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ABSTRACT
Advanced machine learning (ML) and deep learning (DL) methods have recently
been utilized in Drug Response Prediction (DRP), and these models use the details
from genomic profiles, such as extensive drug screening data and cell line data, to
predict the response of drugs. Comparatively, the DL-based prediction approaches
provided better learning of such features. However, prior knowledge, like pathway
data, is sometimes discarded as irrelevant since the drug response datasets are
multidimensional and noisy. Optimized feature learning and extraction processes are
suggested to handle this problem. First, the noise and class imbalance problems must
be tackled to avoid low identification accuracy, long prediction times, and poor
applicability. This article aims to apply the Non-Negativity-Constrained Auto
Encoder (NNCAE) network to tackle these issues, enhance the adaptive search for
the optimal size of sliding windows, and ensure that deep network architectures are
adept at learning the vital hidden features. NNCAE methodology is used after
performing the standard pre-processing procedures to handle the noise and class
imbalance problem. This class balanced and noise-removed input data features are
learned to train the proposed hybrid classifier. The classification model, Golden Eagle
Optimization-based Convolutional Long Short-Term Memory neural networks
(GEO-Conv-LSTM), is assembled by integrating Convolutional Neural Network
CNN and LSTM models, with parameter tuning performed by the GEO algorithm.
Evaluations are conducted on two large datasets from the Genomics of Drug
Sensitivity in Cancer (GDSC) repository, and the proposed NNCAE-GEO-Conv-
LSTM-based approach has achieved 96.99% and 97.79% accuracies, respectively,
with reduced processing time and error rate for the DRP problem.
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INTRODUCTION
Cancer is a disease that occurs due to the abnormal proliferation of cells and can spread to
other body parts. According to a World Health Organization (WHO) report, cancer
accounted for about 10 million deaths in 2020, or nearly one in six deaths, making it the
leading cause of death worldwide. Breast, lung, colon, rectum, and prostate cancers are the
most commonly encountered types of cancer (Miller et al., 2022). The two most prevalent
invasive cancers, respectively, are prostate cancer, which is prostate adenocarcinoma
(GDSC2) in men (Li et al., 2020), and breast cancer (GDSC1) in women (Pucci, Martinelli
& Ciofani, 2019). Many treatment methods have been developed to treat cancer, resulting
in an increased number of databases (Debela et al., 2021). Therefore, special attention
should be paid to selecting a reliable database to evaluate the drug response prediction
(DRP) model, such as the GDSC, Cancer Cell Line Encyclopedia (CCLE), and The Cancer
Genome Atlas (TCGA) (Naqvi, Rizvi & Hassan, 2023).

The application of predictive modeling exhibits significant potential in enhancing
individualized cancer treatment and optimizing the efficacy of drug development (Tufail
et al., 2024). Recently, the number of studies utilizing the DL algorithms for the DRP
process has been increasing tremendously, focusing on preprocessing and feature learning,
which has demonstrated superior performance compared to traditional machine learning
in terms of generalizing predictions to new data. However, the techniques have limitations
in incorporating the cell line, feature learning, dimensionality reduction, data
classification, and multidimensional features, leading to low prediction performance
(Chugh, Kumar & Singh, 2021).

Cancer data present intrinsic noise, and DL-based DRP models often suffer from noise
present in the data. Noisy data can reduce the accuracy of a DLmodel, as the model may be
unable to distinguish between the signal and the noise, leading to an unnecessary increase
in the complexity of the model (Pepe et al., 2022). Noise can result from laboratory
equipment, problems in the storage of the material, and contaminations of specimen
manipulation by researchers (Baptista, Ferreira & Rocha, 2021; Xia et al., 2022).

DL-based prediction models can handle noisy datasets, but inappropriate feature
extraction methods might induce class imbalance problems (Kafunah, Ali & Breslin, 2021).
In addition, the noisy dataset and the sub-optimal values for the hyperparameters of the
classifier will make it inadequate for learning multidimensional datasets and diminish the
overall prediction accuracy (Castillo et al., 2020). This will cause problems such as data
imbalance, reduced prediction accuracy, and increased training periods.

Considering these challenges, the main objective of this research is to develop a new DL
model that integrates recently developed meta-heuristics with deep convolutional neural
networks to optimize their architectures. This will enhance existing DL methods by
providing the algorithm with automatic methods to deal with intrinsic noise.

This article describes an efficient DRP framework using two advanced deep-learning
techniques. The initial technique, known as the NNCAE, improves the accuracy of cancer
drug response prediction by detecting positive associations between the molecular
properties of cancer cells and the effectiveness of drugs. Negative features refer to the
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aspects of the data or characteristics that could disrupt the learning process or negatively
impact the prediction performance of the DRP model. These negative features include
noise, class imbalance, and irrelevant or redundant information in genomic and drug
response data.

Foersch et al. (2023) employed a DL model, specifically a multi-stain deep learning
model (MSDLM), and analyzed the immune cell composition in Colorectal cancer (CRC)
tumors. The model utilized individuals with rectal cancer and neoadjuvant therapy and
forecasted the results. However, the model lacks interpretability and training time and
depends on cohorts or distinct cancer types. Foersch et al. (2023) developed a novel DL-
based method called DeepInsight-3D for predicting patient-specific anti-cancer drug
responses from multi-omics data. For feature selection and classification, the model used a
ResNet-50 CNN architecture that has been trained. Hyperparameters such as momentum,
L2 regularization, and initial learning rate are used for DeepInsight. The hyperparameters
are adjusted using a Bayesian optimization technique and enhanced prediction
performance. Across seven drug response datasets, DeepInsight-3D produced an average
area under the curve Area Under Curve (AUC) of 0.72. However, the model has limited
availability of training and test samples, which can affect model estimation and confidence.
Chen et al. (2023) presented a parallel DL network framework called DNN-PNN to predict
anti-cancer drug sensitivity by integrating gene expression data and pharmaceutical
chemical structure data. The model combined heterogeneous data from several sources for
improved prediction and addressed dimensionality and sparsity problems. However, the
model has no quantitative results and metrics reported to gauge performance
improvements.

Liu et al. (2024) proposed a Multi-task Interaction Graph Convolutional Network
(MTIGCN) for predicting anti-cancer drug response. MTIGCN combined drug sensitivity
classification, IC50 regression prediction, and similarity network reconstruction tasks to
enhance feature representations and reduce overfitting. However, the computational
complexity limits the model’s scalability to larger datasets or more complex tasks. Zhou
et al. (2024) proposed a Multi-omics Fusion Graph Attention Network (MFGAN) model
for survival prediction and DRP in digestive system tumors using multi-omics data. The
proposed MFGAN model demonstrated improved performance, up to a 9% improvement
in the c-index metric for survival prediction and a 4% improvement in DRP performance.
However, the model has a limited scope for digestive system tumors. Zheng et al. (2024)
proposed a multi-omics data classification network called the Global and Cross-Modal
Feature Aggregation Network (GCFANet) that integrates complementary information
from different modalities while capturing sample structure and feature confidence.
However, the model lacks the interpretability of the learned feature representations and
consensus representations.

The standard AE has redundant representations, which use more elements than
necessary to describe the data, increasing model complexity and computation time. To
reduce the complexity and processing time, constraining properties can be controlled
(Zhang, Chen & Li, 2021). The proposed NNCAE introduces nonnegativity as a constraint,
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which prevents biased learning and improves the extraction of meaningful representations
for learning the hidden structure of high-dimensional data.

The second method, (GEO-Conv-LSTM), is developed by integrating CNN and LSTM
networks to form a hybrid classifier with its parameters optimized using GEO. This model
was created using the combination of CNN and LSTM framework (Qian et al., 2023) to
learn spatial and temporal features of gene expression data. The gene expression data
collected based on the size of the cancer regions after the medication are termed spatial
features. The features collected at particular periods are termed temporal features in gene
expression data. The CNN model increases the prediction accuracy, and the LSTM model
minimizes the training time. The hyperparameter of this model is tuned by the GEO
technique to reduce the convergence problem and model complexity of this hybrid model.
The generated feature subsets by NNCAE are used to train the hybrid model to predict
drug response in breast and prostate cancer datasets. The contribution of this work is
described as follows:

. NNCAE is presented to remove the noisy, outlier data features and balance the minority
and majority class samples. It is developed by integrating the nonnegativity constraints
into the denoising autoencoder with an effective learning structure for the temporal
features. Implementing the NNCAE model also solves the class imbalance problem.

