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ABSTRACT

The medical knowledge graph is essential for intelligent medical services, encompassing
personalized diagnostics, precision therapies, and intelligent consultations, among
others. However, medical knowledge graphs frequently suffer from incompleteness,
primarily due to the absence of certain entities or relationships. The incomplete nature
of knowledge graphs poses substantial challenges to these tasks. Knowledge graph
completion technology is instrumental in addressing this issue. Specifically, tensor
decomposition-based approaches for knowledge graph completion embed entities
and relationships into the vector space, where tensor decomposition computations
are employed to predict missing relationships within the knowledge graph. However,
the tensor representation of entities and their relationships often overlooks crucial
entity type information, potentially resulting in an abundance of irrational relationships
during the prediction process. To mitigate this, we propose the Tucker Decomposition
Knowledge Graph Completion (Tuck-KGC) method, which incorporates entity types
into the tensor decomposition framework. This method maps the types of medical
entities to vectors, which are seamlessly integrated into the knowledge graph represen-
tation learning process. This allows the model to thoroughly absorb entity information,
thereby enhancing the accuracy of link prediction. To evaluate the Tuck-KGC, we
built the Dia dataset, a knowledge graph tailored for precision medical analysis, which
integrates both Traditional Chinese Medicine and Western medicine perspectives. The
Dia dataset encompasses 10,294 entities with 214 relationships, covering a comprehen-
sive spectrum including diseases, treatments, clinical manifestations, complications,
etiology, and so on. Building upon the Dia dataset, experimental results indicate that
the Tuck-KGC model boosts link prediction accuracy by roughly 8%, affirming the
efficacy of incorporating entity type information into the model.
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Data Mining and Machine Learning, Neural Networks

Keywords Knowledge graph, Knowledge graph completion, Knowledge graph embedding,
Link prediction

How to cite this article ZhangSun J, Yang YX, Zou B, Peng Q, Xiao XX. 2025. Tuck-KGC: based on tensor decomposition for diabetes
knowledge graph completion model integrating Chinese and Western medicine. Peer] Comput. Sci. 11:¢2522 http://doi.org/10.7717/peerj-
€s.2522


https://peerj.com/computer-science
mailto:amily_x@hnucm.edu.cn
mailto:amily_x@hnucm.edu.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2522
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.2522
http://doi.org/10.7717/peerj-cs.2522

PeerJ Computer Science

INTRODUCTION

Knowledge graphs (KGs), also known as semantic networks, represent a network of real-
world entities such as objects, events, situations or concepts and illustrates the relationships
between them. These entities and their relationships are often stored in a graph database
using resource description framework (RDF)-style triples (es, w,,e,), where ¢; and e,
represent subject and object entities, and w, represents a relation that connects e; to

e, KGs have been applied to many tasks, including link prediction, which can make
intelligent-aided diagnosis, and treatment possible in the field of medicine. This can assist
doctors in making decisions more efficiently. Moreover, the visualized knowledge graphs
can also allow patients to understand diseases more clearly and easily. However, KGs are
often incomplete, primarily due to the absence of certain entities or relationships. To
address these challenges, many researchers aim to improve the accuracy and reliability of
KGs by predicting the existence of relationships, a process often referred to as knowledge
graph completion (KGC) (Trouillon et al., 2017). Advances in vector embeddings have
led to the development of many embedding-based KGC algorithms including tensor
decomposition-based approaches (Dettmers et al., 2018; Trouillon et al., 2016).

However, existing knowledge graph embeddings treat all entities as the same type,
ignoring their assigned types. In knowledge graphs related to healthcare, particularly in the
context of diabetes diagnosis and treatment by integrating Western and Chinese medicines,
entities frequently undertake various roles in interconnections. For example, in the ternary
group comprised of hypoglycemia, ADE_Disease, and renal failure the hypoglycemia
entity type is a symptom of the disease, but the ternary group comprised of fasting,
Reason_Disease, and hypoglycemia the hypoglycemia entity type is the disease. Hence, a
clear demarcation is warranted among these types, particularly when knowledge-based
reasoning comes into play. To enhance the accuracy and reliability of medical knowledge
graphs derived from real clinical information, we proposed the Tucker Decomposition
Knowledge Graph Completion (Tuck-KGC) method based on the TuckER (Balazevic, Allen
¢ Hospedales, 2019) model with fused entity type embedding. Additionally, we constructed
a diabetes knowledge graph that integrates both traditional Chinese medicine and Western
medicine to evaluate our methods.

