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ABSTRACT
In human skeleton-based action recognition, graph convolutional networks (GCN)
have shown significant success. However, existing state-of-the-art methods struggle
with complex actions, such as figure skating, where performance is often
unsatisfactory. This issue arises from two main factors: the lack of shift, scale, and
rotation invariance in GCN, making them especially vulnerable to perspective
distortions in 2D coordinates, and the high variability in displacement velocity,
which depends more on the athlete’s individual capabilities than the actions
themselves, reducing the effectiveness of motion information. To address these
challenges, we propose a novel cosine stream to enhance the robustness of spatial
features and introduce a Keyframe Sampling algorithm for more effective temporal
feature extraction, eliminating the need for motion information. Our methods do not
require modifications to the backbone. Experiments on the FSD-10, FineGYM, and
NTU RGB+D datasets demonstrate a 2.6% improvement in Top-1 accuracy on the
FSD-10 figure skating dataset compared to current state-of-the-art methods. The
code has been made available at: https://github.com/Jiahao-Guan/pyskl_cosine.
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INTRODUCTION
Action recognition has become an active research area in recent years, as it plays a
significant role in video understanding. Prior investigations have explored various
modalities for feature representation, such as RGB frames, optical flows, audio waves, and
human skeletons. Among these modalities, skeleton-based action recognition has garnered
heightened interest in recent years due to its action-focusing nature and robustness against
complicated background. Early pioneering efforts primarily relied on recurrent neural
networks (RNN) (Du, Wang & Wang, 2015; Song et al., 2017) and convolutional neural
networks (CNN) (Ke et al., 2017; Liu, Liu & Chen, 2017) to extract features or generate
pseudo-images from human joint data for action recognition. While these methods
achieved reasonable performance, they were fundamentally limited in their ability to
model the complex inter-dependencies between joints, a crucial aspect for fine-grained
action recognition.

Graph convolutional networks (GCN) have become a popular approach for skeleton-
based action recognition. Yan, Xiong & Lin (2018) were among the first to apply GCN with
temporal convolution for this task. However, their model uses a fixed, pre-defined
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topology based on the physical structure of the human skeleton, which limits its expressive
power across different network layers.

To bolster the capabilities of GCN, recent approaches (Shi et al., 2019, 2020; Liu et al.,
2020b; Chen et al., 2021) have aimed to acquire more fitting topologies. They successfully
transformed the skeleton topology into a learnable structure by introducing a learnable
weight matrix and combining it with the skeleton topology, enabling the model to learn the
dependency relationship between two physically unrelated joint points, such as two hands.
However, GCN-based approaches struggle with shift and scale invariance. Specifically,
when working with 2D data, projecting from 3D to 2D can change the apparent size of the
characters in the image, with objects closer appearing larger and those farther away
appearing smaller, as illustrated in Fig. 1 right side. Additionally, horizontal movement can
alter positions, and these changes in scale and position may not reflect the actual movement,
especially for sports with large displacements, like figure skating. When the model lacks
shift, scale invariance, these coordinate changes can interfere with the model’s recognition.

To solve above problems, In this work, We introduce a new angle feature that
complements existing joint and bone features. Additionally, we present an improved
keyframe Sampling algorithm that accounts for sample randomness and better preserves
important semantic information in keyframes.

Drawing inspiration from leveraging high-order information, we leverage novel high-
order information extracted from skeleton data to quantify the joint range of motion
between two bones. The joint range of motion, typically measured in degrees, provides a
valuable metric for assessing joint flexibility and mobility. Inherently linked to posture and
movement, it emerges as an inherently discriminative feature for action recognition tasks.
We represent the joint range of motion through cosine similarities between pairs of bone
vectors, forming the foundation of our cosine stream. By feeding these cosine similarities
into a graph convolutional network, we make predictions for action labels. Simultaneously,
the cosine stream integrates with the joint-bone two-stream network, giving rise to the
development of a comprehensive three-stream network.

In sampling, a recent work by Duan et al. (2022a) introduces a uniform sampling
technique, evenly dividing sequences into N non-overlapping segments with an equal
number of frames. One frame is then randomly selected from each segment and aggregated
to form a new sub-sequence. While effective, this method overlooks considerations for
keyframes. Building upon ideas from Liu et al. (2020b) andWang et al. (2019), we enhance
the approach by simplifying the keyframe selection strategy and integrating it with the
original uniform sampling. Various combination strategies have been explored, resulting
in particularly significant improvements in the joint stream and bone stream.

