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ABSTRACT
Diabetes is a disease that affects millions of people in the world and its early screening
prevents serious health problems, also providing relief in the demand for healthcare
services. In the search for methods to support early diagnosis, this article introduces a
novel prediabetes risk classification algorithm (PRCA) for type-2 diabetes mellitus
(T2DM), utilizing the chemosensitivity of carotid bodies (CB) and K-means
clustering technique from the field of machine learning. Heart rate (HR) and
respiratory rate (RR) data from eight volunteers with prediabetes and 25 without
prediabetes were analyzed. Data were collected in basal conditions and after
stimulation of the CBs by inhalation of 100% of oxygen and after ingestion of a
standardized meal. During the analysis, a greater variability of groups was observed
in people with prediabetes compared to the control group, particularly after
inhalation of oxygen. The algorithm developed from these results showed an
accuracy of 86% in classifying for prediabetes. This approach, centered on CB
chemosensitivity deregulation in early disease stages, offers a nuanced detection
method beyond conventional techniques. Moreover, the adaptable algorithm and
clustering methodology hold promise as risk classifications for other diseases. Future
endeavors aim to validate the algorithm through longitudinal studies tracking disease
development among volunteers and expand the study’s scope to include a larger
participant pool.

Subjects Computational Biology, Algorithms and Analysis of Algorithms, Artificial Intelligence,
Data Mining and Machine Learning, Data Science
Keywords Carotid bodies, CBmeter, K-means, Machine learning, Diabetes

INTRODUCTION
Diabetes is a metabolic disease, silent and insidious, that currently affects over 500 million
people worldwide (Sun et al., 2022). Although the first record of diabetes was made
hundreds of years before Christ (Stapley, 2001), this disease is still responsible for
thousands of deaths every year. Its early detection can prevent serious damage to health
and decrease the risk of death (Fitriyani et al., 2019).

In search of developing tools that can help in the classification or early diagnosis of
diabetes, many works have been done in the area of machine learning, some in a
non-invasive way (Ahmed et al., 2022; Chaki et al., 2022). Still, within this area, several
techniques have been used, which also use data obtained invasively, for example: with
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support vector machine (SVM) (Patil et al., 2022); K-means algorithm (Zhu, Idemudia &
Feng, 2019); artificial neural networks (Parab et al., 2021); and deep learning (Zhu et al.,
2021; Khan et al., 2024). In addition, much work for diabetes classification involves the
construction of hybrid algorithms (Zarkogianni et al., 2018; Saleh & Brixtone Batou, 2022;
Zhu et al., 2023; Anbananthen et al., 2023).

More specifically on the diabetes risk problem, many studies have emerged in the
literature that utilize approaches involving machine and deep learning architectures. For
instance, in Ramesh, Aburukba & Sagahyroon (2021), an end-to-end remote monitoring
framework is proposed for automated diabetes risk classification using SVM, alongside
management facilitated by personal health devices, smart wearables, and smartphones. A
different architecture is presented by Nilashi et al. (2023), which uses deep learning
combined with singular value decomposition and self-organizing maps to predict the risk
of diabetes mellitus. Additionally, Li et al. (2023) integrates methods of deep learning and
logistic regression to develop a risk model for type-2 diabetes mellitus (T2DM). Still more
recently, Bülbül (2024) introduces a hybrid deep learning model that combines a genetic
algorithm, a stacked autoencoder, and a Softmax classifier. These diverse approaches
highlight the topic’s peak and the ongoing advancements in utilizing machine and deep
learning techniques for effective diabetes risk classification.

For the characterization, diagnosis and classification of diseases, the literature describes
several biomarkers that have a broad definition. Herein, a biomarker is assumed as a
mensurable biological feature that indicates an ongoing pathogenic process. One
biomarker for the detection of prediabetes is the carotid bodies (CB) function assessment
(Conde et al., 2022). CBs are small chemoreceptor organs that function as metabolic
sensors. They are located at the bifurcation of the common carotid artery bilaterally and
measure 5–7 mm in length. An increased activity of CBs in individuals with prediabetes
has been shown via the Dejours Test (Dejours, 1962; Conde et al., 2022), a challenge-test
that uses a transient period of 100% O2 inhalation (hyperoxia) as a stimulus, to indirect
assessment of CB activity through changes in cardiorespiratory response (Cunha-
Guimaraes et al., 2020).

According to the American Diabetes Association, the criteria for diagnosing diabetes
are: fasting plasma glucose � 126mg=dL OR 2�h postprandial glucose � 200mg=dL
during oral glucose tolerance test (OGTT) OR HbA1C � 6:5% OR in a patient with
classic symptoms of hyperglycemia or hyperglycemic crisis, a random plasma glucose
� 200mg=dL. The OGTT, although widely considered the gold standard dynamic test for
diagnosing diabetes and prediabetes (Chamberlain et al., 2016; Jagannathan et al., 2020), as
well as fasting glucose, have certain limitations. Older studies, such as Gross et al. (2002),
already pointed out failures in detecting gestational diabetes and prediabetes. Similarly,
Carnevale-Schianca et al. (2003) highlights that reliable diagnoses and clinical decisions
cannot be based solely on fasting glucose, emphasizing the need for a more comprehensive
diagnostic approach. More recent research, such as Bogdanet et al. (2020), also identifies
the limitations of OGTT during pregnancy. Additionally, Lages et al. (2022) expands on
this discussion by recognizing that OGTT, besides not reflecting people’s usual eating
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patterns, can cause adverse effects such as vomiting, diarrhea, bloating, and a risk of
hypoglycemia and other associated complications.

In order to explore alternatives to current early diagnosis tools for diabetes, the CBmeter
prototype was developed (Lages et al., 2021) to test the hypothesis that indirect assessment
of CB activity may detect metabolic diseases in an early phase. The CBmeter is a device that
aims to collect and analyze data on heart rate (HR), respiratory rate (RR), oxygen
saturation and interstitial glucose data in real time and synchronously to relate the
function of CBs to metabolic diseases features. This test can provide an early indication of
prediabetes by assessing carotid body chemosensitivity, which correlates with insulin
resistance independently of fasting glucose levels (Cunha-Guimaraes et al., 2020; Conde
et al., 2022). The advantage of the CBmeter is its ability to detect early metabolic changes
without invasive procedures, offering a potential tool for early diagnosis before fasting
glucose or other traditional biomarkers indicate pathology. There are other publications
regarding the development of the CBmeter: Lages et al. (2021) sets out the essential
protocols for research and development of the equipment; Brito et al. (2018) presents the
software for signal acquisition and processing; Fonseca-Pinto et al. (2020) introduces a
methodology for indicating metabolic disease from the machine learning technique known
as principal component analysis (PCA); Conde et al. (2022) establishes CB as a new
biomarker for the early detection of prediabetes.

