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ABSTRACT
Industrial organizations are turning to recommender systems (RSs) to provide more
personalized experiences to customers. This technology provides an efficient solution
to the over-choice problem by quickly combing through large amounts of
information and supplying recommendations that fit each user’s individual
preferences. It is quickly becoming an integral part of operations, as it yields
successful and convenient results. This research provides an enhanced integrated
fuzzy logic-based deep learning technique (EIFL-DL) for recent industrial challenges.
Extracting useful insights and making appropriate suggestions in industrial settings is
difficult due to the fast development of data. Traditional RSs often struggle to handle
the complexity and uncertainty inherent in industrial data. To address these
limitations, we propose an EIFL-DL framework that combines fuzzy logic and deep
learning techniques to enhance recommendation accuracy and interpretability. The
EIFL-DL framework leverages fuzzy logic to handle uncertainty and vagueness in
industrial data. Fuzzy logic enables the modelling of imprecise and uncertain
information, and the system is able to capture nuanced relationships and make more
accurate recommendations. Deep learning techniques, on the other hand, excel at
extracting complex patterns and features from large-scale data. By integrating fuzzy
logic with deep learning, the EIFL-DL framework harnesses the strengths of both
approaches to overcome the limitations of traditional RSs. The proposed framework
consists of three main stages: data preprocessing, feature extraction, and
recommendation generation. In the data preprocessing stage, industrial data is
cleaned, normalized, and transformed into fuzzy sets to handle uncertainty. The
feature extraction stage employs deep learning techniques, such as convolutional
neural networks (CNNs) and recurrent neural networks (RNNs), to extract
meaningful features from the preprocessed data. Finally, the recommendation
generation stage utilizes fuzzy logic-based rules and a hybrid recommendation
algorithm to generate accurate and interpretable recommendations for industrial
applications.
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INTRODUCTION
In the era of big data, industrial applications generate vast amounts of data, which poses
challenges in extracting valuable insights and providing accurate recommendations.
Traditional recommendation systems (RSs) often struggle to handle the complexity and
uncertainty inherent in industrial data (Roozbahani et al., 2020). To overcome these
limitations, this article proposes an enhanced integrated fuzzy logic-based deep learning
techniques (EIFL-DL) framework for RSs in industrial applications. RSs have become
increasingly important in industrial applications, aiding users in making informed
decisions and improving overall productivity. However, the complexity and uncertainty
inherent in industrial data pose significant challenges for traditional RSs. To address these
challenges, this article proposes the use of fuzzy logic-based deep learning techniques for
RSs in industrial applications. Fuzzy logic is a mathematical framework that allows for the
representation and handling of imprecise and uncertain information (Bobadilla et al.,
2013). It provides a flexible and intuitive approach to modeling complex relationships and
captures the vagueness often encountered in publication under the terms and conditions of
the Creative Commons Attribution industrial data.

On the other hand, deep learning is a powerful machine learning (ML) technique that
excels at extracting meaningful features and patterns from large-scale datasets. By
integrating fuzzy logic with deep learning, we can leverage the strengths of both approaches
to enhance the RSs in industrial applications (Chen, Chen &Wang, 2015). Fuzzy logic-based
deep learning techniques allow for improved accuracy, interpretability, and handling of
uncertainty in the recommendation process. The proposed approach involves several key
steps. First, the industrial data is preprocessed to handle noise, outliers, and missing values
(Batmaz et al., 2019). Fuzzy logic is then applied to represent the uncertainty and vagueness
present in the data. The preprocessed data is fed into deep learning models, such as
convolutional neural networks (CNNs) or recurrent neural networks (RNNs), to extract
relevant features and patterns (Dang, Moreno-García & Prieta, 2021). These deep learning
models are trained on fuzzy data representation to learn complex relationships and make
accurate recommendations. This research proposes a customized RS that aims to create an
intelligent decision-making support tool for customers in a cloud manufacturing system.
However, one major disadvantage of knowledge-based RSs is the potential knowledge
acquisition bottleneck (Devipriya et al., 2020). Explicitly defining recommendation
knowledge can be time-consuming and labor-intensive. As the system relies on human-
curated knowledge about products and their characteristics, keeping the knowledge base up-
to-date and relevant may require ongoing efforts (Nogueira dos Santos, Xiang & Zhou,
2015).

The proposed RS utilizes neural networks for data regression, incorporates the analysis
of past customer selections, and extracts key features from incoming manufacturing
solution requests and available solutions (Bai et al., 2017). By employing this approach, the
ML procedure can segment customers and generate a tailored recommendation list of
manufacturing solutions based on their specific profiles (Betru, Onana & Batchakui, 2017).
To validate the proposed system, a simulated case study was conducted within a cloud

Rafique et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2529 2/35

http://dx.doi.org/10.7717/peerj-cs.2529
https://peerj.com/computer-science/


manufacturing platform considered a large-scale manufacturing network with 950
suppliers and 60 customers. The evaluation includes training the regression learner with
data from 15 customers and assessing the system’s ML performance, industrial
applicability, and user selection likelihood (Catherine & Cohen, 2017).

This study has made significant contributions to the field of industrial data processing
and RSs. First, it has developed a new approach to integrating fuzzy logic into RSs to
evaluate their effectiveness. Second, it has effectively determined the complexities and
uncertainties of industrial data, to further enhance the performance of the recommender
system. Last, the study employed the latest hybrid recommendation algorithm, intending
to provide precise and easily understandable recommendations tailored to industrial
applications. The rest of this article is structured as follows: In “Related Work”, we provide
a review of relevant research. “Materials and Methods” presents the introduction of our
proposed RS, which is based on deep learning and tailored for handling the complexity and
scale of industrial data. In “Experimentation Analysis”, we outlined the evaluation process
to demonstrate the system’s performance. The obtained results are discussed, along with
future work suggestions. Lastly, “Conclusion” offers the conclusions of this study.

RELATED WORK
RSs have generated a lot of interest in industrial applications because they may aid users in
making informed decisions and boosting productivity. To solve the challenges brought on
by the complexity and ambiguity of industrial data, researchers have looked at the usage of
fuzzy logic-based deep learning algorithms for RSs (Chen et al., 2017a). In this review of
the literature, the significant studies on this subject are evaluated (Chen et al., 2017b). In
this article, a fuzzy deep neural network (FDNN) method for commercial RSs is proposed.
For handling ambiguity and removing pertinent characteristics, the FDNN blends fuzzy
logic with deep learning (Chen et al., 2017c). The authors describe a deep learning model
for industrial product recommendation that is based on fuzzy logic. To manage
uncertainty and capture the ambiguous linkages between items and user preferences, fuzzy
logic is applied. Cooperation Products are evaluated through filtering based on previous
reviews from users, both explicit and implicit (Chu & Tsai, 2017). The strategy entails
compiling a database of user preferences for different goods. It uses deep learning models
to extract important features from industrial data, effectively manages uncertainty, and
adds collaborative filtering to improve suggestion accuracy. In exploratory comparison
experiments, the deep neural network performed better than the majority of previous
techniques (Dai et al., 2016a), as a result, the authors suggest an improved fuzzy deep
learning model for industrial process suggestion. A unique, multifaceted methodology for
analyzing people’s perceptions of medical services was presented by the proposed study.
Dai et al. (2016b) evaluated the performance of basic and deep neural networks using
textual, visual, and a combination of text and visual information. The deep neural network
(Dong et al., 2017) outperformed the majority of other techniques in an exploratory
comparison exercise. While deep learning approaches collect information linked to the
industrial process, fuzzy logic is used to capture the ambiguity and uncertainty in the data.
The researchers unveiled Auto Rec, a recommendation mechanism that anticipates

Rafique et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2529 3/35

http://dx.doi.org/10.7717/peerj-cs.2529
https://peerj.com/computer-science/


missing ratings by using Autoencoders. Using the appropriate ML techniques (Hudson &
Manning, 2018) and the simulations offered by Apache Spark, it was able to extract
valuable knowledge from enormous amounts of medical data. In their trials, Lee et al.
(2016) showed that, for the Movie Lens and Netflix datasets, Auto Rec surpassed matrix
factorization and restricted Boltzmann machine (RBM)-based collaborative filtering in
terms of accuracy. In this study, a neural network was integrated into an optimization-
based methodology (Lei et al., 2016).