. GEO-Conv-LSTM is used to learn the features from gene expression, mutation profiles,
and drug data to improve the prediction accuracy of anti-cancer drug responses. It is
developed by integrating GEO for optimally tuning the hybrid Conv-LSTM classifier
framework’s hyper-parameters, whose architecture combines the CNN and LSTM
layers. The temporal and spatial features are learned by the Conv-LSTM framework,
which enhances the prediction performance and decreases the training time.

. Experiments are conducted over the GDSC1 and GDSC2 multi-omics datasets from
GDSC.

RELATED WORKS
This review of the large body of literature revealed many studies that used different
techniques to predict drug responses. Below is a summary of a selection of these studies.

Mohamed Salleh et al. (2015) proposed a method to improve Gene Regulatory Network
(GRN) inference accuracy from gene expression data by combining the Gaussian noise
model and the Pearson correlation coefficient. Hosseini-Asl, Zurada & Nasraoui (2016)
introduced a DL auto-coder network trained using an (NNCAE), resulting in improved
sparsity and reconstruction quality compared to traditional autoencoders.

Mohamed, Zainudin & Ali Othman (2017) proposed a metaheuristic strategy to
improve the mRMR filter method in drug response microarray data categorization using
three metaheuristic algorithms: Particle Swarm Optimization (PSO), cuckoo search (CS),
and artificial bee colony (ABC) Husam et al. (2017) introduced a new way for Malaysian
health agencies to find the best features for more accurate predictions of dengue outbreaks.
They used three feature selection algorithms: PSO, genetic algorithm (GA), and rank
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search (RS). The experimental results showed that the feature selection process improved
predictive accuracy, achieving an accuracy of 98.85.

Salleh, Zainudin & Arif (2017) proposed using Multiple Linear Regression (MLR) to
infer the GRN from gene expression data and avoid wrongly inferring indirect
interactions. Experiments show that MLR makes significantly fewer cascade errors (<10%)
when predicting the subnetworks with added cascade motifs. All the tested subnetworks
obtained satisfactory results, with AUROC values above 0.5. Ananda, Daud & Zainudin
(2023) provided a comprehensive review of regulatory-metabolic network models, which
integrate GRNs and metabolic networks to optimize microbial strains to produce valuable
compounds. These models’ performance heavily depends on the quality and quantity of
the gene expression data used. Inconsistencies between the GRNs and the gene expression
data can lead to inaccurate predictions.

Chiu et al. (2019) implemented a deep neural network (DNN) methodology for
predicting drug responses, with a median MSE of 1.96 obtained in testing instances.
Sharifi-Noghabi et al. (2019) developed a multi-omics late integration model based on
DNN for DRP with a prediction accuracy of 0.80 for the drug cetuximab. Shi et al. (2019)
predicted drug-target interactions using Lasso and Random Forest techniques, with an
overall accuracy of 0.99% for the Drug Bank dataset. Kajikawa et al. (2019) presented a
dose distribution prediction methodology using a three-dimensional CNN model with
more effective results than Rapid Plan but increased computational complexity. Xu et al.
(2019) used Autoencoder (AE), the Boruta algorithm, and Random Forest (RF) techniques
to predict drug response.

Yu et al. (2021) applied discrete component analysis (DCA) and logistic regression (LR)
methodologies to predict drug responses and achieved an overall accuracy of 0.9107. Lee &
Chen (2021) developed a hybrid model that integrates graph convolutional neural
networks (GCNN) and Bi-directional LSTM networks to predict drug side effects. Malik,
Kalakoti & Sundar (2021) presented a multi-omics integrative framework based on a feed-
forward neural network for quantifying the survival and drug response of GDSC1 patients.
They used Neighbourhood Component Analysis (NCA) to eliminate irrelevant features
and achieved an accuracy of 94% for predicting cancer subtypes. Zhang et al. (2021)
developed a drug combination prediction model using a DNN with AEs. They achieved an
accuracy of 0.93 ± 0.01 compared to GBM, Elastic Nets, Deepsynergy, and RF models.

Zhang, Chen & Li (2021) designed a deep signaling framework for predicting the anti-
drug response. They used 46 signaling pathways for DRP models and achieved higher
performance than DNN and other conventional methods. Majumdar et al. (2021)
suggested K-means Ensemble Support Vector Regression (KESVR) for DRP. However, this
model predicted drug responses from a single perspective, leading to inappropriate
predictions. Singh et al. (2021) propose a beetle swarm optimization and adaptive neuro-
fuzzy inference system (BSO-ANFIS) model. The model uses a modified Crow search
algorithm for feature extraction and an ANFIS classification model optimized by a BSO
algorithm. The algorithm achieves 99:1% accuracy in heart disease detection and 96:08%
accuracy in multi-disease classification.
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Kamal, Bakar & Zainudin (2022) presented a study addressing ineffective protein
feature representation in hierarchical classification structures. This method combines PSO
and the firefly algorithm (FAPSO) by using discrete wavelet transform (DWT) to improve
the representation of features. The efficacy of this methodology was validated using a G
protein-coupled receptors (GPCR) dataset; the study achieved classification accuracies of
97.9%, 86.9%, and 81.3%, respectively, at the family, subfamily, and sub-subfamily levels.

Jiang et al. (2022) introduced the DeepTTA model, which analyzed drug chemical
substructure and gene expression data to predict drug responses with higher accuracy. This
model found dactinomycin and bortezomib as potential therapeutic options but had high
computational complexity. Wang et al. (2022) presented the Multi-View Multi-Omics
(MVMO) model, which resolved missing value problems in gene expression data and used
fewer parameters and less DRP computation than existing approaches. Zhu et al. (2022)
introduced the Twin Graph Neural Networks Similarity Augmentation (TGSA) model,
which combined Twin Graph neural networks and similarity augmentation modules for
drug response prediction. Ogunleye et al. (2022) recommended the Classification and
Regression Tree (CART) model for DRP, which gained higher Matthews correlation
coefficient (MCC) values and AUC values using the TCGA-GDSC1 dataset.

Wu, Zainudin & Daud (2023) have presented a new study discussing GCNs for drug
repositioning. GCNs have shown promising results in extracting features from
heterogeneous graphs for drug repositioning. By using more than one feature mining
technique, such as similarity calculations, and other semi-supervised learning models, such
as LSTM, GCNs can be better at extracting information for drug repositioning. They also
aim to combine GCNs and CNNs to mine drug association data and extract more features,
such as the CNN-based multi-scale interaction feature fusion method for drug prediction.
Although the study was extensive, it needed help finding a satisfactory solution to address
the overfitting problem using the similarity-based heterogeneous graph inference
approach.

Hostallero et al. (2023) developed a deep learning framework called TINDL, thoroughly
trained on preclinical cancer cell lines (CCLs), which can predict the response of cancer
patients to different treatments and identify biomarkers of drug response. TINDL
outperforms other methods in distinguishing between sensitive and resistant patients for
10 out of 14 drugs. The primary outcome measured in this study was the prediction of
CDR in cancer patients. In addition, identification of biomarkers of drug response. The
models were trained on single-drug responses, but the test data included patients who
received multiple drugs, which the models may not accurately predict. The use of cell line
data for training may limit the ability of the models to capture the complexity of actual
tumor samples.

Kato et al. (2023), provided a comprehensive review of deep learning methods for
predicting DRP. This article conducted an extensive search and analysis of 61 peer-
reviewed publications on DL models for predicting drug response in cancer. The article
identified three major components involved in developing DRP models: data preparation,
model development, and performance analysis. Some limitations have been identified,
such as the lack of a standard or accepted framework for evaluating and comparing cancer
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drug response models. Most models focus on improving predictions in cell lines with only
marginal improvements in generalization to other cancer models. In addition, there are
concerns about the interpretability and transparency of black-box DL models for clinical
decision-making.