As a sequence of the CBmeter development work, the objective of this article is to
present a new hybrid algorithm, which performs clustering of CBmeter data via K-means
technique of machine learning and a scoring technique developed in this work. The
algorithm provides an estimate of risk (high, medium, or low) for a given patient to enter
the prediabetes group based on data from the CBmeter with oxygen stimuli and a meal.
The methodology presented herein consists in the formation of clusters of data from
volunteers with prediabetes and volunteers without prediabetes (control volunteers) via K-
means algorithm using data of time in minutes, HR and RR obtained by data collection
with the CBmeter. Through these clusters, the data are analyzed and strategies are
established for the creation of the classification algorithm. To facilitate the construction of
computational codes, for example in python or Matlab, the article provides three pseudo-
algorithms that summarize all the procedures presented in this work.

The main contributions of this article can be listed as follows:

. According to the authors’ literature search, there are no previous works that deal with
the development of algorithms using K-means and CB for the classification of risk for
prediabetes. Therefore, this work ensures originality and presents a new methodology in
the development of risk classification algorithms. Furthermore, the theory can also be
applied to other pathologies.

. The methodology developed allows for a clear differentiation in the characterization of
the clustering patterns of patients with prediabetes and control. A new variable was
inserted, namely variability, which enables to verify the difference between the clusters of
volunteers with prediabetes and control.
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. The prediabetes risk classification algorithm (PRCA) training process, which includes
the development of the scoring matrix (Y), which relates the clusters, the variables (HR,
RR and RR�RH) and the glucose level (fasting and postprandial) of the volunteers, is
part of an innovative structure. From Y, a new variable is derived, called maximum risk
(v). The novelty does not reside in the matrices per se, but in the whole approach,
including the construction of Y and v, as formally established by Eqs. (2)–(4) and
Algorithm 2, all of which are original contributions.

. The approach used is a non-invasive diagnostic support methodology. After obtaining
the v value during the training process with volunteers with prediabetes and their
respective glucose values (fasting and postprandial), for new indications of prediabetes
risk, only the HR and RR data of patients undergoing the CBmeter protocol, which
includes inhaling O2 and eating a specific meal, are needed.

. Algorithm 3 completes the PRCA, which provides an indication of risk for a given
patient to be part of the group of people with prediabetes. The algorithm is original and
uses Algorithms 1 and 2 for its operation and construction. Furthermore, it is easy to
adapt for application in other pathologies, with larger numbers of variables, volunteers,
and clusters.

The content of this article is not trivial. However, an effort has been made to write it in a
language that makes it easy for researchers in the fields of health, medicine and engineering
to understand. In addition, source code, raw data and a README.txt are provided as
Supplemental Files to guide researchers interested in reproducing the results. Finally, the
rest of the article is structured as follows: In the next section, one has the Methods; in third
section, the results are presented; in the fourth section, a discussion of some important

Algorithm 1 K-means for time and HR, RR and RR×HR variables.

Result: Matrix CPOXg,var of clusters via K-means algorithm of volunteers of group g and variable var of the 3 min after inhalation of oxygen.

Input: Patient matrix Pg,var containing the time, group and variable. Where:

g  1 ¼ prediabetes or 2 ¼ control

var  1 ¼ HR; 2 ¼ RR or 3 ¼ RR� HR

FOR i 1 : last patient

patient  Pg;varð0; iÞ %Selects time column 0 and patient i to perform the cluster%

patient  scalerðpatientÞ Standardizes the 0 and i columns to the same scale.

KmeansP  Kmeansðcluster number; patientÞ %Applying the

K-means algorithm%

CPg;varð0; iÞ  KmeansP %Saves the labels obtained from the patient clusters i %

endFOR

FOR t  11 : 13

CPOXg;varðt; :Þ  CPg;varðt; :Þ %Stores in the CPOX matrix the lines of%

%time 11, 12 and 13 which correspond 3 min after oxygen inhalation%
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Algorithm 2 Maximum risk.

Result: Maximum Risk (χ).

Input:Matrix G with the glucose level of the volunteers with prediabetes at each minute, where the lines are the time and the columns the glucose level of
each volunteer; Matrix CPOXg,var from Algorthm 1; Vector ID with the identification of the volunteers; Number of cluster names n; Number of variables
m.

Calculate Severity Level (SL) and Weight (W) by Eqs. (2) and (3).

FOR i 1 : last patient

FOR j 1 : last minute

SLðiÞ  equation 2½Gði; jÞ�
WðiÞ  equation 3½SLðiÞ�

endFOR

ConvertMatrix CPOXg,var to matrix Ng,var with the cluster names and with the attribution of the values ½1; 2; 3; 4; 5� to the clusters DU, DD, DUD, S, T,
respectively.

Calculate Association Matrix Δ.

D ½ID;W;N1;1;N1;2;N1;3�
Calculate Score Matrix (Ψ).

FOR j 1 : m

FOR i 1 : n

sum 0

FOR r  1 : n

IF Dðr; jþ 1Þ ¼ i

sum sumþ Dðr; 1Þ
endFOR

Yði; jÞ  sum

endFOR

endFOR

Calculate Maximum Risk (χ) by Eq. (4).

sum 0

FOR j 1 : m

max 0

FOR i 1 : n

IF Yði; jÞ > max

max Yði; jÞ
endFOR

sum sumþmax

endFOR

v sum
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aspects regarding the work is done; and the last section closes the article with the
conclusions.

METHODS
Participants and data collection
The participants were selected according to the methodology described in the CBmeter
study protocol, approved on 10 January 2019 by the Ethics Committee of the Leiria
Hospital Centre. Volunteers with prediabetes or T2DM and volunteers without
prediabetes were recruited in a multicentric, non-randomized controlled interventional
study conducted in Portugal during 18 months, resulting in the inclusion of eight
volunteers with prediabetes and 25 healthy controls. Data from eight volunteers with
prediabetes and 25 volunteers without prediabetes (control volunteers) were collected
according to the protocol previously mentioned. Briefly, the volunteers were assessed for
the variables of interest in baseline conditions during 10 min and afterwards, submitted to
100% oxygen inhalation during 10 s, and given a standardized meal after the twentieth
minute (21). HR and RR data collection was performed by CBmeter via CBView software
(Brito et al., 2018), a real-time physiological signal acquisition and processing system at an

Algorithm 3 Prediabetes Risk Classification algorithm (PRCA).

Result: Return “Low Risk”, “Medium Risk” or “High Risk”.

Input: Matrix D with patient data for prediabetes risk analysis; score matrix Ψ; maximum risk number (χ); number of cluster names n; number of
variables m.

K-means: Apply Algorithm 1 to obtain the matrix DOX (adapt Algorithm 1 to receive only one patient.).

Convert DOX to NOX.

Calculate The score:

score 0

FOR j 2 : 1þm

FOR i i : n

IF NOXðjÞ ¼ Yði; 1Þ
score scoreþYði; jÞ

endFOR

endFOR

Get The risk:

IF score < v
3

Return: “Low Risk”

IF v
3 � score < 2 v

3

Return: “Medium Risk”

IF 2 v
3 � score � v

Return: “High Risk”
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acquisition rate of 500 Hz. Interstitial glucose (iGlu) was collected every minute by means
of a flash glucose monitoring system (FreeStyle Libre, Abbott, Lake County, IL, USA). The
study was conducted in accordance with the Declaration of Helsinki, been previously
approved by the Ethics Committee of the Leiria Hospital Centre (Protocol number PI.NC.
EC.2018.01). Written informed consent was obtained via a specific form from all the
participants and/or their legal guardians. The full protocol of the research can be seen at
Lages et al. (2021).