Diabetes, a prevalent chronic condition, has emerged as a significant challenge within
the global public health domain. Data released by the International Diabetes Federation
indicates that the global prevalence of diabetes among adults exceeds 465 million,
with projections indicating a steady rise in the coming years (International Diabetes
Federation, International Society of Nephrology, 2023). To mitigate the risk of severe
complications, individuals with diabetes require consistent blood glucose monitoring and
pharmacological intervention. The construction of a comprehensive diabetes knowledge
graph that integrates both traditional Chinese and Western medicine empowers patients by
facilitating information access (Xiong, Power ¢ Callan, 2017). Moreover, this knowledge
graph can also support intelligent-question-answering (Hao et al., 2017) and intelligent-
aided diagnostics (Zhang et al., 2016), thereby extending the reach of intelligent medical
services beyond geographical and temporal limitations. Compared to the prolonged drug
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dependence resulting from Western medicine’s pharmacological control and the challenges
faced by Chinese medicine in providing immediate relief for diabetes, the synergy of both
Chinese and Western medicine offers a more holistic and multifaceted treatment approach.
Incorporating the sophisticated fusion of Chinese and Western medicine practices,
China has developed a unique and potent healthcare system that significantly strengthens
clinical research initiatives. These endeavors are pivotal in enhancing the capabilities of
an integrated approach to medicine in the prevention and treatment of major chronic
diseases (Dobos ¢» Tao, 2011). To address the intricate challenges associated with people’s
health and diseases, the integration of Chinese and Western medicine in the diagnosis and
treatment of diabetes mellitus merges the Traditional Chinese Medicine practices of tongue
and pulse diagnosis with the Western medicine advancements in biochemical imaging and
other diagnostic techniques. This holistic strategy merges the comprehensive diagnostic
insights of Chinese medicine with the targeted therapeutic methods of Western medicine.
By leveraging the strengths of both Chinese and Western medical traditions (Warng
& Zhang, 2017; Zhang et al., 2010), it endeavors to offer more precise diagnosis and
treatment services for those afflicted with diabetes. This method analyzes the disease
from diverse medical perspectives, pinpointing the cause and local pathological changes,
while considering the overall response and the dynamic shifts that occur throughout the
disease’s progression (Zhang et al., 2010; Wang & Zhang, 2017). Through the harmonious
integration and complementation of both medicines, the provision of personalized patient
care is not only feasible but also serves to enhance therapeutic effectiveness (Yang, 2010).
To delve into intelligent diagnostic and therapeutic methodologies for diabetes, we
built a diabetes knowledge graph utilizing the DiaKG (Chang et al., 2021) dataset from
Ruijin Hospital on the Ali Tianchi platform, diabetes data extracted from Traditional
Chinese Medicine diagnostic criteria, and SDKG-11 (Zhu et al., 2022) dataset. This KG
harmoniously merges insights from both Chinese and Western medicine. We further
enhance this graph by integrating entity type embedding using TuckER (Balazevic, Allen
¢ Hospedales, 2019). Although our constructed knowledge graph of diabetes contains
knowledge derived from multiple databases, it is still incomplete. To address the issue
of incomplete medical knowledge graphs, we introduce the Tuck-KGC, tailored to infer
missing connections between medical entities. This study conducts a comparative empirical
analysis between the prevailing baseline model and the approach introduced herein. The
comparison is grounded on a knowledge graph we have built, which encapsulates the
diabetes-related knowledge from both Chinese and Western medicine. The findings
indicate that the method proposed in this paper is not only advanced but also significantly
outperforms the mainstream baseline model.

