quantized. Quantization is a compressing technique which
compresses a range of values to a single quantum value. In this methodology, the values
are quantized to 16 bins which produce a co-occurrence matrix which is 16 × 16 matrix.
The matrix is converted into a vector of size 256. Quadtree from the distance matrix
is created with the desired level in PHOG. Gradient Oriented Histogram of each node is
calculated with the preferred number of bins and bin size. In gradient oriented
histogram an image is divided into small sub-images called cells and histogram of edge
orientations are accumulated within the cell. The combined histogram entries are
used as the feature vector describing the object. Total features which are the
multiplication of total nodes and number of bins are incorporated in the vector with the
size of the total number of features. The vector is normalized by dividing it with the
sum of its components.

2. Hybrid Local Binary Pattern: LBP (Ojala, Pietikainen & Harwood, 1994) is a procedure
of LBP histogram. We have used all the five feature groups described in the last section
for structural class prediction problem.

Distance can only be calculated between proteins or between ligands. We’ve used KNN
and Clustering method to calculate these distances.

1. RELATEDLIGANDS (NP): For a given protein, find K-nearest proteins. The ligands those
bind with the above nearest proteins are the Related Ligands for the given protein
(See Fig. 8).

2. RELATEDPROTEINS (NL): For a given ligand, find K-nearest ligands. The proteins those bind
with the above nearest ligands are the Related Proteins for the given ligand (See Fig. 9).

To find the distances between pairs of ligands and proteins are calculated using
Euclidean and Manhattan distances. Threshold is the boundary between similarity and
dissimilarity in terms of distance. If distance is less than the threshold, then prediction is
positive similarity, else the prediction is negative similarity. The threshold of each
category of distances is the average distance based on the number of nearest neighbors.
Measuring distance has been done in two ways. One method is to get the cluster mean of
k-RelatedLigands/RelatedProteins, then measure the distance from the GivenProtein/
GivenLigand. Another method is to measure distances between the GivenProtein/
GivenLigand and k-RelatedLigands/RelatedProteins, then take the average of those
distances as the final distance.

For a given pair of Protein and Ligand, we want to predict if the will bind with each
other or not. For measuring distance dl, from the given protein, we searched for k-nearest
proteins and found the k related ligands accordingly. Then we’ve calculated the distance
using the above-mentioned methods. Then we’ve taken the vote for the binding class by all

Sadique et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.253 13/23

http://dx.doi.org/10.7717/peerj-cs.253
https://peerj.com/computer-science/

categories of distances based on their thresholds. Then finally, we’ve used majority voting
mechanism to predict the binding class.

Hyperparameters
There are some hyperparameters of our proposed method.

1. Number of nearest neighbors: Our algorithm’s prediction accuracy is highly dependent on
the number of nearest neighbors for finding both RELATEDLIGANDS (NP) and RELATEDPROTEINS
(NL). We’ve used five and three (best fit) nearest neighbors in this experiment.

2. Threshold: This is the threshold of distance for determining whether two proteins or
two ligands are similar or not. For a higher value of threshold, there is a higher
possibility for our algorithm to predict positive binding class for the majority of the
protein-ligand pairs. Also, the lower the threshold is, the higher is the possibility of
negative binding class prediction. We have taken the average of distances among three
nearest neighbors as our threshold for each category of the distances. In terms of setting
the threshold values, distances of each training sample from the whole training data was
measured. While doing so, negative pairs of protein-ligand were considered when
positive pair of protein-ligand was given for getting distances. Similarly, positive pairs of
protein-ligand were considered when negative pair of protein-ligand was given. The
average of these distances was taken as threshold values.

