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ABSTRACT

Optimization techniques have been extensively employed to address various challenges
in human life across numerous domains. This study introduces a novel hybrid
optimization algorithm that combines the strengths of harmony search (HS) and
black widow optimization (BWO). The primary contribution lies in combining the
cannibalism mechanism of BWO into the improvisation process of HS, enhancing HS’s
ability to explore and refine solutions within the search space. The proposed Harmony
Search Black Widow Optimization (HSBWO) algorithm is adapted and applied to
a real-world optimization problem in transportation scheduling during the Hajj
pilgrimage, particularly focusing on increasing the capacity of pilgrims” housing sites
in the Muzdalifah area by reusing the sites multiple times. Efficiently relocating a vast
number of pilgrims to housing sites within a limited timeframe while meeting several
hard and soft constraints is critical. Experimental results demonstrate that HSBWO
consistently achieved the highest average scores across all tested scenarios compared to
HS and BWO, with significant improvements in both solution quality and convergence
rates. Statistical analysis using ANOVA confirmed that the performance differences
were statistically significant at « equal to 0.05. Specifically, HSBWO outperformed
HS with improvements in average fitness values ranging from 3.1% to 55.2%, while
improvements over the BWO algorithm ranged from 6.4% to 56.0%, depending on the
applied scenarios and population sizes.

Subjects Algorithms and Analysis of Algorithms, Data Mining and Machine Learning, Optimiza-
tion Theory and Computation

Keywords Optimization techniques, Transportation, Hajj Pilgrimage, Harmony search algo-
rithm, Black widow optimization, Mega events

INTRODUCTION

The desire to meet human needs is constantly rising in today’s environment of rapid
change due to technological breakthroughs and shifting preferences. In various domains
of human life, optimization techniques have been widely employed to address a multitude
of challenges.
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The Harmony Search (HS) algorithm, introduced by Geem, Kim ¢ Loganathan (2001),
is one of the widely recognized evolutionary algorithms used for solving a diverse range
of optimization problems (Qin, Zain ¢ Zhou, 2022). Although the HS algorithm has
effectively addressed various optimization challenges, it is susceptible to premature
convergence and low optimization accuracy (Qin, Zain ¢ Zhou, 2022). This limitation
can result in suboptimal solutions, as the algorithm may get trapped in a local optimum.

The Hajj pilgrimage involves millions of people traveling to several holy sites in a
limited period. The Hajj pilgrimage has unique logistical challenges, particularly with
regard to accommodation and transportation issues. Among the critical bottlenecks is the
Muzdalifah area, where pilgrims must spend a portion of the night before proceeding with
their pilgrimage activities (Khan ¢ Shambour, 2023). The limited capacity of housing sites
in Muzdalifah necessitates efficient scheduling and resource utilization to accommodate
the large number of pilgrims.

The motivation behind the research is rooted in addressing the inefficiencies of the HS
algorithm, particularly in complex real-world problems like the transportation scheduling
of pilgrims during Hajj. The shortcomings of relying solely on the HS algorithm, especially
in terms of local search capabilities, underscore the necessity for a more robust and adaptive
approach.

The central research question of this study is: How can the improvisation process
of the HS algorithm be enhanced and adapted to optimize the scheduling process of
transportation programs during large-scale events, accommodating individual preferences
while improving overall transportation efficiency?

The development of an innovative method that can produce optimal solutions within
time and resource restrictions is essential in addressing the challenges of managing
transportation during the Hajj pilgrimage, given the different preferences of pilgrims.
To solve this research challenge, a hybrid approach is developed integrating the HS
algorithm and black widow optimization (BWO).

The main contribution of this article is the development of a hybrid approach that
combines the HS algorithm with BWO (Hayyolalam ¢ Pourhaji Kazem, 2020), called the
Harmony Search Black Widow Optimization (HSBWO) algorithm. This hybrid algorithm
significantly enhances the local search capability of the traditional HS algorithm by
leveraging the cannibalism mechanism of BWO within the improvisation procedure of HS.
This hybrid approach is designed to address the complex and large-scale transportation
scheduling challenges of Hajj pilgrimage, where the HSBWO algorithm optimizes resource
utilization by integrating the strengths of both optimization techniques.

This study’s importance is amplified by its focus on transportation optimization, a critical
aspect of managing large-scale events. By developing a hybrid method that incorporates
individual preferences, the research aims to enhance overall transportation efficiency
during the Hajj pilgrimage. The insights gained from this study have the potential to
benefit legislators, transit planners, and event organizers by offering innovative solutions
for improving mobility and the overall experience of participants. Furthermore, the study’s
findings contribute to the broader field of transportation optimization and can be applied to
the management of mega-events. The article is structured as follows: ‘Problem Description’
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provides a problem description, while ‘Related Literature’ reviews relevant literature.
Section ‘Approach Implementation Framework’ outlines the approach implementation
framework. The experimental results and discussion are presented in ‘Experimental Results
and Discussion’, and ‘Conclusion’ concludes the article.

PROBLEM DESCRIPTION

This section offers comprehensive details regarding transportation programs, outlining the
constraints utilized to regulate the scheduling process. Additionally, it presents the designed
objective function, which serves as a guiding principle in the optimization process.

Designed transportation programs

The study by Khan ¢ Shambour (2023) examined the transportation process for a group of
pilgrims traveling to Muzdalifah. They found that the standard unit of time for this process
was 90 min. The total duration for assigning all the pilgrims to the Muzdalifah area was
divided into seven time slots:

e Three time slots before midnight.
e Three time slots after midnight.
e One time slot after dawn.

This segmentation of the transportation period into different time slots helps facilitate
the efficient management and scheduling of pilgrim movement to Muzdalifah. It allows
for better coordination and a more organized, systematic assignment process.

Based on the arrival and departure timings at Muzdalifah, the researchers identified five
main transportation programs:

e Main Program 1: Pilgrims arrive before midnight and depart before midnight.

Main Program 2: Pilgrims arrive before midnight and depart after midnight.
Main Program 3: Pilgrims arrive before midnight and depart after dawn.
Main Program 4: Pilgrims arrive after midnight and depart after midnight.

Main Program 5: Pilgrims arrive after midnight and depart after dawn.

From these five main programs, a total of 27 sub-programs were derived based on the
distribution of pilgrims across different time slots. Table 1 delineates all sub-programs
corresponding to each main program. Specifically, six sub-programs were derived from
Main Program 1, nine sub-programs from Main Program 2, three sub-programs from
Main Program 3, six sub-programs from Main Program 4, and three sub-programs from
Main Program 5. These sub-programs are designed to streamline the scheduling process
for pilgrims according to their specific arrival and departure time slots.

