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ABSTRACT
In medicine, high-quality images are crucial for accurate clinical diagnosis, making
lossless compression essential to preserve image integrity. Neural networks, with
their powerful probabilistic estimation capabilities, seamlessly integrate with entropy
encoders to achieve lossless compression. Recent studies have demonstrated that this
approach outperforms traditional compression algorithms. However, existing methods
have yet to adequately address the issue of inaccurate probabilistic estimation by neural
networks when processing edge or complex textured regions. This limitation leaves
significant room for improvement in compression performance. To address these
challenges, this study proposes a novel lossless image compressionmethod that employs
a flexible tree-structured image segmentationmechanism.Due to the close relationships
between subimages, this mechanism allows neural networks to fully exploit the prior
knowledge of encoded subimages, thereby improving the accuracy of probabilistic
estimation in complex textured regions of unencoded subimages. In terms of network
architecture, we have introduced an attention mechanism into the UNet network to
enhance the accuracy of probabilistic estimation across the entire subimage regions.
Additionally, the flexible tree-structured image segmentation mechanism enabled us to
implement variable-speed compression.We provide benchmarks for both fast and slow
compression modes. Experimental results indicate that the proposed method achieves
state-of-the-art compression speed in the fast mode. In the slow mode, it attains state-
of-the-art performance.

Subjects Artificial Intelligence, Computer Vision, Multimedia, Neural Networks
Keywords Lossless compression, Neural networks, Medical image

INTRODUCTION
With the rapid advancement of imaging technology, medical images have become
increasingly vital in clinical diagnosis. High image quality is critical, as even small
details can impact diagnostic accuracy, necessitating the use of lossless compression
for storage. In lossless compression, arithmetic encoders can achieve near-optimal results
for a symbol s and its probability P , requiring −log2P bits according to the source coding
theorem (Shannon, 1948). Thus, compression algorithms using arithmetic coding must
first establish a probabilistic model to estimate P . The more accurate this estimation, the
fewer bits are needed, making efficient probabilistic modeling a key focus of research.
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Learning-based image compression methods have made significant progress in
improving image probability modeling performance. Typical methods, such as
PixelRNN (Van Den Oord, Kalchbrenner & Kavukcuoglu, 2016), use autoregressive models
to predict the conditional probability distribution of images pixel by pixel. In contrast,
L3C (Mentzer et al., 2019) employs a multi-scale entropy model to estimate the probability
of the entire image by leveraging the prior distribution in the latent space, effectively
reducing the computational complexity associated with pixel-by-pixel predictions.
However, these methods apply a uniform modeling strategy to all pixels, and their
probability estimation by neural networks remains inaccurate when dealing with edge
regions or complex textures.

Medical images typically contain complex anatomical structures and subtle lesion
textures, which are crucial formedical diagnosis. However, these intricate texture structures
also make medical images difficult to compress efficiently. Uniform modeling strategies
often struggle with rapidly changing texture regions, failing to accurately estimate the
probability distribution of the image. As a result, there is still considerable room for
improvement in the compression of medical images. This study adopts a subimage
partitioning scheme to enable a more flexible modeling strategy. By utilizing the strong
correlations between subimages to provide prior information, the inference capability of
the neural network is significantly enhanced. In the probability estimation module, we
integrate attention mechanisms with a UNet structure to further improve the accuracy of
the model’s probability estimation.