Teoh et al. (2024) developed an ensemble model, combining ResNet-50 and GoogLeNet
to accurately classify microcalcifications in breast cancer images. The model achieved an
average confidence level of 0.9305 in microcalcification classification and 0.8859 in normal
cases classification. Its performance was compared to other models, showing high
accuracy, recall, and precision with an AUC of 99.06%. However, the model’s current
method of handling missing data and not fully capturing relevant features may limit its
predictive capabilities.

Daud et al. (2023) provided a systematic review, this review article aims to provide
current trends and approaches in machine learning and constraint-based modeling for in
silico metabolic engineering and highlight research gaps in this area. The authors
conducted a systematic review of relevant studies from the Web of Science and Scopus
databases and synthesized and analyzed 13 relevant studies that integrated 17 different
machine-learning approaches with constraint-based modeling. Even though the study
covered many models, more in-depth research and biological validation studies are needed
to make machine learning better at predicting phenotypic changes and making them easier
to understand and use.

Cao, Zainudin & Daud (2024) was able to fuse features using FFANE, a novel node
representation method that combines protein-protein interactions (PPIs) networks and
protein sequence data using Gaussian kernel, Levinstein distance, and Stacked
Autoencoder (SAE) to enhance PPI prediction. This proposed method achieved high
prediction accuracies of 94.28%, 97.69%, and 84.05% on Saccharomyces cerevisiae, Homo
sapiens, and Helicobacter pylori protein-protein interaction datasets, respectively. Despite
the novelty of the method, FFANE has modest hardware requirements compared to deep
learning models, which can be considered a limitation in terms of not taking advantage of
the latest advances in computational power.

Hajim et al. (2024) provided a comprehensive review of deep learning models for drug
response prediction in cancer therapeutics. The study examined the latest developments in
deep learning from 2017 to 2023. The study focused on neural networks, such as DNNs,
recurrent neural networks (RNNs), CNNs, and supervised and unsupervised learning. The
study underscores the need to improve the generalizability and interpretability of the
models and the importance of addressing heterogeneity in cancer data to enhance their
predictive accuracy and clinical validity.

This study highlighted the advancements in methodologies that use ML and DL
techniques. The works previously described indicate the relevance of the theme involving
computational methods to support pathologists in the study of cancer disease, despite the
advancements in methodologies that used these techniques to enhance prediction accuracy
and computational efficiency, which contributed to developing and improving the
accuracy of DRP. However, several gaps and challenges emerge from this literature review,
indicating areas for future research. Here is a synthesis of the identified gaps.

Hajim et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2520 7/36

http://dx.doi.org/10.7717/peerj-cs.2520
https://peerj.com/computer-science/


Table 1 List of symbols and abbreviations.

Sample Abbreviations

AI Artificial Intelligence

ANFIS Adaptive Neural Fuzzy Inference System

ABC Artificial Bee Colony

AE Autoencoder

ANNs Artificial Neural Networks

AUC Area Under Curve

AUROC Area Under the Receiver Operating Characteristic Curve

BRCA Breast Cancer

BSO-ANFIS Beetle Swarm Optimization and Adaptive Neuro-Fuzzy Inference System

CART Classification And Regression Tree

CCLE Cancer Cell Line Encyclopedia

CNN Convolution Neural Network

CRC Colorectal Cancer

CS Cuckoo Search

DCA Discrete Component Analysis

DL Deep Learning

DLNN Deep Learning Neural Network

DNN Deep Neural Network

DRP Drug Response Prediction

DWT Discrete Wavelet Transform

FA Firefly Algorithm

FAPSO Firefly Algorithm Particle Swarm Optimization

FCN Fully Connected Network

GA Genetic Algorithm

GCFANet Cross-Modal Feature Aggregation Network

GCNN Graph Convolutional Neural Networks

GDSC Genomics Of Drug Sensitivity in Cancer

GEO Golden Eagle Optimization

GPCR G Protein-Coupled Receptors

GRN Gene Regulatory Network

GRNN Generalized Regression Neural Network

KESVR K-Means Ensemble Support Vector Regression

MCC Matthews Correlation Coefficient

MFGAN Multi-omics Fusion Graph Attention Network

ML Machine Learning

MLR Multiple Linear Regression

MOGEO Multi-Objective Golden Eagle Optimization

MPL Max-Pooling Layer

MSDLM Multi-Stain Deep Learning Model

MTIGCN Multi-task Interaction Graph Convolutional Network

MVMO Multi-View Multi-Omics
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Most studies need to specify which variants of the datasets were used, whereas the noisy
dataset and the class imbalance values of the classifier will make it inadequate for learning
multidimensional datasets and diminish the overall prediction accuracy. Moreover,
identifying the most relevant features for predicting drug responses and handling missing
values in gene expression data remains challenging. In addition to computational
complexity, several approaches, especially those involving deep learning and complex
metaheuristic algorithms, face high computational demands. Table 1 represents a list of all
symbols and abbreviations in the article.

METHODOLOGY
The proposed model consists of two essential stages: feature extraction and classification.
At first, the dataset is preprocessed to remove noise and then employed for feature
extraction. Once the preprocessing stage is done, the NNCAE model is used in the feature
extraction stage. Its deep feature learning approach fixes the class imbalance problem. The
obtained features are utilized for training the optimized hybrid deep learning model,
Conv-LSTM, which is kept in the classification stage. This classification stage contains a
hybrid model that incorporates CNN and LSTM models. Then, the hyperparameters of
these models are tuned with the influence of the GEO optimization technique. In order to
train the hybrid GEO-Conv-LSTM model, which predicts drug response, attributes
extricated by NNCAE are last. The working flow of the proposed methodology is displayed
in Fig. 1.

Table 1 (continued)

Sample Abbreviations

NCA Neighborhood Component Analysis

NNCAE Non-Negativity-Constrained Auto Encoder

NNs Neural Networks

PCC Pearson Correlation Coefficient

PRAD Prostate Adenocarcinoma

PSO Particle Swarm Optimization

ReLU Rectified Linear Activation Function Unit

RF Random Forest

RMSE Root Mean Square Error

RNNs Recurrent Neural Networks

ROC Receiver Operating Characteristic Curve

RS Rank Search

SCC Spearman Correlation Coefficient

SVM Support Vector Machine

TCGA The Cancer Genome Atlas

TGDRP Twin Graph Neural Networks For Drug Response Prediction

TGSA Twin Graph Neural Networks Similarity Augmentation

WHO World Health Organization
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Figure 1 The working flow of the proposed methodology.
Full-size DOI: 10.7717/peerj-cs.2520/fig-1
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Data description
The cancer disease drug response data and the cell lines datasets are used in this study and
downloaded from the Genomics of Drug Sensitivity in Cancer (GDSC) repository (Partin
et al., 2022) (https://www.cancerrxgene.org/downloads/). The GDSC1 and GDSC2
datasets are Pan-cancer datasets and contain twenty cancer types. The GDSC data contain
the gene expression, drug data, and copy number data. The ANOVA results of these
datasets have combined all the vital features, including the genetic features, cell line
features, drug features, and genetic feature variants. Therefore, it can be used as the
primary dataset. The GDSC1 dataset contains 394,241 gene expression data samples, 22
features, 1,001 cell lines, 692 cell line variants, and 410,125 cell line data samples created by
combining different cell lines and cell line variants with the feature subsets. The GDSC2
dataset contains 305,351 gene data samples, 22 features, 978 cell lines, 692 cell line variants,
and 409,700 cell line data samples. The standard drugs from the Drug Bank database are
derived for drug-target information. For evaluation, the GDSC1 uses 403 drugs and
333,292 drug data samples, and GDSC2 uses 297 drugs and 243,466 drug data samples.
GDSC datasets have 1,001 cell lines in GDSC1 and 978 in GDSC2. However, there are 692
cell line variants. Using these cell lines and variants, the cell line data samples are generated
in the GDSC, which amounted to 410,125 in GDSC1 and 409,700 in GDSC2 datasets.
These two datasets can be utilized to estimate the sensitivity of selected drugs over the
cancer cell lines of the gene data. The gene data indicates the gene expression data of the
cancer patients collected in GDSC after the specific drugs are given. Table 2 describes the
datasets used in this article for evaluation.