Problem formulation

To ensure the effectiveness of the proposed algorithm in achieving its objectives of providing
diverse transportation programs to a large number of pilgrims, several constraints were
implemented to guide its functionality. These constraints were designed to assist the
algorithm in generating programs that offer a wide range of options, enabling pilgrims
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Table 1 Scheduling of all main and sub-program over seven time periods.

Sub-program

Before midnight After midnight After Dawn

TimeSlot 1 TimeSlot 2 TimeSlot 3 TimeSlot 4 TimeSlot 5 TimeSlot 6 TimeSlot 7

Main Program
1

SP1
SP2
SP3
Sb4
SP5
SP6

X
X
X

oo R e
>

Main Program
2

SP7
SP8
SP9
SP10
SP11
SP12
SP13
SP14
SP15

oI I B
b

>
>

Main Program
3

SP16
SP17
SP18

oI EE R B I I I B B Il [l

oI I
I e
>

Main Program
4

SP19
SP20
SP21
SP22
SP23
SP24

SIS IE N F I I o B B B I S

MoK KM
>

Main Program
5

SP25
SP26
SP27

>
>

SISl Il
>

Notes.

X refers to a reserved slot.

to select programs that best suit their individual preferences. This approach promotes
inclusivity and enhances the overall satisfaction of pilgrims participating in the Hajj event.

There are two forms of constraints that control the program scheduling process: hard
constraints, which must be satisfied in the final solution, and soft constraints, which allow
for some relaxation or violation.

The problem is encoded using an assignment function (A) that maps various resources—
such as pilgrim groups (PG), timeslots (T), Muzdalifah sites (S), and pilgrimage programs
(P)—to their respective constraints. The representation scheme captures the relationships
between these resources, ensuring that the constraints (both hard and soft) are respected
during the solution generation process. The constraints are outlined as follows (Khan ¢
Shambour, 2023):
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Hard constraints:

H1. Each group of pilgrims is transported once. This is critical for ensuring fairness and
avoiding any group being omitted or duplicated. The formula Eq. (1) expresses that for
every pilgrim group PG; , there is a unique assignment A to a Muzdalifah site S;, meaning
no pilgrim group is left unassigned or assigned more than once.

Apg=Ap;, Vji€PGiies (1)

H2. Each timeslot contains only one pilgrim group, avoiding any conflicts or overlaps.
This constraint is designed to prevent conflicts and overcrowding by ensuring that no

two pilgrim groups are assigned to the same timeslot and site simultaneously. Equation
(2) mathematically represents this by ensuring that for any timeslot T, and site S;, the

assignment of pilgrim group PG; does not overlap with another group PG.

Ay £ ARt Tij £k Vj.kePGies )

H3. The generated solutions must contain all main transportation programs. To ensure
diversity in the transportation programs, this constraint enforces that the final scheduling
solution contains a minimum percentage of each main program. Equation (3) demonstrates
that each pilgrim group PG; is assigned to a program P;, with the assignment percentages
meeting the minimum threshold x; for each program i. The specified values x; ensure that
no program is underrepresented.

Apg=Apg, ViePijePG (3)

such that X (Aﬁ’é) > x;Vi € P, where X indicates the assignment percentages of the main
pilgrim groups. The x; represents the percentage of the main program i, such that x;—;
=0.02, x;—» =0.03, x;—3 =0.05, x;—4 =0.01, and x;—5 =0.01.

Soft constraints:

S1. Pilgrims should be distributed among the main programs based on the preferred
percentage for each main program. This soft constraint aims to align the distribution
of pilgrims with preferred percentages for each program. Equation (4) expresses this by
ensuring that the assignment percentage function Y for each program P; closely matches
the desired proportion y;. While this constraint allows for some deviation, the goal is to
approach the target distribution as closely as possible.

Y(455) =y viep (4)

such that y;—; = 0.2, y;—» = 0.5, y;=3 = 0.2, y;=4 = 0.01, and y;—s = 0.09.

S2. All timeslots are occupied by pilgrim groups across all Muzdalifah sites. This constraint
ensures that all available timeslots and sites are utilized, avoiding any unused resources.
Equation (5) states that for each timeslot T, and site S; , there must be at least one assigned
pilgrim group PG; . This helps maximize the use of all available timeslots and locations,
promoting efficiency.

Aps' #£2 VLeT; VieSjePG (5)
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S3. Utilize each Muzdalifah site as much as possible by allocating the largest possible
number of pilgrim groups. This soft constraint encourages the allocation of as many
pilgrim groups as possible to each site. Equation (6) represents this by aiming to maximize
the number of pilgrim groups nPG assigned to a site S;. While some flexibility is allowed,
the objective is to use each site to its full capacity.

A= Max (nPG) Vie$ (6)

The minimization objective function serves as a metric to assess the quality of
the generated solutions and guides in determining the most suitable distribution for
transporting pilgrim groups to Muzdalifah sites. This objective function assigns a numerical
value to each solution, reflecting the efficiency of the final solution. Since the objective
of this study is to achieve the optimal distribution of transportation programs while
adhering to as many constraints as possible, the costs associated with violating these
constraints are determined based on their significance in attaining the final solution. The
objective function, which accounts for the costs associated with violating both hard and
soft constraints, is represented as illustrated in Eqs. (7)-(13):

Objective Functio nCost = Cost (Hard Constraints Violations)
+Cost (Soft Constraints Violations) (7)

Cost (Hard Constraints Violations) = 1,000 x (Number of violated hard constraints)  (8)

Cost (Soft Constraints Violations) = Cost (S1 Violations) 4 Cost (S2 Violations)
~+Cost (83 Violations). (9)

Where:

Cost (81 Violations) = 10 x (abs(Actual distribution percentage for each main program —

Preferred distribution percentage for each main program)) (10)

Cost (S2Violations) = 5 x (Number of unoccupied time slots) (11)

Cost (83 Violations) = Number of times lots without a new sub-program assignment. (12)

The fitness function in this problem is defined as a minimization objective function
that measures the quality of the solution. The function assigns costs to violations of
both hard and soft constraints, with hard constraints carrying a higher penalty (e.g., a
multiple of 1,000 per violation). Soft constraints are penalized based on the degree of
deviation from the desired distribution or usage, with different weights applied (e.g., 10 for
distribution discrepancies, 5 for unoccupied time slots). The fitness function guides the
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algorithm toward minimizing these costs and thus improving the quality of the solution.
Accordingly, the objective function is represented as follows:

3 3
MinvaHh x Wy, + vass x W, (13)
h=1 s=1
where My, Trepresents the violation times for each of the hard constraints (H;, H,, H3),
1y, denotes the violation times for each of the soft constraints (S1,5,,53), Wp, and W,
indicate the violation cost values for the hard and soft constraints, respectively.