Our contribution are summarized as follows:

. We propose a cosine stream, which quantifies the joint range of motion between two
bones in degrees, to assist in action recognition with significant displacement.

. We have enhanced the existing downsampling algorithm by integrating the keyframe
concept. This enhancement yields substantial improvements in both the joint and bone
streams.
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. The experimental results indicate that our method can enhance the accuracy
performance of the model without necessitating modifications to the network structure
itself.

RELATED WORK
GCN (Bruna et al., 2014; Defferrard, Bresson & Vandergheynst, 2016; Kipf &Welling, 2016;
Niepert, Ahmed & Kutzkov, 2016; Velickovic et al., 2017; Duvenaud et al., 2015) is widely
adopted in skeleton-based action recognition. It models human skeleton sequences as
spatiotemporal graphs. Yan, Xiong & Lin (2018) introduced spatial temporal graph
convolutional networks (ST-GCN), a widely recognized baseline for GCN-based
approaches. ST-GCN integrates spatial graph convolutions and temporal convolutions to
model spatiotemporal data, but it uses a static and fixed skeleton topology.

Shi et al. (2019) addressed this limitation by incorporating an adaptive graph topology
and proposing the adaptive graph convolutional networks (AGCN). AGCN integrates a
bone stream with a joint stream in a two-stream network. In the joint stream, the
coordinate vector of each joint serves as an attribute for the corresponding vertex. For 2D
coordinates, the first two channels represent the x and y coordinates of each joint, while the
third channel conveys the overall confidence score of the coordinates, indicating the
reliability of the joint positions. For 3D coordinates, the three channels represent the x, y,
and z coordinates of each joint. In the bone stream, edges in the graph structure are treated
as directed edges pointing from the body’s periphery toward the center. Here, each vertex
stores outgoing edge vectors rather than its own position, with the central vertex having no
outgoing edges and thus assigned a zero vector. Additionally, Shi et al. (2020) proposed
extracting motion information by computing the coordinate differences of joints and

Figure 1 The two people in the left image correspond to the 35th and 220th frames of the same sample human skeleton, respectively. The two
people in the image on the right correspond to the take off stage of Flip jump and the take off stage of Lutz jump in figure skating, respectively.

Full-size DOI: 10.7717/peerj-cs.2523/fig-1
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bones between consecutive frames, which are then combined into a multi-stream network.
These works propose adaptive topology structures that are data-driven and can learn the
most suitable topology based on data, exploring various features to form multi-stream
networks. However, the ability to capture dependencies between non-adjacent joints that
are far apart in the skeleton remains limited.

Liu et al. (2020b) introduced a disentangled multi-scale aggregation scheme to remove
redundant dependencies between vertex features from various neighborhoods. They also
introduced a three-dimensional graph convolution operator that facilitates direct
information flow across space and time, though this operator can be computationally
intensive. Chen et al. (2021) proposed a Channel-wise Topology Refinement Graph
Convolution Network (CTR-GCN), which dynamically models channel-wise topology in a
refinement approach. This leads to flexible and effective correlation modeling and is also a
strong baseline.

Based on AGCN and CTR-GCN, InfoGCN (Chi et al., 2022) and HD-GCN (Lee et al.,
2023) have been proposed. InfoGCN introduces the concept of information bottleneck
from information theory into this field and proposes a self-attention module. HD-GCN,
on the other hand, presents a hierarchically decomposed graph to better identify
significant distant edges within the same hierarchical subsets. It also includes an attention-
guided hierarchy aggregation module that emphasizes key hierarchical edge sets through
representative spatial average pooling and hierarchical edge convolution. Additionally,
HD-GCN uses different center points from the human skeleton to design a six-way
ensemble method for skeleton-based action recognition. However, both InfoGCN and
HD-GCN are modifications of AGCN and CTR-GCN, incorporating numerous attention-
based modules. As a result, they require large amounts of data and are prone to overfitting
when data is insufficient.