Specifically, we propose an enhanced probability estimation method based on flexible
subimage prior knowledge, aimed at improving estimation accuracy in these regions.
Drawing on the subimage partitioning schemes of High Efficiency Video Coding (Sze,
Budagavi & Sullivan, 2014) and Versatile Video Coding (Bross et al., 2021), we propose
the tree-structured flexible subimage partitioning scheme illustrated in Fig. 1. Initially,
a quadtree is used for the first-Level partitioning (Level 1 subimage) of the image.
Subsequently, a binary tree is employed for further partitioning of the first-level subimages
(Level 2 subimage), specifically splitting subimages B, C, and D according to odd
and even columns. Since odd and even columns are spatially adjacent, this ensures
that the subimageleft can provide strong prior knowledge for the subimageright , i.e.,
P(subimageright |subimageleft ). With this strong prior, the neural network can achieve
precise probabilistic inference for the subimageright , including complex textured regions.
In terms of network design, we incorporated the Squeeze-and-Excitation (SE) attention
mechanism (Hu, Shen & Sun, 2018) into the probability estimation module. This method
enhances model performance by recalibrating the feature responses in the convolutional
network channels. It significantly improves the network’s sensitivity to useful information
while suppressing the interference of irrelevant information, thereby enhancing themodel’s
probability estimation capability.

Based on the flexible subimage partitioning scheme, we propose a variable-speed
compression framework. As shown in Fig. 2, subimage A is first compressed using a
traditional encoder. Subsequently, the compression process can follow two paths: the
orange High Way and the green Low Way. The orange High Way targets compression
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Figure 1 Flexible subimage partitioning scheme with a tree structure. The original image is partitioned
into Level 1 subimages using a quadtree. The Level 1 subimages are then partitioned into Level 2 subim-
ages using a binary tree.

Full-size DOI: 10.7717/peerjcs.2511/fig-1

Figure 2 Overview of the compression process. The compression process comprises a rapid orange
channel and a slower green channel. By flexibly integrating the orange and green channels, Tunable Multi-
Scale compression is realized.

Full-size DOI: 10.7717/peerjcs.2511/fig-2

speed, while the green LowWay focuses on compression efficiency. This will be detailed in
the ‘‘Method’’ section. Thus, this compression framework allows for arbitrary combinations
of compression routes. In our experiments, we provide two benchmark tests: one using
the orange fast compression path a→ d→ b→ c and the other using the green slow
compression path a→ dleft→ dright→ bleft→ bright→ cleft→ cright .

The main contributions are summarized as follows:
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• Subimage partitioning scheme: By employing a flexible subimage partitioning scheme,
the neural network effectively leverages subimage information, addressing the issue of
inaccurate probability estimation in regions with complex textures.
• Network architecture improvement: An attentionmechanism was incorporated into the
probabilistic estimation model, boosting the model’s probabilistic estimation capability.
To the best of our knowledge, this is the first application of an attention mechanism in
the field of lossless compression, thereby extending its application scope.
• Flexible compression process combination: The proposed compression framework
allows for flexible combinations of compression processes. In the fast compression
scheme, we achieved the highest compression speed; in the slow compression scheme,
we attained state-of-the-art compression performance.

RELATED WORK
Likelihood-based generative models
Arithmetic coding requires obtaining the probability of each symbol; hence, early lossless
compression commonly employed autoregressive models. In such models, each pixel is
compressed based on previously encoded pixels. For instance, PixelRNN (Van Den Oord,
Kalchbrenner & Kavukcuoglu, 2016) processes image pixels sequentially using a recurrent
neural network (RNN), while PixelCNN (Van den Oord et al., 2016) models pixel values
using a masked convolutional neural network (CNN). Both methods predict pixels based
on the conditional distribution of all preceding pixels, modeling pixels as the product of
conditional distributions p(x) =

∏
p(xi|x1,...,xi−1), where xi represents a single pixel.

PixelCNN++ (Salimans et al., 2017), an improved version of PixelCNN, reduces
dependence on previous channels by modeling the joint distribution of each pixel.
Additionally, PixelCNN++ introduces discrete logistic mixture likelihood, multi-scale
downsampling, and extra shortcut connections, which enhance compression performance
and reduce processing time. Despite these improvements, PixelCNN++ retains the inherent
limitation of autoregressivemodels, requiring network computation for each pixel, resulting
in a time complexity of O(W ×H ), where W is the width and H is the height, leading to
prolonged inference times.