Data dimensionality
As indicated in the previous subsection, the data comprises two groups of voluntaries:
patients with prediabetes and patients control. The algorithms created use time in the
clustering processes. Thus, the data used comprises time series ranging from 1 to 80 min,
with samples taken every minute for the HR, RR and RR×HR variables. It is therefore
important to note that the dataset is not two-dimensional, i.e., patients� variables, but
three-dimensional, that is, patients� variables� time. In formal mathematical notation:

X � RN�V�T where:

. N represents the number of patients,

. V represents the number of variables,

. T represents time.

Therefore, the dataset is described by:

X ¼ Xi;v;t
� �

for i 2 f1; 2; . . . ;Ng; v 2 f1; 2; . . . ;Vg; t 2 f1; 2; . . . ;Tg:

In this work, N can be 8 (group of people with prediabetes) or 25 (control group), V is 3
(for the HR, RR and RR×HR variables) and T is 80 (time ranges from minute 1 to minute
80). This characteristic of multidimensionality and its computational operationalization
can be clearly seen in Algorithm 1, presented in the Results section.

The K-means algorithm
To perform the clustering, the K-means algorithm from the Python library sklearn was
used. This algorithm is based on unsupervised learning, which learns the relationships
between data identifying when a group begins and ends another through a mathematical
metric (Hartigan & Wong, 1979; Bock, 2007). In its traditional version, the K-means
algorithm has the number K of clusters as input. From that, there is a random initialization
of centroids. Then, for each point in the database, a calculation of the distance from the
point to the centroids is performed, then this point is associated with the nearest centroid.
After this, the algorithm calculates the average of all the points associated to each centroid
and establishes a new centroid. The algorithm repeats the previous steps until there are no
more updates of elements in groups.

For the analysis of HR and RR, the K-means method stands out for its simplicity and
computational efficiency. K-means is particularly suitable when the number of clusters can
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be adequately defined, as will be shown later in the article, providing a clear segmentation
of the different physiological states based on the patterns observed in the biosignals. Unlike
complex methods such as Gaussian mixture models (GMM) and spectral clustering
(Srivastava, Sarkar & Hanasusanto, 2023), which require intensive parameter adjustments
and can be sensitive to the initial choice of parameters, K-means allows for straightforward
implementation and intuitive interpretation of clustering results. Compared to DBSCAN
(Bushra & Yi, 2021), known for its robustness in dealing with variable densities and
outliers, K-means is more appropriate when a clear segmentation of the data into defined
clusters is desired. While approaches based on deep learning, such as Autoencoders (Guo
et al., 2017), offer the capacity to capture non-linear complexities, they are more
computationally complex and less straightforward in terms of interpretability. Thus, K-
means remains a viable choice for biosignal analysis, standing out for its practical
applicability and ease of use.

Number of clusters
The determination of the number of clusters to be used in the classification algorithm is
based on analysis of the results of the section Analysis, arriving at a number of six clusters
for the data with the characteristics provided. Moreover, corroborates with this number,
analysis performed via algorithm within-cluster sum-of-squares (WCSS), which measures
the variation within each cluster. The WCSS technique establishes that the most
appropriate number of clusters for a given sample is obtained when there is less variation
in the decreasing curve. An example can be verified in Fig. 1.

Figure 1 WCSS graph indicating the appropriate number of clusters for the K-means algorithm.
Full-size DOI: 10.7717/peerj-cs.2516/fig-1
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Data augmentation technique
As the samples are unbalanced (eight volunteers with prediabetes and 25 without), data
augmentation techniques are needed for more reliable validation. In this work, the
adaptive synthetic sampling approach for unbalanced learning (ADASYN) (He et al., 2008)
was used, which is a variant of the synthetic minority over-sampling technique (SMOTE)
(Chawla et al., 2002). This method was implemented using MATLAB� R2020a (The
MathWorks, Inc., Natick, MA, USA).

The synthetic minority oversampling technique (SMOTE) is a method used to address
class imbalance in machine learning datasets by generating synthetic instances of the
minority class. Rather than simply duplicating existing minority examples, SMOTE creates
new, plausible samples by interpolating between existing data points. It selects a minority
instance, identifies its nearest neighbors from the same class, and generates synthetic
samples along the line segments connecting the instance to its neighbors. This approach
increases the diversity of the minority class and helps improve model performance,
particularly when the imbalance between classes leads to poor learning of minority
patterns.

On the other hand, adaptive synthetic sampling (ADASYN) extends SMOTE by
introducing an adaptive component that focuses on the most challenging examples in the
minority class. Instead of creating samples uniformly, ADASYN generates more synthetic
examples in regions where the minority class is harder to distinguish from the majority
class. This targeted approach enhances the model’s ability to learn from difficult areas,
refining the decision boundary and reducing bias in favor of the majority class.

RESULTS
The results of this article comprise two main parts: the first main part is made up of
subsections “Clustering process and analysis”, “Training process: score matrix and
maximum risk number”, and “Prediabetes risk classification algorithm (PRCA)”. These
subsections deal with the development of the PRCA, including some analysis, presentation
of Algorithms 1–3 and examples. The second part comprises the subsections “Performance
and Validation” and “Comparison with other methods”, aiming to show the validation
process using the four-fold Cross-Validation technique, while also highlighting the PRCA
relevance through comparisons with other studies employing cutting-edge technologies.

In support of this structure, Fig. 2 illustrates the complete framework of the PRCA,
outlining the primary functions of each part and providing an overview of the algorithm.
In the figure, Algorithm 1 consists of clustering the data via K-means, which makes it
possible to identify patterns in the HR and RR data clusters of subjects submitted to the
CBmeter protocol (inhalation of O2 and ingestion of a specific meal). The function of
Algorithm 2 is to train the PRCA using the clusters provided by Algorithm 1 and glucose
data from the volunteers selected for training. Finally, Algorithm 3 connects Algorithms 1,
2 and the HR and RR data of new patients (submitted to the CBmeter protocol) for risk
analysis and classification. It is important to note that Algorithm 3 does not require glucose
information for the subjects under analysis, thus making PRCA a non-invasive method for
supporting the diagnosis of prediabetes.
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Clustering process and analysis
In this first part of the results, using the K-means clustering technique, clusters analyses
were performed to identify patterns and determine strategies for the construction of the
classification algorithm, as well as for the determination of the most adequate number of
clusters. The variables (features) under analysis are time, HR, RR and RR×HR. These were
considered within the groups of people with prediabetes and control patients.