RELATED WORK

In recent years, extensive research has been dedicated to the application of knowledge graph
embedding (KGE) techniques for addressing the challenge of knowledge graph completion.
SimplE (Kazemi & Poole, 2018), a linear model based on the Canonical Polyadic (CP)
decomposition (Hitchcock, 1927) from 1927, stands out for its approach. It learns two
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distinct embedding vectors for each entity that is linked within the knowledge graph.
However, CP decomposition typically underperforms in link prediction tasks. The SimplE
model, a straightforward adaptation of CP decomposition, enables the learning of two
separate embedding vectors for every entity. The complexity of SimplE increases linearly
with the size of the embedding. DistMult (Yang et al., 2014) presents a comprehensive
neural network framework for multi-relational representation learning, characterized by
a diagonal matrix for each relation. This design effectively captures interactions within
relational data while mitigating overfitting. However, the linear transformation applied
to entity embedding vectors in DistMult imposes certain limitations. The binary tensor
learned by DistMult displays symmetry across both the subject and object entity modes,
which poses a challenge in accurately representing asymmetric relationships.

The TuckER (Balazevic, Allen ¢ Hospedales, 2019) model, grounded in the Tucker
decomposition (Tucker, 1966) principle, reprints a seminal, pioneering approach in the
realm of third-order tensor decomposition for learning knowledge graph representations.
This approach adeptly dissects a tensor into a collection of matrices and a more compact
core tensor. In addition, TuckER (Balazevic, Allen & Hospedales, 2019) shows that tensor
decomposition-based embedding models are capable of effectively representing knowledge
graphs, as there exist embeddings for entities and relations that can successfully differentiate
between true and false triples for every piece of information involving all entities and
relations.

The RotatE (Sun et al., 2019) model advances this approach by mapping entities and
relations into the complex vector space, representing each relation as a rotation connecting
the source entity to the target entity. This approach has been shown to be highly effective in
modeling three fundamental relationship types: symmetry/antisymmetry, inversion, and
composition. Furthermore, the linear scalability of RotatE (Sun et al., 2019) in both time
and memory makes it suitable for application in extensive knowledge graphs.

Table 1 shows a summary of link prediction models. Each link prediction model has
a scoring function and each function has its own dimension of relation parameters.
These models also possess significant terms in their space complexity: d, and d, are the
dimensionalities of entity and relation embeddings, while #, and #n, denote the number
of entities and relations, respectively, e;, W, € R xdn denote a 2D reshaping of e; and
W,, respectively, h,, and t,, € R% are the head and tail entity embedding of entity e, and
W,-1 € R% is the embedding of relation r~! (which is the inverse of relation r), * is the
convolution operator, (-) denotes the dot product and x,, denotes the tensor product along
the n-th mode, f is a non-linear function, and 20 € [Réexdrxde is the core tensor of a Tucker
decomposition.

ConvE (Dettmers et al., 2018) tackles the knowledge graph completion task using of a
neural network model. It accomplishes this by employing a global 2D convolution operation
on the embedding vectors corresponding to the head entity and relationship. These vectors
are initially converted into matrices and then concatenated. The derived feature layer is
unwrapped, processed through a linear layer transformation, and subsequently used to
calculate a score for each ternary relationship by computing inner products with all object
entity vectors.
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Table 1 A summary of link prediction models.

Model Scoring Relation Space
function parameters complexity

SimplE (Kazemi ¢ Poole, 2018) % ((hes, w,, teu>+ <heu, W1, te5>) W, € C% O(n.d, +n,.d,)
DistMult (Yang et al., 2014) (es, W, e,) W, € R% O(n.d, +n,d,)
RotatE (Sun et al., 2019) —|lhor—t|? W, € C% O(n.d, +n,d,)
ConvE (Dettmers et al., 2018) f (vec(f([es; W, ] *w)) W) e W, e R% O(n.d, +n,d,)
TuckER (Balazevic;, Allen ¢» Hospedales, 2019) QWX 16X, W, X 38, W, e R% O(n.d, +n,.d,)
Tuck-KGC (ours) (0 x e, X 1) XoW, ) X3€,X3€; W, e R* O(n.d, +n,d,)

Both linear models and neural network models designed for knowledge graph
completion fail to encapsulate entity type information, a crucial aspect in real-world
applications. To address this, we integrate entity types into the knowledge graph completion
model, harnessing their effectiveness to enhance our methodology. TuckER (Balazevic,
Allen & Hospedales, 2019), founded on tensor decomposition for knowledge graph
information representation, further maps entity types into a vector space, facilitating
the construction of the entity type matrix within the learning process of the model.
Empirical experiments corroborate that integrating entity types significantly enhances

model accuracy.