Figure 7 Block diagram of similarity-based clustering. Full-size DOI: 10.7717/peerj-cs.253/fig-7

Sadique et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.253 14/23

http://dx.doi.org/10.7717/peerj-cs.253/fig-7
http://dx.doi.org/10.7717/peerj-cs.253
https://peerj.com/computer-science/

RESULTS AND DISCUSSION
This section is the description of our experiments performed in this study. Some of the
experiments were carried out in a personal desktop computer having Intel Core i3 and
4 GB RAM and others were experimented in a Computing Machine provided by CITS,
United International University which was equipped with eight-core processors each
having a Dell R 730 Intel Xeon Processor (E5-2630 V3) with 2.4 GHz speed and 18.5 GB
memory. Java language was used for data preprocessing including feature generation
using OpenCV software library, negative data generation and data merging using Eclipse
IDE with Java 8 standard edition. Python language was used to implement our algorithm
using the Spyder IDE. Weka tool was used to run the traditional classification
algorithms for the comparison with our algorithm. 10-fold cross-validation method has
been used to get the performance of our model.

Algorithm 1 Similarity-based clustering algorithm.

Data: A pair (p, l), a protein structure and ligand structure in PDB format

Result: Decision, whether they will interact or not

1 for all proteins and ligands do

2 generate images & extract features

3 end

4 for each of the given pairs of protein-ligand do

5 NP)k-NEARESTPROTEINS(p) of the given protein

6 RL)k-RELATEDLIGANDS(NP)
7 dl) distance between given ligand, l & RL
8 if dl < thresholdl then

9 vl)vote for positive bind

10 else

11 vl)vote for negative bind

12 end

13 NL)k-NEARESTLIGANDS(l) of the given ligand

14 RP)k-RELATEDPROTEINS(NL)
15 dp)distance between given protein, p & RP
16 if dp < thresholdp then

17 vp)vote for positive bind

18 else

19 vp)vote for negative bind

20 end

21 v)majority voting between (vl , vp)

22 end

23 return v

Sadique et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.253 15/23

http://dx.doi.org/10.7717/peerj-cs.253
https://peerj.com/computer-science/

We also used Scale-invariant feature transform (SIFT) (Lowe, 2004) methodologies in
our experiments. Each descriptor has a 128-dimensional feature vector. The number
of descriptors of SIFT from every image is not specific so we cannot use traditional
machine learning techniques. Hence to apply traditional machine learning procedure and
specify the feature vector, we have split the image into 16 slices and took one descriptor
from each of the slice images. Therefore we got 2,048 number of attributes (8 × 16) from
each image. We have tested the dataset with the same classifiers mentioned in this paper.

Figure 8 Relation between given protein and related ligands.
Full-size DOI: 10.7717/peerj-cs.253/fig-8

Figure 9 Relation between given ligand and related proteins.
Full-size DOI: 10.7717/peerj-cs.253/fig-9

Sadique et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.253 16/23

http://dx.doi.org/10.7717/peerj-cs.253/fig-8
http://dx.doi.org/10.7717/peerj-cs.253/fig-9
http://dx.doi.org/10.7717/peerj-cs.253
https://peerj.com/computer-science/

The results didn’t turn up to be better or close to our proposed methodology in this
literature. The result of accuracy on different classifiers using SIFT is given in File S1.

We’ve tried outlier detection method to handle the absence of negative data in Ligand-
Binding dataset. But it gave overfitting problem. Details are in File S5.

Analysis of features
A different sets of parameters were used for each classifier used in this research. A linear
searching was used with no distance weighting for KNN. In the case of the Naive Bayesian
Classifier, SVM, a polynomial kernel was used with c = 1.0 and ε = 1.0 w−2. Data was
normalized before supplying to the classifier. J48 decision tree classifier was used in
Adaboost classifier as the weak base classifier. Classifier number of iterations was set to 100
for Random Forest.

We’ve used the “StratifiedRemoveFolds” filter which is available in Weka for creating
Train and Test set. This is a supervised instance filtering process that takes a dataset and
outputs a specified fold for cross-validation Kohavi (1995). We’ve taken one random
stratified fold out of 10 stratified folds as a Test set. The Train set has been generated by
applying SMOTE to the rest of the nine folds for Class balancing. Then we’ve tested
the performance of the features shown in Table 2 and different combinations of them
using these Train & Test set. Accuracy scores of the feature groups are given in Table 3.
Other performance metrics results (sensitivity, specificity, f1 score) can be found on
File S7. No Cross-Fold Validation was performed here as the performance of one Test set is
enough to find the best-performing group combination of features. The highest percentage
of correctly classified instances achieved for each of the classifiers are indicated by the
boldly faced values of the table.