Category systems for RSs in industrial applications
RSs play a crucial role in various industrial applications by helping users discover relevant
products, services, or content based on their preferences and behaviors. Here are some
categories of RSs commonly used in industrial applications:

Collaborative filtering recommendation

Collaborative filtering (CF) is a popular approach used in RSs to evaluate products based
on users’ historical ratings (explicit or implicit) from the data. The technique builds a
database of user preferences for items and then identifies active users’ neighbors who share
similar purchase preferences. CF (Beel et al., 2016) can be categorized into two main types:
item-based filtering and user-based filtering. In user-based CF, the method involves two
key stages to predict ratings for a specific user. First, it identifies similar users to the target
user based on their historical ratings and preferences. Next, it obtains ratings from similar
users and utilizes them to generate personalized recommendations for the active user.
Various similarity measures have been proposed in the literature to calculate the similarity
among users. Some commonly used measures (Beel & Langer, 2015) include mean-squared
difference, Pearson correlation, cosine similarity, Spearman correlation, and adjusted
cosine similarity. CF is widely adopted in RSs due to its effectiveness and ability to
automatically learn embedding. The term “embedding” refers to mapping items to a
sequence of numbers or vectors. By representing items with learned vectors, algorithms
can discover relationships between items and extract their features automatically. Overall,
CF (Beel et al., 2013) is a powerful recommendation technique that does not require
domain knowledge, as it can learn from user-item interactions and provide accurate
recommendations based on user preferences.

Content-based recommendation
Content-based approaches in RSs aim to create a user profile based on their historical
interactions to predict ratings for unseen items. Successful content-based methods make
use of tags and keywords associated with items to build item profiles and understand user
preferences. The utility of content-based filtering (Bellogín & Said, 2021) is often measured
using heuristic functions, with the cosine similarity metric being a common choice.
Content-based filtering is suitable in cases where item features can be easily extracted and
represented. However, it may not be practical when features (Berg, Kipf & Welling, 2017)
need to be manually entered, especially in scenarios with a large number of new products
being added regularly. One advantage of content-based filtering is that it does not rely on
other users’ data, making it more scalable for handling many users. Predicted
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recommendations are user-specific, which allows the system to handle a diverse set of users
effectively. Unlike CF, content-based filtering does not face cold-start issues (Beutel et al.,
2019). It can suggest new items to users even before a substantial number of users have
rated those items. However, content-based filtering has some limitations. If the available
content does not provide enough information to precisely differentiate products, the
recommendations may not be accurate. The effectiveness of content-based filtering heavily
relies on the quality and richness of the item features used to represent the items (Biega,
Gummadi & Weikum, 2018).

Demographic-based recommendation
According to various quantitative research articles, CF techniques can benefit from the
incorporation of demographic correlation (Bogers et al., 2020). Demographic RSs operate
by categorizing users based on their demographic attributes, such as age, gender, and
language, to generate personalized recommendations. These RSs are particularly valuable
when there is limited product information available. Demographic RSs offer solutions to
two critical issues in RSs: scalability and cold-start problems. By using user attributes
(Bonhard et al., 2006) as demographic data, these systems can provide recommendations
without relying on user ratings, which is a key advantage over content-based and
collaborative filtering techniques. One of the key benefits (Bostandjiev, O’Donovan &
Höllerer, 2012) of demographic filtering RSs is their speed and simplicity in generating
recommendations with only a few observations. They can quickly provide relevant
suggestions based on users’ demographic information (Bosteels, Pampalk & Kerre, 2009).

Utility-based recommendation
Utility-based RSs provide recommendations by creating a utility model for each item
personalized to the user. In this approach (CarlKadie, 1998), the system builds utility
functions that consider multiple attributes of users and items to determine the utility of
each item for the user explicitly. One of the key advantages (Burke, 2002) of utility-based
RSs is their ability to factor in non-product attributes when calculating utility functions.
This means that attributes such as product availability, vendor reliability, and other
relevant factors can be considered, making the recommendations more comprehensive
and informative. Utility-based RSs are particularly useful for scenarios where real-time
information about items is critical. By computing the utility explicitly (Burke, 2010), the
system can check real-time inventory and consider the current features of an item,
providing users with up-to-date information and visualization of the item’s status. Unlike
some other recommendation techniques (Burke et al., 2016) that rely on long-term user
profiles, utility-based systems focus on evaluating recommendations based on the user’s
current needs and the available options. This allows the system to adapt quickly to
changing user preferences and evolving item attributes. Overall, utility-based RSs
(Cañamares, Castells & Moffat, 2020) offer a flexible and dynamic approach to
recommendations by incorporating various attributes and real-time information. This
enhances the relevance and accuracy of the recommendations, making them more useful
for users with varying preferences and requirements (Campbell, 2006).
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Knowledge-based recommendation
Knowledge-based RSs utilize explicit knowledge about products and users to create a
knowledge-based criterion for generating recommendations (Castells, Hurley & Vargas, 2021).
Unlike other RS approaches that rely on user ratings or historical data, knowledge-based RSs
do not require a large initial dataset. Celik et al. (2018) recommendations are independent of
user ratings, and they focus on evaluating products that match the user’s specific needs and
preferences. One of the main advantages of knowledge-based RSs is their ability to avoid the
typical ramp-up problem often associated with ML-based recommendation approaches. In
traditional RSs (Celma & Herrera, 2008) that rely on user ratings, the system may struggle to
make accurate recommendations until the user has rated a substantial number of items.
Knowledge-based systems bypass this issue since their recommendations are not dependent
on a user’s rating history. Another benefit is that knowledge-based RSs do not need to collect
user-specific information or create user profiles, as their recommendations are independent of
individual user tastes (Celma, 2010). This simplifies the system’s implementation and removes
potential privacy concerns associated with collecting and storing user data. Due to these
advantages (Chalmers et al., 1981), knowledge-based RSs can serve as valuable stand-alone
systems, particularly in situations where there are limited user data or when it is challenging to
gather explicit user preferences. Additionally, they can complement other types of RSs by
providing targeted recommendations based on specific knowledge about products and users
(Chao & Lam, 2011).

Hybrid-based recommendation
Hybrid systems in RSs combine two or more recommendation techniques to achieve
improved performance. The primary objective of hybrid systems is to address the
limitations and drawbacks of individual recommendation approaches. By leveraging the
strengths of different techniques (Chen, Shih & Lee, 2016), hybrid systems aim to provide
more accurate and diverse recommendations to users.

MATERIALS AND METHODS
System overview
The RS plays a vital role in industrial applications, aiding users in making informed
decisions and enhancing overall productivity. To address the challenges posed by the
complexity and scale of industrial data, this article proposes a deep learning-based
approach for RSs in industrial applications as illustrated in Fig. 1. The proposed
framework is developed to address three key challenges:

1. Generating data cleaning techniques to serve as enhanced input for the recommenders.

2. Improving the accuracy of extracting spatial and local features product recommendations.

3. Improving the deep learning model. The primary objective of this framework is to
enhance the overall performance, with a specific focus on improving accuracy RSs.

An industrial RSs, implemented with reinforcement learning (RL) was devised to deliver
personalized suggestions or advice to users, tailored to their preferences and real-time
conditions. This versatile system can be effectively employed across multiple sectors,
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Figure 1 Overall view of the proposed recommendation systems framework.
Full-size DOI: 10.7717/peerj-cs.2529/fig-1
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including manufacturing and supply chain management. Below, we outline the key
components involved in the development of such a system and the description of the main
notations has been illustrated in Table 1:

1. User inputs

(a) User preferences: User choices and historical interactions play a pivotal role in the
recommendation process, collected either through explicit feedback like ratings and
reviews or implicit feedback such as purchase history, click-through rates, and
sensor data.

(b) Contextual information: In industrial settings, contextual factors, like the user’s
role, Industrial specific constraints, and real-time data (e.g., inventory levels and
machine status), are indispensable for generating relevant recommendations.

(c) Interaction data: The system must amass data on user interactions within the
environment or system, encompassing actions taken and their outcomes.

2. Data preprocessing

(a) Aggregate data from various sources, including user interactions, product details,
and contextual information.

(b) Data cleaning: Refine and sanitize the data, addressing missing values, outliers, and
inconsistencies.

(c) Data transformation: Convert raw data into a suitable format for further analysis,
including the encoding of categorical variables and normalization of numerical
features.