RELATED LITERATURE

In recent years, significant research efforts have been directed toward tackling the challenges
and improving various aspects of mega-event transportation and management. Scholars
and specialists have researched several ways and techniques to improve participants’
overall experience, satisfaction, and efficiency during large-scale events. In this section, we
present an overview of the relevant literature that has contributed to the optimization of
transportation and accommodation for large-scale events, with a particular emphasis on the
Hajj pilgrimage. The investigations covered a variety of technologies, including artificial
intelligence, optimization algorithms, simulation modeling, and scheduling strategies.
By reviewing past publications, we gain useful insights into existing methodologies and
identify the shortcomings that our proposed hybrid scheduling approach seeks to resolve.

Shambour, Khan ¢ Salibi (2017) created a framework for the effective distribution of
Mina campgrounds, specifically designed to accommodate more than two million pilgrims.
The motivation behind their work is because of Mina’s small size, which poses a major
obstacle to the best arrangement of pilgrims’ camps and amenities. The proposed framework
is based on the application of artificial intelligence techniques using geographical data for
the entire Mina region, considering soft and inelastic constraints. The recommendations
indicated that the proposed solutions help to benefit from the maximum capacity of the
available resources, which will lead to an increase in the capacity of the Mina shrine. In
another work, Shambour ¢ Khan (2019) suggested a method for assigning pilgrims to Mina
camps. The proposed algorithm proved to be successful in providing space for pilgrims, as
80% of the pilgrims were given an area of 76.2% of the total accommodation available in
the Mina region.

Focusing on security and time preferences during the optimization process, Rehman
¢ Felemban (2019) proposed an interactive scheduling method for groups of pilgrims in
which groups of pilgrims can be scheduled according to their preferences when performing
stoning rituals at the Jamarat Building. The results obtained when the pilgrims’ journeys
were rescheduled using this strategy during the Hajj season in 1440 AH proved good.

Felemban et al. (2017) used cameras within the Grand Mosque in Makkah to simulate
crowd movements around the Kaaba. Mass-Motion software was used to develop their
model, which was crafted in large part using data gathered from these cameras. The results
of the model showed important information about the density and movement patterns of
the crowds, especially in the important areas of the Great Mosque of Makkah, which helps
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to maintain the safety of the crowds and saves effort and cost in the process of organizing
the crowds.

Morgan & Khayyat (2022) proposed an improved approach to shortening the distance
between service places in the holy sites. The researchers used the genetic algorithm (GA)
to achieve the best distribution of service points in the holy sites for visitors and pilgrims
to obtain maximum performance. Points of service include police cars, ambulances, fire
engines, food trucks, water and other beverages, and security cameras. As a case study, the
two researchers applied an algorithm to distribute ambulances in the crowded holy Arafat
area.

Al-Sabban & Ramadan (2005) developed a model to simulate the shuttle bus system.
For loop 1 (Al-Nafrah), the simulation suggests maintaining a minimum of around 500
buses to ensure a tolerable Arafat evacuation time. Short inter-dispatch periods between
bus caravans should be avoided to prevent lengthening the journey time from Arafat to
Muzdalifah. For loop 2 (from Muzdalifah to Mina), the optimal number of main shuttle
buses is between 231 and 297 to reduce the journey time from Muzdalifah to Mina without
extending the overall Muzdalifah evacuation duration. It’s recommended to assign two
drivers per bus on a time-shift basis to handle the increased number of rounds per bus when
reducing the number of shuttle buses. Large inter-dispatch delays between bus caravans
should also be avoided to prevent lengthening the journey time from Muzdalifah to Mina.
A study aimed at enhancing the operational planning of the shuttle bus service within the
Hajj Establishment was proposed by Hussain, Felemban ¢ Ur Rehman (2021). The goal is
to improve performance by determining the optimal number of buses and cycles needed
for each office in the establishment.

Haase et al. (2019) introduced a model and a solution approach to optimize the
scheduling of pilgrims performing the stoning ritual. The pilgrim schedule prescribes
specific routes and time slots for all registered pilgrim groups. According to the numerical
analysis, the method often resolves cases with over 2.3 million variables in less than ten
minutes. Simultaneously, the difference between the upper bound and the optimal solution
never goes over 0.28%. Yasein ¢» Khan (2023) constructed a computer simulation of the
Mashaaer Holy Site’s shuttle bus system for pilgrims. Using a multimodal modeling and
simulation tool created by AnyLogic, the model was created to incorporate activities
that took place during the pilgrims’ shuttle bus transportation from Arafat to Muzdalifa.
The model may be used to optimize the pilgrim’s transportation system in terms of
several parameters by determining how effective the present system is and then making
recommendations for improvements that could improve performance.

In another study, Felernban, Fatani ¢ Rehman (2019) presented an optimized scheduling
process that schedules the movement of pilgrims using trains to perform spatiotemporal
rituals safely. The scheduling process considered several factors: the type of train movement
(D for Muzdalifah to Mina, C for Arafat to Muzdalifah, or B for Mina to Arafat), the camping
locations of pilgrims, the camping destinations of other pilgrims, and the permitted
roadways to and from camps and stations. Additionally, the scheduling procedure considers
station capacity to prevent overcrowding incidents.

Shambour et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2526 8/27


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2526

PeerJ Computer Science

Furthermore, Liao et al. (2023) proposed a strategy for strategically placing fences to
direct traffic and ease congestion in public areas. A congestion probability social force
model (CP-SEM) is introduced by the authors in order to assess various fence design and
simulate pedestrian behavior. In order to optimize the fence arrangement, they frame
the issue as one of optimization and suggest the ant colony crowd intervention method
(ACCI). Finally, the authors show how well ACCI works to prevent crowding in a variety
of settings, including two actual subway stations.