After running the experiments for our five feature groups ABCDE classifies the highest
percentage of correct instances in Random Forest, Adaboost(J48) and SVM among all

Table 3 Classifier accuracies for different types of features and groups of features.

Image type Feature type Classifiers

KNN Naive Bayesian SVM Adaboost (J48) Random forest

Scaled A 50.81 50.63 69.16 68.62 75.13

Non scaled A 53.88 34.53 68.44 72.15 75.85

Scaled B 21.97 8.58 17.45 24.86 30.83

Non scaled B 30.83 25.40 23.23 37.25 42.85

C 15.82 5.60 25.76 36.07 39.51

Scaled D 69.43 48.01 67.63 70.97 74.77

Scaled E 61.30 56.23 64.73 72.60 74.05

Non scaled AB 51.71 32.45 68.89 71.33 73.50

Non scaled ABC 27.30 32.27 68.62 69.80 74.23

Non scaled + scaled ABCD 41.77 33.36 74.68 72.87 77.84

Non scaled + scaled ABCDE 50.27 34.53 77.21 75.22 78.66

Note:
The highest accuracy among the feature types in each category of classifiers are marked in bold.

Sadique et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.253 17/23

http://dx.doi.org/10.7717/peerj-cs.253/supp-1
http://dx.doi.org/10.7717/peerj-cs.253/supp-5
http://dx.doi.org/10.7717/peerj-cs.253/supp-7
http://dx.doi.org/10.7717/peerj-cs.253
https://peerj.com/computer-science/

other feature groups. Feature scaled E and D individually provides the highest accuracy in
Naive Bayesian and KNN. As the whole combination of all feature groups, accuracy
gives the highest percentage than any other feature group, thus we conclude that the
best-performing feature group combination is ABCDE and the best classifier is SVM
classifier.

Effectiveness in structural class prediction
In this section, we compare the performance of our proposed method with CoMOGrad
and PHOG (Karim et al., 2015). For comparison with our methodology in this literature,
we applied CoMOGrad and Phog techniques and Wavelet and Pyramid Histogram
techniques in our dataset of 11,052 instances. We conducted experiments with different
classifiers using the same parameters as we did for feature analysis with the feature groups.
We’ve discussed in the Analysis of Features section that we’ve tested our feature
groups using StratifiedRemoveFolds and finally selected ABCDE as our best feature group
and no Cross-Fold Validation was done. After selecting the feature group, we have
had to apply Cross-Fold Validation to use individual observation exactly once for
validation. For performing 10-Fold Cross-Validation, we’ve generated 10 different folds
using “StratifiedRemoveFolds” and in 10 iterations, one fold has been kept as Test set
and SMOTE has been applied to the other nine folds to get the Train set of the running
iteration. The result of performance metric (accuracy, sensitivity, specificity and f1
score) for each stratified iteration is given in File S2 for HybridLBP and File S3 for
ComogPHOG. SMOTE hasn’t been applied before splitting the data for cross-validation
to avoid the presence of artificial data in the test set. Average scores of the 10 iterations are
the actual score for comparing performance. This cross-validation was applied to all
benchmark dataset along with ours to establish a valid comparison. The results are
given in Table 4. From Table 4 it can be comprehended that our feature group ABCDE
outperforms CoMOGrad and PHOG in Random Forest, Adaboost & SVM. CoMOGrad
and PHOG surpassed our feature groups in KNN and Naive Bayesian. It can be noted
that the combination of our feature groups are three-fourths of CoMOGrad and PHOG.