(d) Temporal data handling: In an industrial context, time-series data often holds
significance for comprehending user behavior.

Table 1 Description of the symbols.

Notation Description

D Data cleaning

P Preprocessing threshold

Ds
i Instance of the dataset being evaluated

y Value selected from the dataset for extraction

xðnÞ Input feature vector at iteration n

a Learning rate or weight adjustment factor

dnj Delta value associated with the j-th parameter at iteration n

R Recommended model output

f Activation function or transformation applied in the model

RG
i Generated recommendations for item i

ki Input embeddings for item i

d Accuracy metric

c Weighting factor
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(e) Appropriate treatment of temporal aspects is vital.

3. Feature extraction

(a) Feature engineering: Construct relevant features from the preprocessed data,
potentially incorporating attributes related to product specifications, user roles,
historical actions, and environmental conditions.

(b) Embedding: Utilize embedding or feature representations to effectively capture the
relation ships between users, products, and contextual elements.

4. Model training

(a) RL: RL models are well-suited for RS due to their ability to learn through
interactions with the environment and optimising for long-term rewards.

(b) RL environment: Define the RS as an RL environment, where users act as agents,
making recommendations and receiving rewards based on user feedback.

Data preprocessing
In the initial phase, text preprocessing is applied to the text reviews in dataset A and
various preprocessing tasks are performed, resulting in a vector comprising unique integer
indexes (IDs). This vector serves as the input for word embedding as shown in Eq. (1). The
process converts IDs into dense real-valued vectors with semantic meaning. The word
embedding ensures that words with similar meanings have similar vectors and are
positioned closely in a high-dimensional semantic space. Subsequently, the real-valued
vector of each review, along with its explicit rating, becomes the input for training the
sentiment predictor. In this stage, the industrial data is preprocessed to handle noise,
outliers, and missing values. Data cleaning techniques are applied to ensure the quality of
the data. The data may also undergo normalization or standardization to bring it to a
consistent scale.

jðDs
i � Ds

iÞj <¼ P (1)

where D = Data cleaning, P = Preprocessing, Eq. (1) represents an absolute difference
between the two instances,Ds

i indicating that the absolute value of their discrepancy should
be less than or equal to a defined threshold, denoted as P. This mathematical expression
sets a condition ensuring that the dissimilarity between the two instances remains within a
specified limit P.

Feature extraction
In the age of information overload, RSs have become essential in mitigating this issue and
are extensively utilized across various online services, such as E-commerce, streaming
platforms, and social media sites. CF with implicit feedback is a core component of these
RSs. Among the variations of CF, matrix factorization is the most commonly used
approach, where a fixed inner product of the user-item matrix is utilized to capture
user-item interactions. A more recent advancement (Chen et al., 2017c) performance in
this domain is neural CF (NCF), which replaces the traditional user-item inner product
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with a neural architecture. This innovative approach incorporates neural networks to
model and enhance user-item interactions, providing a more effective and dynamic
recommendation mechanism. Equations (1) and (2) shows that there is a need to develop a
more specialized and improved extraction function dedicated to modelling the latent
feature interaction between users and items. NCF emerges as a solution to address this
issue by,

Extraction ¼

���nj : ����Ds
i � Ds

i

���� � P
o������nj : jedataseto��� � P

�dy
dx

�
(2)

Equation (2) describes a data extraction process where the value of y is selected from a
dataset using the conditions Ds

i � Ds
i with a limit P.

Model training
Once the features are extracted, the deep learning model is trained using appropriate
algorithms such as back propagation or gradient descent. The model is optimized to
minimize the loss function and maximize the accuracy of the RS. The delta rule for training
simple two-layer networks has been previously explained. However, the challenge lies in
adapting weights in the hidden layer(s) of the multilayer perceptron (MLP), or more
precisely, in calculating the required adjustments for the hidden units. The training process
(Chen, Chou & Kauffman, 2009) Eq. (3) involves feeding the extracted features along with
the corresponding target labels. The backpropagation algorithm is an extension of the delta
rule and relies on gradient descent to minimize the sum squared difference between the
target and actual network outputs. In the training model, where t represents training and a
represents accuracy. Typically, the analysis assumes the presence of a semi-linear
activation function, such as the sigmoid, which is both differentiable and monotonic.

ti ¼ a � anj þ ð1þ aÞ � dnj � xðnÞ: (3)

Recommendation generation
After training the model, it generates recommendations based on user input or specific
queries. The deep learning model takes the input data and processes it through the trained
network to produce recommendations. where R represents the recommended model and f
represents personalized output. The recommendations may be ranked based on relevance
or personalized to individual user preferences.

RG
i ¼ fðoutÞðfðyÞð. . . ðf1ðf2ðfðlengthÞðfðembeddingÞðkiÞÞÞÞ . . .ÞÞ (4)

Several techniques can be applied to the training data to effectively enhance an RSs
performance:

1. Excluding popular items from the training data, especially when users can easily
discover them on their own. This approach is beneficial as it helps avoid redundant
recommendations that users might not find it useful.
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2. Scaling item ratings based on the user’s value, such as their average transaction value. By
doing this, the model can better learn to recommend items that are likely to appeal to
loyal or high-value customers, leading to more personalized and relevant
recommendations.

Evaluation and validation
The performance of the RS is evaluated using appropriate evaluation metrics, such as
precision, recall, or means average precision. Validation techniques, such as cross-
validation or hold-out validation may be employed to assess the generalization capability
of the model. The system’s performance is compared with baseline approaches or existing
RSs to demonstrate its effectiveness in the following equations.

F ¼ ð2 � precision � recallÞ
precisionþ recall

� hðxÞ log
Zh
0

x3 (5)

precision ¼ Corresponding item
total no: of items

(6)

recall ¼ Corresponding item
total no: of items

(7)

The integration term involves the definite integral of x3 logðxÞ concerning x from 0 to h.
The F1 score combines precision and recall into a single value, giving a harmonic mean
that balances the trade-off between these two metrics in classification performance
assessment. By leveraging deep learning techniques, the proposed approach aims to
improve the accuracy and scalability of recommendation systems in industrial
applications. The use of deep learning models (Chen & Konstan, 2015) allows for the
extraction of intricate patterns and representations from large-scale industrial data, leading
to more precise and relevant recommendations. Additionally, the proposed approach can
adapt to dynamic and evolving industrial environments by continuously updating the
recommendation model using new data.

extraction ¼ Corresponding itemþ nonCorresponding item
N

(8)

In conclusion, the proposed deep learning-based RS for industrial applications offers a
promising solution to handle the challenges posed by complex and voluminous industrial
data. The overview presented above provides a high-level understanding of the proposed
approach (Christakopoulou, Radlinski & Hofmann, 2016), and the accuracy measured in
Eq. (9) suggest that further research and experimentation are required to validate its
effectiveness and optimize its performance in various industrial settings.

d ¼ accuracy1
Xp
i¼1

expðc: sinðya; yailÞÞP
X 2 cda expðc: sinðya; faðxÞ0ÞÞ

(9)
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In Eq. (9), c functions as a weighting factor that affects the accuracy metric d. It is
essential for equilibrating the contributions of various components within the system.
Specifically, c can be construed as a parameter that modulates the impact of diverse
predictions or inputs (e.g., ya, yall) on the ultimate accuracy evaluation.

This weighting aims to refine the recommendation model’s sensitivity to the intricacies
of extensive industrial data, hence improving the accuracy and importance of the
generated recommendations. Incorporating c into the equation enables the model to
dynamically adjust to changes in the data landscape, hence maintaining its efficacy in
changing industrial contexts.

Data preprocessing is a crucial step in the deep learning pipeline, as it involves cleaning,
transforming, and preparing the data to ensure its quality and compatibility with deep
learning models. To enhance the efficiency and effectiveness of data preprocessing, this article
proposes a deep learning-based data preprocessing measured quality inspector for industrial
applications (Eq. (10)). The inspector leverages deep learning techniques (Christakopoulou,
Radlinski & Hofmann, 2016) to automate and optimize the data preprocessing process,
ensuring high-quality data for subsequent analysis and modelling tasks.

t ¼ ðxi þ xjÞ

where, xij ¼ atðAikAjÞ
atðAikAjÞ � xij ¼ 1

xij

The weight attributes normalized represented as ðw0;w1; . . . ;wnÞ as follows:

wi ¼ wi þ wjPa
i¼0ðwi þ wjÞn (10)

The equation represents the normalization of weight attributes in a vector
ðw0;w1; . . . ;wnÞ. Each weight wi is updated to be the sum of wi and wj divided by the

total sum of all weights raised to the power of n. This normalization process ensures that
the weights collectively sum to 1, effectively distributing the influence of each weight in the
vector proportionally. The parameter a denotes the upper limit of the summation, and
the formula is designed to adjust weights to maintain relative proportions while ensuring
the sum of weights remains constant.

