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ABSTRACT
The computational and interpretational difficulties caused by the ever-increasing
dimensionality of biological data generated by new technologies pose a significant
challenge. Feature selection (FS) methods aim to reduce the dimension, and feature
grouping has emerged as a foundation for FS techniques that seek to detect strong
correlations among features and identify irrelevant features. In this work, we propose
the Recursive Cluster Elimination with Intra-Cluster Feature Elimination (RCE-IFE)
method that utilizes feature grouping and iterates grouping and elimination steps in a
supervised context. We assess dimensionality reduction and discriminatory
capabilities of RCE-IFE on various high-dimensional datasets from different biological
domains. For a set of gene expression, microRNA (miRNA) expression, and
methylation datasets, the performance of RCE-IFE is comparatively evaluated with
RCE-IFE-SVM (the SVM-adapted version of RCE-IFE) and SVM-RCE. On average,
RCE-IFE attains an area under the curve (AUC) of 0.85 among tested expression
datasets with the fewest features and the shortest running time, while RCE-IFE-SVM
(the SVM-adapted version of RCE-IFE) and SVM-RCE achieve similar AUCs of 0.84
and 0.83, respectively. RCE-IFE and SVM-RCE yield AUCs of 0.79 and 0.68,
respectively when averaged over seven different metagenomics datasets, with RCE-IFE
significantly reducing feature subsets. Furthermore, RCE-IFE surpasses several state-
of-the-art FS methods, such as Minimum Redundancy Maximum Relevance
(MRMR), Fast Correlation-Based Filter (FCBF), Information Gain (IG), Conditional
Mutual Information Maximization (CMIM), SelectKBest (SKB), and eXtreme
Gradient Boosting (XGBoost), obtaining an average AUC of 0.76 on five gene
expression datasets. Compared with a similar tool, Multi-stage, RCE-IFE gives a
similar average accuracy rate of 89.27% using fewer features on four cancer-related
datasets. The comparability of RCE-IFE is also verified with other biological domain
knowledge-based Grouping-Scoring-Modeling (G-S-M) tools, including
mirGediNET, 3Mint, and miRcorrNet. Additionally, the biological relevance of the
selected features by RCE-IFE is evaluated. The proposed method also exhibits high
consistency in terms of the selected features across multiple runs. Our experimental
findings imply that RCE-IFE provides robust classifier performance and significantly
reduces feature size while maintaining feature relevance and consistency.
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INTRODUCTION
Recent advances in next generation sequencing and DNA microarray technologies allow
scientists to easily access substantial amounts of gene expression data. The analysis of these
data enables the discovery of coexpression patterns among genes and their connections to
disease in order to achieve deeper insights into the molecular mechanisms of disease
development, improve diagnosis, and develop more effective treatment plans (Rosati et al.,
2024). Particularly, the identification of disease-associated genes, namely biomarkers, is
essential for prognostic prediction, early diagnosis, and drug discovery (Yousef, Kumar &
Bakir-Gungor, 2020). Gene expression data typically comes with a relatively small number
of samples accompanied by a huge number of genes (Kuzudisli et al., 2024). This
characteristic makes data processing and analysis a challenging task and it is considered a
hot topic in the field of bioinformatics (Clark & Lillard, 2024). Feature selection (FS) is an
effective dimensionality reduction technique and, unlike other reduction techniques such
as principal component analysis, it does not alter the original representation of the features
but essentially opts for a subset of the original feature set. Hence, FS preserves the
semantics of the features in their original form, allowing domain experts to interpret the
data. FS is a prerequisite in the realm of bioinformatics due to the existence of redundancy
and noise in the biological data (Cai et al., 2018). In the context of feature subset selection,
FS methods are classified as filter, wrapper, and embedded methods (Gonzalez-Lopez,
Ventura & Cano, 2020). Filter methods utilize statistical measures for feature assessment
and are independent of any classifier. In wrapper methods, FS is carried out using a
learning algorithm along with a certain search strategy. Embedded methods accomplish FS
and model construction simultaneously and are specific to an induction algorithm like
wrapper methods. However, they have less computational cost than wrapper methods.
Later, ensemble and hybrid methods were derived based on these three methods
(Pudjihartono et al., 2022; Kuzudisli et al., 2023). Many FS techniques are available in the
literature and are widely used in gene subset extraction and disease classification
(Perscheid, 2021).

Recursive cluster elimination based on support vector machine (SVM-RCE), proposed
by Yousef et al. (2007), introduced the term recursive cluster elimination into the literature,
and this approach predominated over support vector machines with recursive feature
elimination (SVM-RFE) (Guyon et al., 2002), which was widely accepted as an effective
approach in the field. The superiority of SVM-RCE stems from the consideration of feature
(i.e., gene) clusters instead of individual features in the classification task. With the advent
of SVM-RCE, similar approaches emerged to perform cluster selection rather than
individual feature selection. Tang et al. (2008) group features into a fixed number of
clusters and eliminate lower-ranked features in clusters. They repeat these steps until the
remaining features are lowered to a predefined threshold. Du et al. (2013) proposed
Multi-stage, where features are first grouped into clusters, the clusters are ranked by
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backward elimination using SVM-RFE, and those with a single feature are discarded to a
certain extent. Subsequently, the features in each cluster are ranked by SVM-RFE,
including clusters whose rank is higher than that cluster, and a certain proportion of
features is removed. Finally, all remaining features from the clusters are gathered, and
SVM-RFE is employed once again to create the final feature subset. Huang (2021)
presented RBF-RCE, utilizing RBF (Wang et al., 2016) to calculate feature importance. The
features are then divided into clusters, and the highest importance value among the
features in a cluster is assigned as the score of that cluster. RCE is then applied to remove
clusters until a pre-specified number of clusters remains. Lastly, feature removal is carried
out in the remaining clusters based on feature importance.

SVM-RCE, as originally described or with some variations, was used in numerous
studies, including those related to neuroimaging (Palaniyappan et al., 2019; Lanka et al.,
2020; Karunakaran, Babiker Hamdan & Sathish, 2020). Weis, Visco & Faulon (2008)
modified SVM-RCE by applying SVM on all clusters and dropping clusters one at a time.
In their approach, the cluster whose removal maximizes accuracy is excluded, and this
process is repeated to obtain a subset of clusters with high predictive power. To reduce
execution time, Luo et al. (2011) trained SVM using all clusters together and selected the
highest absolute SVM feature weight within a cluster as a cluster score rather than relying
on cross-validation. In Rangaprakash et al. (2017), SVM-RCE was used to classify
individuals as post-traumatic stress disorder (PTSD), post-concussion syndrome (PCS) +
PTSD, or controls. Jin et al. (2017) adopted an SVM-RCE-like approach to discriminate
between individuals with PTSD and healthy controls in their study on brain connectivity.
Zhao, Wang & Chen (2017) compared SVM-RCE with other tools to detect expression
profiles for identifying microRNAs associated with venous metastasis in hepatocellular
carcinoma. Chaitra, Vijaya & Deshpande (2020) employed SVM-RCE to evaluate the
classification performance of different feature sets in biomarker-based detection of autism
spectrum disorder (ASD). Furthermore, the merit of the original SVM-RCE has
contributed to the development of an approach called G-S-M (Yousef et al., 2024) that
integrates biological prior knowledge. The G-S-M approach forms the basis for developing
tools such as maTE (Yousef, Abdallah & Allmer, 2019), PriPath (Yousef et al., 2023),
GediNET (Qumsiyeh, Showe & Yousef, 2022), miRcorrNet (Yousef et al., 2021), 3Mint
(Unlu Yazici et al., 2023), GeNetOntology (Ersoz, Bakir-Gungor & Yousef, 2023),
TextNetTopics (Yousef & Voskergian, 2022), TextNetTopics Pro (Voskergian, Bakir-
Gungor & Yousef, 2023), microBiomeGSM (Bakir-Gungor et al., 2023), miRGediNET
(Qumsiyeh, Salah & Yousef, 2023), miRdisNET (Jabeer et al., 2023), miRModuleNet
(Yousef, Goy & Bakir-Gungor, 2022), CogNet (Yousef, Ülgen & Uğur Sezerman, 2021),
and AMP-GSM (Söylemez, Yousef & Bakir-Gungor, 2023), which integrate biological
networks and prior knowledge to provide a comprehensive understanding of genetic
interactions.