METHODS
Knowledge embedding

To effectively incorporate entity type information and knowledge graph triples into the
vector space, we employ the TransE embedding method. The ultimate embedding of an
entity is generated through the interaction of its associated entity category information
auxiliary representation. For head entity embedding, we multiply the vector of head entity
representation with the auxiliary entity type vector to obtain the final representation of the
head entity. Similarly, we adopt the same approach to get the final representation of the
tail entity. The equations are as follows:

lle;oer +wr —e,o0ec]l. (1)

Where e;, e, € R% represent the embedding vectors of the head entity and tail entity,
e; represent the entity type embedding vectors, w, € R% represent relation embedding

vectors.

Link prediction

Given a knowledge graph G = (E,R, T), where E and R represent the sets of entities
and relationships, respectively, and T represents the set of triples in the format of
(es,Wr,e,) C E X R x E; Tuck-KGC 1is an approach to solving the knowledge graph
completion problem through the link prediction task, which aims to construct new
triples using the existing set of triples 7" and entity types E,. Tuck-KGC addresses the
issue of knowledge graph incompleteness by engaging in the link prediction task, with the
objective of constructing a new triple (e/, w,,e/), where e/, e, € E,w, € R. On this basis, a
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suitable scoring function ¢ is used to determine the reasonableness of the triad and its
plausibility and to predict the new relationship, where the scoring function is defined as
@ (es,Wr, &) : E X Rx E—> R. The new triple (e/,w;,e!) is generated by replacing one of
the items that belongs to the existing set of triples (e, w;,€,), where the item belongs to
the same category as the replacement item. The freshly created triples are subsequently
assessed through the scoring function ¢, thereby converting the link prediction task into
a sorting challenge. In this process, the scoring function ¢ evaluates each of the newly
generated triples, followed by their arrangement in descending order of score.

Tuck-KGC implementation

To ensure the triad’s bidirectional prediction, we utilize the same ¢ embedding matrix
to portray the head and tail mapping modelling A, C matrices, respectively, i.e.,

€ =A=C e R"*%, At the same time, we map the relational embedding matrix R to
the B matrix in the tensor decomposition modelling, i.e., /& = B € R *%, Upon this
foundation, we incorporate an entity type matrix denoted as I' € R %% which we use to
refine the entity matrix operation. This integration of entity type information enriches
the semantic representation of entities in the link prediction task. Additionally, technical
abbreviations will be explained upon initial use.

In this context, 1, and #, represent the respective quantities of entities and relations,
while d,, d,,d; signify the dimensions of the embedding vectors for entities, relations, and
entity types. The scoring function for the Tuck-KGC model, which is based on the tensor
decomposition of fused-type embeddings, is formulated as follows:

@ (es,Wr,€o,€7) = ((mxlesxlesr) XZWr) X369 X3€o, (2)

where 20 € R% % >4 represents the core tensor, e;, e, € R% are the rows of & representing
the embedding vectors for the head entity and tail entity, e;, ore,, the rows of I' representing
the head entity type or tail entity type embedding vectors, w, € R% the rows of R
representing relation embedding vectors, x, denotes the tensor product along the n-th
mode. Equation (2) describes the methodology by which Tuck-KGC prioritizes all triples
in the dataset, integrating the entities and their corresponding relationships with their
specific entity types. The triple with the highest ranking is subsequently designated as the
prediction outcome.

Throughout the training phase, we map triples and entity types into a vector space and
input the resulting vectors into the model. We then score each triple and calculate the loss
value through the model’s scoring function. Parameters are updated using backpropagation.
The model undergoes repeated training iterations until the loss value is minimized, and the
best results are achieved. The loss function for an entity-relationship pair in comparison
to all other entities is defined as:

1 e . . . .
Loss = —n—Z()/(Z) log(p(’)) +(1—y")log(1 —p(l))) . (3)
¢ i=1

Where 1, represents the dimension of the entity embedding vector space, p” signifies the
vector of predicted probabilities, and y® is the binary label vector. To combat overfitting,
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Figure 1 Visualization of the Tuck-KGC architecture.
Full-size Gal DOI: 10.7717/peerjcs.2522/fig-1

this research incorporates dropout, complemented by the Adam optimizer and label
smoothing techniques during the training process. The detailed architecture of the model

can be observed in Fig. 1.