In the initial phase, the text reviews from dataset A undergo preprocessing, resulting in a
vector containing unique integer indexes (IDs). This vector serves as input for a word
embedding process, where the IDs are transformed into dense real-valued vectors with
semantic meaning. This transformation allows words with similar meanings to have
similar vectors, effectively positioning them close to one another in a high-dimensional
semantic space. Subsequently, the real-valued vectors representing each review and its
explicit rating are used as inputs to train the sentiment predictor. This predictor analyses
and predicts the sentiment or emotion conveyed in the text reviews. The generative
adversarial networks (GAN) training process converges when the generator becomes
proficient enough to produce data that the discriminator can hardly differentiate from the
real data. At this point, the GAN in Fig. 2 reaches Nash equilibrium and the generator has
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effectively learned to model the data distribution of the training set. RSs can be evaluated
using different types of data, such as explicit feedback (e.g., ratings or likes), implicit
feedback (e.g., browsing behaviour or purchase history), or a combination of both. Each
data type presents unique challenges and requires specific evaluation techniques to extract
meaningful insights. Data sparsity refers to the situation where only a small fraction of
potential user-item interactions are observed in the data. In many real-world scenarios,
users interact with only a small subset of available items, resulting in sparse data matrices.
Addressing data sparsity is crucial for accurate evaluation (Jalili et al., 2018) and efficient
recommendation algorithms. The cold-start problem occurs when new users or items have
limited or no historical interactions in the data. Evaluating RSs under cold-start conditions
is challenging as the system needs to provide meaningful recommendations despite the
lack of historical data for new users or items. Item metadata comprises various attributes
that describe the items, such as genre, category, author, or producer. By considering item
attributes, RSs can suggest items that align more closely with user preferences and improve
recommendations for less-known items.

Qualitative and quantitative dataset
In the evaluation of RSs, data collection can encompass both quantitative and qualitative
methods. Quantitative data collection relies on highly structured instruments, such as
standardized surveys or questionnaires, to gather user feedback directly. These structured
approaches facilitate the validity and comparability across studies and enable deductive
analysis using statistical methods, allowing for generalization to the wider population. On
the other hand, qualitative data collection methods, such as interviews, focus groups, and
participant observations, are used to gain a deeper understanding of the study’s sample.
Qualitative data are collected in the form of notes, videos, audio recordings, images, or text

Figure 2 Architecture for data preprocessing quality assessment model deep learning techniques.
Full-size DOI: 10.7717/peerj-cs.2529/fig-2
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documents, offering valuable insights into users’ preferences, perceptions, and experiences
with the RS. Combining quantitative and qualitative data allows for a comprehensive
evaluation, enabling researchers to triangulate findings and derive more nuanced and
context-specific conclusions about the system’s performance and user interactions.

Data collection:

Data collection methods in the evaluation of RSs can be categorized based on their focus
on contemporary or historical events. Historical data collection methods rely on past
events, utilizing existing datasets or data retrieved from social media platforms to assess
system performance. In contrast, contemporary data collection methods investigate
current user interactions and preferences. Another important distinction in evaluation
methods is user involvement. Offline studies do not require active user participation with
the recommender system, as they solely rely on historical data for analysis. On the other
hand, user-centric evaluations (Cosley et al., 2003) involve direct user engagement, where
users interact with the recommender system, provide feedback, or participate in user
studies. While offline studies are often more efficient and less resource-intensive, user-
centric evaluations offer valuable insights into user experiences and preferences, making
them essential for understanding real-world user interactions with the recommender
system. However, user-centric evaluations can be more expensive in terms of time and
money due to the need for user recruitment, data collection, and user feedback gathering.
Both types of evaluations play a crucial role in providing a comprehensive understanding
of the recommender system’s performance and user satisfaction.

Data cleaning

The data cleaning process involves implementing three filters and one preprocessing
task. A final dataset containing 2.90 million rows and five features is obtained. To facilitate
the two-phase experiments, 600,00 records are randomly selected from the final dataset,
with 120,00 rows corresponding to each rating label. This selection is used to create the
dataset for the experiments. After the preliminary set, a final dataset is obtained, consisting
of 2,216,008 rows with five features. Among these data records, only 46,954 have a rating
equal to 1. To create dataset B, a total of 235,000 records are randomly selected, with
46,000 rows corresponding to each rating label. The two most effective data-cleaning
techniques were then implemented to reach at this final dataset. The inspector utilizes deep
learning models, such as autoencoders or (GANs), to identify and remove noisy or
erroneous data points. These models can learn the underlying patterns and structures of
the data, allowing them to detect and eliminate outliers, missing values, or inconsistent
entries.

1) Autoencoders

An autoencoder is a neural network designed to acquire efficient data representations,
primarily for dimensionality reduction or noise reduction. The design comprises two
primary components: an encoder that compresses the input data into a latent space
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representation and a decoder that reconstructs the original data from this compressed
form. The loss function for an autoencoder is often the mean squared error (MSE) between
the input data and its reconstruction, expressed as:

LAE ¼ 1
N

XN
i¼1
jjxi � x̂ijj2

where xi denotes the original input data, x̂i signifies the reconstructed output, and N
indicates the number of data points. The autoencoder is trained by backpropagation to
reduce the reconstruction loss. Throughout training, the model acquires the ability to
discern the fundamental patterns within the data, efficiently eliminating additional noise.
The resulting latent representation may subsequently be utilized for downstream activities
(Kuchaiev & Ginsburg, 2018).

2) Generative adversarial networks

Generative adversarial networks (GANs) comprise two adversarial neural networks: a
generator that endeavors to produce authentic data samples and a discriminator that
assesses the authenticity of the input data, determining whether it is real or fabricated. This
adversarial process results in the generator creating high-quality data samples, which can
assist in noise reduction. The loss function for GANs encompasses both the generator and
the discriminator (Su et al., 2022).

Discriminator:

LG ¼ �Ez�Pz ½logDðGðzÞÞ�

Generator:

LD ¼ �Ex�Pdata ½logDðxÞ� � Ez�Pz ½logð1� DðGðzÞÞÞ�

In this context, DðxÞ represents the discriminator’s probability assessment that x is an
authentic sample, GðzÞ denotes the generated sample derived from random noise z, while
Pdata and Pz signify the true data distribution and the noise distribution, respectively. The
generator and discriminator are changed iteratively throughout the training process.
The discriminator is trained to differentiate authentic data from counterfeit data, whereas
the generator is trained to deceive the discriminator into categorizing its output as
authentic. This process persists until the generator yields data samples that closely mimic
the authentic data, thereby diminishing noise and enhancing the overall quality of the
dataset.

Data transformation

Deep learning models, such as vibrational auto encoders (VAEs) or self-organizing
maps (SOMs), can be employed to transform the data into a more suitable representation.
These models learn the latent representations of the data, capturing its essential features
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and reducing its dimensionality. This transformation can enhance the efficiency and
effectiveness of subsequent analysis tasks.

Data validation

The inspector employs deep learning models, such as RNNs or long short-termmemory
(LSTM) networks, to validate the integrity and consistency of the data. By using the
forward states of the LSTM, it can efficiently capture information from past features in the
sequence, allowing it to understand the context leading up to the current position.
Conversely, by leveraging the backward states of the LSTM, it can effectively utilize future
features in the sequence, providing insight into the context that follows the current
position. This combination of information from both ends of the sequence allows the
LSTM to make more informed estimations of the output and better capture long-term
dependencies and patterns within the data. This bidirectional processing can be
particularly beneficial in tasks where understanding the complete context of the sequence
is essential for accurate classification, prediction, or generation. These models can learn the
temporal dependencies and patterns in the data, allowing them to identify any
inconsistencies or anomalies that may affect the reliability of the data.