The clusters were generated using Algorithm 1, which receives a matrix Pg;var with the
data of a given variable for all volunteers of a given group. Since there were two groups
(individuals with prediabetes and control) and three variables (HR, RR and RR×HR), it
was assigned the following values: 1 for the group of people with prediabetes and 2 for the
control group; 1 for the HR variable, 2 for RR and 3 for RR×HR. For example, for P1;1 one
has the matrix of the group of patients with prediabetes with HR data, where the first

Figure 2 Schematic diagram of the prediabetes risk classification algorithm (PRCA).
Full-size DOI: 10.7717/peerj-cs.2516/fig-2
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column of the matrix is the time in minutes (from 1 to 80) and the following columns are
the HR of each patient with prediabetes (eight patients). So, in this example, one has a
matrix with 80 lines and nine columns, that is, P1;1 2 R80�9 (see Table 1). In the case of the
variable RR×HR from the group of patients with prediabetes, the matrix will be

P1;3 2 R80�17 (see Table 2). It is important to highlight that the k-means clustering

algorithm runs using HR, RR and RR×HR during the entire time interval, i.e., fromminute
1 to minute 80.

Algorithm 1 returns the labels of the clusters between the time and the variable of each
volunteer in the matrix CPOXg;var already in the 3 min after 100% oxygen administration,
that is, times 11, 12 and 13 min. For this work, the term “variability” was defined as the
index in percentage of the variation between the clusters of the volunteers of each group
and each variable. The formula for calculating variability is given by Eq. (1). A lower index
of variability means that in each group, for a given variable, a higher number of a given
pattern of equal clusters was observed. In the HR analysis, this account is given in detail in
order to clarify the concept of variability presented in this work.

Variability ¼ Cd

Ns
� 100; (1)

where Cd represents the total number of clusters of different colors for the same variable
and the same types of volunteers, and Ns denotes the total number of volunteers in the
same group (people with prediabetes or control) for the same variable.

Dejours test and time analysis
CB chemosensitivity was evaluated by two breaths of 100%O2, the double-breath Dejours
test, as with this test is possible to obtain a change in the oxygen drive almost free of
secondary factors since they are secondary in time (Dejours, 1962). To assess peripheral
chemosensitivity respiratory was measured using the CBmeter, since it was already
demonstrated that increased CB chemosensitivity observed in patients with prediabetes is
seen in the RR, but not in tidal volume (Cunha-Guimaraes et al., 2020).

Thus, RR was assessed with the CBmeter while the subjects breathed room air (21% O2;
normoxia), followed by two breaths of 100% O2 (hyperoxia) delivered at a 10 L/min flow,
and then normoxia again. Hyperoxia applied during a few seconds resulted in a decrease in

Table 1 Form of presentation (matrix with 80 rows and nine columns) of HR data of volunteers with
prediabetes for the Algorithm 1, where the time is given in minutes, and the HR in beats per minute.

TIME HR1 HR2 HR3 … HR8

1 59 68 81 … 63

2 59 67 80 … 65

3 57 63 81 … 62

..

. ..
. ..

. ..
. . .

. ..
.

80 62 69 90 … 69
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ventilation that reflects CB chemosensitivity exclusively, without interference of the central
nervous system chemoceptors (Honoring, 2003). The maneuver was repeated three times
in each patient to assess reproducibility of the test. If 100% O2 is breathed during
prolonged exposures (several minutes), ventilation does not change or could even have
increased.

The magnitude of the ventilatory depression caused by hyperoxia, often used as an
index of carotid body sensitivity although without definition of a gold standard protocol.
Herein, it was assessed the ventilatory responses to a brief hyperoxic test of 10 s to avoid
interference of the central nervous system chemoreceptors. RR was monitored before and
during the hyperoxic test with the CBmeter. Figure 3 shows that the mean of the RR of
volunteers with prediabetes, in general are lower than those of control volunteers.
Furthermore, by the Independent-Samples Mann-Whitney U Test (p = 0.007), it was
concluded that the first 3 min after hyperoxia (11, 12, and 13) are linked to a greater
ventilation decrease in response to the hyperoxic test (see red line in Fig. 3).

Therefore, this analysis verifies significant RR differences at times 11, 12 and 13. In the
following analyses, via the K-means algorithm, the term “variability” is designated to name
this pattern.

HR analysis
Basically, it is each person’s data that is clustered by the Algorithm 1. For example, the HR
data and time of a volunteer with prediabetes is submitted to the K-means algorithm with a
K value of 6. It should be noted that the method consists of clustering Time and HR; Time
and RR; and Time and RR×HR. This procedure can be checked in detail in “# OBTAINS
THE CLUSTERS FOR K=6” of the Python code “code_clusters_CBmeter.txt” provided as
Supplemental Material. The algorithm returns these data separated and labeled into six
groups. Figure 4 is a result of Algorithm 1 for volunteers with prediabetes in the HR data.

Looking only at the first three columns of Fig. 4, HR1 is the column in which the HR
data is recorded over the 80-min Time (1st column) of subject 1. As the number of clusters
chosen for K-means was 6, the CL1 column shows how the HR1 data was clustered over
time by K-means. Figure 4 shows that the Time 11 and 12 min and HR1 data of 58 were
placed in group 2 by K-means. The pair of minutes 13 and HR1 of 62 was placed in group
5. This process is carried out for each minute (between 1 and 80), where for each pair

Table 2 Form of presentation (matrix with 80 rows and 17 columns) of RR×HR data of volunteers
with prediabetes for the Algorithm 1, where the time is given in minutes, and the HR and RR in beats
per minute.

TIME RR×HR1 RR×HR2 RR×HR3 … RR×HR8

1 6 59 15 68 15 81 . . . 18 63

2 8 59 19 67 16 80 . . . 18 65

3 15 57 15 63 17 81 . . . 17 62

..

. ..
. ..

. ..
. ..

. ..
. ..

. . .
. ..

. ..
.

80 16 62 17 69 17 90 . . . 18 69
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(Timei;HR1i) K-means indicates to which group it belongs. During K-means processing,
the pairs (Timei;HR1i), for i ¼ 1; 2; . . . ; 80, can change groups until they reach the point
where no more updates are possible (for example, when the centroids no change).

Figure 4 HR clusters provided by Algorithm 1 for volunteers with prediabetes, where HR1, in beats
per minute, represents the HR data of volunteer 1 with prediabetes, and CL1 represents the group
(out of a total of six) in which each volunteer’s HR information was placed. The same interpreta-
tion follows for the other volunteers. Full-size DOI: 10.7717/peerj-cs.2516/fig-4

Figure 3 Means of the volunteers’ RR over time. Each point on the graph represents the mean RR data
from volunteers with and without prediabetes at each minute. For example, at time 20, the RR values of
volunteers without prediabetes were summed and divided by the total number of volunteers without
prediabetes, resulting in approximately 17.1 breaths per minute.