The works most similar to ours areHou et al. (2022) and Qin et al. (2022), both of which
utilize angular features. Hou et al. (2022) proposed a dynamic anchor-based angle
calculation method, which computes the angle between vectors formed by two bone points
and an anchor point. This approach requires a substantial amount of training data. In
contrast, Qin et al. (2022) employs a similar angle calculation method to ours.They focuses
on exploring various angle calculation methods in the spatial dimension, whereas our
research extends into the temporal dimension. We investigate the role of angular features
in downsampling algorithms and propose a Keyframe Sampling algorithm.

METHOD
Cosine stream
In figure skating, athletes often maintain a consistent skating speed during the execution of
actions, leading to significant displacement and variations in position features. The angle
of the ice skate blade relative to the ice surface, distinguishing between the inside and
outside edges, is a crucial factor in action classification. Figure 1 left side showcases two
similar jumps in figure skating: the Flip and the Lutz. In the Flip jump on the left, the skater
positions the left foot on the inner edge of the skate blade, shifting the overall body weight
towards the inside of the blade, while extending the left arm naturally. In contrast, for the

Liu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2523 4/18

http://dx.doi.org/10.7717/peerj-cs.2523
https://peerj.com/computer-science/


Lutz jump on the right, the only difference lies in the skater placing the left foot on the
outer edge of the skate blade, resulting in a relatively outward shift of the body weight. To
achieve stability and enhance takeoff power, skaters typically opt to naturally curve their
left hand towards the right side. To preserve blade clarity, slight differences in body joint
angles occur, which tend to remain relatively stable during displacement compared to
coordinates. Joint angle changes are typically induced by specific actions, making them
more discriminative.

We aim to input human body joint angles as raw features into the network in the form
of cosine similarities. The cosine similarity cos vi for vertex vi is calculated using Eq. 1,
whereNðviÞ is the neighborhood of vi, A2

N við Þj j is the number of permutations, and eij
! is the

vector from vi to vj. Values for vertices in the cosine stream graph are generated, and an
empty cosine similarity with a value of 0 is added to the outermost vertices, ensuring
consistency in the design of the graph and network of cosine with that of joints and bones.
Due to consistency in data format, our network can be easily integrated with mainstream
joint bone two stream networks, as shown in the Fig. 2.

cos vi ¼ 1
A2

N við Þj j

X

j2N við Þ

X

k2 N við Þ�jf g

eij
!
eij
!�� ���� ��

eik
�!
eik
�!�� ���� �� : (1)

Regarding other calculation methods for joint angles, further exploration has been
conducted in Qin et al. (2022), and we will not provide too much repetitive introduction
here.

Keyframe sampling algorithm
Sampling keyframes is a crucial aspect of video analysis in figure skating, ensuring that
selected frames encapsulate the most discriminative information within a video. In the
figure skating task, the fast changing motion frames are distinctly important for jump
action. Through Eq. (1), we transformed the original joint stream into a cosine stream,
with attribute values stored in the vertices ranging from −1 to 1. This reflects the joint’s
range of motion from 180 degrees to 0 degrees, eliminating the need for normalization. We
then sum the angles for all joints in the body to obtain the downsampling indicator,
representing the extent of limb extension in each frame. A smaller value indicates a larger
sum of angles for various joints in the entire body, implying greater limb extension. Hence,
it is immensely beneficial in identifying keyframes within sequences. For instance, in a
jumping sequence, the indicator during the takeoff phase is stronger than that during the
mid-air spinning phase. This suggests that recognizing the takeoff is more crucial than
identifying the posture during mid-air action, aligning with the focus on judging actions in
figure skating sports.

We decided to incorporate uniform sampling, as introduced by Duan et al. (2022c,
2022b, 2022a), into our proposed keyframe sampling approach, leading to various fusion
strategies:

(0) Create a sequence of N+M frames using uniform sampling as the control sequence.
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(1) Sort video frames based on the keyframe selection indicator. Choose frames with the
smallest indicator to create a new subsequence of M frames, appending it to the N-
frame subsequence from Uniform Sampling.

(2) Divide the sequence into M non-overlapping substrings. Select the frame with the
smallest indicator from each substring to form a new M-frame subsequence.
Connect it to the N-frame subsequence from Uniform Sampling.

(3) Building upon (1), rearrange the generated N+M frames chronologically to create a
new downsampling sequence.

(4) Building upon (2), rearrange the generated N+M frames chronologically to create a
new downsampling sequence.