Additionally, Elkhouly, Tamaki ¢ Iwasaki (2023) offered two methods for crowd
management at major sporting events in order to relieve traffic at surrounding transit
hubs. The first strategy delays fans’ arrival at the closest station and promotes walking
to a different nearby station by establishing fan attraction locations using augmented
reality and wearable technology. The second method increases the number of fans who
leave crowded stations by using wearable technology and a smartphone application to
give wayfinding and intra-station navigation for fans traveling in groups. Additionally, the
authors offer agent-based simulations to show how effective these methods are at reducing
station congestion.

In addition, Lu et al. (2023) introduced a technique for precise real-time forecasting of
the intense passenger inflow (IPF) brought on by special events at urban rail transit (URT)
stations. The system models the association between historical special events and passenger
characteristics by combining individual travel card data, event data, station data, and other
information. The IPF is estimated using the system’s online inflow prediction and offline
model training components, which significantly reduce estimation error as compared to
conventional prediction models.

Huang et al. (2020) introduced a novel approach to solve the evacuation route
optimization (EPO) issue in crowd and catastrophe management called the ant colony
evacuation planner (ACEP). The joint finding of a set of ideal evacuation routes is made
possible by the ACEP, which simulates crowd behavior during evacuation using the entire
colony of ants. To speed up and enhance the efficiency of ACEP, the authors also present
the incremental flow assignment (IFA) technique. The ACEP technique shows good results
when tested numerically on networks of various sizes.

Recently, Khan & Shambour (2023) studied the issue of accommodating the greatest
number of pilgrims at Muzdalifah locations while they were on pilgrimage using HS
algorithm. The research aims to accommodate more than one group of pilgrims at
each site in Muzdalifah instead of a single pilgrim group, as in the current status. The
outcomes demonstrated that it would be possible to triple the capacity of Muzdalifah’s
accommodation sites compared to the current situation. However, despite the effectiveness
of HS algorithm in improving the accommodation capacity, the HS algorithm exhibited
limitations, particularly in its local search capabilities, which restricted its ability to fully
optimize the complex scheduling problem. This limitation highlighted the need for further
enhancements to achieve better solutions, especially in the context of large-scale event
management.

The studies presented in this section offer insight into various aspects of transportation
and accommodation optimization for large-scale events, particularly the Hajj. To address
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the complicated challenges of large-scale event management, these studies used a variety
of methodologies and techniques, such as optimization algorithms, simulation modeling,
and scheduling systems.

While previous studies have made significant contributions to various aspects of
transportation in mega-events, there is still a gap in optimizing the complex scheduling
challenges to transport large groups of pilgrims with diverse preferences. Specifically,
although the HS algorithm has been applied in related works, it suffers from limitations
in local search capabilities and tends to converge prematurely. This article addresses
these gaps by presenting a hybrid optimization approach that combines HS and BWO,
leveraging the strengths of both algorithms to enhance local search and global exploration.
This combination aims to provide a more robust and efficient solution to the complex
scheduling issues in real-world problems.

APPROACH IMPLEMENTATION FRAMEWORK

This section briefly describes the HS and BWO algorithms, outlining their operators and
characteristics. Additionally, it provides a detailed description of the proposed approach
employed in this study.

Harmony Search algorithm

The HS algorithm is an evolutionary algorithm inspired by the principles of biological
evolution found in nature, as proposed by Geem, Kim ¢» Loganathan (2001). Its mechanism
involves maintaining a set of solutions throughout the search process, where these solutions
collaborate to generate a new solution in each iteration.

e HS algorithm operators are (Geern, Kim ¢» Loganathan, 2001; Shambour et al., 2014):

— Harmony initialization: Producing a starting population of harmonies at random.

— Harmony memory consideration: Determining the procedure for constructing a new
harmony from either the HM or through random search.

— Pitch adjustment: Adjusting the content or values of specific elements in a new
harmony.

— Harmony memory update: Updating the contents of the HM by including the best
harmonies in the HM according to their fitness values.

e Characteristics of the HS algorithm (Alia & Mandava, 2011; Shambour, 2018):

— Ease of implementation.

— HS uses a stochastic search technique influenced by music improvisation.

— Pitch modification and harmony memory consideration are two ways the algorithm
strikes a balance between exploration and exploitation.

— HS is capable of handling both discrete and continuous optimization problems and
does not require gradient information.

— It has been effective in solving a variety of optimization issues.
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Black Widow Optimization algorithm

The BWO algorithm is an evolutionary algorithm inspired by the real-life mating process
of black widow spiders in nature, as proposed by Hayyolalam ¢» Pourhaji Kazem (2020).
Spiders share information, including their positions or attributes, to facilitate collaboration
and information exchange. This collaborative effort enables spiders to collectively generate
a new solution or update their positions for subsequent iterations.

e The BWO algorithm’s operators are Hayyolalam ¢ Pourhaji Kazem (2020):

— Population initialization: Generating an initial population of potential solutions
randomly, often referred to as “spiders.”

— Procreation: determining which spiders will be selected for the next round of
reproduction or survival in the subsequent generation process.

— Cannibalism: eliminating fewer fit spiders and promoting the survival of stronger
ones.

— Mutation: introducing small stochastic changes to the genetic makeup of spiders
within the population.

e Characteristics of the BWO algorithm (Abu-Hashem & Shambour, 2024; Madhiarasan,
Cotfas & Cotfas, 2023):

— Ease of implementation.

— Efficiently navigate the search space, allowing for quicker identification of optimal or
near-optimal solutions.

— Ability to avoid local optima by circumventing the problem of getting trapped in
local optima.

— Exhibiting satisfactory accuracy in finding solutions.

— Reduced complexity.

Proposed HSBWO approach

The proposed approach in this study is a modification of the algorithm presented by
Khan & Shambour (2023). This new approach combines the HS algorithm and the BWO
algorithm to create a hybrid approach called HSBWO. The primary goal of this hybrid
approach is to optimize the scheduling procedures for transportation programs in the
Muzdalifah area. By leveraging the strengths of both algorithms, HSBWO aims to deliver
a complete solution that accurately represents the scheduled assignment programs for all
locations in the Muzdalifah area.

Step 1. Initializing the algorithm and problem parameters

The initialization step involves determining the parameters for the scheduling programs.
These parameters include the number of locations, main programs, sub-programs,
distribution ratios, timeslots, and other relevant factors. Additionally, specific parameters
related to the algorithm itself are initialized. The HSBWO algorithm parameters comprise
the following:

e Harmony memory size: refers to the number of solutions stored in the memory of the
HSBWO algorithm.
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e Harmony memory consideration rate (HMCR): HMCR is a parameter that determines
the balance between adopting solutions from HM or through random search. Where
0<HMCR<1.

e Pitch adjustment rate (PAR): The PAR is a parameter used to facilitate the modification
of previously chosen pilgrim groups from the assigned programs stored in the HM.