In this article, we extend SVM-RCE by integrating feature elimination within surviving
clusters at each step of cluster reduction. Through this newly added phase, less
contributing features in each cluster are excluded, leading to deeper dimension reduction
and also improvements in feature subset quality, classification performance, and running
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time. The proposed Recursive Cluster Elimination with Intra-cluster Feature Elimination
(RCE-IFE) tool can tackle large-scale datasets. We evaluate the dimension reduction
capability and predictive power of RCE-IFE on various datasets. For a combination of gene
expression, microRNA (miRNA) expression, and methylation datasets, RCE-IFE achieves
an average area under the curve (AUC) of 0.85 using the least number of features with the
least execution time, while RCE-IFE-SVM (SVM-adapted version of RCE-IFE) and SVM-
RCE generate similar average AUCs of 0.84 and 0.83, respectively. When tested on seven
different metagenomics datasets, RCE-IFE and SVM-RCE yields an average AUC of 0.79
and 0.68 respectively, while RCE-IFE providing a remarkable reduction in feature subsets.
Moreover, RCE-IFE predominates among several state-of-the-art FS methods, including
MRMR, FCBF, IG, CMIM, SKB, and XGBoost, by providing an average AUC of 0.76 on
five gene expression datasets. In comparison with Multi-stage algorithm, RCE-IFE yields a
similar accuracy rate of 89.27%, averaged over four cancer-related datasets using a smaller
number of features. Additionally, we have comparatively evaluated RCE-IFE with other
biological domain knowledge-based Grouping-Scoring-Modeling (G-S-M) tools
(mirGediNET, 3Mint, and miRcorrNet) and conducted biological validation of the
selected features. We further show the high consistency of the features selected by RCE-IFE
across multiple runs. Overall, via testing through diverse biological datasets concerning
various diseases, the experimental findings show the effectiveness of the proposed RCE-
IFE method with respect to predictive power, reduced feature subset selection, feature
relevancy, and consistency of selected features across different runs.

The remainder of the article is organized as follows: The Material and Methods section
presents the main characteristics of datasets used in the study and provides a detailed
explanation of the proposed approach. The Results and Discussion section presents the
findings of various experimental tests, explains the results of comparative performance
evaluation, and discusses the biological validity of the selected features. Finally, the
Conclusion section concludes with our main insights and possible directions for future
research. Portions of this text were previously published as part of a preprint (https://www.
biorxiv.org/content/10.1101/2024.02.28.580487v1).

MATERIALS AND METHODS
Datasets
The datasets used in this article cover a broad range of biological domains and
disease types. Table 1 summarizes the utilized 20 datasets on gene expression, methylation,
and miRNA accessed from GEO (Barrett et al., 2012) and TCGA (Tomczak, Czerwińska &
Wiznerowicz, 2015) databases. While gene expression datasets are available at GEO;
TCGA-BLCA.methylation450, TCGA-BLCA.mirna and TCGA-BRCA.methylation450
datasets can be obtained fromUCSC Xena repository (https://xenabrowser.net/datapages/)
(Goldman et al., 2020). TCGA-BLCA.methylation450 and TCGA-BLCA.mirna datasets
are accessible in the GDC TCGA Bladder Cancer (BLCA) cohort. TCGA-BRCA.
methylation450 dataset can be found in the GDC TCGA Breast Cancer (BRCA) cohort.

Table 2 describes seven metagenomics datasets involving colorectal cancer (CRC),
inflammatory bowel disease (IBD), Inflammatory Bowel Disease Multi-omics Database
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(IBDMDB), and Type 2 diabetes (T2D). CRC_species, CRC_pathway, and CRC_enzyme
datasets were created and presented as a Supplemental Material in Beghini et al.’s (2021)
study (Beghini et al., 2021). The IBD dataset is obtained from the European Nucleotide
Archive (ENA) database with accession number ERA000116. The IBDMDB dataset is
available at Sequence Read Archive (SRA) with accession number PRJNA398089. The T2D
dataset is provided by NCBI Sequence Read Archive with accession numbers SRA045646
and SRA050230. The CRC_species_II dataset can be accessed from the ENA database with
accession number PRJEB6070.

Table 1 Basic information about the gene expression, miRNA, and methylation datasets.

Dataset #Samples Label: count #Features Disease type

GDS1962 180 Pos: 157, Neg: 23 54,613 Glioma

GDS2519 105 Pos: 50, Neg: 55 22,283 Parkinson’s disease

GDS2547 164 Pos: 75, Neg: 89 12,646 Prostate cancer

GDS2609 22 Pos: 12, Neg: 10 54,635 Colorectal cancer

GDS3268 200 Pos: 129, Neg: 71 44,289 Ulcerative colitis

GDS3646 132 Pos: 110, Neg: 22 22,185 Celiac disease

GDS3794 33 Pos: 18, Neg: 15 48,702 Rheumatoid arthritis

GDS3837 120 Pos: 60, Neg: 60 30,622 Non-small cell lung carcinoma

GDS3874 117 Pos: 93, Neg: 24 22,284 Diabetes

GDS3875 117 Pos: 93, Neg: 24 22,645 Diabetes

GDS3929 64 Pos: 45, Neg: 19 24,527 Tobacco smoke-related defects

GDS4228 166 Pos: 147, Neg: 19 4,776 Human immunodeficiency virus

GDS4824 21 Pos: 13, Neg: 8 54,635 Prostate cancer

GDS5037 108 Pos: 88, Neg: 20 41,000 Severe asthma

GDS5093 56 Pos: 47, Neg: 9 54,613 Acute dengue

GDS5499 140 Pos: 99, Neg: 41 48,803 Pulmonary hypertension

GSE157103 126 Pos: 100, Neg: 26 19,472 Coronavirus disease 2019

TCGA-BLCA.methylation450 425 Pos: 408, Neg: 17 20,623 Bladder cancer

TCGA-BLCA.mirna 425 Pos: 408, Neg: 17 1,881 Bladder cancer

TCGA-BRCA.methylation450 124 Pos: 36, Neg: 88 15,770 Breast cancer

Table 2 Basic information about the metagenomics datasets.