As illustrated in the Fig. 3, the blue section represents the uniform sampling process,
which evenly divides the total frames into M non-overlapping segments, randomly
samples frames within each segment, and combines the M selected frames into a
subsequence. The orange section represents the process of downsampling keyframes,
where the depth of the orange color indicates the intensity of the indicator: the darker the
color, the smaller the indicator, signifying a greater degree of joint opening. The difference
between Strategy (1) and Strategy (2) lies in the keyframe selection method. Strategy
(1) directly selects N frames to form a subsequence based on the intensity of the indicator,
while Strategy (2) evenly divides the total frames into N non-overlapping segments in the
time dimension, selects the frame with the highest indicator intensity within each segment,

Figure 2 Illustration of the overall archtecture of the network. The softmax scores of the three streams are fused using weighted summation to
obtain the final prediction. j denoted the joint information. b denotes the bone information. c denotes the angle information.

Full-size DOI: 10.7717/peerj-cs.2523/fig-2
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and forms these N frames into a subsequence. The main distinction between Strategies
(1) and (2) vs. Strategies (3) and (4) is in how the M-frame and N-frame subsequences are
combined. Strategies (1) and (2) simply append the N frames after the M frames, while
Strategies (3) and (4) add a reordering step, aiming to maintain the temporal continuity of
the samples. We will further analyze these different strategies in the ablation study section.

EXPERIMENTS
Datasets
FSD-10. The Figure Skating Dataset (FSD-10) (Liu et al., 2020a) is a challenging dataset in
competitive sports, featuring 1,484 figure skating videos labeled with 10 actions. It includes
989 training and 495 testing videos, segmented from around 80 h of global figure skating
championships (2017–2018).

FineGYM. FineGYM (Shao et al., 2020) is a high-quality action recognition dataset with
29 k videos and 99 fine-grained gymnastic action classes. Human poses are extracted using
GT bounding boxes (provided by Duan et al. (2022c)).

NTU RGB+D. The NTU RGB+D dataset (Shahroudy et al., 2016) is a human action
recognition dataset with 56,880 skeleton sequences from 40 volunteers, categorized into 60
classes. It suggests two evaluation setups: (1) Cross-subject (X-sub), with training from 20
subjects and testing from the remaining 20; (2) Cross-view (X-view), training from views 2
and 3, and testing exclusively from view 1. In our experiments, 2D human poses are
estimated using HRNet (Sun et al., 2019) (provided by Duan et al. (2022b)).

Figure 3 Illustration of Uniform Sampling and Keyframe Sampling. The blue grids represents uniform sampling, while the orange grids depicts
keyframe sampling. In this sample, the total number of frames is 116, with an assumed M of 40 and N of 10.

Full-size DOI: 10.7717/peerj-cs.2523/fig-3

Liu et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2523 7/18

http://dx.doi.org/10.7717/peerj-cs.2523/fig-3
http://dx.doi.org/10.7717/peerj-cs.2523
https://peerj.com/computer-science/


Implementation details
All experiments are conducted on one RTX 3090 GPU with PYSKL (Duan et al., 2022b)
andMMaction2 (Contributors, 2020). Additionally, keyframe sampling was used to sample
25 frames in both datasets. By default, all models are trained with SGD with momentum
0.9, weight decay 5e�4. We set the batch size to 16, set the initial learning rate to 0.1. For the
FSD-10 dataset, we repeated it 50 times, train the models for 64 epochs with
CosineAnnealing learning rate scheduler. We use uniform sampling to sample 100 frames
and keyframe sampling to sample 25 frames from skeleton data to form training samples.
Previously, bone vectors were calculated by subtracting key point coordinates in the
pipeline. Our proposed method uses cosine similarity based on these bone vectors. To
improve efficiency, we suggest precomputing and storing both the bone vectors and cosine
similarities.

Experiment result
We conducted experiments on the FSD-10 dataset using CTRGCN as the baseline, and
reported in Table 1 the improvements in various categories and mean accuracy after
adding cosine stream and Keyframe Sampling.