It provides the possibility of generating new harmony that is adjacent to the previous
solutions, thereby intensifying the search in the vicinity of the current solutions. The
pitch adjustment operator is defined as follows:

P1 0<U(0,1)<0.33
PAR={P2 033<U(0,1)<0.66
P3 0.66<U(0,1)<1

where U (0,1) represents a uniform random distribution ranging between 0 and 1. The
procedures P1, P2, and P3 are detailed as follows:

e PI: Choosing two random timeslots from the currently scheduled programs and
identifying the subprograms associated with the chosen timeslots.

e P2: Removing the selected subprograms from the current schedule and making their
timeslots empty.

e P3: Developing one or more subprograms that cover empty timeslots.

Step 2. Initialization of HM

During the initialization of the HM, the algorithm generates initial solutions (denoted
as H) for assigned programs using the greedy search technique. These solutions are then
stored in HM as the starting set of solutions as shown below:

hy  hy hy f(H"Y
v — B e f(H?)
WM M h | L HTME)

Step 3. Improvisation process
The improvisation process comprises the following stages:

Stage 1. Applying the conventional procedure of the HS algorithm to generate a New
Harmony (NH) by utilizing the HS algorithm operators (i.e., HMC and PA).

Stage 2. Applying the cannibalism operation of the BWO algorithm that relies on eating
members of the same species. The following are the steps of the cannibalism process in
detail:

e Selection of harmonies: In this step, two solutions (harmonies) are randomly selected
from the population. These harmonies are labeled as Hy and Hy.

e Swap mutation process: A swap mutation is performed between the selected harmonies
where some components of these two harmonies are exchanged. The number of times
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this swap occurs depends on a predefined parameter called the number of cannibalism
(nCann).

e Generation of new harmonies: After performing the swap process, two new harmonies
Hy' and Hyz are created. This process introduces variability into the population and
helps prevent the algorithm from getting stuck in local optima.

Mathematically, the swap mutation between Hy and Hy for a specified nCann, is
represented as follows:

[Hy,H,]= Mutate(Hy,Hz,nCann)

This swapping procedure of harmony memory (HM) components aims to maintain
diversity among harmonies and reduce the likelihood of premature convergence by
introducing differences into the solution space. The proposed combination of the HS
and BWO algorithms achieves a balance between intensification and diversification in the
search process, resulting in more robust optimization performance.

Step 4. Update HM

Newly created harmonies (NHs) undergo an evaluation process using an objective function
(F). Only harmonies with good qualities will be kept in the HM. The updated rule is given
as follows:

HM = best ([HM, F(HM )] U[NHs, F(NHs)])
where best selects the harmonies with the highest fitness values.

Step 5. Stopping Criterion

Indicating whether to continue or end the improvisation cycle based on a predetermined
condition, such as the number of evaluations (NE). The basic flowchart of the proposed
HSBWO algorithm is given in Fig. 1, and the pseudo-code algorithm is provided in
Algorithm 1.

EXPERIMENTAL RESULTS AND DISCUSSION

In this section, the simulation results of applying the proposed HSBWO algorithm are
presented, along with an analysis of the influence of the algorithm’s parameters on the
obtained results. The case study focuses on scheduling pilgrim programs across one
hundred sites, which remained constant throughout all experiments in this study. The
proposed algorithm was evaluated through 30 trials, each involving 1,000 iterations of the
improvisation cycle.

Experimental design

As shown in Table 2, eight scenarios with various parameter settings were constructed
for the comparison algorithm. Thirty trials were carried out for each scenario with
different population sizes of 5, 20, 50, and 100. It is worth noting that the parameter
setting for the BWO algorithm “cannibalism rate” was set to 0.44, as recommended in
Hayyolalam & Pourhaji Kazem (2020). These experimental settings were chosen to examine
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Figure 1 The basic flowchart of the proposed HSBWO algorithm.
Full-size & DOI: 10.7717/peerjcs.2526/fig-1

the exploration and exploitation search efficacy compared to HS (Khan & Shambour, 2023),
BWO (Hayyolalam ¢ Pourhaji Kazem, 2020), and HSBWO algorithms. Several statistical
measurements were employed in the comparison of the studied algorithms, including the
mean, standard deviation, and best and worst fitness values. All experiments were coded
using MATLAB 2020b, which was run on Windows 11 64-bit 12th Gen Intel(R) Core (TM)
i7-12650H 2.30 GHz and 24 GB of RAM.

Experimental results
Simulation results with a population size of five

The experimental outcomes for a population size of five, as detailed in Table 3, reveal
that the proposed HSBWO algorithm (Algorithm 1) consistently outperforms other
algorithms. It achieves the highest average fitness scores across all test scenarios (highlighted
in bold), demonstrating its superior optimization capabilities. Notably, the HS algorithm
also surpasses the performance of the BWO algorithm in all scenarios, reinforcing its
effectiveness within the hybrid approach.
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Algorithm 1. The pseudocode of the proposed HSBWO algorithm
Step 1: Set the algorithm and problem parameters

Including NE, HMS, HM, HMCR, PAR , NoPrograms, NumOfLocations, NH , pCan,nCann,
MinProgRate = [0.02,0.03,0.05,0.01,0.01], DesiredProgRate = [0.2,0.5,0.2,0.01,0.09]

Step 2: Initialize HM with a number of solutions according to HMS
For i=1to HMS
H' = GeneratelntialSol () // Initialize HM
F(H')=f(H")// Find objective function cost
HM' =[H! F(H)]
End For
Step 3: Improvisation Process

NH =[]// Initialize a New Harmony (NH)
[NewHarmonies]// Initialize a New Harmonies Pool