Dataset #Samples Label: count #Features Disease type Reference

CRC_enzyme 1,262 Pos: 600, Neg: 662 2,875 Colorectal cancer Beghini et al. (2021)

CRC_pathway 1,262 Pos: 600, Neg: 662 549 Colorectal cancer Beghini et al. (2021)

CRC_species 1,262 Pos: 600, Neg: 662 917 Colorectal cancer Beghini et al. (2021)

CRC_species_II 108 Pos: 60, Neg: 48 528 Colorectal cancer Zeller et al. (2014)

IBD 382 Pos: 148, Neg: 234 534 Inflammatory bowel disease MetaHIT Consortium et al. (2010)

IBDMDB 1,638 Pos: 1209, Neg: 429 578 Inflammatory bowel disease Beghini et al. (2021)

T2D 290 Pos: 155, Neg: 135 587 Type 2 diabetes Qin et al. (2012)
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Lastly, four publicly available cancer-related datasets are described in Table 3. The
leukemia dataset can be downloaded at https://www.openintro.org/data/index.php?
data=golub. The prostate dataset can be extracted from the R package SIS (details are
available at https://cran.r-project.org/web/packages/SIS/SIS.pdf). The breast dataset,
available in the Breast Cancer (van’t Veer et al., 2002) cohort, can be accessed through the
UCSC Xena platform (Goldman et al., 2020) at https://xenabrowser.net/datapages/.
Finally, the DLBCL dataset can be downloaded at https://github.com/ramhiser/
datamicroarray.

Proposed algorithm
The proposed algorithm, called RCE-IFE, follows an iterative process in which each
iteration involves the following two elimination steps: firstly, weakly-scoring clusters are
removed; secondly, intra-cluster elimination is performed for the low-scoring features in
the surviving clusters. Let M be the K � 1 vector of cluster numbers in descending order.
The number of clusters in the i-th iteration isMi, whereMi < . . . < MK represents a user-
supplied decreasing sequence. The user also controls the rate of intra-cluster feature
elimination. The data, consisting of p samples and q features, is organized in a p� q
matrix, D, accompanied by a vector of class labels S. To begin with, we create a training set
and a test set by randomly splitting the samples, i.e., the rows of D, into Dtrain (rtrain%) and
Dtest (rtest%). A two-sided t-test is applied to each feature in Dtrain to select the top 1,000
features with the smallest p-values. Let F0 denote the set of filtered features. The
subsequent operations are performed recursively. In the i-th iteration, i ¼ 1; . . . ;K-1,
K-means is used to group Fi�1 into Mi clusters Ci ¼ Ci1; Ci2; . . . ; CiMif g. Next, each
Cij 2 Ci is assigned the mean of t estimates of classification accuracy. Algorithm 1 presents

the pseudocode for assigning a score to a cluster. Clusters with the lowestMi �Miþ1 scores
are eliminated, leaving Miþ1 clusters in Ci. Within each cluster, intra-cluster feature
importance weights are estimated by Random Forest (RF) algorithm, and the lowest-
ranked f% of features are eliminated. Algorithm 2 gives the pseudocode for scoring the
features in a surviving cluster. Finally, Dtrain and Dtest are updated to contain only the
surviving features, and the performance of the learned model is computed using RF. To
give a brief example, if M ¼ f100; 90; 70g, in the first iteration, the algorithm eliminates
100 – 90 = 10 clusters, performs intra-cluster feature elimination on f% of the features in
the 90 surviving clusters, and outputs performance results based on 90 clusters. In the

Table 3 Basic information about the cancer-related datasets.

Dataset #Samples Label: count #Genes Reference

Breast 117 Positive: 28, Negative: 89 11,885 van’t Veer et al. (2002)

DLBCL 77 DLBCL: 58, FL: 19 7,129 Shipp et al. (2002)

Leukemia 72 ALL: 47, AML: 25 7,129 Golub et al. (1999)

Prostate 102 Tumor: 52, Normal: 50 12,600 Singh et al. (2002)

Note:
ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; DLBCL, diffuse large B-cell lymphoma; FL, follicular
lymphoma.
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second iteration, the algorithm eliminates 90 – 70 = 20 clusters, conducts intra-cluster
feature elimination in the 70 surviving clusters, and generates performance results based
on 70 clusters. The algorithm would then halt, yielding performance measures for both the
90 and 70 clusters. The full steps of RCE-IFE are given in Algorithm 3.

The main steps in RCE-IFE are: Grouping (G), Scoring (S), Intra-cluster Feature
Elimination (IFE), and Modeling (M). The workflow of RCE-IFE is illustrated in Fig. 1,
and details of each step are explained in the next subsection.

Grouping (G) step: The first step involves utilizing the training dataset to group the
currently active genes into a predetermined number of clusters. In our tool, K-means is
employed, though other methods could also be applied. Let C ¼ c1; c2; . . . ; ckf g represent
the set of feature clusters. For each cluster cj, a two-class subdataset is constructed,
containing all features in cj, along with the corresponding sample values and class labels.
As a result, k two-class subdatasets are generated in this step. Figure 2 illustrates this
process, showing a training set of ten samples (rows) and ten genes (columns). In this
example, four gene clusters (upper right) are formed, leading to the generation of four two-
class subdatasets, which are then fed into the S step for scoring, ranking, and elimination.

Algorithm 1 Cluster scoring—Score ðC;Dtrain; s; tÞ.
C ¼ a set of feature identifiers

Dtrain ¼ training set with a certain portion of the original sample set

s ¼ set of class labels corresponding to samples in Dtrain

DtrainC ¼ subset of Dtrain containing features only in C with the corresponding sample values

t ¼ number of partitions

acc ¼ [] an empty array of length t

Step 1: for i ¼ 1 : t do

Step 2: Split the samples randomly in DtrainC into dtrain (70%) and dtest (30%) and, correspondingly, s into strain and stest

Step 3: Train RF Learner using dtrain and strain

Step 4: acc i½ � ¼ test RF on dtest and stest-compute accuracy of the model

Step 5: end

Step 6: return mean (acc)

Algorithm 2 Intra-cluster feature scoring—Importance C;Dtrain; sð Þ.
C ¼ a set of feature identifiers

Dtrain ¼ training set with a certain portion of the original sample set

s ¼ vector of class labels corresponding to samples in Dtrain

DtrainC ¼ subset of Dtrain containing features only in C with the corresponding sample values

Step 1: Train RF Learner using DtrainC and s.

Step 2: Get measures of feature importance.
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Scoring (S) step: Each subdataset is assigned a score using a supervised learning
algorithm such as support vector machine (SVM) or random forest (RF) (here, we use RF).
The subdataset is randomly partitioned into training (70%) and test (30%) sets, where the
training data is used for learning the model, and the test data is used for validation. This
process is repeated t times and the average classification accuracy serves as the score for the
subdataset. Stratified random sampling is applied during partitioning to guarantee that the
training and test sets have nearly the same proportion of class labels as the original dataset.
In summary, scoring a subdataset is accomplished through the randomized stratified t-fold
cross validation (Prusty, Patnaik & Dash, 2022). The scoring step is depicted in Fig. 3. It is
worth noting that any accuracy index can be used for scoring. Once subdatasets are scored,
they are ranked in descending order, and Mi �Miþ1 clusters with the lowest scores are
eliminated as stated before. Eliminating a subdataset means that all features in it are
eliminated.

Algorithm 3 RCE-IFE.

Input: D ¼ p� q matrix representing p samples and q features.