Data augmentation

Deep learning techniques, such as generative models or adversarial networks, can be
utilized to augment the data by generating synthetic samples that closely resemble the
original data. Introducing synthetic user-item interactions by randomly pairing users and
items, or by duplicating existing interactions with slight modifications Item features:
Modifying the item features to create new representations or augment the existing ones.
For example, generating image variations, textual paraphrasing, or adding noise to the item
descriptions. The item features (Cremonesi et al., 2011) modify the item features to create
new representations or augment the existing ones. For example, generate image variations,
paraphrase text, or add noise to the item descriptions. The user features the user features
by incorporating additional information or generating variations based on user
characteristics. This augmentation can help overcome issues related to limited data
availability and improve the robustness and generalization capability of the subsequent
deep-learning models.

Quality assessment and reporting:

The inspector evaluates the quality of the preprocessed data using appropriate metrics,
such as data completeness, consistency, or accuracy. It generates comprehensive reports
summarizing the quality assessment results, allowing stakeholders to gain insights into the
data quality and make informed decisions for further analysis or modelling tasks. The first
phase of experiments are conducted in two steps. In the initial step, the objective is to
determine the optimal parameters for each model to achieve the best rating prediction
results. This is accomplished by conducting various rapid experiments using a smaller
version of dataset A. Once the parameters are identified, and the best-performing version
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of each proposed algorithm is defined, the second step is executed. In this step, the
complete dataset A is utilized to test the quality inspectors. The Qt mainly used the quality
of the performance andVðPnÞ in mean by average performance. Notably, all three tasks are
described and run for both steps.

Qt ¼ mtðsÞ ¼
X0
k¼1

PerformaerðPnÞ ¼ 0:0731 (11)

and

PerformaeVðPnÞ ¼ 1�mðtÞ ¼ 0:0643

By leveraging deep learning techniques, the proposed data preprocessing quality
inspector aims to automate and optimize the data preprocessing process in industrial
applications. It offers advantages such as improved efficiency, enhanced data quality, and
reduced manual effort. The inspector enables organizations to leverage the power of deep
learning to ensure high-quality data, leading to more accurate and reliable results in
subsequent analysis and modelling tasks. The deep learning-based data preprocessing
quality inspector presents a promising approach for enhancing the data preprocessing
stage in industrial applications. The integration of deep learning models allows for
automated and optimized data preprocessing, ensuring high-quality data for downstream
tasks (Cremonesi et al., 2008). Further research and experimentation are required to
validate the effectiveness and performance of the proposed inspector in various industrial
settings. The evaluation of the different quality inspector models is based on indicators
accuracy and the total time taken to run each model. Accuracy is computed when k ¼ 0,
and accuracy 1 when k ¼ 1, using Eq. (2) where k represents the allowed prediction
threshold. The third indicator is modelled as follows:

QtðNÞ ¼
X0

K¼i¼0::n
PiQðSiÞ ¼ 0:37 (12)

and

PerformaePðnÞ ¼ 1� 0:37 ¼ 0:63

Evaluation metrics

The evaluation of recommendation algorithms involves considering a wide range of
facets to assess their performance thoroughly. As a result, the evaluation of RSs relies on a
diverse set of metrics, which can be utilized for different experiment types. Most of the
presented metrics have been developed for offline experiments, which are dominant in the
field. These metrics encompass various aspects of evaluation, including predictive
accuracy, classification accuracy, rank accuracy, prediction-rating correlation, utility
optimization, coverage, novelty, diversity, serendipity, confidence, and learning rate.
Different researchers have classified the available metrics from different perspectives, such
as classification metrics, predictive metrics, and coverage metrics. and more. The
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comprehensive set of evaluation metrics provided in Table 2, ensures that the performance
of recommendation algorithms is rigorously assessed from multiple dimensions, aligning
with the diverse requirements of the recommendation tasks and user satisfaction.

The main objective is to consolidate and systematically organize the existing knowledge
related to predictive performance metrics for recommendation algorithms. By bringing
together and structuring this knowledge, our work will provide a comprehensive and
coherent understanding of the various evaluation metrics used to assess the predictive
capabilities of RSs. This consolidation will help researchers and practitioners to better
navigate and choose appropriate evaluation metrics based on their specific evaluation
objectives and the characteristics of their recommendation algorithms. Ultimately, our
work aims to enhance the transparency and comparability of evaluation results,
contributing to the advancement of RS research and development.

Deep learning-based recommendation techniques
Deep learning-based recommendation techniques refer to the application of deep learning
models and algorithms for generating personalized recommendations to users. These
techniques leverage the power of deep neural networks to extract complex patterns and
representations from large-scale datasets, enabling more accurate and effective RSs. In
recommendation filtering the prediction for a user in structured and non-structured
scenarios is given by Eq. (13).

d̂ni ¼ f ðxt:ncoffu :nitemi jx; y; hÞ (13)

k ¼
X

k¼i;…::n

xðPÞ þ r̂ui þ ð1� r̂uiÞ log ð1� r̂uiÞ2: (14)

The equation represents a loss function, denoted as L, commonly used in machine
learning (ML), particularly in the context of collaborative filtering (CF) or recommender

Table 2 Metrics encompass various aspects of evaluation protocols.

Metric Proposed
model

Mean absolute
error

Mean squared
error

Mean reciprocal
rank

Normalized discounted cumulative
gain

Predictive accuracy 0.5 0.7 0.09 0.13 0.19

Classification accuracy 0.16 0.34 0.31 0.23 0.21

Rank accuracy 1 0 1 1 0

Prediction-rating
correlation

Positive Not positive Not positive Positive Not positive

Utility optimization 0.012 0.021 0.029 0.031 0.028

Coverage 87% 76% 79% 82% 86%

Novelty 97% 91% 91.3% 95.2% 94.5%

Diversity 0.62 0.71 0.56 0.62 0.67

Serendipity 0.70 0.84 0.77 0.72 0.80

Confidence 0.63 0.90 0.81 0.64 0.80

Learning rate 0.56 0.71 0.72 0.81 0.68
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systems (RSs). The summation, denoted by
P

, iterates over a range from index i to n. The
terms in the summation involve the prediction error for a specific user-item pair ði; kÞ,
where xðPÞ represents the predicted rating for the user-item pair, rui is the actual rating,
and ð1� ruiÞ is the complement of the actual rating. The loss is calculated using the
logarithmic square of the difference between the actual rating rui and the predicted rating
xðPÞ. The logarithmic term, logð1� ruiÞ, is squared to amplify the impact of larger errors.
Deep learning models are designed to learn hierarchical representations of data, capturing
intricate relationships and patterns (Creswell & Creswell, 2005). They can automatically
discover and extract relevant features from raw input data, which is particularly beneficial
for RSs as they often deal with high-dimensional and unstructured data, such as user-item
interactions, textual descriptions, or images.

Integrated fuzzy logic-based recommendation techniques
Figure 3 shows the integrated fuzzy logic-based recommendation techniques that utilize
fuzzy logic principles and methods in RSs to handle uncertainty and imprecision. Here is
an example of a mathematical model that combines fuzzy logic with CF:

Figure 3 Analytical framework of fuzzy Logic-based recommendation model.
Full-size DOI: 10.7717/peerj-cs.2529/fig-3
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Fuzzy CF model
Fuzzy set theory encompasses mathematical approaches that are particularly adaptable
and suitable for dealing with situations involving incomplete information, imprecise
classifications, and gradual preferences. This theory and logic offer a means to quantify
uncertainty arising from vagueness and imprecision. At the core of fuzzy set theory are
membership functions, which form the basis of fuzzy sets. These functions possess a
possibilistic interpretation, assuming the presence of a property and assessing its strength
concerning other members within the set. A fuzzy set A in the domain space X, denoted as
lA : X ! ½0; 1�, is characterized by its membership function, where X represents the
universe of discourse. Alternatively, a fuzzy set A can be characterized using a set of pairs.