Fori=1to NI// NI is the number of improvization
HX = Select X (HM) // Select a random harmony H* wherex € [1, HMS)]
For j =1 to Num Of Locations
IF (rnd < HMCR) // Memory Consideration
NH/ = HXJ
IF (rnd < PAR) /| Pitch Adjustment
[StartSlot, EndtSlot] = return Start EndSlots// Select two random slots from location
jofa NH
NH-[StratSlot EndSlot] = Assign Rnd Prog (StratSlot , EndSlot) // Assign random Program(s) within
the StratSlot and EndSlot
End IF
Else
NH/ = Assign Rnd Prog () /] Assign random program(s)at j location of a NH
End IF
End For
[NewHarmonies, F (NewHarmonies) |
= [NewHarmonies, F (NewHarmonies)|U[NH ,f (NH)]// Add a NH to the New Harmonies pool
Forn = 1ton Cann// Cannibalism
[HY,H?]=SelectYZ (HM) /] Select two random harmoniesH” ,H*where y,z € [1, HMS)]
[HY?,H?1] = Select Locations(HY ,H?)// Select two random locations p and q fromH?" , HZ respectively
[H'Y,H'*1= Mutate(H"*,H%1)// Perform Swap Mutation between p and q locations ofHY andH?
[NewHarmonies, F (NewHarmonies)] = [NewHarmonies, F(NewHarmonies)] U
(H".f(H™))
[New Harmonies, F (New Harmonies)] = [New Harmonies, F(New Harmonies)] U
(H?.f (H”"))
End For
Sort (NewHarmonies, F (NewHarmonies)) // Sort New Harmonies pool according to F (NewHarmonies)
End For
Step 4: Update the HM

HM = bestof ({[HM ,F (HM)] N[NewHarmonies, F (NewHarmonies)]) // Keep best harmonies
according to their fitness values

Step 5: Stopping improvisation if the termination criterion is met; otherwise go to Step 3.
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Table 2 Parameter settings of HS and BWO algorithms.

Algorithms Sc¢1  Sc2 Sc3 Sc4  Sc5 Sc6  Sc.7  Sc.8
HS BWO HMCR Procreate rate 0.3 0.3 0.5 0.5 0.7 0.7 0.9 0.9
HS PAR 0.3 0.5 0.3 0.5 0.3 0.5 0.3 0.5
BWO Mutation rate 0.7 — 0.5 — 0.3 — 0.1 -

Table 3 Statistical results of fitness values for 30 experimental tests with a population size of five.

Scenarios Scl Sc2 Sc3 Sc4 Sc5 Sc6 Sc7 Sc8
Mean 1,108 1,092.3 1,133.8 1,248.6 1,255.2 1,326.3 1,689.6 2,037.6
Std 335.1 309.7 328.9 447.2 461.1 445.7 504.5 375.8
HSBWO
Best 866 893 925 931 897 973 1,068 1,173
Worst 1,995 2,065 1,971 2,063 2,095 2,136 2,198 2,268
Mean 2,420.5 2,437.3 2,410.1 2,430.7 2,382.1 2,422.5 2,349.3 2,376.1
HS Std 14.701 16.735 16.8 114 15.0 14.7 43.3 111.4
Best 2,389 2,397 2,384 2,410 2,349 2,399 2,289 1,792
Worst 2,445 2,465 2,441 2,449 2,407 2,454 2,553 2,430
Mean 2,517.6 - 2,646.9 - 2,581.8 - 2,706.2 -
Std 25.8 - 37.3 - 41.9 - 31.7 -
BWO
Best 2,467 - 2,589 - 2,488 - 2,646 -
Worst 2,563 - 2,720 — 2,655 — 2,759 —
Notes.

The best mean results are highlighted in bold font.

Figure 2 provides a visual comparison of the best convergence trends across various
parameter settings for the algorithms. These results highlight the efficiency and reliability
of the HSBWO in providing higher solution qualities.

To further validate these findings, an ANOVA statistical analysis was conducted. The
goal was to determine if there were statistically significant differences between the fitness
results of the compared algorithms. The hypotheses for the ANOVA test were as follows:

hO0: The average fitness values of the compared algorithms are equal (i.e., ul = pu2 =
3, where p is the mean).

h1: Atleast one algorithm’s average fitness value is significantly different from the others.

The ANOVA results, shown in Table 4, indicate a significant difference in the mean
fitness values, as the P-values are consistently lower than the 0.05 significance threshold.
This statistical evidence leads to the rejection of the null hypothesis (h0) and supports the
alternative hypothesis (h1), confirming that the fitness results differ significantly between
the algorithms.

e Simulation results with a population size of 20

When the population size is increased to 20, the experimental results, as presented in
Table 5, continue to demonstrate the superiority of the HSBWO algorithm. It achieves the
highest average fitness scores in all scenarios (highlighted in bold), further solidifying its
robustness and effectiveness. The HS algorithm also maintains its advantage over the BWO
algorithm, consistently ranking second.
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Figure 2 The comparison of convergence rates (population size of 5). (A) Scenario 1. (B) Scenario 2.
(C) Scenario 3. (D) Scenario 4. (E) Scenario 5. (F) Scenario 6.
Full-size Gl DOI: 10.7717/peerjcs.2526/fig-2

Figure 3 illustrates the best convergence curves for the algorithms under various
parameter configurations, showcasing the HSBWO’s capability to navigate the solution
space efficiently.

Again, ANOVA statistical analysis was employed to verify the significance of differences
between the algorithms:
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Table4 ANOVA test results for the compared algorithms with a 5-population size.

Scenarios F-Value P-Value F-Critical
Scl 4.93E+02 3.50E—48 3.10E+00
Sc2 5.64E+02 1.43E—31 4.01E+00
Sc3 5.43E+02 7.35E—50 3.10E+00
Sc4 2.56E+02 3.37E-37 3.10E+00
Sc5 2.15E+02 2.32E—34 3.10E+00
Sc6 2.15E+02 2.06E—34 3.10E+00
Sc7 9.30E+01 2.47E-22 3.10E+00
Sc8 6.59E+01 3.72E—18 3.10E+00

Table 5 Statistical results of fitness values for 30 experimental tests with a population size of 20.

Scenarios Scl Sc2 Sc3 Sc4 Sc5 Sc6 Sc7 Sc8
Mean 2,074.9 2,136.2 2,146.6 2,064.0 2,122.8 2,133.6 1,910.9 2,183.3
Std 276.37 240.12 186.0 307.0 280.8 248.6 372.1 177.5
HSBWO
Best 1,217 1,223 1,783 1,268 1,494 1,274 1,405 1,720
Worst 2,336 2,337 2,353 2,358 2,337 2,379 2,387 2,428
Mean 2,431.1 2,440 2,416.3 2,437.1 2,399.4 2,433.8 2,369.4 2,417.7
HS Std 13.232 18.048 17.296 12.213 12.207 16.65 21.248 23.783
Best 2,404 2,397 2,373 2,418 2,376 2,382 2,325 2,395
Worst 2,454 2,468 2,454 2,460 2,424 2,457 2,427 2,488
Mean 2,679 - 2,660.1 - 2,656.5 - 2,658.3 -
Std 31.3 - 30.847 - 28.717 - 26.361 -
BWO
Best 2,620 - 2,565 - 2,591 - 2,592 -
Worst 2,752 - 2,705 — 2,726 — 2,725 -

Notes.