FSD-10 is a fine-grained figure skating dataset where movements are categorized into
spins, sequences, and jumps. Spins are further classified based on rotation posture, such as
FlyCamelSpin4 and ChComboSpin4, which are both level four spins (though levels are not
distinguished in this dataset). Sequences include two types of footwork: StepSequence,
which combines several defined movements and can be divided into four levels, and
ChoreSequence, which is more flexible and not graded. For jumps, there are six basic types
—Axel, Toeloop, Flip, Lutz, Salchow, and Loop—categorized by the entry action. Jumps
are further classified by the number of rotations, and combinations to form combinations
jumps or sequence jump. In FSD-10, examples include 2Axel, 3Loop, 3Flip, 3Axel, 3Lutz,
and 3Lutz_3Toeloop, with the latter being a combinations jump.

As shown in Table 1, the main categories with improved accuracy after introducing the
cosine stream and Keyframe Sampling are ChoreSequence1, StepSequence3, 3Flip, and
3Lutz. The improvement in sequence accuracy aligns with our expectations, as sequences
are composed of a series of sub-actions. Compared to other types of actions, sequences
often have longer durations and noticeable displacement effects. Introducing angle features
helps mitigate the impact of displacement. The improvements in Flip and Lutz accuracy
are also expected. As shown in Fig. 1 right side, these two actions have very high similarity
and are often the most controversial in referee decisions. The introduction of angle features
effectively helps the model distinguish the subtle differences between these fine-grained
actions. The improvement in 3Loop accuracy may be due to training errors, and returned
to normal values when Keyframe Sampling was introduced.

Ablation study
In this section, we analyze the proposed cosine stream and Keyframe Sampling algorithm
on the FSD-10 dataset. For the cosine stream, we selected three latest and widely
recognized skeleton-based action recognition models—AGCN (Shi et al., 2019), MSG3D
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(Liu et al., 2020b), and CTRGCN (Chen et al., 2021)—as baselines. No modifications are
required to the network structure for the cosine stream. For the Keyframe Sampling
algorithm, we chose the current state-of-the-art model CTRGCN (Chen et al., 2021) as the
baseline and demonstrated its effectiveness on the joint, bone, and cosine streams. As
publicly available results for these methods on the FSD-10 dataset were not found, we
conducted our experiments on this dataset using networks successfully reproduced from
the PYSKL (Duan et al., 2022b) toolbox. The experiments were conducted with the same
hyper-parameter settings to ensure fairness and consistency in the evaluation.

Effectiveness of cosine stream. We also evaluated the cosine stream on three widely
used skeleton-based methods (Table 2). Despite slightly lower performance compared to
joint and bone streams, the cosine stream employs 1D cosine similarity data, while the
others use 2D coordinate data. However, the aggregated three-stream model consistently
outperforms two-stream methods in Mean Class Accuracy and Top1 Accuracy. The
addition of cosine stream improves Mean Class Accuracy by 0.9%, and Top1 Accuracy by
0.7% in AGCN, by 0.8% and 0.2% in MSG3D, and by 1.0% and 1.2% in CTRGCN,
respectively. This proves the effectiveness of cosine stream.

In addition, we conducted supplementary experiments on the latest InfoGCN and HD-
GCN, with results presented in Table 3. Since both models are enhanced versions of
AGCN and CTRGCN, they include numerous attention modules, leading to increased
model complexity. Given the limited amount of FSD-10 data, this complexity resulted in
overfitting, even though we employed more data augmentation techniques than in the
original work. Nevertheless, the introduction of cosine flow still yielded a 1.2% to 1.4%
accuracy improvement, demonstrating its effectiveness.

Due to the prevalent use of motion features in current state-of-the-art methods, we
incorporated experiments involving joint motion, bone motion, and our proposed cosine
stream extended to include cosine motion in the temporal dimension in our experiments
with CTRGCN. As shown in Table 4, we observed that both joint motion and bone
motion, as well as cosine motion, performed worse than the spatial dimension feature
streams. This indicates that the motion information performs poorly when faced with
situations where the correlation between speed and action itself is not significant, which is

Table 1 Comparison of accuracy of various categories using cosine stream and Keyframe Sampling
in CTRGCN in FSD-10 dataset. jb denotes joint and bone two streams, jbc denotes adding cosine
stream. uni denotes original uniform sampling, key denotes ours keyframe sampling.