Full-size DOI: 10.7717/peerj-cs.2516/fig-3
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This method of using K-means allows to find a pattern in minutes 11, 12 and 13, which
are the 3 min after inhaling oxygen, and this is the return from Algorithm 1 for the
variables (HR, RR, RR×HR) of all the subjects. Also note that the HR4 data for minutes 11,
12 and 13 remain in the same group (group 5). On the other hand, for all the other
volunteers, there is a variation between groups, between minutes 11, 12 and 13, which is
the case for volunteer HR1. As explained before, note that for this volunteer the HR data
fell into groups 2 and 5. This procedure enabled a clear observation that, in minutes 11, 12,
and 13, the HR data exhibit patterns that distinguish volunteers with prediabetes from
volunteers without prediabetes.
Remark 1. It is important to note that the method is not real-time; it is necessary to have all
the data (a complete collection of HR and RR over the 80 min) before applying Algorithm 1
and obtaining the clusters.

In the HR analysis, grater variability is observed between minutes 11 and 13 (post-
oxygenation) for the volunteers. From Fig. 4, only the fourth volunteer (all blue) of the
cluster of peoples with prediabetes did not present any group variation, and seven
volunteers had a variation of groups (clusters of different colors, that is, Cd) between
minutes 11, 12 and 13. Applying Eq. (1), one has:

Variability ¼ Cd

Ns
� 100 ¼ 7

8
� 100 ¼ 87:5%:

Figure 5 shows the clusters (CL) for the 25 control volunteers during minutes 11, 12 and
13. One can notice less variability for this group. That is, of the 25 volunteers, 12 had an
inter-group variation which corresponds to 48% of the total, that is:

Variability ¼ Cd

Ns
� 100 ¼ 12

25
� 100 ¼ 48%:

To determine the ideal number of clusters, the analysis was carried out with various
numbers of clusters (K) as shown in Fig. 6, and the WCSS algorithm was applied, whose
graph is shown in Fig. 1. Figure 6A shows the variability percentages for other cluster
numbers. The graph has a trend line obtained by means of polynomial regression of degree
3, where the horizontal axis represents the number of clusters and the vertical axis
represents the variability in percentage.
Remark 2. Figures 4 and 5 show the 3 min after oxygen inhalation (11, 12 and 13), where
HR_ and CL_ represent the HR and the cluster indicated by the algorithm respectively for
each volunteer. Colors were added for better visualization and to distinguish the types of
groups found. It should be noted that each series of clusters covers a time series between
minute 1 and minute 80 for each volunteer. For example, CL1 represents the group labels
returned by K-means for volunteer 1’s HR data, indicating that minutes 11 and 12 of HR1
belong to group 2 (blue) and minute 13 belongs to group 5 (orange). The same analysis is
carried out for RR and RR×HR.

RR analysis
Similarly to the HR analysis, in the RR analysis, also using K ¼ 6, greater variability
was observed between minutes 11 and 13 (post-oxygenation) for the volunteers with
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prediabetes. It is seen that all volunteers had group variation in each cluster, this indicates
100% variability. For the control volunteers, one notices less variability. That is, of the 25
volunteers, 16 had variation between groups, which corresponds to 64% of the total.

Figure 6B shows the variability percentages for other clusters numbers.

RR×HR analysis
Next, one has a cluster analysis of the RR vs. HR data for control and volunteers with
prediabetes. Figure 6C shows the results of this analysis. For example, for a number of six
clusters, it was found that for minutes 11, 12 and 13 the index of variability is 100% for
people with prediabetes and 76% for control patients.

By observing Figs. 6A–6C, it can be identified that there is a greater distance in the
curves between values 5 to 7. This distance indicates the relative variability between the two
groups, as well as, the point of greatest separation between them. Thus, it is established as
six the number of K adequate (of the K-means algorithm). This value is in accordance with
the one obtained by the WCSS algorithm.

Clusters names

As observed in the previous sections, the clusters follow certain number/color patterns.
Thus, one can name these clusters according to their pattern as per Fig. 7. One can create a

Figure 5 HR clusters provided by Algorithm 1 for volunteers without prediabetes, where HR1, in
beats per minute, represents the HR data of volunteer 1 without prediabetes, and CL1 represents
the group (out of a total of six) in which each volunteer’s HR information was placed. The same
interpretation follows for the other volunteers. Full-size DOI: 10.7717/peerj-cs.2516/fig-5
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function to convert the data in the matrix CPOX into a matrix with the cluster names,
attributing values to them. This is the idea of the Convert of Algorithms 2 and 3.

In Fig. 8, for the K parameter of the K-means algorithm equal to 6, the variabilities for
the HR, RR and RR×HR variables of the volunteers with prediabetes and without
prediabetes are compared. Note in the Fig. 8 (generated from the data in Fig. 6), and
according to the variability Formula (1), that the clusters of different colors (DD, DUD,
DU and T) represent the value of variability for the different variables. In these graphs, one
can clearly see a different quantification of clusters between the control and the volunteers
with prediabetes. This quantitative relationship enables the creation of a score in order to
rank the volunteers with prediabetes, their clusters and the glucose data collected. In the
Score and maximum risk subsection, the clusters are quantified and differentiated
according to their different types. From the establishment of this score, one can obtain a
risk classification for other patients through their clusters.

Training process: score matrix and maximum risk number
In this second part of the results, one presents the training process of the PRCA, which is
systematized by Algorithm 2. After the entire clustering process performed by Algorithm 1
using K-means, Algorithm 2 takes as input the clusters of the volunteers with prediabetes

Figure 6 Variability for different numbers of clusters: (A) HR data; (B) RR data; (C) RR×HR data. Full-size DOI: 10.7717/peerj-cs.2516/fig-6
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and their glucose values. As a result, the score matrix and the maximum risk number are
generated.

Firstly, the association matrix D (Table 3) must be obtained, where the samples used for
training, the weights derived from their glucose values, and the clusters provided by
Algorithm 1 are related. The weights are obtained by quantifying the severity level (SL),
which is calculated based on the glucose levels of volunteers with prediabetes. Figure 9
depicts a graph of the glucose level of people with prediabetes and control volunteers.

The graph in Fig. 9 was used to establish a parameter to measure the SL of each
volunteer with prediabetes, where the red vertical lines are the time markers that represent
the disconnection of the means of the volunteers with prediabetes and the control
volunteers. Then the SL of each volunteer, calculated by Eq. (2), is obtained by the mean
glucose outside the interval ðtg ;TgÞ (border markers of separation of glucose data from the
means of volunteers with prediabetes–see Fig. 9), where gi;j is the glucose level (mg/dl) of
volunteer i at time j.

SLi ¼

Ptg

j¼1
gi;j

tg
þ

P80

j¼Tg

gi;j

Tg � tg
; for i ¼ 1; . . . ; 8; and j ¼ 1; . . . 80: (2)

Figure 8 Graph of comparison of variability with K = 6. Full-size DOI: 10.7717/peerj-cs.2516/fig-8

Figure 7 Clusters names. Full-size DOI: 10.7717/peerj-cs.2516/fig-7
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From the SL, according to Eq. (3), a normalized weight (W) between 1 and 10 can be
established to be used to obtain the score.