Table 4 Comparison of the proposed features in this paper with Karim et al. (2015) for structural class prediction.

Performance metric Features Classifiers

KNN Naive Bayesian SVM Adaboost (J48) Random forest

Accuracy Karim et al. (2015) 68.03 56.40 76.52 72.50 74.27

This paper 51.37 35.35 77.27 76.25 76.76

Sensitivity Karim 68.04 56.41 76.53 72.5 74.28

This paper 51.37 35.34 77.28 76.25 76.76

Specificity Karim et al. (2015) 92.98 89.49 94.64 92.78 93.41

This paper 92.93 84.09 95.04 93.02 93.34

Score Karim et al. (2015) 69.15 56.63 77.28 72.67 74.36

This paper 54.21 31.88 78.28 76.23 76.77

Note:
The highest score of each performance metric between the features among each category of classifiers are marked in bold.

Sadique et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.253 18/23

http://dx.doi.org/10.7717/peerj-cs.253/supp-2
http://dx.doi.org/10.7717/peerj-cs.253/supp-3
http://dx.doi.org/10.7717/peerj-cs.253
https://peerj.com/computer-science/

It also can be discerned that the accuracy percentage in SVM is higher than
all the classifier results. Thus, our novel features are small in size and can classify instances
more accurately than CoMOGrad and PHOG.

We have revealed the precedence of our methodology over CoMOGrad and PHOG
(Karim et al., 2015).

Effectiveness in ligand-binding prediction
Sensitivity is the true positive rate regarding the positive instances. As we had to generate
the negative data artificially, sensitivity is the actual scale of performance measuring as

Figure 10 Barplot showing the performance of different algorithms on ligand-binding dataset. Full-size DOI: 10.7717/peerj-cs.253/fig-10

Table 5 Sensitivity, specificity and F1 score comparison among different methods for ligand-binding prediction.

Performance
metric

Features Adaboost
(J48) (%)

KNN
(5) (%)

Random
forest (%)

SVM (%) Naive
Bayesian (%)

Our
method (3) (%)

Sensitivity HybridLBP (random) 41.90 36.30 21.90 33.70 43.10 66.21

HybridLBP (cluster) 52.90 48.70 53.40 51.00 37.60 65.82

ComogPHOG (random) 95.20 47.60 16.10 29.70 11.30 50.68

Specificity HybridLBP (random) 41.20 47.20 18.20 39.00 49.60 42.19

HybridLBP (cluster) 55.80 58.00 62.20 56.90 65.50 42.19

ComogPHOG (random) 3.10 47.50 13.00 38.80 83.90 59.85

F1 score HybridLBP (random) 41.80 38.40 21.50 34.60 44.60 59.06

HybridLBP (cluster) 53.70 51.10 55.80 52.50 43.70 58.83

ComogPHOG (random) 65.20 47.60 15.80 31.10 17.80 53.11

Note:
The highest score of each performance metric between the classifiers among each category of features are marked in bold.

Sadique et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.253 19/23

http://dx.doi.org/10.7717/peerj-cs.253/fig-10
http://dx.doi.org/10.7717/peerj-cs.253
https://peerj.com/computer-science/

the positive data were the actual data. Using the thresholds gained using the negative
data, the sensitivity of our algorithm is very good comparing to other existing algorithms
shown in Table 5 and Fig. 10.

We have generated three different datasets based on three different features. Hybrid
LBP gives 736 long feature vectors from protein images and 677 long feature vectors from
ligand images. So, for one protein-ligand pair, we’ve got 1,413 (736 + 677) attributes
and one Binding Class value as one instance. The above mentioned two types of negative
data (random and Clustering-Based Undersampling) were generated using Hybrid LBP for
balancing the data. CoMOGrad and PHOG gives 1,021 or 1,020 long feature vectors
from protein image, but for ligand images, it gives 1,020 long feature vectors. We assumed
“0” as the last feature in protein where features were 1,020 long, to make it a 1,021 long
feature. So, for one protein-ligand pair we’ve got 2,041 (1,021 + 1,020) attributes and
one Binding Class value as one instance. Random negative undersampling was used in
CoMOGrad and PHOG but Clustering-Based Undersampling was not possible as some
clusters couldn’t get any unseen pairs of protein and ligand. Our method was used based
on three nearest neighbors and shown on the above table and chart.