Multi-scale entropy models
To optimize compression efficiency and address time constraints. L3C hasmade pioneering
contributions in this field. L3C uses a hierarchical model to predict all pixels of an entire
image. Specifically, L3C considers the image X itself as the zeroth layer and utilizes the
first latent space Z1 to construct a probability model P(X |Z1). Similarly, compressing Z1

requires the second latent space Z2 , with the probability expression P(Z1|Z2), and so on.
However, since the last layer of features Z3 does not have a subsequent layer of features to
serve as a prior, P(Z3) is set to a fixed value. This fixed value usually deviates significantly
from the actual probability, resulting in poor compression performance for the last layer
of features Z3.

To address the lack of prior knowledge, residual compressor (RC) (Mentzer, Van Gool
& Tschannen, 2020) and deep lossy plus residual (DLPR) (Bai et al., 2024) approach the
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Table 1 Method analysis and improvements. This table highlights the key methods, including LC-FNet, PixelRNN, and RC, along with their ad-
vantages and disadvantages, while also demonstrating how our approach addresses the limitations of these methods.

Method Advantages Disadvantages Improvements

PixelRNN Pixel-wise modeling effectively leverages
contextual information, achieving high-
precision lossless compression.

High computational complexity, leading
to significant inference time costs.

Uses subimage level processing units
to reduce complexity and improve effi-
ciency.

RC Convert the original image to a resid-
ual image, leverage the concentration of
residual values to improve probability
prediction accuracy.

Requires additional storage for lossy im-
ages and residual images; lossy compo-
nents contribute limited information to
residual prediction.

Compresses the first subimage losslessly,
reducing storage overhead while enhanc-
ing residual prediction accuracy.

LC-FNet By classifying pixels based on their fre-
quency characteristics, the introduction
of the pixel classification concept leads to
improved compression efficiency.

Low and high frequency pixels occupy
different regions with weak correlation,
requiring a decomposition network for
classification, which increases computa-
tional overhead.

Binary tree decomposition method that
avoids extra computation and leverages
the tight spatial relationship between
even and odd pixels, providing strong
priors.

problem from the perspective of lossy compression. They use a lossy image as prior
knowledge to predict the residual probability of the image, with the probability model
P(Xresidual |Xlossy). By combining the residual with the lossy image, they achieve lossless
compression. These experiments provide crucial insights: a low bit-rate lossy image offers
prior knowledge, transforming the original image into a residual image. Leveraging the
concentrated nature of residuals improves the accuracy of probability prediction P .

In LC-FNet (Rhee et al., 2022), the authors deeply investigated residual characteristics
from a frequency domain perspective and proposed a frequency decomposition network.
This approach assumes that residual probability estimation in low-frequency regions is
relatively straightforward, whereas high-frequency regions are more challenging. Thus,
LC-FNet first compresses the low-frequency regions before processing the high-frequency
regions, leveraging prior information from the low-frequency regions to improve the
probability estimation of high-frequency regions. The probabilistic model is formulated
as P(Xhigh−frequency |Xlow−frequency). Wang et al. (2023b) proposed a novel decomposition
approach based on image storage bytes, contrasting LC-FNet’s frequency method. They
split the image into the most significant byte (MSB) subimage for higher-order bits and
the least significant byte (LSB) subimage for lower-order bits. The MSB, requiring lower
compression bitrate, is encoded traditionally and used as input to a neural network to
predict and encode the LSB.

In this paper, we are primarily inspired by LC-FNet, PixelRNN, and RC. While these
methods show distinct advantages in specific scenarios, they still face limitations regarding
computational complexity, compression efficiency, and flexibility. Building on these
insights, this paper proposes a novel multi-scale compression framework that introduces
subimage-level lossless priors and binary-tree decomposition strategy to overcome some
of the bottlenecks of existing approaches. The specific improvements are summarized in
Table 1.
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METHOD
The overall process of our method is shown in Fig. 2. First, subimage A is losslessly
compressed using an advanced traditional compression algorithm. JPEG-XL (Alakuijala
et al., 2019) is chosen because when the neural network lacks prior knowledge, it cannot
perform effective probability estimation. In such cases, traditional algorithms demonstrate
higher competitiveness. Subsequently, the compression process can follow either the
high-speed orange channel or the slow-speed green channel.