S is a p� 1 vector of class labels. Each Sj is either pos or neg

M is a K � 1 vector of numbers of clusters arranged in decreasing order

rtrain: percentage of samples in the training set. rtest is defined to be 100 – rtrain

f ¼ percentage of intra-cluster features to be removed

Output: The performance results for different numbers of clusters

Step 1: Partition the rows of D randomly into Dtrain (90%) and Dtest (10%)

Step 2: Apply the t-test to compare the two classes w.r.t. each feature. Define F0 as the set of features with the smallest 1,000 p-values

Step 3: For i = 1, 2, …, K-1, do

Step 4: Cluster the features in Fi�1 using Dtrain to create a partition, Ci ¼ Ci1; Ci2; . . . ; CiMif g
Step 5: For each Cij 2 Ci, j ¼ 1; 2; …; Mi, do

Step 6: Call Score Cij;Dtrain; s; t
� �

to assign a score to each cluster Cij

Step 7: End for

Step 8: Rank clusters in descending order and delete the clusters with the lowestMi �Miþ1 scores. At the end of this step, the number of clusters in Ci

will be Miþ1

Step 9: For each Cij 2 Ci, j ¼ 1; 2; …; Miþ1, do

Step 10: Call Importance Cij;Dtrain; s
� �

to compute an importance score for each feature in cluster Cij

Step 11: Remove the f% features with the lowest importance score in cluster Cij

Step 12: End for

Step 13: Gather the remaining features in all clusters into F� ¼ [Miþ1

l¼1 Cilf g
Step 14: Update Dtrain and Dtest to have the same features as F�

Step 15: Compute performance metrics using Dtrain and Dtest

Step 16: Define Fiþ1 ¼ F�

Step 17: End for
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Internal feature elimination (IFE) step:Our algorithm eliminates not only low-scoring
clusters but also weakly-scoring features within surviving feature clusters. Feature scores
are mainly weights or coefficients estimated by a classification algorithm (in our method,

Figure 1 The workflow of the proposed approach. Full-size DOI: 10.7717/peerj-cs.2528/fig-1
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RF). The rate of feature removal is specified in advance. IFE plays a crucial role by further
reducing the number of features at each cluster elimination step. This novel process
facilitates the exclusion of irrelevant or redundant features, which is, in turn, expected to
enhance the generalizability of the model and obtain the same (or better) performance
with a smaller number of features. In addition, IFE allows the most important clusters to
retain a minimum number of features at the end.

Figure 2 Extraction of subdatasets based on gene clusters. Full-size DOI: 10.7717/peerj-cs.2528/fig-2
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Modeling (M) step: Following the removal of clusters with low scores and intra-cluster
elimination of low-scoring features in the remaining clusters, the retained features from
the surviving clusters are pooled. Features in this pool are then exploited to construct the
training and test datasets, as explained in the G step. Subsequently, an RF model is trained
on the training dataset and assessed on the test dataset. At each elimination step, i.e., for
each reduced number of clusters, various performance statistics are recorded. Ultimately,
we obtain performance results for multiple cluster numbers, and the algorithm terminates
after gathering performance results for the final cluster number in M.

Several quantitative metrics, including accuracy, sensitivity, specificity, precision, and F-
measure, were computed to evaluate the model performance using the formulations below:

Accuracy ¼ ðTPþ TNÞ=ðTPþ FPþ FNþ TNÞ;
Sensitivity ¼ TP=ðTPþ FNÞ
Specificity ¼ TN=ðTNþ FPÞ
Precision ¼ TP=ðTPþ FPÞ
F�measure ¼ 2TP=ð2TPþ FPþ FNÞ

Figure 3 Assigning a score to a subdataset. Full-size DOI: 10.7717/peerj-cs.2528/fig-3
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where TP, FP, TN, and FN refer to the number of correctly predicted positive samples,
incorrectly predicted negative samples, correctly predicted negative samples, and
incorrectly predicted positive samples, respectively. Furthermore, area under the curve
(AUC) is a performance measurement that evaluates the ability of a model to discriminate
between two classes, such as the positive class (existence of a disease) and the negative class
(lack of a disease). Besides, Cohen’s kappa score is a metric that quantifies the degree of
agreement between two raters and evaluates the effectiveness of the machine learning
model (McHugh, 2012). All these metrics are calculated for each cluster number in our
approach.

In addition to the aforementioned performance metrics, our method generates a ranked
list of features in descending order that persisted successfully through the elimination
process based on the number of clusters they survived.

RESULTS AND DISCUSSION
This section presents the performance of the proposed RCE-IFE approach. We conducted
experiments to compare RCE-IFE with SVM-RCE using several types of datasets. We also
compared RCE-IFE with some traditional FS methods using various classifiers. The
proposed approach was further tested on four publicly available cancer-related datasets
and compared with Multi-stage algorithm (Du et al., 2013), a method that bears
similarities to RCE-IFE. We also compared RCE-IFE with biological domain knowledge-
based G-S-M tools, including mirGediNET (Qumsiyeh, Salah & Yousef, 2023), 3Mint
(Unlu Yazici et al., 2023), and miRcorrNet (Yousef et al., 2021); and manifested the
biological relevancy of the high-scoring features selected by RCE-IFE. Lastly, the
consistency of the proposed algorithm in terms of selected features is verified via
comparing the selected features list among multiple runs.

Experimental setup
All methods were repeated 100 times to provide stability in results. To ensure balance in
datasets, we applied undersampling to remove the samples from the majority class while
preserving all of the samples in the minority class. In the cluster scoring step, we applied
10-fold cross validation (i.e., t = 10). For RCE-IFE, we considered the results of two clusters
among various cluster numbers. The values presented in our analyses are the average
results of 100 repetitions. In RCE-IFE, the rate of features to be removed from a surviving
cluster is set to be 10% (i.e., f = 10) if the cluster contains more than five features. AUC is
used to evaluate the classifier performance, while the accuracy metric is employed for
comparison with Multi-stage algorithm (Du et al., 2013), in the Comparative performance
evaluation of RCE-IFE with Multi-stage algorithm subsection.

We performed our analyses on Knime (Berthold et al., 2009), an open-source software,
due to its simplicity and support for graphical representations. In addition, Knime is an
extremely integrative tool that allows the integration of different scripts in many coding
languages. All experiments were conducted on an Intel Core i9-9900 with 64 GB of RAM.
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Comparative performance evaluation of RCE-IFE with SVM-RCE on
gene expression, miRNA, and methylation datasets
In this section, we compare our proposed approach, RCE-IFE, with SVM-RCE in terms of
classification performance, the number of selected features, and execution time. We
employed two classifiers, i.e., RF and SVM, individually in our approach. In other words,
the steps in scoring clusters and features in surviving clusters were achieved independently
using RF and SVM. RF is the default classifier in RCE-IFE, and we denote the approach for
integration of SVM into RCE-IFE as RCE-IFE-SVM. Table 4 shows the results on 20
publicly available datasets. The first column corresponds to AUC values, followed by the
number of features found by each technique. The last row refers to the average AUC and
feature size values obtained by each algorithm across different datasets. We can observe
that all methods achieve similar AUC values, where SVM-RCE is outperformed by RCE-
IFE-SVM and RCE-IFE by 1% and 2%, respectively. However, a significant difference is
observed in the number of selected features between SVM-RCE and RCE-IFE methods.
RCE-IFE-SVM selects roughly half as many features as SVM-RCE whereas RCE-IFE picks
almost two and a half times fewer features than SVM-RCE. Hence, our proposed approach

Table 4 Comparative performance evaluation of RCE-IFE with SVM-RCE: mean AUC and mean size of the feature subsets on gene
expression, miRNA, and methylation datasets.