The best mean results are highlighted in bold font.

hO0: The average fitness values of the compared algorithms are equal (i.e., ul = u2 =
3, where 1 is the mean).

h1: Atleast one algorithm’s average fitness value is significantly different from the others.

The results, shown in Table 6, confirm significant differences in the mean fitness values,
as indicated by P-values below 0.05. This reinforces the conclusion that the algorithms
differ significantly in performance, leading to the rejection of the null hypothesis (h0) and
acceptance of the alternative hypothesis (h1).

Simulation results with a population size of 50
As the population size increases to 50, the experimental data in Table 7 continue to validate
the dominance of the HSBWO algorithm. It consistently achieves the highest average
scores across all tested scenarios (highlighted in bold), demonstrating its scalability and
effectiveness. The HS algorithm maintains its second-place performance, further validating
the hybrid approach.

Figure 4 shows the convergence performance for the algorithms across different
parameter settings, illustrating the HSBWOQO’s strong performance in navigating solution
space.
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Figure 3 The comparison of convergence rates (population size of 20). (A) Scenario 1. (B) Scenario 2.
(C) Scenario 3. (D) Scenario 4. (E) Scenario 5. (F) Scenario 6.
Full-size Gl DOI: 10.7717/peerjcs.2526/fig-3

To assess the statistical significance of these results, ANOVA analysis was again applied:

hO0: The average fitness values of the compared algorithms are equal (i.e., ul = u2 =
13, where 1 is the mean).

h1: Atleast one algorithm’s average fitness value is significantly different from the others.

The ANOVA results in Table 8 indicate significant differences in the mean fitness values,
as evidenced by P-values below 0.05. This leads to the rejection of the null hypothesis
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Table 6 ANOVA test results for the compared algorithms with a 20-population size.

Scenarios F-Value P-Value F-Critical
Scl 1.04E+02 1.74E-23 3.11E+00
Sc2 4.37E+01 1.51E—08 4.01E+00
Sc3 1.66E+02 2.14E—-30 3.10E+00
Sc4 8.78E+01 1.36E—21 3.10E+00
Sc5 1.86E+02 3.47E-32 3.10E+00
Sc6 1.00E+02 2.60E—23 3.10E+00
Sc7 1.35E+02 2.10E-27 3.10E+00
Sc8 9.16E+01 3.91E—22 3.10E+00

Table 7 Statistical results of fitness values for 30 experimental tests with a population size of 50.

Scenarios Scl Sc2 Sc3 Sc4 Sc5 Sc6 Sc7 Sc8
Mean 2,277 2,258.9 2,263.8 2,269.8 2,192.3 2,232.7 1,969.8 2,198.5
Std 101.8 87.28 126.3 85.6 226.2 201.8 334.9 245.9
HSBWO
Best 2,066 2,099 1,732 2,131 1,697 1,725 1,490 1,649
Worst 2,432 2,434 2,439 2,434 2,477 2,465 2,500 2,493
Mean 2,431.5 2,441.5 2,429.6 2,450 2,417.9 2,446.6 2,417.1 2,449.2
HS Std 19.58 15.22 19.01 16.25 15.65 21.84 15.72 13.2
Best 2,389 2,398 2,365 2,406 2,390 2,375 2,390 2,422
Worst 2,458 2,470 2,460 2,469 2,454 2,474 2,468 2,471
Mean 2,730.2 - 2,715 - 2,701.4 - 2,700.3 -
Std 17.86 - 18.84 - 24.13 - 21.48 -
BWO
Best 2,684 - 2,681 - 2,659 - 2,661 -
Worst 2,761 - 2,762 — 2,762 — 2,749 —
Notes.

The best mean results are highlighted in bold font.

(h0) and supports the alternative hypothesis (h1), confirming that the algorithms produce
significantly different fitness results.

Simulation results with a population size of 100
Finally, with a population size of 100, the experimental results displayed in Table 9 confirm
the superior performance of the HSBWO algorithm. It consistently achieves the highest
average fitness scores across all scenarios (highlighted in bold), highlighting its capability
to manage larger populations effectively. The HS algorithm also continues to outperform
the BWO algorithm, ranking second in all tests.

Figure 5 shows the best convergence results of the comparison algorithms across different
parameter-setting scenarios.

Furthermore, ANOVA statistical analysis is utilized to check whether the results obtained
from the compared algorithms differ significantly, as follows:

h0: The average fitness values of the compared algorithms are equal (i.e., ul = u2 =
3, where 1 is the mean).

h1: Atleast one algorithm’s average fitness value is significantly different from the others.
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Figure 4 The comparison of convergence rates (population size of 50). (A) Scenario 1. (B) Scenario 2.
(C) Scenario 3. (D) Scenario 4. (E) Scenario 5. (F) Scenario 6.
Full-size Gl DOI: 10.7717/peerjcs.2526/fig-4

The ANOVA results in Table 10 demonstrate that the mean fitness values are significantly
different from one another since the resulting P-values are less than the significance level
of 0.05. This indicates that there is a significant difference in the fitness mean results and
that not all mean fitness values are equal, leading to the rejection of the null hypothesis
(h0) and acceptance of the alternative hypothesis (h1).
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Figure 5 The comparison of convergence rates (population size of 100). (A) Scenario 1. (B) Scenario 2.
(C) Scenario 3. (D) Scenario 4. (E) Scenario 5. (F) Scenario 6.

Full-size Gl DOI: 10.7717/peerjcs.2526/fig-5

Results discussion
The proposed HSBWO algorithm demonstrates superior performance in achieving lower

fitness values across various scenarios and population sizes, highlighting its potential

for optimizing convergence rates and generating high-quality solutions compared to HS
and BWO. The success of the HSBWO algorithm can be attributed to its combination
of strong exploration abilities inherited from the HS algorithm and robust exploitation
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Table 8 ANOVA test results for the compared algorithms with a 50-population size.