ChComboSpin4 2Axel ChoreoSequence1 3Loop StepSequence3

CTRGCN_jb_uni 100.0 93.6 75.8 95.4 88.9

CTRGCN_jbc_uni 100.0 93.6 80.7↑ 97.7↑ 88.9

CTRGCN_jbc_key 100.0 95.7↑ 83.9↑ 95.4 91.7↑

3Flip FlyCamelSpin4 3Axel 3Lutz 3Lutz_3Toeloop Mean accuracy

CTRGCN_jb_uni 90.9 97.5 90.9 94.1 96.4 92.5

CTRGCN_jbc_uni 95.2↑ 97.5 90.9 94.1 96.4 93.5↑

CTRGCN_jbc_key 97.6↑ 97.5 90.9 97.1↑ 96.4 94.6↑
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consistent with our expectations. Furthermore, the fusion of joint motion and bone motion
with the original joint-bone dual-stream model (j&b) only resulted in a modest increase of
0.7% in Mean Class accuracy and 0.5% in Top1 accuracy, while the inclusion of cosine

Table 2 Improvement of the Cosine Stream Across Different Models on FSD-10 Dataset. Here, j and
b represent the joint stream and bone stream, respectively, while c signifies our proposed cosine stream.

Acc (%) AGCN

j b c j&b j&b&c

Mean class 90.2% 91.5% 87.7% 91.7% 92.6%↑

Top1 88.9% 90.4% 87.1% 90.8% 91.5%↑

Acc (%) MSG3D

j b c j&b j&b&c

Mean class 90.1% 90.5% 89.4% 90.9% 91.7%↑

Top1 90.1% 89.2% 88.5% 90.6% 90.8%↑

Acc (%) CTRGCN

j b c j&b j&b&c

Mean class 90.9% 91.5% 90.1% 92.5% 93.5%↑

Top1 90.1% 90.8% 90.4% 92.0% 93.2%↑

Table 3 Improvement of the Cosine Stream Across InfoGCN and HD-GCN on FSD-10 dataset.

Model InfoGCN

Stream j b c j&b j&b&c

Top1 acc (%) 82.4 82.8 81.8 85.4 86.6↑

Model HD-GCN

Stream j_com_1 b_com_1 c_com_1 j_com_8 b_com_8 c_com_8 j&b j&b&c

Top1 acc (%) 83.3 82.1 80.8 82.4 83.1 81.1 88.5 89.9↑

Table 4 Improvement of the Cosine Stream (c) and Cosine Motion Stream (cm) with CTRGCN on
the FSD-10 Dataset, where j, b, jm, and bm denote the joint stream, bone stream, joint motion
stream, and bone motion stream, respectively.

Acc (%) CTRGCN

j jm b bm c cm

Mean class 90.9 89.5 91.5 89.6 90.1 88.6

Top1 90.1 88.2 90.8 88.7 90.4 87.3

Acc (%) CTRGCN

j&b j&b&jm&bm j&b&c j&b&jm&bm&c&cm

Mean class 92.5 93.2 93.5↑ 93.6↑

Top1 92.0 92.5 93.2↑ 93.2
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motion brought about negligible improvement. We hypothesize that this may be due to the
fact that the actions in the dataset generally involve certain speeds during execution, which
are not significantly correlated with the actions themselves, thereby resulting in
unsatisfactory performance of the motion features. Therefore, we did not utilize motion
features in subsequent experiments.

Effectiveness of keyframe sampling. We explored various keyframe sampling and
uniform sampling strategies 3, with results shown in Table 5. Strategy analysis reveals that
merely increasing downsampled frames (Origin and Strategy (0) columns in the prior
three sub tables) may lead to a slight improvement in model performance. Strategies
(1) through (4) share the same frame rate as Strategy (0), with the exception that the M
frames are obtained through keyframe sampling. As depicted in the chart, the performance
differences stem from how these frames are processed.

. Strategy (1): Simply concatenates the strongest M frames based on an indicator after the
N-frame subsequences. However, this disrupts the temporal continuity of the actions
since the strongest frames may not be sequential, resulting in a slight decrease in
accuracy.

. Strategy (3): After selecting the M keyframe frames, it immediately downsamples and
reorders both the keyframes and N-frame subsequences in the temporal dimension to
ensure continuity. This approach significantly improves accuracy.

Table 5 Results of CTRGCN on the FSD-10 dataset, showcasing various Keyframe Sampling
strategies for each stream. Origin represents no keyframe sampling is applied, while uniform sam-
pling selects frames at a fixed interval N. Numbers 0-4 correspond to the specific keyframe sampling
strategies described in the subsection on Keyframe Sampling algorithm.