AUC #Features

SVM-RCE RCE-IFE-SVM RCE-IFE SVM-RCE RCE-IFE-SVM RCE-IFE

GDS1962 0.98 ± 0.05 0.99 ± 0.03 0.98 ± 0.05 76.39 ± 30.23 33.93 ± 14.64 28.52 ± 10.76

GDS2519 0.50 ± 0.18 0.56 ± 0.17 0.55 ± 0.18 46.05 ± 18.44 32.69 ± 10.58 30.99 ± 9.37

GDS2547 0.80 ± 0.11 0.83 ± 0.10 0.80 ± 0.11 109.05 ± 38.84 67.84 ± 16.57 51.19 ± 16.76

GDS2609 0.97 ± 0.14 0.97 ± 0.14 0.99 ± 0.07 59.03 ± 25.06 26.34 ± 8.96 19.99 ± 7.21

GDS3268 0.80 ± 0.12 0.78 ± 0.12 0.76 ± 0.13 99.40 ± 40.34 41.44 ± 14.29 40.52 ± 14.45

GDS3646 0.74 ± 0.23 0.77 ± 0.22 0.67 ± 0.25 38.89 ± 23.88 22.56 ± 9.70 26.44 ± 10.12

GDS3794 0.96 ± 0.12 0.94 ± 0.14 0.93 ± 0.17 63.67 ± 24.61 25.52 ± 8.08 19.25 ± 6.02

GDS3837 0.98 ± 0.03 0.98 ± 0.04 0.98 ± 0.04 124.68 ± 40.48 62.60 ± 21.21 49.82 ± 16.07

GDS3874 0.73 ± 0.20 0.75 ± 0.20 0.86 ± 0.16 42.19 ± 16.94 21.53 ± 6.32 24.94 ± 7.38

GDS3875 0.84 ± 0.15 0.86 ± 0.14 0.83 ± 0.14 41.55 ± 14.32 22.22 ± 7.14 26.26 ± 7.95

GDS3929 0.51 ± 0.28 0.48 ± 0.31 0.50 ± 0.26 17.33 ± 7.30 7.26 ± 2.42 19.82 ± 6.80

GDS4228 0.48 ± 0.26 0.46 ± 0.27 0.80 ± 0.20 12.17 ± 6.18 6.63 ± 2.68 21.20 ± 6.73

GDS4824 0.95 ± 0.22 0.95 ± 0.22 0.90 ± 0.30 61.57 ± 24.17 23.32 ± 8.39 14.38 ± 5.87

GDS5037 0.73 ± 0.24 0.72 ± 0.22 0.75 ± 0.22 37.62 ± 14.15 19.00 ± 5.55 21.99 ± 7.39

GDS5093 0.90 ± 0.22 0.91 ± 0.22 0.90 ± 0.22 42.35 ± 23.24 15.40 ± 9.09 18.15 ± 7.56

GDS5499 0.96 ± 0.07 0.95 ± 0.09 0.92 ± 0.10 179.76 ± 45.84 69.92 ± 14.77 71.34 ± 22.38

GSE157103 0.94 ± 0.10 0.97 ± 0.07 0.93 ± 0.11 95.63 ± 35.05 42.30 ± 14.18 31.76 ± 11.15

TCGA-BLCA.methylation450 0.98 ± 0.06 0.98 ± 0.05 0.97 ± 0.08 73.81 ± 28.14 37.65 ± 13.28 27.15 ± 10.57

TCGA-BLCA.mirna 0.97 ± 0.08 0.98 ± 0.06 0.97 ± 0.08 109.19 ± 107.69 49.86 ± 42.42 25.95 ± 22.90

TCGA-BRCA.methylation450 0.98 ± 0.05 0.98 ± 0.04 0.99 ± 0.03 144.27 ± 49.87 62.33 ± 21.95 53.95 ± 18.80

Average 0.83 ± 0.15 0.84 ± 0.14 0.85 ± 0.15 73.73 ± 30.74 34.52 ± 12.61 31.18 ± 11.31
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significantly reduces the feature subset size while maintaining the classifier performance.
Additional performance metrics can be found in Tables S1–S3.

Regarding running time, RCE-IFE and RCE-IFE-SVM have less time complexity than
SVM-RCE, as illustrated for miRNA and methylation datasets in Fig. 4. Note that our
proposed approach might seem to have a trade-off between an additional intra-cluster
feature elimination step and further feature removal. However, feature removal means
dimensionality reduction and outweighs the inclusion of the intra-cluster feature
elimination step in favor of shortening execution time. In Fig. 4, we observe that RCE-IFE-
SVM shows a moderate reduction in running time compared to SVM-RCE to a certain
degree due to the contribution of the intra-cluster elimination step. On the other hand,
RCE-IFE has the shortest running time by far. It is also noteworthy that all algorithms
achieve the same AUC performance (98%) on average, with different execution times for
the datasets.

Figure 4 Running time comparison of RCE-IFE, RCE-IFE-SVM and SVM-RCE on miRNA and
methylation datasets. Full-size DOI: 10.7717/peerj-cs.2528/fig-4

Table 5 Comparative performance evaluation of RCE-IFE with SVM-RCE: mean AUC and mean
size of the feature subsets on metagenomics datasets.

AUC #Features

Dataset SVM-RCE RCE-IFE % Increase SVM-RCE RCE-IFE % decrease

CRC_enzyme 0.70 ± 0.04 0.76 ± 0.04 8.6 78.51 ± 27.33 52.32 ± 17.91 33.4

CRC_pathway 0.68 ± 0.04 0.70 ± 0.04 2.9 83.97 ± 50.93 31.60 ± 9.60 62.4

CRC_species 0.67 ± 0.07 0.80 ± 0.04 19.4 96.24 ± 72.55 34.65 ± 8.63 64.0

CRC_species_II 0.50 ± 0.20 0.82 ± 0.14 64.0 41.50 ± 47.58 16.31 ± 5.84 60.7

IBD 0.82 ± 0.08 0.87 ± 0.06 6.1 89.57 ± 71.94 22.12 ± 5.75 75.3

IBDMDB 0.77 ± 0.06 0.93 ± 0.04 20.8 100.07 ± 66.79 30.53 ± 8.38 69.5

T2D 0.59 ± 0.12 0.66 ± 0.10 11.9 63.50 ± 58.06 16.23 ± 4.13 74.4

Average 0.68 ± 0.09 0.79 ± 0.07 19.1 79.05 ± 56.45 29.11 ± 8.61 62.8
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Comparative performance evaluation of RCE-IFE with SVM-RCE on
metagenomics datasets
To further highlight the dominance of RCE-IFE over SVM-RCE, we tested both methods
on seven metagenomics datasets for comparison. The results in Table 5 show that RCE-IFE
surpasses SVM-RCE for all datasets in performance and reduced feature subset. Notably,
remarkable improvements are observed for CRC and IBDMDB datasets, as seen in the %
columns in Table 5. RCE-IFE proves superior to SVM-RCE in both improving classifier
performance and reducing feature size. Besides, RCE-IFE generally provides satisfactory
results except for T2D, indicating that it is impressive on metagenomics data types. The
superiority of RCE-IFE over SVM-RCE in terms of other performance metrics is presented
in Table S4.