Preprocessing utilizing NNCAE
First, features/columns with more than 1/3 of the missing data are replaced through the
imputation process. Then, the CDAE is introduced to learn the noisy data from the input
GDSC datasets and remove them along with outlier data features. Each column is
analyzed, and whichever column has more than 1/3 of the empty cells is initially
considered missing data, and the entire column is imputed using the KNN imputation
process. Therefore, no features or cell lines are removed at any stage. Only the missing
values are imputed using KNN for better analysis of the datasets. NNCAE also identified
the missing features. Then, the averaging base imputation of the KNN imputation method
is used if the data is missing. If missing features cause column variations, the missing value
will be replaced by the next column value. The NNCAE will determine the decision of this
selection. Further, NNCAE is implemented to address the class imbalance problem.

Table 2 Dataset description.

Dataset Samples Features Cell lines Cell line variants Cell line data samples No. of Drugs Drug data samples

GDSC1 394,241 22 1,001 692 410,125 403 333,292

GDSC2 305,351 22 978 692 409,700 297 243,466
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Figure 2 shows some data points from the GDSC datasets before and after applying
NNCAE for class imbalance problems.

AE is a neural network representing the data based on unsupervised learning. The
objective of AE is to reconstruct the input data in the output stage. The constrained
learning approach is used to extract essential information for classification, which could
get the information from sparse data without any negotiation. Applying significant
limitations in the network parameters forces AE to learn the hidden structures. This
limitation could fix the hidden layer’s size, which is given as an input. Likewise, the
constraints might be nonnegativity, sparsity, and weight-decay regularization to be applied
to the learned attributes. In this context, nonnegativity is imposed and forms an NNCAE
(Ayinde & Zurada, 2018). Sparsity is essential because it facilitates an automatic and
effective feature selection process. The magnitude of AE shrinks with regularization, which
enhances the generalizability. Hence, constrained AEs are more beneficial for
dimensionality reduction and extracting nonnegativity features. The ideology of
nonnegativity is obtained from the non-negative matrix factorization, otherwise known as
non-negative matrix approximation. This procedure is utilized to analyze high-
dimensional data. It extricates the scattered and essential data from the collection of non-
negative vectors. The nonnegativity constraint procedure aids in learning sparse and part-
based data representations. The part-based data representation is executed by
deconstructing the data as parts.

Reconstructing input data in AE is improved by decomposing it into scattered parts in
the encoding layer. Then, it is combined in the decoding layer in an additive manner. The

Figure 2 The cancer dataset classification. (A) Original dataset, (B) Preprocessing dataset. Full-size DOI: 10.7717/peerj-cs.2520/fig-2
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non-negative mechanism is applied to the connecting weights to attain this performance
improvement.

The fundamental structure of single-layered AE includes an encoder, decoder, and
activation. This incorporates input, hidden, and output layers. The hidden layer encodes
the input data, and the decoding operation is implemented on the output layer. The
proposed model extracts the non-negativity-constrained features by following the
procedure given below. The data could be represented by shattering into different distinct
parts, and then adding these distinct parts must reconstruct the actual data. In this
situation, the data is disintegrated in the encoding part and then reconstructed in the
decoding part. The nonnegativity constraint is applied to the network work’s weight for
disintegration. It is a customized AE framework that can extricate non-negative features.

L1/L2-non-negativity constrained autoencoder
The higher degree of nonnegativity in the network’s weight is encouraged by adding a
composite term to the objective function which is given in Eq. (1). This summation result
is the expression of the cost function for L1/L2-NNCAE:

JL1
L2�NNCAE W;bð Þ¼ JAEþb

Xn0
r¼1

DKL p

�����
����� 1m
Xm
k¼1

hj X kð Þ
� � !

þ
X2
l¼1

Xsl
i¼1

Xslþ1

j¼1

f L1=L2 wl
ij

� �
(1)

The weights and bias of encoding and decoding layers are represented as,

w ¼ w 1ð Þ; w 2ð Þ��
and b ¼ bx; bhgf , count of neurons in l-th layer is denoted as sl,

interconnection of j-th neuron in layer l � 1 and i-th neuron in layer l for an input X is
denoted as wl

ij.

JAE ¼ 1
m

Xm
k¼1

rðW 2ð Þr W 1ð ÞX kð Þ þ bx
� �

þ bhÞ � X kð Þ
��� ���2

2
(2)

Here, m represents the count of training samples, Euclidean norm is denoted as ||.||2,
Kullback–Leibler (KL) divergence for controlling the sparsity is represented as DKL :ð Þ,
mean activations and desired activations are denoted by p, the count of hidden units is
noted as n0 hj X kð Þ� 	 ¼ r W 1ð Þ

j X kð Þ þ bx;j
� �

represents j-th hidden unit’s activation
function due to the input X kð Þ, element-wise application of logistic sigmoid is represented
as r :ð Þ, r Xð Þ ¼ 1

exp �xð ÞÞ, β has the ability of controlling sparsity penalty term and

fL1
L2

wij
� 	 ¼ a1dwij; kþ a2

2
kwij k2 wij < 0

0 wij � 0

(
(3)

Here, L1 and L2’s non-negativity-constraint weight penalty factors are specified as a1
and a2, the values of p; b; a1 and a2 have to be set experimentally. The weight could be
upgraded with the below given error propagation formula.

W lð Þ
ij ¼ W lð Þ

ij � e
q

qW lð Þ
ij

JL1
L2
� NNCAE W; bð Þ (4)
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b lð Þ
i ¼ b lð Þ

i � e
q

qb lð Þ
i

JL1
L2
� NNCAE W; bð Þ (5)

Here, e > 0 represents the rate of learning and loss function of L1=L2-NNCAE is
computed as follows:

q

qw lð Þ
ij

JL1
L2
�NNCAE W; bð Þ ¼ q

qw lð Þ
ij

JAE w;Bð Þ þ bDKL
q

qw lð Þ
ij

pk 1
m

Xm
k¼1

hj X kð Þ
� � !

þ g w lð Þ
ij

� �
(6)

Here, g wij
� 	

is a composite function which denotes the derivative of fL1
L2

wij
� 	

given in Eq.
(3) with respect to wij as in Eq. (7)

g wij
� 	 ¼ a1rw kwij k þa2wij wij < 0

0 wij � 0



(7)

Equation (1) uses a penalty function from NNCAE, adjusting the α1 value to 0. The
weight distribution remains nonnegative even under nonnegative constraints due to the L2
norm. This penalty transforms initially negative weights into positive values or close to
zero, diminishing their negativity. The L2 norm penalty is used in machine learning. It
operates by applying a penalty equal to the square of the weights’ values to reduce
overfitting by deterring excessively large weights, improving efficiency, and potentially
increasing accuracy.

Implication of imposing nonnegative parameters with a composite
decay function
When the reconstruction error in Eq. (2) is added with the Frobenius norm of weight
matrix (αkW k2F) then it enforces Gaussian before the distribution of weight. However, the
usage of the composite function in Eq. (3) resulted in the enforcement of a positively
skewed deformed Gaussian distribution. The parameters a1 and a2 are used to adjust the
degree of non-negativity. These parameters could be selected appropriately for imposing
non-negativity and it must be ensured simultaneously to get better outcomes in supervised
learning. The consequences of applying L1, L2 and L1=L2 on weight, updates are noted and
observed that L1=L2 regularization imposes intense weight decay than L1 and L2 . In the
case of weight distribution with more positively skews leads to the reduced weight decay
function. The significances of shrinking expressed in Eq. (1) are as follows: reduction of
mean reconstruction error, hidden layer’s activation sparsity is maximized due to the
enforcement of many negative weights to 0, increase of weights with non-negative values.
As a result of penalising the weights concurrently with the L1 and L2 norms, high positive
connections are preserved while their orders of magnitude are narrowed. However, L1
norm given in Eq. (3) is not distinguishable at the origin which results in instability. In
order to over this limitation, the smoothing function which approximates the L1 norm is
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utilized. The smoothing function approximates the L1 norm for any finite dimensional
vector z and the positive constant k is given as:

d z; kð Þfkzk kzk>k kzk2
2k

þ k
2

kzk � k (8)

Gradient,

rzd z; kð Þ ¼ z
kzk kzk>k z

k
kzk � k



(9)

For accessibility, Eq. (8) is utilized to smoothen the L1 penalty function. Both L1 and L2
penalized the negative weights, in which most weights are imposed as non-negative,
enhancing the network’s interpretability. When non-negativity is encouraged, AE enforces
the layers for learning the input as a part-based representation, resulting in increased
classification accuracy before fine-tuning. Hence the classification result will not degrade
significantly after fine-tuning.