Scenarios F-Value P-Value F-Critical
Scl 4.57E+02 7.30E—46 3.11E+00
Sc2 1.47E+02 2.71E—17 4.01E+00
Sc3 1.77E+02 1.00E—36 2.71E+00
Sc4 6.61E+02 2.52E-53 3.10E+00
Sc5 4.20E+02 1.99E—45 3.10E+00
Sc6 9.26E+01 2.82E—22 3.10E+00
Sc7 6.69E+02 1.51E—53 3.10E+00
Sc8 9.29E+02 2.00E—59 3.10E+00
Table 9 Statistical results of fitness values for 30 experimental tests with a population size of 100.
Scenarios Scl Sc2 Sc3 Sc4 Sc5 Sc6 Sc7 Sc8
Mean 2,363.3 2,348.2 2,346.1 2,352.0 2,269.2 2,368.1 2,032.6 2,272.7
HSBWO Std 57.913 61.672 116.9 67.7 2337 64.5 177.6 202.9
Best 2,210 2,193 1,829 2,175 1,722 2,242 1,803 1,772
Worst 2,474 2,455 2,471 2,462 2,517 2,490 2,502 2,510
Mean 2,438.1 2,449.8 2,434.1 2,453.7 2,437.5 2,462.4 2,447.1 2,480.5
Std 13.849 16.138 27.56 19.27 21.27 20.385 91.15 24.98
HS Best 2,402 2,415 2,345 2,375 2,395 2,405 1,978 2,405
Worst 2,461 2,474 2,466 2,482 2,464 2,487 2,499 2,513
Mean 2,767.1 - 2,748 - 2,741.3 - 2,728.5 -
BWO Std 30.23 - 21.98 - 23.65 - 21.52 -
Best 2,689 - 2,711 - 2,680 - 2,683 -
Worst 2,816 — 2,781 — 2,783 — 2,768 —
Notes.
The best mean results are highlighted in bold font.
Table 10 ANOVA test results for the compared algorithms with a 100-population size.
Scenarios F-Value P-Value F-Critical
Scl 8.68E+02 7.80E—57 3.11E+00
Sc2 7.19E+01 1.26E—11 4.01E+00
Sc3 1.66E+02 2.14E-30 3.10E+00
Sc4 8.78E+01 1.36E—-21 3.10E+00
Sc5 1.86E+02 3.47E—32 3.10E+00
Sc6 8.03E+01 1.71E-20 3.10E+00
Sc7 1.00E+02 2.60E—23 3.10E+00
Sc8 1.35E+02 2.10E—27 3.10E+00

capabilities utilized from the cannibalism process of the BWO algorithm, leading to more

accurate and robust scheduling solutions for the transportation problem being optimized.
Additionally, the results are further validated by an ANOVA test, which confirmed that the

improvements achieved by the HSBWO algorithm are statistically significant.

Notably, in experiments with a population size of 5, the large cost reduction typically

happens between 650 to 800 iterations. This is likely because the algorithm may enter a
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critical phase, where the algorithm transitions from exploration to exploitation, leading to
rapid convergence to a feasible area of the solution space.

The effectiveness of the proposed HSBWO algorithm is underscored by the significant
percentage improvements it demonstrates. Specifically, for a population size of 5,
enhancements over the HS algorithm ranged from approximately 14.2% to 55.2%, while
improvements over the BWO algorithm ranged from 37.6% to 56.0%. For population
size 20, improvements over HS ranged from 9.7% to 19.4%, and over BWO from 6.4% to
28.1%. For population size 50, improvements over HS ranged from 6.3% to 18.5%, and
over BWO from 16.6% to 27.0%. Lastly, for population size 100, improvements over HS
ranged from 3.1% to 18.5%, while improvements over BWO ranged from 14.6% to 25.5%.
These findings demonstrate that the HSBWO algorithm consistently outperforms both the
HS and BWO algorithms across different population sizes and scenarios.

However, it is worth noting that all algorithms exhibit degraded performance in
optimizing solutions as population sizes increase. This phenomenon occurs because
the search space becomes larger, negatively impacting the convergence speed towards
promising areas of the solution space. Furthermore, the results reveal that both HSBWO
and HS algorithms perform better under scenario 5 (with settings of 0.9 HMCR, 0.3 PAR,
and 0.1 mutation rate) compared to other scenarios, indicating the effectiveness of these
parameters in achieving better solution costs. Lastly, despite slight variations observed
across different scenarios, all algorithms demonstrate stability in generating their solutions,
indicating their reliability and consistency in addressing optimization problems.

CONCLUSION

This study addresses the pressing need for enhancing transportation efficiency during
mega-events, focusing specifically on the Hajj pilgrimage. Given the diverse transportation
and accommodation preferences among pilgrims, finding optimal solutions within a
limited timeframe poses a significant challenge. To tackle this challenge, a novel hybrid
approach combining the Harmony Search (HS) and Black Widow Optimization (BWO)
algorithms, called HSBWO, is proposed. The HS algorithm has strong exploration ability
but has difficulties in exploiting the search space; on the other hand, the BWO algorithm
has strong exploitation ability but may encounter early convergence. To efficiently utilize
the strengths of both algorithms, the proposed approach incorporates the cannibalism
mechanism of the BWO algorithm into the improvisation process of the HS algorithm.
The proposed HSBWO algorithm demonstrates superior performance in achieving lower
fitness values across various scenarios and population sizes, highlighting its potential for
optimizing convergence rates and generating high-quality solutions compared to the HS
and BWO algorithms. The HSBWO algorithm demonstrated superior performance, with
improvements in average fitness values ranging from 3.62% to 22.7% over HS and from
14.6% to 37.1% over BWO, depending on the specific scenarios and population sizes used.

In addition, the powerful exploration and exploitation capabilities of the HSBWO
algorithm can be extended beyond transportation scheduling optimization to various
potential applications in many optimization domains, including:
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e Logistics and supply chain optimization: This covers inventory control, route planning,
and warehouse operations, where effective resource allocation and scheduling are crucial.

e Energy management systems: Optimizing load demand balancing, scheduling of energy
resources, and optimizing energy distribution to improve transmission efficiency and
minimize losses.

e Healthcare resource scheduling: Including scheduling medical staff, operating rooms,
and patient appointments, minimizing waiting times for patients and making efficient
use of available resources.

e Manufacturing and production planning: This includes solving job shop scheduling
and optimizing production lines to minimize cost while meeting deadlines and quality
requirements.

Although the proposed HSBWO algorithm offers significant advantages in terms
of enhanced local search capability and practical application to complex optimization
problems, it also has several drawbacks, such as increased computational complexity and
sensitivity to parameter tuning, which require further research in future work.
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