Comparative performance evaluation of RCE-IFE with conventional FS
methods
This section deals with the comparison of RCE-IFE with several widely used FS algorithms.
The results were collected for five gene expression datasets: GDS2547, GDS3268,
GDS3646, GDS3875, and GDS5037. We compared seven FS algorithms, which include
(1) Minimum Redundancy Maximum Relevance (MRMR) (Peng, Long & Ding, 2005),
(2) Fast Correlation-Based Filter (FCBF) (Yu & Liu, 2003), (3) Information Gain (IG)
(Hall & Smith, 1998), (4) Conditional Mutual Information Maximization (CMIM)
(Fleuret, 2004), (5) SelectKBest (SKB), (6) eXtreme Gradient Boosting (XGBoost) (Chen &
Guestrin, 2016), and (7) SVM-RFE (Guyon et al., 2002). In order to evaluate the quality of
features obtained by FS methods, eight well-known classification algorithms were applied:
(1) Adaboost, (2) Decision Tree (DT), (3) Logitboost, (4) RF, (5) Support Vector Classifier
(SVC), (6) Stacking Classifer (base: Logitboost, k-Nearest Neighbour (KNN), final: RF),
(7) Stacking Classifier (base: Logitboost, SVC, final: Logistic Regression), and
(8) XGBClassifer.

The implementations were carried out through the skfeature and sklearn libraries in
python (Pedregosa et al., 2011). The number of top genes selected by the FS algorithms was
determined according to the average number of genes obtained by RCE-IFE for two
clusters. In other words, the number of genes selected by all FS algorithms was kept the
same for a fair comparison. Table 6 presents the results for the aforementioned FS
algorithms and classifiers with the same number of selected genes. RCE-IFE is superior to
the tested FS methods in most cases in terms of AUC (refer to the Average column). While
XGBoost with RF reaches the best average performance (79%), the average performance of
RCE-IFE (76%) is either quite comparable or dominant over other methods. Out of 49
prediction performances, only 6 show the same or slightly better performance than RCE-
IFE. MRMR, FCBF, IG, and CMIM obtain their highest performances with XGB but fall
far short of RCE-IFE. However, SKB and XGBoost give competitive results with
XGBClassifier. Overall, RCE-IFE outperforms FS algorithms substantially with different
classifiers.
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Table 6 Mean AUC values after comparing with popular FS algorithms for the same number of selected genes.

# Selected genes 51 41 26 26 22

FS type Classifier GDS2547 GDS3268 GDS3646 GDS3875 GDS5037 Average

MRMR Adaboost 0.49 ± 0.15 0.47 ± 0.16 0.52 ± 0.28 0.46 ± 0.32 0.45 ± 0.32 0.48 ± 0.25

DT 0.49 ± 0.10 0.51 ± 0.12 0.50 ± 0.20 0.48 ± 0.21 0.50 ± 0.20 0.50 ± 0.17

Logitboost 0.49 ± 0.15 0.48 ± 0.15 0.51 ± 0.25 0.47 ± 0.29 0.44 ± 0.32 0.48 ± 0.23

RF 0.49 ± 0.15 0.50 ± 0.16 0.48 ± 0.29 0.44 ± 0.26 0.45 ± 0.26 0.47 ± 0.22

SVC 0.50 ± 0.17 0.49 ± 0.15 0.59 ± 0.27 0.55 ± 0.32 0.49 ± 0.31 0.52 ± 0.24

Stacking (Logitboost + KNN) 0.52 ± 0.15 0.49 ± 0.16 0.47 ± 0.28 0.52 ± 0.30 0.56 ± 0.31 0.51 ± 0.24

Stacking (Logitboost + SVC) 0.51 ± 0.14 0.50 ± 0.16 0.50 ± 0.27 0.53 ± 0.30 0.54 ± 0.31 0.52 ± 0.24

XGBClassifier 0.52 ± 0.14 0.75 ± 0.12 0.58 ± 0.26 0.46 ± 0.27 0.65 ± 0.29 0.59 ± 0.22

FCBF Adaboost 0.61 ± 0.17 0.50 ± 0.14 0.48 ± 0.32 0.53 ± 0.28 0.43 ± 0.30 0.51 ± 0.24

DT 0.57 ± 0.11 0.50 ± 0.12 0.47 ± 0.21 0.52 ± 0.21 0.48 ± 0.22 0.51 ± 0.17

Logitboost 0.60 ± 0.16 0.49 ± 0.14 0.49 ± 0.33 0.50 ± 0.29 0.48 ± 0.31 0.51 ± 0.25

RF 0.64 ± 0.15 0.49 ± 0.15 0.49 ± 0.30 0.51 ± 0.31 0.42 ± 0.31 0.51 ± 0.24

SVC 0.57 ± 0.19 0.50 ± 0.16 0.52 ± 0.30 0.52 ± 0.29 0.57 ± 0.26 0.54 ± 0.24

Stacking (Logitboost + KNN) 0.62 ± 0.16 0.49 ± 0.17 0.46 ± 0.30 0.48 ± 0.28 0.43 ± 0.31 0.50 ± 0.24

Stacking (SVC + KNN) 0.67 ± 0.14 0.52 ± 0.14 0.50 ± 0.32 0.48 ± 0.30 0.43 ± 0.30 0.52 ± 0.24

XGBClassifier 0.64 ±0.18 0.62 ± 0.15 0.51 ± 0.24 0.34 ± 0.28 0.65 ± 0.31 0.55 ± 0.23

IG Adaboost 0.77 ± 0.11 0.70 ± 0.14 0.53 ± 0.28 0.54 ± 0.28 0.73 ± 0.27 0.65 ± 0.22

DT 0.66 ± 0.12 0.60 ± 0.14 0.50 ± 0.25 0.51 ± 0.21 0.68 ± 0.22 0.59 ± 0.19

Logitboost 0.79 ± 0.12 0.72 ± 0.12 0.53 ± 0.28 0.50 ± 0.30 0.74 ± 0.25 0.66 ± 0.21

RF 0.79 ± 0.11 0.71 ± 0.13 0.53 ± 0.26 0.55 ± 0.25 0.79 ± 0.23 0.67 ± 0.20

SVC 0.59 ± 0.26 0.33 ± 0.14 0.49 ± 0.26 0.46 ± 0.30 0.31 ± 0.25 0.44 ± 0.24

Stacking (Logitboost + KNN) 0.73 ± 0.12 0.57 ± 0.15 0.46 ± 0.26 0.53 ± 0.27 0.65 ± 0.29 0.59 ± 0.22

Stacking (SVC + KNN) 0.76 ± 0.11 0.62 ± 0.19 0.47 ± 0.26 0.57 ± 0.29 0.61 ± 0.32 0.61 ± 0.23

XGBClassifier 0.80 ± 0.11 0.74 ± 0.12 0.51 ± 0.27 0.51 ± 0.30 0.78 ± 0.24 0.67 ± 0.21

CMIM Adaboost 0.51 ± 0.17 0.58 ± 0.15 0.51 ± 0.26 0.71 ± 0.26 0.83 ± 0.24 0.63 ± 0.22

DT 0.53 ± 0.13 0.57 ± 0.12 0.52 ± 0.21 0.79 ± 0.18 0.73 ± 0.20 0.63 ± 0.17

Logitboost 0.54 ± 0.17 0.58 ± 0.14 0.50 ± 0.27 0.79 ± 0.24 0.81 ± 0.24 0.64 ± 0.21

RF 0.58 ± 0.17 0.56 ± 0.14 0.54 ± 0.27 0.84 ± 0.23 0.74 ± 0.27 0.65 ± 0.22

SVC 0.46 ± 0.17 0.45 ± 0.14 0.50 ± 0.26 0.22 ± 0.27 0.45 ± 0.27 0.42 ± 0.22

Stacking (Logitboost + KNN) 0.50 ± 0.17 0.47 ± 0.15 0.49 ± 0.28 0.64 ± 0.26 0.57 ± 0.32 0.53 ± 0.24