GEO-Conv-LSTM
The suggested hybrid classifier is made by combining CNN and LSTM models. These
models make up the Conv-LSTM module, and the GEO algorithm is used to tune its
hyperparameters. In this system, the hybrid classifiers are utilized to predict cancer
patients’ drug responses. The drug response dataset of GDSC is usually huge and takes a lot
of processing time. This limitation is overcome with the proposed Conv-LSTM. In
addition, the input dataset has a problem with class imbalance due to poor data
distribution. When the dataset contains more instances in one class and fewer instances in
other classes, it is known as a class imbalance problem and highly deteriorates classification
performance. The class imbalance problem in ML is solved by augmenting the data, but it
infuses the large number of minority samples in the dataset. This leads to an overfitting
problem, which can be solved using optimization techniques. With the existence of a large
number of local optima, the best global solution is chosen using the GEO algorithm. The
golden eagle’s intelligence in hunting behaviour is used to tune the hyperparameters of the
Conv-LSTM model.

This system uses spatial and temporal properties together using Conv-LSTM for
predicting the drug response. The CNN has high precision and scalability and it performs
better for complex problems like non-linear classification (Habib & Qureshi, 2022). The
spatial features are extracted utilizing CNN from the gene expression data by performing
different operation in different stages, which include convolutional and pooling layers.
CNN uses transfer learning approach and it requires large amount of training data,
therefore, it utilize the learned weights that are basically trained to handle other
problems. From these learned features, some information could be used for predicting
new drug response. CNN learns the spatial feature effectively but does not have the
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ability to learn temporal features effectively, while the LSTM has higher capability for
learning the temporal features. Hence, the LSTM model is implemented to learn the
temporal features of gene expression data. The fundamental LSTM framework includes
cell, input/output and forget gates (Sherstinsky, 2020). The three gates control the data flow
inside the cell, and the cell is in charge of remembering the values over the independent
intervals.

While extricating the data features, the temporal data is represented in the first
dimension, and the spatial information is constituted in the second and third dimensions,
and the spatial data is considered as the important features. With the usage of spatial data,
the future states are predicted with inputs, and the past states by considering the nearby
nodes. These predictions are done with the Hadamard product and convolutional
operators (Karapetyants & Samko, 2020). In neural network topologies, the Hadamard
product and convolutional operators play crucial roles in the processing and integration of
data and features. The Hadamard product allows for the modulation and control of
individual feature contributions, while convolutional operators are crucial for feature
extraction and spatial analysis.

In addition, the constant errors around the nature of the nodes are protected with the
Hadamard product, which makes sure that all the nodes have the ability to learn the
essential features. In this model, the cell line data and drug data are given as inputs to CNN
as separate branches. CNN has three layers: the convolution layer, which convolves the
input feature space and then it is down-sampled by the max-pooling layer (MPL). The max
pooling layer takes the highest values for flattening the output space, and the drug features
are learned.

Moreover, the analysis of two branches is done with fully connected network (FCN) and
the dropout probability could be fixed before FCN which limits the over-fitting
problem. Further, LSTM considers the flattened dimensions of feature vector as dimension
of time stamp and then uses global MPL for extricating the essential features of cell line
data. The computation for switching between the states could be replaced with the
convolution, this provides the ability of learning both the spatial and temporal
attributes. During the construction of Conv-LSTM, the states of instances are modified in
different levels and the features embedding are updated to enhance the performance of
model. Finally, probability distribution over the class is generated using the activation
functions such as Softmax, tanh, ReLU. In addition, generalizability is enhanced by
introducing the Gaussian noise in each convolution and LSTM layers. Figure 3 shows the
structure of Conv-LSTM model.

The input gate is accountable for including data to the cell state. This data could be
added by following three steps. At first, the sigmoid functions are utilized for regulating the
values that are to be added for the cell state. This process is common to the forget gate and
it works as a filter for the information it receives. Next, attempts to create a vector that
contains all of the possible values and that can be added to the cell state. This is performed
with the tanh function. Finally, the regulated values are multiplied with the generated
vector and this value is added to the cell state using addition operation. The input gate’s
outcome is represented as:
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Ja ¼ b dYJ � Ya
� 	þ dCJ � Ca�1

� 	þ dZJ � Za�1
� 	þ gJ

� �
(10)

where, b indicates the gate activation function, input vector is represented as Ya, Za�1 and

Ca�1 represent the previous state outcome of the memory unit and node. gJ represents the
bias of input layer with � indicating Hadamard operator and * indicating convolutional

operator. The spatial information is maintained by the convolutional operator. The weight

vectors are denoted as dYJ , d
C
J and d

Z
J , d

Y
J . d

Y
J lies between the input gate and the input layer,

dCJ is between memory outcome and the input layer, dZJ between node outcome and the

input layer.
As like the result of the input gate, output gate, and forget gate outputs are calculated.

The representation of the forget gate outcome and the output gate outcome is given in
Eqs. (11) and (12).

Ka ¼ b dYK � Ya
� 	þ dCK � Ca�1

� 	þ dZK � Za�1
� 	þ gK

� �
(11)

The forget gate takes the input from previous cell and input of the current state and then
both the inputs are multiplied with the weights. Further the bias is added after
multiplication. Then the sigmoid function is given to this values and it decides what values
are to be kept and discarded. The data is removed when it provides the outcome of 0 and if

Figure 3 Convergence graph of GEO for optimizing CONV-LSTM. Full-size DOI: 10.7717/peerj-cs.2520/fig-3
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it gives the outcome of 1 the information is stored for processing. The information is not
required are removed by the forget gate and it optimizes the performance of LSTM.

La ¼ b dYL � Ya
� 	þ dCL � Ca�1

� 	þ dZL � Za�1
� 	þ gL

� �
(12)

where, weight vector between input layer and forget layer is represented as dYK , weight
vectors in memory unit and output gate is denoted as dCK , and weight vector between node
output and output gate is represented as dZK , bias related to forget gate is represented as

gK . dYL represents weight among input layer and output gate, dCL indicates weight vector

between memory unit and output gate, and dZL denotes weight vector among node output
and output gate. Bias to output gate is denoted as gL.

The outcome of intermediate node is computed by utilizing the activation function of
the weights and it is expressed as:

~Za ¼ tanh tanh dYF � Ya
� 	þ dCF � Ca�1

� 	þ gF
� �

(13)

where, weight vector among the input layer and node is represented as dYF , and dCF
indicates weight vector among memory unit and the node, bias of the node is represented
as gF . The bias of LSTM utilized to switch the activation function either to negative or
positive side.

The node’s outcome could be expressed as the addition of the transitory node state and
the variance between the memory unit of past and current layers. It is given as:

Za ¼ Ka � Za�1 þ Ja � ~Za (14)

Za ¼ Ka � Za�1 þ Ja � tanh tanh dYF � Ya
� 	þ dCF � Ca�1

� 	þ gF
� �

(15)

The memory unit’s outcome is estimated as follows:

Ca ¼ La � tanh tanh Zað Þ (16)

where, current outcome of memory unit is denoted by Ca and output gate is represented as
La. Hence the outcome of output layer is procured as:

Ga ¼ l dCG: Ca þ gG
� 	

(17)

where, Ga denotes output vector of the output layer, d
C
G represents weight vector among

memory unit and output vector and bias of output layer is represented as gG.
The outcome of convolutional layer is given as the input for LSTM and the replicas

obtained from the training layers of LSTM are forwarded for drug response prediction.
Therefore, the bias and the weights of the optimized Conv-LSTM can be represented as

g 2 gF; gJ ; gK ; gLf g and d 2 dCG; dYF ; d
C
F ; d

Y
L ; d

C
L ; d

Z
L ; d

Y
K ; d

C
K ; d

Z
K ; d

Y
J ; d

C
J ; d

Z
J

� �
. The

hyper parameters, bias and weights can be tuned by the GEO to obtain optimal
configuration for Conv-LSTM model.