Acc (%) Strategies for joint stream

j_origin j0 j1 j2 j3 j4

Mean class 90.9 91.4 89.4 90.7 91.6↑ 92.4↑

Top1 90.1 90.1 88.2 90.6↑ 90.4↑ 91.5↑

Acc (%) Strategies for bone stream

b_origin b0 b1 b2 b3 b4

Mean class 91.5 92.1 89.8 91.7 92.9↑ 94.3↑

Top1 90.8 91.3 89.9 91.1 92.7↑ 93.2↑

Acc (%) Strategies for cosine stream

c_origin c0 c1 c2 c3 c4

Mean class 90.1 89.4 89.5 90.9↑ 90.1 90.6↑

Top1 90.4 88.7 88.7 90.4 88.7 89.4

Acc (%) multi-stream

j0&b0 j4&b4 j4&b4&c4 j4&b4&c_origin

Mean class 92.5 94.3↑ 94.3↑ 94.6↑

Top1 91.8 93.2↑ 93.2↑ 94.4↑
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. Strategy (2): Demonstrates another method of keyframe selection by dividing the video
into M non-overlapping temporal segments and selecting the frame with the strongest
indicator from each segment to form a new subsequence. This method naturally
maintains temporal continuity and has a more even distribution, leading to better
performance compared to Strategy (1).

. Strategy (4): Goes a step further by rearranging the entire M+N frame samples. This finer
adjustment enhances the assistance provided to the model, resulting in further
improvements.

In summary, the key lies in effectively selecting and utilizing keyframes while
maintaining temporal continuity and even distribution. Strategies (3) and (4) achieve this
through more sophisticated processing, thereby boosting the model’s accuracy. Compared
with origin strategy, Strategy (4) notably improves mean class accuracy by 1.5% and Top1
Accuracy by 1.4% in the joint stream, and by 2.8% and 2.4% in the bone stream,
respectively. If compared with Strategy (1), the improvements in the joint stream are 1.0%
and 1.4%, and the improvements in the bone stream are 2.2% and 1.9%. This proves the
effectiveness of Keyframe Sampling and can help improve the performance of the model
under appropriate combination strategies.

Analyzing the third sub-table reveals keyframe sampling does not improve the cosine
stream. This is attributed to the indicator using raw data from the cosine stream, causing
redundancy and a slight performance decrease. This confirms that improvements in the
first two sub-tables are due to keyframes rather than increased downsampled frames.

Fusing the streams with keyframe sampling (fourth sub-table) involves Strategy (4) for
joint and bone streams. Compared to the original joint-bone two-stream model, there is a
1.8% improvement in mean class accuracy and 1.2% in Top1 Accuracy. However,
keyframe sampling does not enhance the performance of the cosine stream. On the other
hand, when fused with the cosine stream using the original strategy, it results in a 2.1%
increase in mean class accuracy and 2.4% in Top1 Accuracy. This proves that keyframe
sampling does not conflict with the introduction of cosine stream in improving model
performance.

Cross-dataset validations
To validate the applicability of our method, we conducted cross-dataset validation on the
FineGYM and NTU RGB+D datasets, in addition to the experiments conducted on FSD-
10 as mentioned above.

Table 6 presents the results of introducing the cosine stream on the FineGYM dataset,
showcasing a 0.5% improvement in mean class accuracy and a 0.2% improvement in Top-1
Accuracy for the original joint-bone two-stream model. When employing keyframe
sampling strategy four for both the joint stream and bone stream, the three-stream model
exhibited a 1.0% increase in mean class accuracy and a 0.6% increase in Top-1 Accuracy
compared to the original joint-bone two-stream model. The observed smaller enhancement
is attributed to dataset differences, where the categorization of action classes in the FineGYM
dataset may have less correlation with the angular relationships of joints within the body.
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In Table 7, the results indicate that the enhancements of the model with the cosine
stream and Keyframe Sampling on the NTU RGB+D dataset are not as promising. This
holds true for both our experimental results and the data results cited in other works. We
attribute this observation to two factors: (1) In terms of the inherent categorization of the
dataset, NTU RGB+D places less emphasis on human joint angles. (2) The dataset is
collected in a controlled lab environment where subjects do not exhibit significant
displacement relative to the camera, leading to a loss of the advantageous shift, scale, and
rotation invariance of angle features.