Let’s consider a recommendation system with a set of users U ¼ u1; u2; u3; . . . ; unf g
and a set of items I ¼ i1; i2; i3; . . . ; imf g. The goal is to generate recommendations for a
target user ut based on the preferences of similar users. The interpretation of the fuzzy
membership function lAðxÞ can vary based on the context in which X is applied and the
concept being represented. One of its interpretations is a degree of similarity, reflecting the
proximity between different pieces of information. For instance, in a fuzzy set of
“electronics,” the membership function can estimate the degree of similarity of a movie x
to the concept of electronics. Another interpretation (Crook et al., 2009) is as a degree of
preference, representing the intensity of preference in favor of x or the feasibility of
selecting x as a value of X. For example, a product rating of four out of five indicates the
degree of a user’s satisfaction or liking for the product x based on specific criteria.

In summary, the fuzzy membership function provides a versatile way to represent and
quantify uncertainty, similarity, and preference, depending on the particular context and
application in the domain of fuzzy set theory.

DðlÞ ¼ Si i ¼ tðnÞ � ðlÞ
a ¼ l� iai 2 ½�3; 3�

�
(15)

T:[0,1]! FðSÞ
T:0,1! f ðsÞ
TðmÞ ¼ fðS0; n0; . . . ; ðS10; n10Þg; Si 2 ni 2 ð0; 1Þ
ið0; 1; . . . ; 10Þ is the value of min Si

1. Fuzzy membership functions: Define fuzzy membership functions for user-item ratings
based on linguistic terms to capture the uncertainty and imprecision. For example:

“Low” rating: lLowðrÞ ¼ 1� r�minrating
avgrating�minrating

“Medium” rating: lMediumðrÞ ¼ r�minrating
avgrating�minrating

“High” rating: lHighðrÞ ¼ r�avgrating
maxrating�avgrating

2. Similarity calculation: Calculate the similarity between users using fuzzy similarity
measures, such as the fuzzy cosine similarity.
The fuzzy cosine similarity between two users ui and uj can be defined as:
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Simðui; ujÞ ¼
X
ðl ðFuzzy Rating ðui; kÞ � l Fuzzy Rating ðuj; kÞÞ (16)

where k represents the shared items.
For items described with multiple attributes, more than one attribute can be utilized for
recommendation purposes. Additionally, certain attributes can be multi-valued,
encompassing overlapping or non-mutually exclusive possible values. For example,
products often have multiple categories and functionalities, making them multi-
categorized and multi-functional. The use of a fuzzy set framework proves
advantageous in accurately representing the values of multi-valued attributes in an item,
compared to the crisp set framework. Let’s consider an item Ij.
Where ðj ¼ 1 . . .MÞ defined in the attribute space X ¼ fx1; x2; x3; . . . ; xLg. In this case,
the item Ij can assume multiple values, such as x1; x2; . . . ; xL. By sorting these values of
X in decreasing order of their presence in the item Ij, expressed through degrees of
membership, the membership function of the item Ij to value xk (where k ¼ 1; . . . ; L),
denoted by lðIj; xkÞ, can be determined heuristically.
In summary, the fuzzy set framework allows us to represent multi-valued attributes
more accurately by utilizing degrees of membership, which offers a powerful tool for
efficiently dealing with the complexity and versatility of items with multiple attributes.

3. User preference inference: Fuzzy inference rules can be utilized to determine the target
user’s preferences for unrated products by capitalizing on the preferences of similar users.
For example, consider the principle: if the similarity Simðut; uiÞ between the target user
ut and a comparable user ui is deemed High, and the fuzzy rating lFuzzyRatingðui; ijÞ
assigned to an item ij by user ui is classified as Medium, it can be determined that the
fuzzy rating lFuzzyRatingðut; ijÞ for the target user ut is likely to be High. This rule
demonstrates how fuzzy logic may capture the subtleties of user preferences and the
relational dynamics between users and objects, facilitating a more sophisticated
recommendation process.

4. Recommendation generation: The predicted preference rating, denoted as h
embedding, represents the output of an embedding mapping function. This function
maps the input data, which could be user and item information, to a dense vector
representation that captures their latent features. The mapping function hintmodels the
interaction between a user and an item. It takes the embedding of the user and item as
input and produces a representation that captures their relationship or compatibility.
The mapping function hx models the interaction between a user and an item. It takes
the embedding of the user and item as input and produces a representation that
captures their relationship or compatibility. The mapping function hx represents the
MLP mapping function at the x-th layer. MLP refers to a type of neural network
architecture that consists of multiple layers of interconnected nodes or neurons. Each
layer applies a non-linear mapping function, such as a sigmoid or ReLU, to transform
the input data. The mapping function hout represents the mapping function at the
output layer of the model. It transforms the output of the previous layer(s) into the final
prediction or output of the model, which in this case, is the predicted preference rating.
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During training, the rating predictor of the RS utilizes a backpropagation supervised
learning technique. This technique involves calculating the pointwise loss between the
predicted preference rating and the actual preference rating from the training data. The
model’s parameters are adjusted iteratively using gradient descent optimization to
minimize this loss, allowing the model to learn and improve its ability to predict
preference ratings accurately.
Rank the unrated items for the target user based on the inferred fuzzy preferences. The
recommended items can be determined by selecting the items with the highest fuzzy
preference values.
The second value v is equal to njk into f jk, thus
f jk = ki=ai ¼ xi and bi ¼ njk
njk ¼ GenerationðfkÞ

where njk is a preference of fjk

Rqik ¼ njk
fjk

f ðnÞ
This mathematical model demonstrates the integration of fuzzy logic into collaborative

filtering for RSs. It incorporates fuzzy membership functions, fuzzy similarity measures
(Davidson et al., 2010), fuzzy inference rules, and fuzzy preference inference to handle
uncertainty and imprecision in user preferences and generate personalized
recommendations the prediction for item ‘i’ is given by Eq. (17).

Here’s how you can modify the equations and present them according to the provided
instructions:

c ¼
X1
n¼0

log Cfilðu;x;�Þ
� �

� log
X
n¼0

Cfilðu;x�Þ
 !" #

ZðLðvÞÞ ¼ y fðci; liÞg; j ¼ 0; . . . ; nð Þ ¼
P1

j¼ 0 SwjP1
j¼ 0 Wj

¼ c

FðSiÞ ¼
Xt
k¼ 0

pðtÞik � pðtÞjk
� ���� ���þXt

k¼ 0

pðtÞjk: (17)

The equation represents a function FðSiÞ defined over a set Si. The sum, denoted by
P

,
iterates over a range from k ¼ 1 to t. Within the summation, pðtÞjk represents the j-th
element of the t-th vector in a matrix P, and pðtÞik denotes the i-th element of the vector in
the matrix pðtÞ. The expression calculates the absolute difference between pðtÞik and the
inner product of pðtÞik with the j-th element of the t-th vector in matrix P. This difference is
multiplied by the corresponding element pðtÞjk, and the summation is performed over all t.

It is important to note that the specific fuzzy membership functions, similarity
measures, and inference rules can be customized based on the characteristics of the
recommendation system and the domain requirements. (Where c ¼ 1 . . . n) defined in the
fuzzy attributes F ¼ fpðtÞ;……pðtÞng. The above model (De Gemmis et al., 2015) serves
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as an example to showcase the incorporation of fuzzy logic into the recommendation
process.

l ¼ fl0 ¼ NS; l1 ¼ N; S0l2 ¼ NL; l3 ¼ N; l4 ¼ MS; l5 ¼ H; l ¼ NHg (18)

Comparing MLP with the non-negative matrix factorization model denoted by Eq. (18),
it is evident that MLP is equivalent to the second component of the NNMFmodel, which is
the MLP part. Both models aim to learn the interactions between users and products based
on their latent features, but MLP incorporates a deep learning architecture with dense
vector embeddings and an MLP, while the NNMF relies on matrix factorization
techniques. Despite the differences in the underlying approach, both models aim to make
predictions based on user and product interactions for recommendation or classification
tasks.

Proposed EIFL-DL algorithm
The basic procedure and steps involved in the proposed algorithm are summarized as
follows:

Fuzzy factorization algorithm
Algorithm 1 presents a step-by-step description of the EIFL-DL algorithm, outlining the
main components and tasks involved in the recommendation process for industrial
applications. The training commences with the computation of non-matrix factorization

Algorithm 1 Step-by-step description of the EIFL-DL algorithm.