Hyper-parameter optimization utilizing GEO
The hyperparameters, weights, and bias of Conv-LSTM are tuned utilizing the GEO
algorithm which provides optimal values. The GEO algorithm is obtained from the
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hunting behavior of golden eagles (Mohammadi-Balani et al., 2021). The working of GEO
is dependent on the golden eagle’s spiral motion in the hunting process. The golden eagle
has the capability of memorizing the best location it has used so far. The eagles exhibit dual
motivations during their foraging behavior, characterized by the impulse to attack prey
and the necessity to continue searching for optimal food sources. These concurrent desires
influence this species’ hunting strategy. Moreover, the golden eagle possesses the capacity
to anticipate the energy dynamics of its hunting actions. Specifically, when targeting
smaller prey that require a high energy expenditure, the net energy gain may not
adequately compensate for the energy invested in the hunt. In the other case, if it spends
more time on searching the big prey, it might catch nothing and the energy gets ruined.
These two extremes are intelligently handled by the golden eagles. It catches the best prey
in a reasonable amount of time and energy. They can easily transit from high attack low
cruise profile to low attack high cruise profile. Every golden eagle begins the hunt by flying
in large circles at high altitudes within its domain in search of prey. When prey is spotted,
it begins to move around the circumference of a hypothetical circle centered on the prey.
The golden eagle remembers the prey’s location but it continued to circle the prey. The
eagle gradually lowers its altitude while getting closer to the prey, causing the radius of the
hypothetical circle around the prey to shrink. At the same time, it searches the surrounding
areas for better alternatives. Golden eagles will occasionally share the location of the best
prey they have found with other eagles. The hunting behaviour of the golden eagle is
described in four stages. Initially, the prey is searched in spiral trajectory by the eagle and
then attacks the prey by considering a straight path. In the second stage, they have more
propensities in the initial and final stages of hunting. Third stage, it follows the same
procedure in every flight for both attack and cruise. Finally, it takes the other eagle’s
information to have the prey. This hunting pattern of the golden eagle is used for
hyperparameter optimization of Conv-LSTM.

The mathematical modelling of GEO algorithm is mainly based on the hunting pattern
of the golden eagles. This algorithm is explained as follows:

The golden eagle uses spiral trajectory to get the prey. The golden eagle i, initially selects
the prey of other eagles f in random manner and it circle the best location of golden eagle
f . Its own memory could be used in selecting the prey. So, f 2 1; 2; . . . ;PopSizef g. The
search is represented in 2D space.

At first, the prey is selected by performing cruise and attack operations. The prey
location could be modelled as best location discovered by flock of golden eagles. The
memory of entire flock is considered in selecting the prey for every iteration. Every search
agent chooses the prey based on the memory of entire flock. For the selected prey attack
and the cruise are computed. The memory is upgraded when it finds a better location. The
prey selection memory is allocated to one golden eagle in this method regardless of the
distance of the prey.

The best location visited by the golden eagle is guided to the population of golden eagle
with the attack vector. The attack vector ðAi

!Þ of golden eagle i is computed as:

Ai
!¼ X�

f

!� Xi
!

(18)
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Here, X�
f

!
denotes the best location visited by eagle f and the present position of golden

eagle (i) denoted by Xi
!
.

With the usage of the attack vector, the cruise vector is computed. Cruise is the golden
eagle’s linear speed toward the prey, indicating the exploration phase. The cruise vector
with n dimension is placed inside a tangent hyperplane to the circle. Hence the tangent
hyperplane is computed to find the cruise vector. The scalar representation of hyperplane
in n-dimensional space is expressed as:

h1x1 þ h2x2 þ . . .þ hnxn ¼ d )
Xn

j¼1
hjxj ¼ d (19)

Here, ~H ¼ h1; h2; . . . :hn½ � represents normal vector, variable vector is represented as

X ¼ x1; x2; . . . xn½ �, the arbitrary point on the hyperplane is denoted as~P ¼ p1; p2; . . . :pn½ �
and d is the dot product of ~H and~P which is equivalent to

Pn
j¼1 hjpj. When Xi

!
as arbitrary

points and Ai
!

as normal in the hyperplane, then the cruise vector of golden eagle i in
iteration t is given as:

Xn
j¼1

ajxj ¼
Xn
j¼1

atjx
�
j (20)

where the attack vector is represented as, Ai
!¼ a1; a2; . . . :an½ �, the decision variable vector

is denoted as X ¼ x1; x2; . . . :xn½ � and the location of selected prey is given as:

X� ¼ x�1; x
�
2; . . . x

�
n

� �
.

The cruise vector is perpendicular to the attack vector and tangent to the circle. The
destination point of the cruise hyperplane is expressed as:

Ci
!¼ Ck ¼

d �Pj6¼k aj

ak
; C1; C2::Ck::Cn ¼ random

� �
(21)

Here, Ck represents k th element of destination point C, aj denotes jth element of attack
vector Ai

!
, ak denotes k the element of attack vector, Ai

!
.

With the destination point, cruise vector for the golden eagle i in t th iteration is
computed. The obtained elements of destination points are lies between 0 and 1. The
golden eagle’s population is attracted by cruise vector than area in its memory and it plays
important role in exploration phase.

The golden eagle moves to the new position depending on the cruise and attack vectors.
Hence, the golden eagle j’s step vector in iteration t is expressed as below:

Dxj ¼ r1
!Pa

Aj
!

kAj
!k

þ r2
!Pc

Cj
!

kCj
!k

(22)

where, Pt
a denotes the attack coefficient at iteration t, cruise coefficient at iteration t is

denoted as Pt
c. Random vectors are represented as r1

! and r2
! which lies between [0 and

1]. kCj
!k and kAj

!k denotes the Euclidean norm of cruise and attack vectors. These two
factors are computed as follows:
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kCj
!k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1
c2j

r
; kAj

!k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1
a2j

r
(23)

The step vector governs how cruise and attack affect the golden eagles. The golden
eagle’s new position is expressed as:

xtþ1
j ¼ xtj þ Dt

xj (24)

The memory would be updated to the new position when the fitness function j gives
better outcome than the previous position.

In order to shift from the exploration state to the exploitation state, the GEO algorithm
utilizes cruise and attack coefficients ðPa;PbÞ respectively. These two coefficients are
calculated by the linear expressions given as:

Pa ¼ P0
a þ

t
T

PT
a � P0

a

�� �� Pc ¼ P0
c þ

t
T

PT
c � P0

c

�� ��n
(25)

The initial values of propensity to the cruise and attacks are represented as P0
c and P0

a,
the present iteration is denoted as t, and the maximum number of iterations is given as T ,
The resultant values of propensity to cruise and attack are denoted as PT

c and PT
a .

The multi-objective problems have multiple objective functions, which generates
difficulty in the optimization mechanism, which is not considered in the single objective
problems. A typical multi-objective problem is expressed as:

Minimize F ~xð Þ ¼ f1 xð Þ; f2 xð Þ; . . . fn xð Þf g (26)

Subject to:

gi ~xð Þ � 0; i ¼ 1; 2; 3 . . . r

hi ~xð Þ ¼ 0; i ¼ r þ 1; r þ 2; . . . s

where F represents the collection of objectives needs to be optimized, x! denotes the
design/decision variables, i-th inequality constraint is represented as gi ~xð Þ, i-th equality
constraint is denoted as hi ~xð Þ and the total number of constraints and number of
inequality constraints are denoted as s and r, respectively.

The multi-objective GEO is constructed on the concept of single objective
optimization. In addition to the procedures of single objective GEO, it has three concepts,
which include external archive, prey prioritization criteria, and multi-objective prey
selection. The concept called Pareto dominance is used to deal with multi-objective
problems. The Pareto optimal solutions are used to determine the multi-objective
problems. Here crowding distance could be used as density index and the crowding
solution is expressed as:

Ci ¼ 1
n

X
j 2 J

ðfiþ1;j � fi;jÞ � fi;j � fi�1;j
� 	

f max
j � f min

j
(27)
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Algorithm 1 Multi-Objective GEO for optimizing Conv-LSTM.