Accuracy is not shown because it is dependent on the artificial negative data. However,
specificity is shown to correlate with sensitivity, not to judge the algorithms as it is a
true negative rate. On the other hand, the F1 score is also valuable because of being a
harmonic mean of sensitivity & precision where both scores are based on positive data.
For more details, please check the File S6.

We can see that AdaBoost works better than our algorithm in terms of sensitivity in
ComoGrad and PHOG dataset. Because Ligand data were so small in terms of the number
of atoms that ComoGrad and PHOG gave zeros for most of the ligands. This is an
overfitting problem as high sensitivity is offset by low specificity. But our algorithm’s
overall performance is better than other machine learning algorithms in the three different
feature datasets.

CONCLUSIONS
In this paper, we showed how accurately we can detect protein classes using the
combination of different image-based feature groups generated from protein images.
We also propose a simple similarity-based clustering method to predict protein-ligand
binding without using deep-learning or neural-networks. This simple distance-based
algorithm is quite effective compared to complex machine learning algorithms. Our main
limitation was the missing negative data. If we had the actual negative data, we could’ve
determined the perfect thresholds for each category of distances, and that would give us a
more accurate prediction. Another problem was the dimensions of small Ligands as we’re
using image-based features. As the advancement of deep learning, neural network, and
many other deep learning techniques are being used to classify images, many remarkably
interesting applications can be made. For our future advancement, we wish to introduce
new features to improve accuracy, use new tools and explore other fields of computer
vision such as human emotion detection. Besides, we will try to extract some unique

Sadique et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.253 20/23

http://dx.doi.org/10.7717/peerj-cs.253/supp-6
http://dx.doi.org/10.7717/peerj-cs.253
https://peerj.com/computer-science/

features from the ligand dataset so that the dimensionality problem does not affect our
protein-ligand binding prediction.

ACKNOWLEDGEMENTS
We thank Rezaul Karim for sharing the SQL dataset files and algorithms to generate
Distance Matrix from PDB files for CoMOGrad and PHOG.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Nafees Sadique conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

� Al Amin Neaz Ahmed conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the paper, and approved the final draft.

� Md Tajul Islam performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

� Md. Nawshad Pervage performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

� Swakkhar Shatabda conceived and designed the experiments, analyzed the data,
prepared figures and/or tables, authored or reviewed drafts of the paper, and approved
the final draft.

Data Availability
The following information was supplied regarding data availability:

Data and code are available at: https://github.com/NafeesSadique/Image-based-
effective-feature-generation-for-Protein-Structural-Class-and-Ligand-Binding-prediction.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.253#supplemental-information.

REFERENCES
Aha DW, Kibler D, Albert MK. 1991. Instance-based learning algorithms. Machine Learning

6(1):37–66.

Bradski G, Kaehler A. 2008. Learning OpenCV: computer vision with the OpenCV library.
Sebastopol: O’Reilly Media, Inc.

Sadique et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.253 21/23

https://github.com/NafeesSadique/Image-based-effective-feature-generation-for-Protein-Structural-Class-and-Ligand-Binding-prediction
https://github.com/NafeesSadique/Image-based-effective-feature-generation-for-Protein-Structural-Class-and-Ligand-Binding-prediction
http://dx.doi.org/10.7717/peerj-cs.253#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.253#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.253
https://peerj.com/computer-science/

Brady GP Jr, Stouten PF. 2000. Fast prediction and visualization of protein binding pockets with
pass. Journal of Computer-Aided Molecular Design 14(4):383–401
DOI 10.1023/A:1008124202956.