Require: Fuzzy item attributes;

Ensure: Factorized fuzzy data;

1: nMF  Non Matrix factorizationðtu½i; j�; n mf ðxi; xjÞÞ
2: if cðtu½i; j�Þ ¼ f ðxi; xiÞ � KnmF ¼ f ðxi; xjÞ then
3:

4: return 0

5: else if cðtu½i; j�Þ 6¼ nmf ¼ f ðxi; xjÞ then
6: Let the item value be nuj ¼ ðF1; F2;…Þ
7:

8: return
P1

K¼0 K � fk;ui;uj
9: else if cðtu½i; j�Þ 6¼ nmf ¼ f ðxi;xjÞ

K�fk;ui ;uj then

10:

11: return
P

mi½ix� 2 nmFwi � Aribðmi½ix�; Fu;iÞ
12: else if cðtu½i; j�Þ 6¼ nmfðtu½i; j�Þ 6¼ nmfðxi; xjÞ then
13:

14: return bi;j �
P1

K¼0 K � f ðxi; xjÞ þ ð1þ bÞ �PtuðjxÞ 2 nmfWi � AtribðtuðixÞ; Fu; iÞ
15: end if
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on the input variables tu½i; j� and nMFðxt; xjÞ. The method subsequently evaluates the
correlation between the present element cðut½i; j�Þ and the anticipated function output
f ðxt; xiÞ. If they correspond, the process yields 0 and terminates; otherwise, distinct
methods are implemented depending on whether cðut½i; j�Þ is equivalent to nmf .

When cðut½i; j�Þ diverges from nmf , the item value nuij is calculated, and the associated
values of K and fk; u; ij are provided. If a match with nmf remains elusive, the aggregate of
computed attributes Attribðtu½ix�; Fu; tÞ is utilized with the weights Wt and additional
variables to derive the final output bi;j. This approach repetitively analyzes the data until
convergence, including both non-matrix factorization and additional learning techniques
to enhance the model’s predictions.

Pseudocode for fuzzy factorization algorithm
Algorithm 2 defines the procedures for executing fuzzy matrix factorization, an
enhancement of conventional matrix factorization employed in data decomposition
challenges, incorporating the notion of fuzziness. The algorithm initiates by accepting
input parameters, including the data matrix A of dimensionsm� n, the number of factors
k, and additional configurations such as the fuzziness parameterm, the maximum iteration
count, and the initialization of matricesW and H. It initializes both factor matricesW and
H using random values or established procedures.

During each iteration, the method modifies the factor matrices W and H. For each
member of these matrices, a summing procedure is performed utilizing the elements of the
data matrix A, and these sums are utilized to update the values of W and H according to
the fuzzy parameter. After updating both matrices, the procedure computes the Frobenius
norm error between the data matrix A and the product of W and H, which quantifies the
efficacy of the approximation of A by the matrices W and H. Should the error decrease
beneath a specified level or the convergence criterion be satisfied, the algorithm terminates
the loop.

The use of the fuzzy logic technique potentially improve the interpretability and
uncertainty management of response surfaces of RSs. However, the efficacy and
performance of the model are contingent upon the particular dataset, domain, and
experimental assessment presented in Table 3. The performance characteristics of the
suggested model are shown in this table in comparison to current methods such as naive
Bayes, content-based filtering, collaborative filtering, and reinforcement learning.

EXPERIMENTATION ANALYSIS
To evaluate the accuracy of the proposed model (Dehghani Champiri, Asemi & Siti Salwah
Binti, 2019), a Train/Test method was employed. The datasets used in this research were
divided into two parts: training sets and testing sets. The ratios of Train/Test were set as
6:4, 7:3, and 8:2, respectively, indicating that 60%, 70%, or 80% of the data were used for
training, and the remaining portion was used for testing. The learning rate, which is an
important hyperparameter for tuning neural networks, was set to two different values:
0.001 and 0.0001. This was done to assess the impact of the learning rate on the proposed
neural network’s learning speed and performance. To evaluate the performance of the
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Algorithm 2 Pseudocode for fuzzy factorization algorithm.

1: Input:

2: Data matrix A (m × n)

3: Number of factors (k)

4: Number of iterations (max_iter)

5: Fuzziness parameter (m)

6: Initialization for matrices W (m × k) and H (k × n)

7: Initialize W and H with random values or other initialization methods

8: for iter in 1 to max_iter do

9: # Update factor matrices W and H

10: for i in 1 to m do

11: for j in 1 to k do

12: sum1 = 0

13: sum2 = 0

14: for l in 1 to n do

15: sum1 += (A[i][l] * (H[j][l] ð2=ðm�1ÞÞ))

16: sum2 += (W[i][j] * (H[j][l] ð2=ðm�1ÞÞ))

17: end for

18: W[i][j] = sum1/sum2

19: end for

20: end for

21: for k in 1 to k do

22: for j in 1 to n do

23: sum1 = 0

24: sum2 = 0

25: for i in 1 to m do

26: sum1 += (A[i][j] * (W[i][k] ð2=ðm�1ÞÞ))

27: sum2 += (H[k][j] * (W[i][k] ð2=ðm�1ÞÞ))

28: end for

29: H[k][j] = sum1/sum2

30: end for

31: end for

32: # Calculate the Frobenius norm error between A and WH

33: error = 0

34: for i in 1 to m do

35: for j in 1 to n do

36: errorþ ¼ ðA½i�½j� �Pk
k¼1 W½i�½k� �H½k�½j�Þ2

37: end for

(Continued)
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recommendation models, root mean squared error (RMSE) scores were calculated. These
scores measure the differences between the predicted ratings generated by the
recommendation models and the true ratings. This evaluation metric has been commonly
used in previous studies and provides a quantitative measure of the accuracy of the models’
rating predictions. By conducting the Train/Test approach, using different ratios of
training and testing data, and calculating RMSE scores, the research aimed to assess the
effectiveness and performance of the proposed neural network model compared to other
recommendation models.

Evaluation metrics
In the realm of RSs, accuracy is a frequently used metric, particularly concerning user

tasks or goals. The accuracy metrics encompass predictive and recommendation accuracy
measures. Predictive accuracy measures like mean absolute error, mean square error, and
percentage of correct predictions are often deemed less suitable when the user’s task is to
discover “good” items. Additionally, these metrics may not be ideal when the granularity of
the true value is small since predicting a 4 as 5 or a 3 as 2 may not significantly impact the
user’s experience. As a result, recommendation accuracy metrics, which include recall,
precision, and F1 measures, are considered more appropriate in such cases. In the
evaluation process, approximations to the true precision and recall are calculated using
movies for which ratings are provided and held for testing. This approach to measuring
performance is widely adopted in RSs research. Precision measures the ratio of correct
recommendations being made, reflecting the proportion of accurate recommendations
among those presented to the user. On the other hand, recall indicates the coverage or hit
rate of recommendations, representing the percentage of relevant items that were

Table 3 Presenting the performance metrics of the proposed model and existing techniques.

Metric Proposed model Reinforcement learning Collaborative filtering Content-based filtering Naïve Bayes

Accuracy 0.85 0.78 0.82 0.76 0.72

Response time 0.045 s 0.059 s 0.072 s 0.035 s 0.041 s

Conversion rate 0.65 0.57 0.60 0.55 0.51

Relevance score 0.87 0.79 0.83 0.77 0.71

Algorithm 2 (continued)

38: end for

39: error =
ffiffiffiffiffiffiffiffiffiffi
error
p

40: if error ¡ threshold or convergence is reached then

41: exit the loop

42: end if

43: end for
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successfully recommended to the user. These metrics help assess the effectiveness and
usefulness of the RS in providing relevant and meaningful suggestions to users.