Input: Possible parameter values of Conv-LSTM

Output: Optimal Conv-LSTM configuration

1: Initialize the population of golden eagles

2: Assign the solutions (Conv-LSTM parameter values) to golden eagles

3: Set the search agents

4: Formulate objection/fitness functions fi�1;j; fi;j; fiþ1;j using Eq. (26)

5: For each golden eagle

6: Compute the fitness values for each golden eagle

7: Rank the eagles based on the fitness values

8: Save the ranked solutions to the archive

9: End for

10: Initialize population memory

11: Initialize Pa and Pc

12: For each iteration t

13: Update Pa and Pc using Eq. (22)

14: Compute crowding distance for current archive members

15: For each golden eagle i

16: Apply Prey selection using Roulette wheel weighted by crowding distances

17: Assign the search agents towards the selected prey (possible solution)

18: Calculate attack vector Ai
!

using Equation (18)

19: If the attack vector’s length = 0

20: Return the selected prey as the best solution

21: Else

22: Calculate cruise vector Ci
!

using Equations (19–21)

23: Calculate step vector Dxj using Equations (22) and (23)

24: Update position using Equation (24)

25: Evaluate fitness values for the new position

26: If the new position is non-dominated to the current archive members

27: If the external archive is not full

28: Add the new solution to the archive

29: Else

30: Calculate the sparsity distances using Equations (27) and (28)

31: For each archive member

32: Apply roulette wheel weighted by sparsity distances for eliminating archive member

33: Replace the eliminated solution with the new one

34: End for

35: End if
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For every archive member, the crowding distance is computed. When the archive is
sorted by the objective values of the j-th objective function, there are three consecutive
members such as fi�1;j; fi;j; fiþ1;j. Sparsity scores Si are the new scores used for the roulette
wheel procedure. It could be computed as:

Si ¼ 1� Ci (28)

The prey selection criterion is varied that of the single GEO. The search agents use their
own memory for prey selection in a single GEO, but in the case of multi-objective GEO
(MOGEO), the archive uses the non-dominated location it visited so far. The roulette
wheel concept is used in the prey selection of MOGEO. In this procedure, sparsity scores of
the current archive members are used to calculate the weights. Based on the mathematical
modelling of GEO, the implementation of multi-objective problems is given in
Algorithm 1.

The procedures followed in GEO are utilized to tune hyperparameters including weights
and bias of Conv-LSTM. This tuning procedure provides optimal configuration for the
Conv-LSTMmodel. The Conv-LSTM fitness function f yð Þ is replaced by a function f d; gð Þ
and it is related to the layers of CNN, activation function, and learning rate of LSTM.

RESULTS AND DISCUSSION
The proposed NNCAE and GEO-Conv-LSTM-based drug response prediction model is
evaluated using experiments conducted over the GDSC1 and GDSC2 datasets for 20
cancers. The experiments are performed using the DL toolbox of MATLAB R2021a on a
computer with configurations of an i7 processor, 8GB RAM, 1TB hard disk, 512GB SSD,
and 4GB GEFORCE RTX 3050 (NVIDIA, Santa Clara, CA, USA) GPU.

In order to maintain spatial and temporal feature extraction, Conv-LSTM is proposed.
The input gene expression data is given to the CNN model and the output is obtained in
the LSTM model, which uses the input from CNN. This generates sequences at every time
step. Further, the sequence vector is applied to the fully connected layer before the softmax
layer for probability distribution over the classes. The optimization of parameters is done
by utilizing the GEO algorithm. Figure 4 depicts the convergence curve that GEO obtained
when optimizing the Conv-LSTM’s parameters.

The GEO procedures are utilized to tune hyperparameters, including weights and bias
of Conv-LSTM. This tuning procedure provides optimal configuration for the Conv-LSTM
model. The Conv-LSTM fitness function f(y) is replaced by a function f(δ,η), and it is

Algorithm 1 (continued)

36: End if

37: End if

38: Return the final best solution as the optimal configuration of Conv-LSTM

39: End for

40: End for

Hajim et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2520 23/36

http://dx.doi.org/10.7717/peerj-cs.2520
https://peerj.com/computer-science/


related to the layers of CNN, the activation function, and the learning rate of LSTM.
Table 3 shows the optimal parameters of Conv-LSTM obtained using the GEO algorithm.

Considering the configurations from the above table, the Conv-LSTM configuration is
formulated and used in the classification process for drug sensitivity prediction.

The proposed model is implemented along with the relevant existing methods from the
literature. The comparisons are made in terms of accuracy, precision, recall, f-measure,
specificity, root mean square error (RMSE), Spearman correlation coefficient (SCC),
Pearson correlation coefficient (PCC) and processing time.

Figure 4 The schematic of a CONV-LSTM model. Full-size DOI: 10.7717/peerj-cs.2520/fig-4

Table 3 Optimal parameters of conv-LSTM obtained using GEO.

Layer Name Baseline GEO optimized

0 Input – (1, 256, 24)

1 Convolution Pooling Activation (16, 3, 3) (2, 2) Sigmoid, ReLU (16, 256, 24) (16, 128, 12) Sigmoid

2 Convolution Pooling Activation (32, 3, 3) (2, 2) Sigmoid, ReLU (32, 128, 12) (32, 64, 6) Sigmoid

3 Convolution Pooling Activation (64, 3, 3) (2, 2) Sigmoid, ReLU (64, 64, 6) (64, 32, 3) Sigmoid

4 Convolution Pooling Activation (128, 3, 3) (2, 2) Sigmoid, ReLU (128, 32, 3) (128, 16, 1) Sigmoid

5 Convolution Pooling Activation (256, 3, 3) (2, 2) Sigmoid, ReLU (256, 16, 1) (256, 8, 1) Sigmoid

6 Flatten – (1536, )

7 Fully connected 278 (278, )

8 LSTM Activation Learning rate 200 tanh, ReLU 0.5 128 tanh 0.1

9 LSTM Activation Learning rate 200 tanh, ReLU 0.5 128 tanh 0.1

10 Fully connected 278 (278, )
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Figure 5 shows the ROC graphs obtained for the GDSC1 datasets. In a typical ROC
curve for GDSC1 classification, a plot of the true positive rate is observed against the false
positive rate as the discrimination threshold varies. The curve illustrates how well the
classifier can distinguish between malignant and non-malignant samples in the GDSC1
dataset. A classifier with good performance will have a curve that rises steeply and
approaches the top-left corner of the plot. The ROC value quantifies the overall
performance of the classifier. A high ROC (close to 1) indicates excellent discrimination
ability, while an ROC of 0.5 indicates average performance. It assesses the performance of
predictive models for distinguishing between cancerous and non-cancerous breast tissue
samples. Higher AUC values suggest better model performance in distinguishing between
the two classes. ROC analysis for the GDSC2 dataset would follow a similar pattern to that
of the GDSC1 dataset, assessing the performance of classifiers in distinguishing between
cancerous and non-cancerous prostate tissue samples.

Table 4 shows the results obtained by the proposed NNCAE-GEO-Conv-LSTM for the
GDSC1 datasets compared against the state-of-the-art Conv-LSTM method and the
proposed GEO-Conv-LSTM.

From Table 3, it is evident that the proposed NNCAE and GEO-Conv-LSTM-based
DRP model has a higher prediction performance of breast cancer. The proposed approach
has achieved high values of accuracy, recall, f-measure, SCC, and PCC and reduced RMSE
error rate. The proposed NNCAE-GEO-Conv-LSTM has achieved 8.12% and 9% better

Figure 5 ROC Curve of GDSC1 data. Full-size DOI: 10.7717/peerj-cs.2520/fig-5
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accuracy than GEO-Conv-LSTM and 11.18% and 13.44% higher accuracy than Conv-
LSTM for GDSC1 and GDSC2 datasets. Figure 6 shows the plots obtained for SCC and
PCC for GDSC1.

Figure 6 SCC and PCC for GDSC1. Full-size DOI: 10.7717/peerj-cs.2520/fig-6

Table 4 Performance evaluation on GDSC1.