Wi ¼ SLi
100

: (3)

For example, the weight (W) of the patient 20180101001 is calculated as follows:
1. As shown in Fig. 9, take tg ¼ 34 and Tg ¼ 55, and consider for this patient i ¼ 1;
2. Apply Eq. (2) using the glucose data collected from this patient, then:

SL1 ¼

P34

j¼1
gi;j

34
þ

P80

j¼55
gi;j

55� 34
¼ 93þ 125:15 ¼ 218:15;

Figure 9 Graph of the media glucose of the volunteers. Full-size DOI: 10.7717/peerj-cs.2516/fig-9

Table 3 Matrix D: Weights and clusters of each volunteer with prediabetes, where W is the weight
calculated for each patient from Eqs. (2) and (3).

Patient ID Weight W Clusters HR Clusters RR Clusters RR×HR

20180101001 2.1815 DU DUD T

20180101002 2.8356 DU DD DUD

20180101003 2.476 DU DD T

20180101004 2.175 S DUD DUD

20180101005 1.5246 DUD DD DUD

20180101006 1.6958 DD DU T

20180101007 2.1543 DU DUD DU

20180101008 2.8676 DD DUD DUD
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3. Apply Eq. (3):

W1 ¼ SL1
100
¼ 218:15

100
¼ 2:1815:

The volunteers with prediabetes were organized according to their (W) and associated
with their clusters within each variable. For this, the association matrix D was defined,
where the rows represent each volunteer with prediabetes. The first column represents the
associated weight and the other columns the clusters of the variables HR, RR and RR×HR.
Table 3 shows this representation.

Finally, to construct the score matrix (Y) one must take the cluster names as rows and
the variables as columns, in order to obtain a matrix Y 2 Rn�m where n is the number of
cluster types (names) and m is the number of variables. Each term of the matrix (Yi;j) is
calculated from the matrix D (Table 3). The calculation is performed by adding the weights
of the clusters of the same name that appear within a given variable. For example, cluster
DU appears four times in variable HR in Table 3, being its weights 2.1543, 2.1815, 2.476
and 2.8356 respectively. Then the sum of these weights provides the term Y1;1 ¼ 9:64.
Table 4 gives the values obtained for all the terms of the Y matrix.

Given the Table 4, it is observed that the maximum score that is possible to obtain for
the whole Ymatrix is v ¼ 28:41, considering the maximum value of each of the variables.
In general, this result can be obtained by the expression 4:

v ¼
Xm

j¼1
max

i
fYi;jg: (4)

Algorithm 2 establishes all the procedures for constructing the D, Y matrices and
obtaining the number v.

Prediabetes risk classification algorithm
The third and final part of the PRCA is characterized by Algorithm 3, whose function is to
indicate the level of risk in any given subject. To do this, Algorithm 3 uses the clustering
process of Algorithm 1 and the training information provided by Algorithm 2 (score
matrix and maximum risk number). Algorithm 1 is used to obtain clusters of HR, RR and
RR×HR data for the individuals under analysis, who were submitted to the CBmeter

Table 4 Score matrix (Y), where the values represent the sum of each cluster name for each variable,
calculated from Table 3.

Cluster name Score HR Score RR Score RR×HR

DU 9.64 1.69 2.15

DD 4.56 6.83 0

DUD 1.52 9.37 9.4

S 2.175 0 0

T 0 0 6.35
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protocol (which includes inhaling O2 and eating a specific meal). From this, Algorithm 3
calculates the individual’s score (from the Score Matrix, adding up the value of each
cluster, i.e., HR, RR and RR×HR of the subject under analysis) and then indicates the risk
by checking which of the ranges in Table 5 their score falls into. Note that the process in
Algorithm 3 is not invasive, as the algorithm is already trained.

This table is built according to the maximum risk number (v), which is divided into
three parts, where the first part indicates the score range for low risk; the second part, for
medium risk; and the third part, for high risk. Next, Algorithm 3 is presented, which
establishes the procedures for classification.

Two examples are given. These examples illustrate how the risk classification algorithm
for prediabetes works. The objective is to verify what the risk level is for a given patient to
enter the group of people with prediabetes from the HR, RR, RR×HR clusters generated by
the K-means algorithm. Furthermore, this example compares two volunteers from the
control group and correlates the level of risk found with the level of severity via glucose
(SL) calculated from Eq. (2) of the respective volunteer.

Control volunteer 20180102001
The HR, RR and RR×HR clusters generated for this volunteer are shown in Fig. 10A. In the
same figure, at the bottom, the score is associated according to Table 4 for each variable
(HR, RR and RR×HR). Summing the score for each variable, the value 9.005 is obtained,
which fits a low risk level for this volunteer to enter the group of people with prediabetes.
For this volunteer, the SL is equal to 180.25.

Control volunteer 20180102002

The HR, RR and RR×HR clusters generated for this patient are shown in Fig. 10B, being all
the same type (double up). Summing the score for each variable, the value 13.48 is
obtained, which fits a medium risk level for this patient to join the group of people with
prediabetes. For this patient, the SL is 191.81.

Performance and validation
The algorithm’s performance can be seen from the graph in Fig. 11. This graph shows the
trend in the risk of control volunteers (blue dashed line with circular markers) after being
subjected to the algorithm. It can be seen that as blood glucose increases (SL), the risk also
increases, but to a more moderate extent compared to volunteers with prediabetes (orange

Table 5 Risk table for prediabetes, where the range values are calculated from the maximum risk
established by Eq. (4).

Range Risk

0 ‘ 9:47 Low

9:47 ‘ 18:94 Medium

18:94 ‘ 28:41 High

Pinheiro et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2516 20/32

http://dx.doi.org/10.7717/peerj-cs.2516
https://peerj.com/computer-science/


continuous line with square markers). The trend lines were obtained by simple linear
regression from the markers that were classified by the PRCA Algorithm.
Remark 3. Note that Fig. 11 shows the performance of the algorithm trained with all the
volunteers with prediabetes. This is different from validation. The cross-validation technique
was used for validation, which will be explained below.

At this stage of the CBmeter investigation, the validation of the PRCA can be
approached by treating it as an artificial intelligence classification task. In this case,
volunteers labeled as High Risk are considered to have prediabetes, while those labeled as
Low Risk are considered to be without prediabetes. For simplification, volunteers labeled as
Medium Risk are regarded as successful classifications.

Figure 10 Risk test for two volunteers: (A) volunteer 20180102001; (B) volunteer 20180102002.
Full-size DOI: 10.7717/peerj-cs.2516/fig-10

Figure 11 Risk trend of control volunteers entering the group of people with prediabetes. The graph
shows the risk of the volunteers being in the prediabetes group: the lower bubbles represent volunteers
with low risk (they do not actually have prediabetes); the bubbles and squares in the middle represent
medium risk (some have prediabetes and some do not); and the bubbles and squares at the top represent
a high risk of being in the prediabetes group (the orange squares are actually volunteers with prediabetes
and the blue bubbles by the standard test do not currently have the disease, but according to the algo-
rithm they are at risk of it). Full-size DOI: 10.7717/peerj-cs.2516/fig-11
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The validation was carried out using the four-fold cross-validation technique (see more
in Wong & Yeh (2019)). This means the volunteers with prediabetes were randomly
divided into four groups, each containing two samples, resulting in a total of eight samples.
Four rounds of testing were performed, with each round using one group for testing (two
samples) and the remaining three groups (six samples) for training. Table 6 illustrates this
process. The proportion for testing and training is similar to that used by Ahmed et al.
(2022) of 70:30, i.e., 70% of the data for training and 30% of the data for validation.