In the orange channel, subimage A is input into the learning-based compressor LC-
H, which outputs the predicted pixel Ŷ and residual probability P for subimage D. The
predicted pixels Ŷ are subtracted from the true pixels Y of subimageD to obtain the residual
R. R and P are then input into the arithmetic coding (AC) for lossless compression.

In the green channel, subimage A is input into the learning-based compressor LC-H-
Extend, which outputs the predicted pixels Ŷ and residual probability P for subimageDleft .
The predicted pixels Ŷ are subtracted from the true pixels Y of subimageDleft to obtain the
residual R. R and P are then input into the arithmetic coding for lossless compression. The
encoded A and Dleft are combined as prior information and input into LC-L. The process
is similar to LC-H, resulting in the residuals R and residual probability P for subimage
Dright , which are then input into the AC for compression. Since cat (Dleft ,Dright )→D, the
outputs of the orange and green channels are the same. The compression processes for
subimages B and C follow the same logic as for subimage D.

Algorithm 1 describes the entire compression workflow of Fig. 2 in pseudocode form.
In line 1, the pseudocode outlines the decomposition of the input image I into four level-1
subimages: Ia, Ib, Ic , and Id , corresponding to the process illustrated in Fig. 1. Lines 2 to
4 describe the process of compressing subimage Ia using JPEG-XL, as shown in Fig. 2,
ultimately generating the initial bitstream bitStreamIa .

Next, the pseudocode details the process in the orange channel (high-speed channel)
shown in Fig. 2. In lines 6 to 8, the algorithm first retrieves the real subimage
realimg (denoted as Y in Fig. 2) at the current position pos. The LC-H module is then
used to obtain the predicted subimage predimg (denoted as Ŷ in Fig. 2) and the residual
probability resprob (denoted as Probability in Fig. 2). By subtracting the predicted subimage
predimg from the real subimage realimg , the residual subimage resimg (denoted as R in
Fig. 2) is obtained. Line 20 describes the process of feeding the residual subimage resimg
and residual probability resprob into the entropy encoder for compression.

Subsequently, the pseudocode describes the process in the green channel (slow-speed
channel) as illustrated in Fig. 2. Lines 10 to 11 explain the LC-H-Extend compression
process within the green channel. The LC-H-Extend module extracts the odd rows from
the residual subimage resimg and residual probability resprob to generate resimgleft and
resprobleft , respectively, which are then input into the entropy encoder for compression.
Lines 13 to 16 describe the LC-L compression process within the green channel, as also
depicted in Fig. 2. First, the real subimage realimgleft is concatenated with inputs to update
inputs. The LC-Lmodule is then used to obtain the predicted subimage predimgright and the
residual probability resprobright for the even columns at the current position. The residual
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subimage resimgright is obtained by subtracting predimgright from realimgright , and both
resimgright and resprobright are subsequently fed into the entropy encoder for compression.

Algorithm 1 Compress Algorithm
Require: LC-TMnetmodel ; Awaiting compressed image I ;
Ensure: Compressed bitstream bitStream
1: Decompose image I into four level 1 subimages: Ia, Ib, Ic , Id
2: Compress subimage Ia using JPEG XL to obtain the bitstream bitStreamIa
3: bitstream← bitstreamIa
4: inputs← Ia
5: for pos in [d, b, c] do
6: realimg← getrealimg (pos,Ib,Ic ,Id)
7: predimg ,resprob←model(inputs,lc-h)
8: resimg← realimg−predimg
9: if use slow channel then
10: (resimgleft ,resprobleft )←model(resimg ,resprob,lc-h-extend)
11: bitstream← bitstream+entropyEncoder(resimgleft ,resprobleft )
12: /*=====LC-H-Extend compression completed=====*/
13: inputs← concat (inputs,realimgleft )
14: predimgright ,resprobright←model(inputs,lc-l)
15: resimgright← realimgright −predimgright
16: bitstream← bitstream+entropyEncoder(resimgright ,resprobright )
17: /*=====LC-L compression completed=====*/
18: inputs← concat (inputs,realimgright )
19: else
20: bitStream← bitstream+entropyEncoder(resimg ,resprob)
21: /*=====LC-H compression completed=====*/
22: inputs← concat (inputs,realimg )
23: end if
24: end for
25: return bitStream