LIMITATIONS
Our method excels at handling the ‘near large, far small’ phenomenon that occurs during
3D-to-2D projection, as well as actions involving significant character displacement within
an image. However, it has a limitation: the cosine features we use are limited to two

Table 6 Enhanced CTRGCN model performance on FineGYM dataset with cosine stream and
Keyframe Sampling.

Acc (%) CTRGCN

j b c j&b j&b&c

Mean class 88.7 91.4 85.0 92.0 92.5↑

Top1 91.9 93.7 89.0 94.5 94.7↑

Acc (%) CTRGCN & Keyframe Sampling

j4 b4 c4 j4&b4 j4&b4&c

Mean class 89.5↑ 91.5↑ 84.1 92.6↑ 93.0↑

Top1 92.6↑ 93.9↑ 88.4 94.8↑ 95.1↑

Table 7 CTRGCN model performance on NTU RGB+D dataset with cosine stream and Keyframe
Sampling.

Acc (%) CTRGCN on X-sub

j b c j&b j&b&c

Top1 89.3 91.6 87.8 92.3 92.9↑

Acc (%) CTRGCN & Keyframe Sampling on X-sub

j b c j&b j&b&c

Top1 89.9 91.4 87.3 92.5 92.8

Acc (%) CTRGCN on X-view

j b c j&b j&b&c

Top1 96.2 96.1 87.0 97.3 97.4↑

Acc (%) CTRGCN & Keyframe Sampling on X-view

j b c j&b j&b&c

Top1 95.7 95.7 87.5 97.2 97.2
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dimensions—cosine similarity and confidence—which may not be as expressive as the
three-dimensional keypoint coordinates and skeleton vectors in a single stream.

Although we achieved good results on the FSD-10 dataset, this success stems from a
careful balancing of our method’s strengths and weaknesses. In scenarios where actions
involve minimal displacement or where the raw data is inherently 3D, our method may be
less effective. For instance, in the X-view of the NTU RGB+D dataset (Table 7), the cross-
view enhancements of the original data or the data’s inherent 3D nature (Table 8) mean
that depth information is not lost during 3D-to-2D projection. Consequently, the
advantages of the cosine stream are not fully realized, while its limitations persist, resulting
in significantly lower performance compared to the other two streams.

Addressing the challenge of expanding cosine representation to mitigate its two-
dimensional limitation is an important direction for future research.

CONCLUSION
In this work, we propose a cosine stream that leverages joint angles and the cosine
similarity of bone vectors for accurate action prediction. Additionally, we introduce a
keyframe sampling method based on joint cosine values to quantify body extension. Our
approach excels in handling 2D data by mitigating the loss of depth information during
3D-to-2D projection, particularly for movements involving significant displacement.

The main contribution of this research lies in providing an effective method for action
recognition, especially in preserving spatial information during the projection from 3D to
2D. Our method demonstrates strong robustness in handling complex actions with large
displacements. This achievement not only extends the current body of knowledge in
skeleton-based action recognition but also lays the foundation for future studies.

However, the work also has limitations. The cosine features are confined to two
dimensions—cosine similarity and confidence—making them less expressive than three-
dimensional keypoint coordinates and skeleton vectors. Future research could explore
ways to expand the representation capabilities of the cosine stream to overcome its

Table 8 CTRGCN model performance on NTU RGB+D_3D dataset with cosine stream and
Keyframe Sampling. KS denotes using keyframe sampling.

Acc (%) CTRGCN on X-sub-3d

j b c j&b j&b&c

Top1 89.6 90.0 80.9 91.5 91.5

KS Top1 89.9 90.0 80.5 91.8 91.9

Acc (%) CTRGCN on X-view-3d

j b c j&b j&b&c

Top1 95.6 95.4 84.4 96.6 96.6

KS Top1 95.5 95.5 84.6 96.7 96.7
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two-dimensional limitation. Additionally, improving the keyframe sampling method to
enhance adaptability and generalization is another important direction for further
investigation.

Overall, this work provides a novel perspective and technical approach to action
recognition, with practical implications particularly in the context of 3D-to-2D projection.
Future work can focus on extending cosine representation, refining the sampling method,
and exploring broader applications across other datasets, thereby advancing the field
further.
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