Experiments

Datasets

The Dia dataset employed in this investigation comprehensively includes data from both
Traditional Chinese medicine (TCM) and Western medicine diabetes data. The Western
medicine dataset was sourced from the DiaKG (Chang et al., 2021) dataset available from
Ali Tianchi Ruijin Hospital and from the diabetes-related section of SDKG-11 established by
Zhu et al. (2022). The DiaKG dataset includes 22,050 medical entities and 6,890 annotated
entity relationships, incorporating insights from 41 diabetes experts. The dataset covers
various types, including medication usage, clinical cases, diagnosis and treatment methods,
and clinical research. The SDKG-11 dataset, created by Zhu et al. (2022), comprises triads
extracted from publications indexed in PubMed from the year 2020, which boast an
impact factor of 2.0 or higher. We meticulously isolated the diabetes-related subset, which
primarily consists of fundamental research and theoretical foundations of diabetes.
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The Traditional Chinese Medicine diabetes dataset, used in this study is derived from
the TCM guidelines for diabetes and its related complications (Diabetes Branch of the
Chinese Association of Traditional Chinese Medicine, 2011a; Diabetes Branch of the Chinese
Association of Traditional Chinese Medicine, 2011b). The TCM diabetes data subset also
incorporates Li ¢ Zhang (2023) perspective of syndrome differentiation based on syndrome
elements, which is constructed manually following a main-predicate-object structure
(Fang et al., 2017; Yang, 2022). Firstly, medical terminology entities, their attributes, and
relationships between these entities are extracted from his monographs by human labor.
Finally, based on TCM theories, the perspectives of Zhu (2006), and entity relationships,
triples are constructed, which are ultimately merged into the TCM diabetes data subset.
The knowledge graph that incorporates Zhu (2006) thoughts on syndrome differentiation
and treatment can better support the construction of intelligent-aided diagnosis models
based on traditional Chinese medicine theory.

Due to the presence of biomedical entities synonyms and multiple layers of semantic
duplication, duplicate triples can be found in the Diabetes dataset for both Chinese and
Western medicine. Initially, the MTransE (Chen et al., 2016) model was used to align
entities in the raw data. Based on Gong et al. (2021) method of integrating Chinese and
Western medicine knowledge to construct a diabetes knowledge graph, we also incorporated
entity type information and developed a concept definition module, entity classification
module, an attribute division module, and relationship matching module.

Initially, we input Chinese and Western medicine entities into the entity concept
layer and established the disease layer, clinical performance layer, and treatment layer.
Subsequently, we used the entity classification module to input various generic entities
into the entity concept layer, classifying them based on diabetes symptoms and the
corresponding treatments and protective measures. The classification process is to classify
various common entities related to traditional Chinese and Western medicine according to
their relevance to diabetes symptoms and their treatment and prevention methods (Wei,
2021). Subsequently, we input the types of diabetes symptoms along with the corresponding
TCM treatments and prescriptions as documented in the TCM treatment process. We then
provide the clinical manifestations of diabetes, its complications, and the corresponding
treatments and protective methods in Western medicine. Additionally, we list the distinct
entities associated with TCM and Western medicine separately. The attribute classification
module categorizes the TCM and Western medicine entities in the treatment layer according
to their attributes. The relationship matching module, was employed to identify the
potential relationships between Chinese and Western medicine entities, thereby providing
a theoretical foundation for the interconnection between these entities and the generic
entities. Finally, the construction module connects the entities based on the entity’s
inherent relationship in the entity concept layer and the types determined by the entity
classification module, resulting in the formation of a ternary-based knowledge graph. This
process vielded a total of 10,294 medical entities and 12,863 pairs of entity relationships,
as shown in Table 2. For a detailed breakdown of the entity concept layer, please refer to
Appendix S1 (Tables SA1-SA3).

ZhangSun et al. (2025), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2522 817


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2522#supp-1
http://dx.doi.org/10.7717/peerj-cs.2522#supp-1
http://dx.doi.org/10.7717/peerj-cs.2522

PeerJ Computer Science

Table 2 Dia dataset statistics.