Chaires JB. 2008. Calorimetry and thermodynamics in drug design. Annual Review of Biophysics
37(1):135–151 DOI 10.1146/annurev.biophys.36.040306.132812.

Chawla NV, Bowyer KW,Hall LO, KegelmeyerWP. 2002. SMOTE: synthetic minority over-sampling
technique. Journal of Artificial Intelligence Research 16:321–357 DOI 10.1613/jair.953.

Chi P-H, Scott G, Shyu C-R. 2005. A fast protein structure retrieval system using image-based
distance matrices and multidimensional index. International Journal of Software Engineering
and Knowledge Engineering 15(03):527–545 DOI 10.1142/S0218194005002439.

Chothia C, Lesk AM. 1986. The relation between the divergence of sequence and structure in
proteins. EMBO Journal 5(4):823–826 DOI 10.1002/j.1460-2075.1986.tb04288.x.

Cortes C, Vapnik V. 1995. Support-vector networks. Machine Learning 20(3):273–297.

Dunn D, Higgins WE. 1995. Optimal gabor filters for texture segmentation. IEEE Transactions on
Image Processing 4(7):947–964 DOI 10.1109/83.392336.

Fox NK, Brenner SE, Chandonia J-M. 2013. SCOPe: structural classification of proteins—
extended, integrating SCOP and ASTRAL data and classification of new structures.Nucleic Acids
Research 42(D1):D304–D309 DOI 10.1093/nar/gkt1240.

Freund Y, Schapire RE. 1997. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences 55(1):119–139
DOI 10.1006/jcss.1997.1504.

Ho TK. 1995. Random decision forests. In: Proceedings of 3rd International Conference on
Document Analysis and Recognition, Quebec: IEEE. Vol. 1, 278–282.

Holm L, Sander C. 1993. Protein structure comparison by alignment of distance matrices.
Journal of Molecular Biology 233(1):123–138 DOI 10.1006/jmbi.1993.1489.

Holm L, Sander C. 1997. Dali/FSSP classification of three-dimensional protein folds. Nucleic Acids
Research 25(1):231–234 DOI 10.1093/nar/25.1.231.

Jain AK, Bhattacharjee S. 1992. Text segmentation using gabor filters for automatic document
processing. Machine Vision and Applications 5(3):169–184 DOI 10.1007/BF02626996.

Jain AK, Farrokhnia F. 1991. Unsupervised texture segmentation using gabor filters. Pattern
Recognition 24(12):1167–1186 DOI 10.1016/0031-3203(91)90143-S.

Jain AK, Ratha NK, Lakshmanan S. 1997.Object detection using gabor filters. Pattern Recognition
30(2):295–309 DOI 10.1016/S0031-3203(96)00068-4.

Karim R, Aziz MMA, Shatabda S, RahmanMS, Mia MAK, Zaman F, Rakin S. 2015. CoMOGrad
and PHOG: from computer vision to fast and accurate protein tertiary structure retrieval.
Scientific Reports 5(1):13275 DOI 10.1038/srep13275.

Kohavi R. 1995. A study of cross-validation and bootstrap for accuracy estimation and model
selection. In: International Joint Conference on Artificial Intelligence, Montreal. Vol. 14,
1137–1145.

Lowe DG. 2004. Distinctive image features from scale-invariant keypoints. International Journal of
Computer Vision 60(2):91–110 DOI 10.1023/B:VISI.0000029664.99615.94.

Maron ME. 1961. Automatic indexing: an experimental inquiry. Journal of the ACM 8(3):404–417
DOI 10.1145/321075.321084.

Mehrotra R, Namuduri KR, Ranganathan N. 1992. Gabor filter-based edge detection.
Pattern Recognition 25(12):1479–1494 DOI 10.1016/0031-3203(92)90121-X.