The training process involves using the volunteers with prediabetes to determine the
maximum risk number (v) in each round. Since the PRCA algorithm employs
unsupervised learning via k-means clustering, it groups data based on distance measures,
forming distinct clusters. Although the algorithm is trained only with data from volunteers
with prediabetes, it can also classify synthetic data (generated from the volunteers with
prediabetes) and control group data. This is possible because PRCA identifies patterns
within the data and separates groups based on their proximity or distance from the
training data. Generally, the farther a patient’s clusters are from the training data clusters,
the lower their risk of having prediabetes.

In the validation approach presented in this study, control group data and synthetic
data generated using the ADASYN technique were added. ADASYN increased the number
of data points for volunteers with prediabetes to match the number of control group
volunteers. Since there are eight volunteers with prediabetes and 25 volunteers without
prediabetes, the algorithm generated 17 synthetic samples from the volunteers with
prediabetes.

As a result, there are 17 artificial samples from volunteers with prediabetes, plus 2
original data samples, totaling 19 samples per round. For the volunteers without
prediabetes, 25 samples are available. Of these, 19 are randomly selected for each round,
balancing the dataset for validation. The final validation result is the average of the
performance metrics across the four rounds.

Table 6 Cross-validation process four-fold: in bold, test samples; and without bold, training samples.

Group 1 Group 2 Group 3 Group 4

20180101008 20180101002 20180101005 20180101007

Round 1 20180101001 20180101006 20180101004 20180101003

Test Training Training Training

20180101008 20180101002 20180101005 20180101007

Round 2 20180101001 20180101006 20180101004 20180101003

Training Test Training Training

20180101008 20180101002 20180101005 20180101007

Round 3 20180101001 20180101006 20180101004 20180101003

Training Training Test Training

20180101008 20180101002 20180101005 20180101007

Round 4 20180101001 20180101006 20180101004 20180101003

Training Training Training Test
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The metrics used for evaluation are accuracy, precision, recall, and F1-Score, which are
described in more detail below:

. Accuracy shows the overall performance of the model, indicating, among all diagnostics,
how much the model indicated correctly. Accuracy is a good overall indication of how
the model performed. However, there may be situations in which it is misleading, so it is
necessary to check the other metrics as well.

. Precision checks how many of the positive classifications the model has made are
correct. Precision can be used in a situation where false positives are considered more
harmful than false negatives.

. Recall/Revocation/Sensitivity calculates among all the positive class situations as
expected value, how many are correct. The recall can be used in a situation where the
false negative is considered more harmful than the false positive.

. F1-Score is the harmonic mean between precision and recall. The F1-Score is simply a
way of looking at only one metric instead of two (precision and recall) in a given
situation. It is a harmonic mean between the two, meaning that when you have a low F1-
Score, it is an indication that either precision or recall is low.

The formula for each metric is obtained from the confusion matrix structure shown in
Fig. 12.

Figure 13 shows the confusion matrix for the four rounds of cross-validation.
Subsequently, according to the formulas in Fig 12, A, P, R and F1-Score (F1) are calculated
for each round, with the final result being the simple arithmetic mean of each metric. Thus,
using the four-fold cross-validation technique, an accuracy of 86%, precision of 95%, recall
of 78%, and F1-Score of 85% are obtained.

Comparison with other methods
Considering the PRCA as a classifier, it can be compared with other classification
algorithms. Using MATLAB� R2020a and the same dataset, Pinheiro, Guarino & Fonseca-
Pinto (2024) developed a classification algorithm via support vector machine (SVM) with
linear, polynomial, and RBF kernels. The same data balancing method (ADASYN) was

Figure 12 Formulas of the evaluation metrics. Full-size DOI: 10.7717/peerj-cs.2516/fig-12
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used. In that work, the results were obtained as shown in Table 7. Upon examining the
table, it is observed that the PRCA has better accuracy.

Although a reasonable comparison for PRCA is presented in Table 7, for a better
overview of what is available in the literature, Table 8 presents some other studies aimed at
supporting diabetes diagnosis. It is important to note that the Table 8 should not be used to
directly compare performance with PRCA, as the studies listed were conducted under
substantially different conditions, using different datasets, methodological approaches and
parameters from those applied in the development of PRCA. The table includes
information on the method, sample size, number of resources, accuracy and whether the
method is invasive or non-invasive. The table shows that all algorithms use a greater
number of features and the vast majority of them are invasive. In addition, they all have a
larger number of samples, which is a limitation of this study.

Notably, in addition to being a non-invasive method, PRCA uses fewer features, which
indicates a lower computational cost. Moreover, with the acquisition of additional samples

Figure 13 Confusion matrices of the four-fold cross validation according to the rounds in Table 6.
Full-size DOI: 10.7717/peerj-cs.2516/fig-13

Table 7 Comparison of PRCA with SVMmethods by Pinheiro, Guarino & Fonseca-Pinto (2024) with
same dataset.

Method Accuracy (%)

PRCA 86

SVM Polynomial 82.4

SVM Linear 78.6

SVM RBF 77.4
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in the continuation of this investigation in the future, the algorithm’s performance could
improve, as a larger dataset provides more examples for the model to learn from (Elfatimi,
Eryiğit & Elfatimi, 2024).

DISCUSSION
In the construction stage of the PRCA, interstitial glucose measurements, which are
minimally invasive, were necessary for training purposes. However, once the algorithm is
fully trained and operational, it no longer requires interstitial glucose data. Instead, it relies
solely on HR and RR data, which are influenced by oxygen and meal stimuli. As a result,
the continuous application of this algorithm does not require invasive procedures, thus
designating it as a non-invasive method for monitoring and classifying the risk of
prediabetes.

In the development of the clustering technique, the clusters were performed using the
K-means algorithm with different values of K in order to obtain the best parameter.
Besides, the WCSS algorithm was used, confirming that the adequate number of clusters
was six for the three feature variables (HR, RR and RR×HR) from a simple average.
However, the algorithm could have also been developed by establishing the number of
clusters for each feature. It was not done in order to reduce the complexity of the presented
issue.

In this work, good results were obtained using a frequency down-sampled to 1-min bins
for HR and RR. This fact shows the power of the algorithm with respect to computational
cost in relation to its accuracy (86%), because the higher the frequency of analysis, the
greater the amount of data, thus increasing the computational cost. However, the
algorithm is easily adaptable to work with higher frequencies, a fact that would increase the
computational cost, although it may have a better screening of prediabetes or for other
types of diseases in which it can be applied. In future work, with a larger number of
volunteers, the intention is to analyze in detail the issue of the cost-benefit of the method,
with regard to the number of volunteers, as well as the frequency used.

Table 8 Other methods and datasets in the literature.