Dia Train Value Test
Entities 10,294 5,334 1,247 1,369
Relations 214 214 214 214
Triples 12,863 7,717 2,573 2,573

The construction of the Dia dataset, integrating diagnostic and therapeutic knowledge
of diabetes from both Traditional Chinese medicine and Western medicine, will be divided
at random into training, validation, and test subsets in this research with proportion of
0.6, 0.2, and 0.2, respectively.

Evaluation indicators

In this paper, we reference the evaluation metrics introduced by Balazevic, Allen ¢

Hospedales (2019) to demonstrate the efficacy of our model in the link prediction task.
We utilize standard evaluation metrics commonly employed in the link prediction

literature, namely, mean reciprocal rank (MRR) and Hits@k (where k = 1,3,10). The

mean reciprocal rank is computed as the average of the reciprocals of the mean ranks

assigned to the correct triple among all candidate triples:

1 1 1 1
MRR = — + (4)
| Test (hvr%;Ttest 2 (rankr,t (h) rankh,r (t)>

where rank, ;(h) denotes head entity ordering, and rank;, ,(¢) denotes tail entity ordering.
The value of MRR € (0, 1) ranges from MRR and the larger the calculated value, the better
the performance of the model link prediction. Hits@k quantifies the percentage of instances
where a true triple is positioned among the top k candidate triples:

Hits@k =

1
3 (|{(h,r,t) [rank, ,(h) < k} | + |{(h,r, t)|rank, ,(t) < k} |) (5)

T
| test| (h,r,)€Trest

Hits@k focuses on the overall ranking, with larger values indicating that the model
performs better in the link prediction task.

Baseline and parameter

We compare Tuck-KGC with other link prediction models, including TransE (Bordes et al.,
2013), DistMult (Yang et al., 2014), ComplEx (Trouillon et al., 2016), SimplE (Kazemi ¢
Poole, 2018), relational graph convolutional neural networks (R-GCN) (Schlichtkrull et al.,
2018), ConvE (Dettmers et al., 2018), InteractE (Vashishth et al., 2020), and RotatE (Sun
et al., 2019), where entities and relations are embedded into vector space through linear
operations; DistMult (Yang et al., 2014), is a general neural network framework for multi-
relational representation learning; ComplEx (Trouillon et al., 2016) extends DistMult to
the complex domain; SimplE (Kazemi ¢~ Poole, 2018) which encodes each entity with
two separate embedding vectors entity actual connection in the knowledge graph; R-
GCN (Schlichtkrull et al., 2018) is an extension of graph convolutional networks for
relational data; ConvE (Dettmers et al., 2018), which utilizes 2D convolution to learn
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Table 3 The detailed parameter list of the Tuck-KGC model.

Parameter Value
Entity Embedding Dimension 400
Relationship Embedding Dimension 400
Entity Type Embedded Dimensions 400
Batch size 256
Learning rate 0.0003
Label smoothing 0.1

deep features of entities and relations; InteractE (Vashishth et al., 2020) replaces the
simple feature reshaping used in ConvE with check reshaping and circular convolution;
RotatE (Sun et al., 2019) charactering each relation as a rotation from a source entity to a
target entity in a complex vector space.

The Tuck-KGC model is implemented in Pytorch unifying the Tuck-KGC and baseline
models on NVIDIA Gefiorce RTX3090Ti GPU. We establish the embedding dimension for
both entities and relations as d, = d, = 400, the embedding dimension of entity types to
dr =400, the learning rate selected from the set {0.01,0.005,0.003,0.001,0.0005,0.0003}, and
the learning decay rate to be chosen from {1.0,0.998,0.995,0.99}. Experimental outcomes
reveal optimal performance at a learning rate and learning rate decay of (0.0003,1.0).
Furthermore, our experiments demonstrate the dropout value of (0.3,0.4,0.4,0.5) can
effectively mitigates overfitting. The baseline models mentioned are implemented using
OpenKE (Han et al., 2018) toolkit. Table 3 shows the detailed parameter list of the Tuck-
KGC model.