Stacking (SVC + KNN) 0.56 ± 0.17 0.43 ± 0.13 0.51 ± 0.29 0.64 ± 0.29 0.59 ± 0.30 0.55 ± 0.24

XGBClassifier 0.56 ± 0.15 0.64 ± 0.13 0.44 ± 0.27 0.80 ± 0.24 0.84 ± 0.21 0.66 ± 0.20

SKB Adaboost 0.80 ± 0.11 0.79 ± 0.10 0.70 ± 0.25 0.73 ± 0.23 0.72 ± 0.26 0.75 ± 0.19

DT 0.67 ± 0.12 0.63 ± 0.13 0.61 ± 0.22 0.57 ± 0.18 0.60 ± 0.18 0.62 ± 0.17

Logitboost 0.79 ± 0.11 0.80 ± 0.10 0.75 ± 0.24 0.73 ± 0.24 0.79 ± 0.24 0.77 ± 0.19

RF 0.81 ± 0.11 0.80 ± 0.10 0.74 ± 0.24 0.78 ± 0.20 0.78 ± 0.23 0.78 ± 0.18

SVC 0.79 ± 0.12 0.23 ± 0.12 0.25 ± 0.25 0.29 ± 0.22 0.26 ± 0.24 0.36 ± 0.19

Stacking (Logitboost + KNN) 0.72 ± 0.12 0.74 ± 0.13 0.74 ± 0.24 0.68 ± 0.23 0.76 ± 0.24 0.73 ± 0.19

Stacking (SVC + KNN) 0.81 ± 0.10 0.80 ± 0.11 0.76 ± 0.25 0.66 ± 0.26 0.73 ± 0.25 0.75 ± 0.19

XGBClassifier 0.81 ± 0.10 0.81 ± 0.12 0.70 ± 0.25 0.71 ± 0.22 0.76 ± 0.25 0.76 ± 0.19
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Comparative performance evaluation of RCE-IFE with multi-stage
algorithm
In this section, RCE-IFE is tested with four widely used cancer-related datasets that are
readily available. We compared RCE-IFE with Multi-stage algorithm (Du et al., 2013) due
to its similarity to our approach. While both methods share some common steps, the way
these steps are performed differs, as Multi-stage employs SVM-RFE and adopts a distinct
strategy for cluster elimination. Table 7 presents the performance metrics obtained for
RCE-IFE and Multi-stage on four datasets. The metrics for Multi-stage are extracted from
the original study, where performance was reported as the average accuracy of the top 60
genes. For RCE-IFE, the numbers on the right of the “||” symbol refer to the average
number of selected genes. As shown in Table 7, RCE-IFE achieves accuracy rates
comparable to those of Multi-stage, with insignificant differences. Moreover, except for the
Leukemia dataset, the number of genes selected by RCE-IFE is considerably below 60 in all
cases. These findings imply that RCE-IFE has a very competitive performance in terms of
accuracy measure and outperforms Multi-stage in terms of gene reduction.

Table 6 (continued)

# Selected genes 51 41 26 26 22

FS type Classifier GDS2547 GDS3268 GDS3646 GDS3875 GDS5037 Average

XGBoost Adaboost 0.79 ± 0.12 0.84 ± 0.10 0.64 ± 0.28 0.77 ± 0.20 0.67 ± 0.27 0.74 ± 0.19

DT 0.64 ± 0.13 0.67 ± 0.11 0.55 ± 0.23 0.69 ± 0.20 0.62 ± 0.26 0.63 ± 0.20

Logitboost 0.80 ± 0.11 0.86 ± 0.09 0.61 ± 0.28 0.80 ± 0.22 0.75 ± 0.26 0.76 ± 0.19

RF 0.82 ± 0.11 0.85 ± 0.10 0.68 ± 0.26 0.82 ± 0.21 0.77 ± 0.25 0.79 ± 0.19

SVC 0.78 ± 0.11 0.19 ± 0.11 0.38 ± 0.29 0.25 ± 0.23 0.27 ± 0.25 0.37 ± 0.20

Stacking (Logitboost + KNN) 0.78 ± 0.11 0.83 ± 0.10 0.62 ± 0.26 0.77 ± 0.21 0.74 ± 0.23 0.75 ± 0.18

Stacking (SVC + KNN) 0.80 ± 0.11 0.80 ± 0.11 0.64 ± 0.27 0.75 ± 0.22 0.74 ± 0.29 0.75 ± 0.20

XGBClassifier 0.81 ± 0.12 0.85 ± 0.10 0.63 ± 0.27 0.83 ± 0.20 0.76 ± 0.26 0.78 ± 0.19

SVM-RFE SVM 0.78 ± 0.08 0.83 ± 0.07 0.74 ± 0.16 0.70 ± 0.17 0.72 ± 0.19 0.75 ± 0.13

RCE-IFE RF 0.80 ± 0.11 0.76 ± 0.13 0.67 ± 0.25 0.83 ± 0.14 0.75 ± 0.22 0.76 ± 0.17

Table 7 Comparative performance evaluation of RCE-IFE with Multi-stage: Mean classification
accuracies of RCE-IFE and Multi-stage.

Datasets Multi-stage RCE-IFE

Breast 82.84 80.89 || 44

DLBCL 88.74 87.67 || 34

Leukemia 97.59 96.33 || 70

Prostate 93.45 92.18 || 38

Average 90.66 89.27 || 46.5

Note:
On the RCE-IFE column, the numbers on the right of the “||” symbol indicate the average number of selected genes.
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Comparative performance evaluation of RCE-IFE with other biological
domain knowledge-based G-S-M tools
We have comparatively evaluated RCE-IFE with three biological domain knowledge-based
G-S-M tools, i.e., mirGediNET (Qumsiyeh, Salah & Yousef, 2023), 3Mint (Unlu Yazici
et al., 2023), and miRcorrNet (Yousef et al., 2021), in terms of several performance metrics.
These tools integrate biological knowledge into feature grouping and score the feature
groups using a classifier. For comparison purposes, we employed the TCGA-BRCA dataset
used in the aforementioned tools, available on the Genomic Data Commons (GDC)
repository hosted by the National Cancer Institute (NCI). This dataset is a type of miRNA
expression with the reads mapped to GRCh38 and downloaded from the UCSC Xena
repository (https://xenabrowser.net/datapages/) (Goldman et al., 2020). For this dataset,
tumor samples were filtered such that Luminal A and Luminal B subtypes (248 ER+/PR
+/PR-samples) were considered positive (LumAB), while Her2-enriched and Basal-like
subtypes (124 ER-/PR-samples) were considered negative (Her2Basal).

We selected the best performance metrics for each tool based on their highest AUC
values for the TCGA-BRCAmolecular subtype dataset and compared them with RCE-IFE.
mirGediNET, 3Mint, and RCE-IFE obtain these AUC values via selecting a similar number
of features, i.e., 9.6, 13.6, and 12.4 features, respectively, when averaged over 100 iterations.
In contrast, miRcorrNet selects a larger number of features, i.e., 38.2 on average. Figure 5
plots several performance metrics obtained with these four tools when tested on the
TCGA-BRCA molecular subtype dataset. As apparent in Fig. 5, the performance
measurements of RCE-IFE, miRcorrNet, 3Mint, and mirGediNET on the TCGA-BRCA
molecular subtype dataset are close, implying that these tools are comparable. However,

Figure 5 Comparative performance evaluation of RCE-IFE with three biological domain knowledge-
based G-S-M tools. Full-size DOI: 10.7717/peerj-cs.2528/fig-5
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the outcome is different for each tool as each has its own benefit and is developed to
uncover the significant groups based on specific biological knowledge.