Work Method Sample Features Accuracy (%) Invasive

Khan et al. (2024) ANN + feature selection 768 6 99 Yes

Ahmed et al. (2022) SVM + ANN + Fuzzy 520 17 94 No

Patil et al. (2022) Modified mayfly-SVM 1,133 33 94 Yes

Zhu, Idemudia & Feng (2019) K-means + Log. Reg. + PCA 1,500 13 89 Yes

PRCA (this work) CB + K-means + Score 33 3 86 No

Zhu, Idemudia & Feng (2019) K-means + XGBoost + PCA 1,500 13 85 Yes

Nilashi et al. (2023) ANN + Self-Organizing Map 768 6 84 Yes

Ramesh, Aburukba & Sagahyroon (2021) SVM 768 6 83 Yes

Zhu, Idemudia & Feng (2019) K-means + Naïf Bayes + PCA 1,500 13 82 Yes

Zhu, Idemudia & Feng (2019) K-means+ KNN + PCA 1,500 13 78 Yes

Zhu, Idemudia & Feng (2019) K-means + SVM + PCA 1,500 13 58 Yes
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Considering PRCA as a classification algorithm, it was possible to make a comparison
with the results of another classifier using the SVM method (see Table 7), which has a
completely different approach in relation to the algorithm developed in this work. SVM is
a powerful tool in the field of machine learning for building algorithms that help diagnose
diseases. SVM is based on supervised learning, while the PRCA method uses an
unsupervised learning technique. The comparison shows that the best classifier using the
SVM technique achieved an accuracy of 82.4%, ranking behind PRCA, which achieved an
accuracy of 86%. Additional considerations are made on the basis of Table 8, highlighting
PRCA as one of the few methods with a non-invasive approach, as well as achieving good
results using few features and a reduced number of samples. Another important point is
that PRCA is the only method, among those shown in the table, that offers a strategy aimed
specifically at screening for prediabetes. Among the methodologies that use the K-means
algorithm, PRCA stands out positively compared to the others. It is important to note that
among these methods, only PRCA adopts a non-invasive approach.

The results of the cluster analyses, made it possible to verify some mathematical
topological properties that indicate the separability of the data found after the clusters. For
example, Figs. 3, 6, 8 and 9 in all the points of prediabetes and control it is possible to find a
disjoint neighborhood that separates from other points. Being at the extremes, this
separation greater. In mathematics, this type of topology can be within the Hausdorff
spaces that contain important properties to develop algorithms using machine learning
and make statistical inferences (Chen, Genovese &Wasserman, 2017;Dasoulas et al., 2019).

There are many works in the literature that use score techniques in the design of
algorithms to determine the risk for some pathology. The technique of scores and
determination of a maximum risk value developed in this work is an alternative heuristic of
low computational cost carefully designed to associate the clusters and diabetes to classify
the risk. With the approach used, the algorithm becomes of easy change for adjustments
and validations in other pathologies.

The concept of severity level (SL) was elaborated from the glucose level (fasting and
postprandial) of the volunteers submitted to the CBmeter protocol, that is, assessing
changes in HR, RR, SpO2 and plasma glucose after 100%O2 administration and after
eating a standardized meal. In contrast to the gold standard, this methodology submits the
patient to conditions that better mimic their daily life, making it possible to detect blind
spots that the gold standard does not capture. Moreover, compared to fasting blood
glucose tests, the CBmeter detects metabolic dysfunctions earlier, before fasting glucose
rises, because the CBmeter offers a more detailed analysis of the sensitivity of the carotid
body, allowing early identification of insulin resistance (Conde et al., 2022). Although it has
a longer evaluation time, its duration is similar to the OGTT. However, further research is
needed to systematically validate the SL with this algorithm, to include more parameters in
addition to glucose (fasting and postprandial). For example, fasting insulin could be
included as an additional parameter for SL. Furthermore, more research is needed to make
better comparisons with the gold standard test, which is one of the limitations of this study.
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Another limitation of this study is the sample size. The study considered eight
volunteers with prediabetes and 25 volunteers without prediabetes. Although it is well
known that small samples negatively affect the quality of group-based estimates, this work
presents an algorithm that, according to preliminary results, appears promising. This
encourages continued investigation for effective validation and improvement of the
algorithm’s quality, aiming for future implementation in the medical diagnostic equipment
industry.

An important issue to be discussed, it is if in the future the algorithm presented in this
work could be considered a disease predictor algorithm and not just a classification
algorithm. The predictive capacity would be inherent in the developed CB method and in
the process of constructing and training the algorithm. This is explained by the fact that the
algorithm is built on an intervention that stimulates the CB, where this response to stimuli
is considered in the literature to be a biomarker for detecting prediabetes. As mentioned in
the introduction, a biomarker is a measurable biological characteristic that indicates an
ongoing pathogenic process, and the conclusion of this process will be (in the future) the
natural characterization of the disease. In addition, the PRCA training process is carried
out only with the eight volunteers with prediabetes, and the validation shows its ability to
determine the risk for people without prediabetes. However, in order to really say that the
algorithm presented in this work is a predictor, it would be necessary to continue the
investigation and validate it, which requires a longitudinal study of the participants.

Therefore, it should be noted that the PRCA is an initial prototype of an ongoing
investigation, with the ultimate goal being its definitive validation as a predictor. A long
time is required to know if a certain volunteer who was classified with a high level of risk,
developed the disease or not. Thus, the true validation of a possible risk predictor
algorithm based on the methodology presented in this article is a complex process that
requires a longitudinal study of the participants.

CONCLUSION
This article presents a potential prediabetes risk classification algorithm (PRCA) based on
unsupervised machine learning technique from real CBmeter data. The proposal of the
algorithm is ambitious, as it aims to identify possible patients with prediabetes who are not
captured by the current gold standard methods. It was shown throughout the work that the
algorithm is promising, taking into account its creation methodology and its performance.
This article is considered a pilot study for the development of a future risk predictor
algorithm. On the other hand, in a simpler view, PRCA can also be considered as a
classifier, which proved to perform better than the classifiers developed using the SVM
method.

PRCA, developed under the CBmeter protocol, makes a significant contribution by
providing the possibility of detecting insulin resistance early in a non-invasive way, before
fasting blood glucose changes. Unlike traditional tests that require blood sampling, it uses
ventilatory and cardiac responses to hyperoxia to identify prediabetes. This approach can
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simplify diagnosis, improve the patient experience and facilitate early screening,
complementing or even surpassing invasive methods such as fasting glucose. In addition,
PRCA has the ability to indicate the risk of prediabetes using a methodology that more
accurately reflects people’s usual eating patterns, while also avoiding the collateral effects
often associated with OGTT, such as vomiting, diarrhea, bloating, hypoglycemia and other
possible complications.

Future work will continue the CBmeter investigations to achieve precise validation
through complementary longitudinal studies of the volunteers, monitoring who develops
the disease, and conducting studies with a larger number of volunteers. Furthermore, it is
desired to adapt the algorithm developed in this article to other metabolic diseases so that,
in the future, the CBmeter will reach its implementation phase (TRL8) for the medical
device industry.
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