RESULTS

The results of all link prediction task results are presented in Table 4 (where the top-
performing and second results are distinguished by boldface and underscoring, respectively
and the RotatE (Sun er al., 2019) results are presented without the self-adversarial negative
sampling for an equitable comparison). As shown in Table 4, our enhanced Tuck-KGC
model outperforms the TuckER (Balazevic, Allen ¢» Hospedales, 2019) model across all
four evaluation metrics, including a 10% increase in Hits@10 and an 8% increase in the
remaining metrics. This demonstrates the efficacy of introducing entity category vectors
in our tensor decomposition approach to enhance model performance. Compared to
conventional linear models such as TransE (Bordes et al., 2013), DistMult (Yang et al.,
2014), and SimplE (Kazemi ¢ Poole, 2018), Tuck-KGC possesses a considerable advantage.
Tuck-KGC effectively captures the intricate interactions between entities and relations
using its core tensor, allowing for better modeling of complex relationships. Additionally,
Tuck-KGC reduces the model’s parameters by representing high-dimensional tensors with
a set of low-dimensional vectors and matrices. While ComplEx (Trouillon et al., 2016) is a
linear model that gains from multi-task learning, Tuck-KGC outperforms it by about 15%
in the most stringent evaluation metric Hits@1.
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Table 4 Evaluation results on Dia. Best results are in bold and second best results are underlined.

Dia
MRR Hits@10 Hits@3 Hits@1
TransE (Bordes et al., 2013) 241 341 276 .198
DistMult (Yang et al., 2014) 323 446 .301 .199
ComplEx (Trouillon et al., 2016) 337 424 387 351
SimplE (Kazemi & Poole, 2018) 441 427 .399 .368
R-GCN (Schlichtkrull et al., 2018) .255 433 .289 .158
ConvE (Dettmers et al., 2018) 443 522 463 411
InteractE (Vashishth et al., 2020) .501 .509 .506 419
RotatE (Sun et al., 2019) .583 576 522 425
TuckER (Balazevic, Allen ¢ Hospedales, 2019) 452 .566 .488 433
Tuck-KGC (ours) .561 .667 575 497

When contrasted with sophisticated deep learning neural network models, such as
R-GCN (Schlichtkrull et al., 2018), ConvE (Dettmers et al., 2018), and InteractE (Vashishth
et al., 2020), Tuck-KGC surpasses deep learning neural network models due to its simpler
configuration and a limited number of parameters. Moreover, Tuck-KGC performs
marginally worse than RotatE (Sun et al., 2019), with a difference of approximately 2% in
the MRR evaluation metric. Our analysis concludes that RotatE (Sun et al., 2019) employs
a distinctive self-adversarial negative sampling technique, defining each relationship as
a rotation from a source entity to a target entity within a complex vector space. This
capability enables the model to capture and infer a broad spectrum of relational patterns,
including symmetric, asymmetric, inversion, and combination relationships.

Influence of parameter

To test the performance of the Tuck-KGC model, we conducted a comparative analysis
focusing on the entity embedding dimension d,, the total number of training rounds N, and
the sensitivity to the sparsity of the knowledge graph on the Dia dataset. We established
the dimensions for entity embedding as d,,d; € {100,200, 300,400, 500,600,700} and
the number of training rounds as N € {100,200, 300,400, 500,600}. The experimental
parameters were harmonized with those previously described in the baseline and parameter
configurations, except for the study-specific variables. The results of the experiment are
visually depicted in Fig. 2.

Figure 2A shows the variation in the Hits@10 metric for our Tuck-KGC model as the
entity vector dimensionality is altered. It is observed that with the increase in the entity
embedding dimension, each model exhibits varying degrees of enhancement. The optimal
performance is achieved at an entity embedding dimension of 400. Beyond this threshold,
the model’s efficacy tends to decline and stabilize. Our findings indicate that an entity
embedding dimension of 400 yields the most favorable results, highlighting the critical
role of this parameter in the model’s performance. An insufficiently low dimension may
result in underfitting, impeding the model’s ability to effectively capture entity information,

ZhangSun et al. (2025), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2522 1117


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2522

PeerJ Computer Science

0.7
0.5
0.6
. 04 — —
o 05 . /
=
© o4 | = %’ 03
£, — =
- ol it 02 JE—— —
; RV o -
0.2 R
e TransE w= COmplEx 01 - .
01 F Transk ¥ DisMult ConvE
SimplE Tuck-KGC —8—TuckER Tuck-KGC
0 " " n = " n s 0 . R s
100 200 300 400 500 600 700 100 200 300 400 500 600
(a)Entity Embedding Dimension (b)Epoch N

Figure 2 The variation trend for Tuck-KGC model as entity vector dimensionality and training itera-
tions increase.
Full-size & DOI: 10.7717/peerjcs.2522/fig-2

while an excessively high dimension can lead to overfitting, thus compromising the model’s
performance.