Biological validation of the RCE-IFE findings
In this section, we analyze the biological relevancy and significance of the selected miRNAs
for the TCGA-BRCA dataset introduced in the previous section. Breast cancer is the most
commonly diagnosed malignancy worldwide and it is the leading cause of cancer-related
mortality among women (Frick et al., 2024). The top five miRNAs selected by our method
on the TCGA-BRCAmolecular subtype dataset are listed in Table 8. The top feature, miR-
190b, was reported to be upregulated in patients with ER+ breast cancer, and its
dysregulation plays a significant role in the initiation and progression of breast cancer (Dai
et al., 2019). This miRNA was found to suppress breast cancer metastasis by targeting
SMAD2 (Yu et al., 2018). MiR-135b is a key regulator in breast cancer and promotes tumor
growth, invasion, and metastasis (Hua et al., 2016). It serves as an oncogene, and due to its
effect in modulating critical signaling pathways, it is considered a potential biomarker in
breast cancer and a promising target for therapeutic intervention (Vo et al., 2024). The
expression of miR-18a correlates with ER-breast tumors characterized by a high level of
inflammation (Egeland et al., 2020). High expression of it is closely linked to basal-like
breast cancer (Jonsdottir et al., 2012). Downregulation of miR-505 promotes cellular
processes such as cell proliferation, migration, and invasion. Moreover, the low expression
level of this miRNA is associated with poor prognosis in breast cancer patients (Wang, Liu
& Li, 2019). MiR-934 expression has a strong association with the overall survival of breast
cancer patients and promotes cell metastasis by targeting PTEN (Lu, Hu & Yang, 2021). In
addition, mir934 inhibition suppresses the migration capability of tumor cells to a certain
extent in patients with triple-negative breast cancer (Contreras-Rodríguez et al., 2023).

Consistency of the selected features across different runs
To evaluate the consistency of miRNAs selected by the proposed algorithm, we run RCE-
IFE on the TCGA-BRCAmolecular subtype dataset three times, where each run consists of
100 iterations. Top selected miRNAs were compared among successive runs. Figure 6
depicts the overlaps of the top (A) five miRNAs, (B) 10 miRNAs, and (C) 20 miRNAs
between three different runs. As apparent in Fig. 6, the top five miRNAs are the same
miRNAs for all the runs. Among the top 10 miRNAs selected in three different runs, nine

Table 8 Top five miRNAs selected on the TCGA-BRCA molecular subtype dataset.

Rank Name Accession ID

1 hsa-mir-190b MI0005545

2 hsa-mir-135b MI0000810

3 hsa-mir-18a MI0000072

4 hsa-mir-505 MI0003190

5 hsa-mir-934 MI0005756
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are commonly identified in all three runs, and one miRNA is common among the two
runs. Only one miRNA is non-overlapping with any other runs. We encounter a similar
situation when the top 20 features are selected in three different runs. A total of 19
miRNAs are commonly detected in all runs, one miRNA is shared between the results of
the two runs, and one miRNA is unique to one run. These results reveal the large-scale
consistency of the miRNAs selected by the RCE-IFE algorithm across different runs.

CONCLUSIONS
In this article, we address the challenge of the FS task using a feature grouping-based
strategy. We propose RCE-IFE, which involves cluster elimination followed by removing
features from surviving clusters to retain non-redundant and strongly relevant features.
This approach leads to further dimensionality reduction, improved feature subset quality,
enhanced model performance, and reduced computation time. We have conducted
different experiments on publicly available datasets from several biological domains to
assess the performance of RCE-IFE.

RCE-IFE, RCE-IFE-SVM (SVM adapted version of RCE-IFE), and SVM-RCE yield
comparable average AUCs of 0.85, 0.84, and 0.83, respectively, when averaged over
different gene expression, miRNA expression, and methylation datasets; however, RCE-
IFE achieves this performance via selecting the fewest features and the least execution time.
When tested on seven different metagenomics datasets, RCE-IFE and SVM-RCE obtain
average AUCs of 0.79 and 0.68, respectively. In these experiments on metagenomics
dataset, RCE-IFE demonstrates a significant reduction in the size of feature subsets. In
addition, RCE-IFE outperforms various popular FS methods, including MRMR, FCBF, IG,
CMIM, SKB, and XGBoost, achieving an average AUC of 0.76 on five gene expression
datasets. Compared to a similar tool, Multi-stage, RCE-IFE acquires a similar average
accuracy rate of 89.27% using a lower number of features on four cancer-related datasets.

Additionally, we show that the performance of RCE-IFE is comparable with other
biological domain knowledge-based G-S-M tools (mirGediNET, 3Mint, and miRcorrNet)
on the TCGA-BRCA dataset. We verify in scientific literature that all of the identified top
five miRNAs (miR-190b, miR-135b, miR-18a, miR-505, and miR-934) play significant
roles in disease progression and prognosis, contributing to the elucidation of the molecular
mechanisms of breast cancer and the development of treatment strategies. Finally, we

Figure 6 Overlaps between the top miRNAs selected in different runs. (A) Top five miRNAs. (B) Top
10 miRNAs. (C) Top 20 miRNAs. Full-size DOI: 10.7717/peerj-cs.2528/fig-6
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indicate that the proposed algorithm is capable of selecting features with a high degree of
consistency across multiple runs. Our findings suggest that the proposed method is
powerful in that it provides robust model prediction, achieves a substantial reduction in
feature dimension, and ensures both feature relevancy and consistency.

As for future work, we intend to experiment with additional types of datasets from
diverse domains, such as text or image. We also plan to implement the selection of a fixed
number of representative features from each cluster to further reduce the computational
overhead. Lastly, the proposed framework is intended to be adaptable for multiclass
classification and multi-label FS problems.
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available at GDC TCGA Breast Cancer (BRCA) cohort. These datasets are available at
UCSC Xena repository (https://xenabrowser.net/datapages/).

The CRC_species, CRC_pathway and CRC_enzyme datasets are available in the
Supplemental Material in Beghini et al. (2021).

The IBD dataset is available at European Nucleotide Archive (ENA): ERA000116.
The IBDMDB dataset is available in NCBI BioProject: PRJNA398089.
The T2D dataset is available at NCBI: SRA045646 and SRA050230. The CRC_species_II

dataset is available at European Nucleotide Archive (ENA): PRJEB6070.
The leukemia dataset is available from https://www.openintro.org/data/index.php?

data=golub.
The prostate dataset is available from R package SIS: https://cran.r-project.org/web/

packages/SIS/SIS.pdf.
The breast dataset is available in the Breast Cancer (vantVeer 2002) cohort in UCSC

Xena repository at https://xenabrowser.net/datapages/.
The DLBCL dataset is available at GitHub: https://github.com/ramhiser/datamicroarray.
The TCGA-BRCAmiRNA expression breast cancer dataset is available on the Genomic

Data Commons (GDC) repository and downloaded from GDC TCGA Breast Cancer
(BRCA) cohort at UCSC Xena repository (https://xenabrowser.net/datapages/).

The code is available at GitHub: https://github.com/malikyousef/RCE-IFE.
The DOI of the tool is available at Zenodo: Malik Yousef, & ckuzudisli. (2024).

malikyousef/RCE-IFE: First version (Version v1). Zenodo. https://doi.org/10.5281/zenodo.
11167403.
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