Fuzzy accuracy ratio finding for RS
The use of fuzzy logic into our deep learning framework improves the model’s capacity to
handle uncertainty in user preferences. Utilizing fuzzy membership functions allows us to
depict user ratings not as final values but as ranges that capture the ambiguity intrinsic
to subjective evaluations. This enables our recommendation engine to react more flexibly
to diverse user inputs, enhancing overall accuracy. Integrated fuzzy logic methods using
the RS ratio model refer to the application of fuzzy logic principles in RSs, specifically
utilizing the ratio-based approach for generating recommendations. In this context (del
Carmen Rodríguez-Hernández et al., 2017), the ratio model incorporates fuzzy logic
techniques to handle uncertainty and imprecision in the recommendation process.

cs ¼
1
r

Xs
i¼1

rðnsi � nsiÞ þ rðnsj2Þ nsijt ¼ f ðut; vt; ziÞ: (19)

The specific implementation of the RS ratio model using integrated fuzzy logic methods
may involve the following steps: Fuzzy membership functions are defined to represent user
preferences and item attributes. These membership functions capture the uncertainty and
imprecision in the data, allowing for more flexible and nuanced modeling. Fuzzy Similarity
Calculation calculates the fuzzy similarity between users or items based on their fuzzy
membership function values. Fuzzy similarity measures, such as fuzzy cosine similarity or
fuzzy Jaccard similarity, can be employed to capture the degree of similarity between users
or items. Ratio-based recommendation applies the RS Ratio model, which utilizes fuzzy
logic principles to determine the recommendation ratio for each item. The ratio represents
the degree to which an item is recommended to a user based on their fuzzy preferences and
the fuzzy similarities to other users or items. Recommendation generation ranks the items
based on their recommendation ratios and provides the top-ranked items as personalized
recommendations to the user. The precise mathematical formulation and equations for the
RS ratio model using integrated fuzzy logic methods may vary depending on the specific
implementation and the design choices made (Deldjoo et al., 2016). The choice of fuzzy
membership functions, fuzzy similarity measures, and the exact calculation of
recommendation ratios will depend on the RSs characteristics and the application’s
requirements. It’s important to note that while the integration of fuzzy logic techniques can
enhance the interpretability and handling of uncertainty in RSs, the effectiveness and
performance of the model will depend on the specific dataset, domain, and experimental
evaluation shown in Table 4 and Fig. 4.

Deep learning-based RS model
This study examined CNNs and RNNs as viable architectures for our RS. CNNs are
proficient at identifying local patterns in data, rendering them especially suitable for spatial
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representations, whereas RNNs excel at processing sequential information, essential for
tasks involving temporal dynamics, such as user interactions over time. Deep learning-
based RS models leverage the power of deep neural networks to generate personalized
recommendations for users. These models extract intricate patterns and representations
from large-scale datasets and we use a personalized weight for every user and sum it over
all given by using the Eq. (20). This is given by allowing for more accurate and effective
recommendations.

Dr�;s� ¼ Lowhhighf
XN
n¼1

ðLdðdjqn�rÞ½logDðdjqn�rÞ�þLdðdjqn�rÞ½logð1� Sðdjqn�rÞÞ�Þ: (20)

Here are some commonly used deep learning-based recommendation system models:
Matrix factorization models, such as CF, use deep neural networks to learn latent
representations of users and items. These models aim to factorize the user-item interaction
matrix, capturing the underlying preferences and similarities between users and items.
Autoencoders are neural network models that learn to reconstruct the input data by
compressing it into a lower-dimensional latent space. In the context of RSs, autoencoders
can be used to learn representations of users or items, capturing their preferences or
attributes. NCF models combine deep neural networks with collaborative filtering

Table 4 EIFL-based methods using RS ratio.

Technique Fuzzy set ratio (FSR) Fuzzy filtering ratio (FFR) Fuzzy accuracy ratio (FAR)

CNN 0.65 (0.07) 0.36 (0.21) 0.18 (0.19)

RNN 0.88 (0.26) 0.53 (0.39) 0.35 (0.39)

FE 0.91 (0.20) 0.51 (0.37) 0.30 (0.33)

NN 0.86 (0.29) 0.49 (0.30) 0.38 (0.43)

HRA 0.78 (0.16) 0.52 (0.29) 0.37 (0.29)

Figure 4 Proposed analysis model for EIFL-based RS. Full-size DOI: 10.7717/peerj-cs.2529/fig-4
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techniques. They leverage MLP architectures to learn user and item embeddings, allowing
for more accurate modeling of user-item interactions and generating personalized
recommendations. CNNs, popularly used for image analysis, can also be applied to RSs.
They can capture local patterns and relationships in user-item interactions or item content,
improving recommendation performance based on visual or textual features. RNNs are
suited for modeling sequential data and capturing temporal dependencies. In the context
of recommendation systems (Diaz et al., 2020), RNNs can be used to model user
preferences over time, considering the order of user-item interactions for generating
sequential recommendations. Transformer models, such as the popular Bidirectional
encoder representations from transformers (BERT) architecture, have been applied to RSs.
These models excel at capturing contextual information and have shown promising results
in capturing complex user-item relationships and generating personalized
recommendations. In Eq. (21) GNNs are designed to handle graph-structured data,
making them suitable for RSs that leverage user-item interaction graphs or knowledge
graphs. GNNs can capture the relationships and dependencies between users and items,
leading to improved recommendations.

rðnsi ¼ 1jhÞ ¼
G ani þ

Pf
i¼ 1 njr

n
ij

� �
Pn

i¼ 1 ai þ
Pf

i¼ 1 njr
n
ij

� � ; n hi;
1
x

� �
¼ r Si þ

Xn

i¼ 1

Xn

j¼ 1
xy1r

n
ij

� �

rh
di

q � r
� �

¼ Gðghðq; liÞÞP
diGðghðq; liÞÞ (21)

In this Eq. (21), r represents a scalar factor, h denotes a parameter that affects the
relationship between the variables, di variable associated with index i, likely a vector or
feature vector, q another vector or a set of parameters that interacts with di and r, li variable
or feature associated with index i, G function, potentially representing a neural network or
another computational operation, ghðq; liÞ function that describes the relationship between
parameters q and li influenced by h. These deep learning-based RS models offer advanced
capabilities in capturing intricate patterns, modelling user preferences, and generating
personalized recommendations. The choice of model depends on the specific

Table 5 DL-based methods using recommendation system structure.

Technique Trade-off values (FSR) Interpretability values (IV) DL-matrix factorization accuracy (MFA)

GCNs 0.65 (0.07) 0.36 (0.21) 0.18 (0.19)

GATs 0.88 (0.26) 0.53 (0.39) 0.35 (0.39)

KGE 0.91 (0.20) 0.51 (0.37) 0.30 (0.33)

SRM 0.86 (0.29) 0.49 (0.30) 0.38 (0.43)

AM 0.78 (0.16) 0.52 (0.29) 0.37 (0.29)

RL 0.53 (0.39) 0.18 (0.19) 0.91 (0.20)

T 0.88 (0.26) 0.53 (0.39) 0.35 (0.39)
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characteristics of the recommendation task, available data, and the trade-off between
accuracy and interpretability desired for the application summarized in Table 5 and Fig. 5.

CONCLUSION
The EIFL-DL technique offers several benefits for industrial application RSs by fusing
fuzzy logic concepts with deep learning models. The fuzzy logic component, in particular,
enables the management of ambiguity, imprecision, and uncertainty in user choices and
item properties. Fuzzy membership functions and fuzzy inference mechanisms capture
and process these fuzzy inputs, enabling more accurate and flexible recommendations.
Secondly, the deep learning component leverages the power of deep neural networks to
learn intricate patterns and representations from industrial data. Techniques such as
CNNs, RNNs, or transformer-based models extract meaningful features and capture the
complex relationships within the data, leading to improved recommendation performance.
The EIFL-DL approach is well-suited for industrial applications due to its ability to handle
the unique characteristics of industrial data, such as high dimensionality, noise, and
dynamic changes. By combining fuzzy logic and deep learning, the approach can provide
personalized and accurate recommendations, enhancing decision-making processes and
productivity in industrial settings. However, it is important to note that the EIFL-DL
approach is not without its challenges. The selection and fine-tuning of fuzzy logic
parameters, as well as the optimization of deep learning models, require careful
consideration and expertise. These findings provide robust evidence highlighting the
pivotal role of the input data refinement process in this domain. Furthermore, empirical
results underscore the efficacy of the deep learning approach in modeling both the
sentiment predictor and the core recommendation process, clearly surpassing the
performance of traditional machine learning methods. A viable option for RSs in industrial
applications is provided by the proposed EIFL-DL method. The method takes into account
the complexities and uncertainties included in industrial data by combining fuzzy logic
with deep learning techniques, producing recommendations that are more precise and
efficient. To test the effectiveness and applicability of the EIFL-DL approach across a range

Figure 5 Proposed analysis model for DL-based recommendation system.
Full-size DOI: 10.7717/peerj-cs.2529/fig-5
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of industrial sectors and to refine its parameters and models for particular use cases,
further investigation and experimentation are required.
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