Figure 2B shows the variation trend of the Hits@lindicator for our Tuck-KGC model as
the training iterations increase. It is evident from the illustration that with the progression of
training iterations, each model exhibits varying degrees of enhancement, culminating at the
optimal performance when the iteration count reaches 300. Subsequently, surpassing this
threshold leads to a gradual decline and stabilization of the model’s outcomes. The findings
suggest that the model achieves peak efficacy at 300 training iterations, highlighting the
critical role of iteration count in influencing model performance. An insufficient number of
iterations may result in underfitting, impeding the model’s ability to effectively assimilate
entity information, while an excessive number can lead to overfitting, detrimental to model
performance.

To assess the sensitivity of Tuck-KGC to the sparsity of the knowledge graph, we
randomly ignore triples from the Dia dataset and evaluate the effect on the entire test set.
Figure 3 shows the test results of Tuck-KGC and the basic model on Hits@3. As depicted
in Fig. 3, as the ratio of omitted triples increases, the performance of all models experiences
a decline to varying extents. However, our method outperforms other baseline models
throughout this decline, indicating a greater robustness to sparsity in our model compared
to the baseline.

Visualization of clustering entity type representations

We cluster the type embeddings using Kmeans and further implement dimensionality
reduction using t-distributed scholastic neighbor embedding (t-SNE) for 2D visualization.
As shown in Fig. 4A, different types of entities are clustered into separate categories in
TuckER, while some clusters are close to each other because these entities share many
common types. Figure 4B shows the clustering of entity embeddings of Tuck-KGC. It can
be clearly observed that entity clustering with fused entity types can better distinguish
entities, indicating that entity type embeddings can reflect the characteristics of entities. In
other words, when an entity represents different meanings in different triples, it is difficult
to distinguish. However, when given different types, the same entity has different entity
type embeddings when encoded, so it is distinguishable. For example, we introduced a
specific case in the “Introduction”, the hypoglycemia entity type in the triple hypoglycemia,
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Figure 4 The visualization of type embeddings clustering on Dia.
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ADE_Disease, renal failure is a symptom of the disease, but hypoglycemia entity type in
the triple fasting, Reason_Disease, hypoglycemia is the disease. These visualizations explain
the effectiveness of using learned entity type embeddings in our knowledge graph.

DISCUSSION

In the present study, we have constructed a knowledge graph encompassing 10,294 entities
and 214 relationships pertaining to the diagnosis and treatment of diabetes through a

combination of Chinese and Western medicine. Additionally, we introduce the Tuck-KGC
knowledge graph complementation model, which incorporates entity types based on tensor
decomposition. The inclusion of entity type embedding matrices in the model ensures the
reasonableness and plausibility of the discriminative ternary relationships during training.
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Tuck-KGC has demonstrated significant improvements across all evaluation metrics
compared to knowledge graph complementation models such as TransE, DistMult, and
SimplE, thereby demonstrating the efficacy of the Tuck-KGC model.

SUGGESTION

In the present investigation, we confined our analysis to examining the influence of entity
categories on the efficacy of the knowledge graph completion model, while other facets of
the knowledge graph were not taken into account. Moving forward, our research efforts will
be directed towards assessing the influence of other attributes of entities and relationships
on the model’s performance. Due to the limitations of the current data resources, the
diabetes knowledge graph we have constructed is of modest scale, which hindered a
comprehensive evaluation of the impact of incorporating the entity types on the model
parameters. In the future, we plan to incorporate more knowledge about diabetes and its
complications, focus on understanding how the size of the knowledge graph affects the
model’s efficiency, and aim to improve the efficiency of the model.
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