Sadique et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.253 22/23

http://dx.doi.org/10.1023/A:1008124202956
http://dx.doi.org/10.1146/annurev.biophys.36.040306.132812
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1142/S0218194005002439
http://dx.doi.org/10.1002/j.1460-2075.1986.tb04288.x
http://dx.doi.org/10.1109/83.392336
http://dx.doi.org/10.1093/nar/gkt1240
http://dx.doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/10.1006/jmbi.1993.1489
http://dx.doi.org/10.1093/nar/25.1.231
http://dx.doi.org/10.1007/BF02626996
http://dx.doi.org/10.1016/0031-3203(91)90143-S
http://dx.doi.org/10.1016/S0031-3203(96)00068-4
http://dx.doi.org/10.1038/srep13275
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1145/321075.321084
http://dx.doi.org/10.1016/0031-3203(92)90121-X
http://dx.doi.org/10.7717/peerj-cs.253
https://peerj.com/computer-science/

Ojala T, Pietikainen M, Harwood D. 1994. Performance evaluation of texture measures with
classification based on kullback discrimination of distributions. In: Proceedings of 12th
International Conference on Pattern Recognition, Jerusalem: IEEE. Vol. 1, 582–585.

Ojala T, Pietikainen M, Maenpaa T. 2002. Multiresolution gray-scale and rotation invariant
texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and
Machine Intelligence 24(7):971–987 DOI 10.1109/TPAMI.2002.1017623.

Patching SG. 2014. Surface plasmon resonance spectroscopy for characterisation of membrane
protein-ligand interactions and its potential for drug discovery. Biochimica et Biophysica Acta
(BBA)—Biomembranes 1838(1):43–55 DOI 10.1016/j.bbamem.2013.04.028.

Rossi AM, Taylor CW. 2011. Analysis of protein-ligand interactions by fluorescence polarization.
Nature Protocols 6(3):365–387 DOI 10.1038/nprot.2011.305.

Shyu C-R, Chi P-H, Scott G, Xu D. 2004. ProteinDBS: a real-time retrieval system for protein
structure comparison. Nucleic Acids Research 32:W572–W575 DOI 10.1093/nar/gkh436.

Singh AP, Brutlag DL. 1997. Hierarchical protein structure superposition using both secondary
structure and atomic representations. In: Proceedings of the 5th International Conference on
Intelligent Systems for Molecular Biology, Halkidiki. Vol. 5, 284–293.

Sousa SF, Ribeiro AJ, Coimbra J, Neves R, Martins S, Moorthy N, Fernandes P, Ramos M. 2013.
Protein-ligand docking in the new millennium – a retrospective of 10 years in the field.
Current Medicinal Chemistry 20(18):2296–2314 DOI 10.2174/0929867311320180002.

Srivastava S, Lal SB, Mishra D, Angadi U, Chaturvedi K, Rai SN, Rai A. 2016. An efficient
algorithm for protein structure comparison using elastic shape analysis. Algorithms for
Molecular Biology 11(1):27 DOI 10.1186/s13015-016-0089-1.

Steinbrecher T, Labahn A. 2010. Towards accurate free energy calculations in ligand
protein-binding studies. Current Medicinal Chemistry 17(8):767–785
DOI 10.2174/092986710790514453.

Taylor WR. 1999. Protein structure comparison using iterated double dynamic programming.
Protein Science 8(3):654–665 DOI 10.1110/ps.8.3.654.

Sadique et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.253 23/23

http://dx.doi.org/10.1109/TPAMI.2002.1017623
http://dx.doi.org/10.1016/j.bbamem.2013.04.028
http://dx.doi.org/10.1038/nprot.2011.305
http://dx.doi.org/10.1093/nar/gkh436
http://dx.doi.org/10.2174/0929867311320180002
http://dx.doi.org/10.1186/s13015-016-0089-1
http://dx.doi.org/10.2174/092986710790514453
http://dx.doi.org/10.1110/ps.8.3.654
http://dx.doi.org/10.7717/peerj-cs.253
https://peerj.com/computer-science/

	Image-based effective feature generation for protein structural class and ligand binding prediction
	Introduction
	Materials and Methods
	Results and discussion
	Conclusions
	flink5
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