Parameters/Methods Conv-LSTM GEO-Conv-LSTM NNCAE-GEO-Conv-LSTM

Accuracy 0.9081 0.9298 0.9699

Precision 0.8432 0.8689 0.9125

Recall 0.8125 0.8415 0.9286

F-measure 0.8273 0.8549 0.9204

Specificity 0.8760 0.9133 0.9351

RMSE 0.2876 0.2465 0.2236

SCC 0.7118 0.7074 0.8516

PCC 0.7037 0.6981 0.8493
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Figure 7 shows the receiver operating characteristic curve ROC graphs and the best
training performance obtained from the GDSC1 and GDSC2 datasets for GDSC2 diseas.
ROC analysis for the GDSC2 dataset would follow a similar pattern to that of the GDSC1
dataset, assessing the performance of classifiers in distinguishing between cancerous and
non-cancerous prostate tissue samples.

Table 5 shows the results obtained by the proposed NNCAE-GEO-Conv-LSTM for the
GDSC2 datasets compared against the state-of-the-art Conv-LSTM method and the
proposed GEO-Conv-LSTM.

Table 5 shows that the NNCAE and GEO-Conv-LSTM model-based anti-cancer DRP
have a higher prediction performance of GDSC2, similar to that of GDSC1. The proposed

Figure 7 ROC Curve of GDSC2 datasets. Full-size DOI: 10.7717/peerj-cs.2520/fig-7

Table 5 Performance evaluation on GDSC2.

Parameters/Methods Conv-LSTM GEO-Conv-LSTM NNCAE-GEO-Conv-LSTM

Accuracy 0.9060 0.9367 0.9778

Precision 0.8222 0.9064 0.9371

Recall 0.8439 0.8865 0.9276

F-measure 0.8329 0.8963 0.9323

Specificity 0.7981 0.8145 0.8333

RMSE 0.4883 0.4432 0.3953

SCC 0.7175 0.7338 0.8752

PCC 0.7356 0.7766 0.8953
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approach has achieved higher f-measure, accuracy, recall, SCC and PCC values and
reduced RMSE error rates for both the GDSC1 and GDSC2. Like the GDSC1, the proposed
approach has achieved competent performance for the GDSC2 dataset. The
proposed NNCAE-GEO-Conv-LSTM has gained 7.18% and 4.11% better accuracy than
Conv-LSTM and GEO-Conv-LSTM for the GDSC2 dataset. Figure 8 shows the plots
obtained for SCC and PCC for GDSC2 datasets.

Figure 9 shows the accuracy, precision, recall, and f-measure comparison of the
proposed NNCAE-GEO-Conv-LSTM and existing models.

The NNCAE-GEO-Conv-LSTM model obtains an accuracy of 0.9699, which is 6.18%
and 4.01% higher than the Conv-LSTM and GEO-Conv-LSTM models. It has also
obtained a precision of 0.9125, which is 6.93% and 4.36% higher than the Conv-LSTM and
GEO-Conv-LSTM models. The model attained a recall of 0.9286, which is 11.61% and
8.71% higher, and the F-measure of 0.9204, which is 9.31% and 6.55% higher than Conv-
LSTM and GEO-Conv-LSTM models for GDSC1 dataset. For the GDSC2 dataset, the

Figure 8 SCC and PCC for GDSC2. Full-size DOI: 10.7717/peerj-cs.2520/fig-8
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model attained an accuracy of 0.9778 which is 7.18% and 4.11% higher; precision obtained
is 0.9371, which is 11.49% and 3.07% higher; recall obtained is 0.9276 which is 8.37% and
4.11% higher and F-measure obtained is 0.9323 which is 9.94% and 3.60% higher than
Conv-LSTM and GEO-Conv-LSTM models.

Figure 10 shows the Specificity, RMSE, SCC and PCC comparisons of the proposed
NNCAE-GEO-Conv-LSTM and the existing models for both GDSC1 and GDSC2 datasets.

The NNCAE-GEO-Conv-LSTM model obtains a specificity of 0.9351, which is 5.91%
and 2.18% higher than the Conv-LSTM and GEO-Conv-LSTM models. It has also
obtained an RMSE of 0.2236, which is 6.40% and 2.29% less than the Conv-LSTM and
GEO-Conv-LSTM models. The model attained an SCC of 0.8516, which is 13.98% and
14.42% higher, and the PCC obtained is 0.8493, which is 14.56% and 15.12% higher than
Conv-LSTM and GEO-Conv-LSTM models for GDSC1 dataset. For the GDSC2 dataset,
the model attained a specificity of 0.8333, which is 3.52% and 1.88% higher; the RMSE
obtained is 0.3953, which is 9.30% and 4.79% less. SCC obtained is 0.8752, which is 15.77%

Figure 9 Accuracy, precision, recall and F-measure comparisons.
Full-size DOI: 10.7717/peerj-cs.2520/fig-9
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and 14.14% higher, and PCC obtained is 0.8953, which is 15.97% and 11.87% higher than
Conv-LSTM and GEO-Conv-LSTM models.

Table 6 illustrates the processing time comparison of the proposed approach for the
GDSC1 and GDSC2 datasets.

Figure 11 shows the Processing time (complexity) comparisons of the proposed
NNCAE-GEO-Conv-LSTM and the existing models for both datasets.

Figure 11 illustrates that the NNCAE-GEO-Conv-LSTM approach has consumed less
processing time (in minutes) and reduced computational complexity. For GDSC1, the
proposed approach has obtained 42.1611s, which is 24.12% and 14.75% less processing

Figure 10 Specificity, RMSE, SCC, and PCC comparisons.
Full-size DOI: 10.7717/peerj-cs.2520/fig-10

Table 6 Processing time (in minutes) comparison.

Dataset Conv-LSTM GEO-Conv-LSTM NNCAE and GEO-Conv-LSTM

GDSC1 55.5683 49.4614 42.1611

GDSC2 54.4671 50.7605 44.0573
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time than the Conv-LSTM and GEO-Conv-LSTM models, respectively. Similarly, for
GDSC2, the proposed approach has obtained 44.0573, 19.11%, and 13.20% less time than
the Conv-LSTM and GEO-Conv-LSTM models, respectively. Table 7 shows the
performance comparison of accuracy for the model NNCAE and GEO-Conv-LSTM-based
anti-cancer DRP model against the prominent methods from the literature.

As highlighted in Table 7, the proposed approach of NNCAE and GEO-Conv-LSTM
has achieved high accuracy. This enhancement can be attributed to the optimal
tuning of the Conv-LSTM hyper-parameters by the GEO and the data quality
enhancement using NNCAE. For both the GDSC1 and GDSC2 datasets, the proposed
approach has obtained an accuracy of 0.9699 and 0.9778, respectively. Therefore,
maximizing the size of the GSDC dataset for model training has significantly increased the
prediction accuracy.

CONCLUSION
This work aimed to develop an efficient DRP model for GDSC1 and GDSC2 based on
advanced DL classifiers. Additionally, the negative impact of the noisy, outlier data, which
was imbalanced, must be tackled effectively. NNCAE and GEO-Conv-LSTM models were

Figure 11 Processing time (complexity) comparison. Full-size DOI: 10.7717/peerj-cs.2520/fig-11

Table 7 Performance comparison against literature methods.

Methods GDSC1 GDSC2

CNN 0.8887 0.8734

SVM 0.8943 0.9022

SNN 0.8654 0.9243

RF 0.9476 0.9032

LSTM 0.9501 0.9486

Conv-LSTM 0.9259 0.9566

NNCAE and GEO-Conv-LSTM 0.9699 0.9778
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developed to achieve these objectives and enhance anti-cancer drug sensitivity
prediction accuracy to the cancer cell lines obtained from gene expression data.
Experiments were performed on GDSC1 and GDSC2 datasets to evaluate the proposed
approach for the DRP problem. The proposed NNCAE and GEO-Conv-LSTM-based DRP
model obtained 96.99% and 97.79% accuracy for GDSC1 and GDSC2 data, respectively. It
has also reduced the overall complexity by minimizing the processing time for both
datasets. Although competent results were obtained, the proposed approach
performance could also be improved by investigating the impact of data sparsity and
different feature dimensions of the multimodal datasets in the future. In addition, different
deep learning models will be incorporated to avoid class imbalance and model complexity,
and the study will use different cancer datasets. The source code and dataset of the
NNCAE-GEO-Conv-LSTM method are available at https://github.com/WesamHajim/
Conv-LSTM-GEO.
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