LC-H architecture
The Fig. 3 shows the LC-H architecture. We will detail it in three parts: Preprocessing,
Residual Image, and Residual Probability Distribution.

Preprocessing. Three ResBlocks are used to extract features from the input Level 1 subimage
Xin ∈ RN×W

2 ×
H
2 , where N represents the number of previously compressed Level 1

subimages, with values ranging N ∈ {1,2,3}. in the illustration, N is 3. W
2 represents

the width of the Level 1 subimage, H
2 represents the height of the Level 1 subimage. The

extracted features are transformed into a matrix representation called the ‘‘latent space’’,
which will be used as input for subsequent probability prediction and image prediction.
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Figure 3 Implementation of LC-H architectures. LC-H is designed to obtain the residual values and
residual probability for Level 1 subimages.

Full-size DOI: 10.7717/peerjcs.2511/fig-3

In determining the preprocessing operations, we adopted the design principles from the
classic ResNet-18 architecture. As demonstrated by He et al. (2016), the use of ResBlocks
has proven to be highly effective in feature extraction. Consequently, the preprocessing
operations and parameter choices in this study are based on well-established best practices
within the field. While parameter tuning is indeed an important task that could further
enhance network performance, it is a distinct research area that falls beyond the current
scope of this paper and is therefore not explored here.

Residual Image. The latent space, after passing through a convolutional layer, results in the
predicted image Xpred ∈R1×W

2 ×
H
2 , where 1 represents the predicted next Level 1 subimage.

The residual image Xresidual ∈R1×W
2 ×

H
2 is obtained by subtracting the predicted image from

the true image. Since the predicted image is a floating point number in the range 0–255
and the true image is an integer in the range 0–255, the residual range is from−255 to 255
as a floating point number. Because entropy coding cannot directly compress negative and
floating point numbers, we need to add 255 to the residual and then perform a quantization
operation Q (rounding to the nearest integer). The final residual image Xresidual is thus an
integer in the range 0 to 510.

Residual probability distribution. The latent space obtains the probability Presidual ∈
R511×W

2 ×
H
2 through an attention-enhanced UNet. Here, The depth of 511 in the probability

matrix arises because each residual pixel can take on an integer value between 0 and 510,
resulting in 511 possible values. Consequently, the probability matrix has a depth of 511,
representing the probability distribution for each possible value. The sum of these 511
probability equals 1. Finally, the probability distribution and the residual subimage are
encoded using an entropy encoder.
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Figure 4 Implementation of LC-H-Extend architectures. LC-H-Extend is designed to obtain the resid-
ual values and residual probability for Level 2 left subimages.

Full-size DOI: 10.7717/peerjcs.2511/fig-4

LC-H-Extend architecture
The Fig. 4 shows the LC-H architecture.The The LC-H-Extend module is an extension of
the LC-H architecture, designed to retain the even columns of Xresidual ∈ R1×W

2 ×
H
2 while

masking the odd columns. Specifically, the module uses a Mask ∈ R1×W
2 ×

H
2 to keep the

even columns of Xresidual unchanged and set the odd columns to a fixed value 0. The mask
is given by Eq. (1):

Mask=


1 ifW is even
0 ifW is odd . (1)

By applying Xresidual ·Mask =Xleft−residual , where all odd columns are 0. Consequently,
experiment set the probability at the 0th position (out of 511 positions) in the odd columns
of the probability matrix Presidual ∈R511×W

2 ×
H
2 to 1, indicating that the probability of odd

column values being zero is 100%. Simultaneously, positions 1 to 510 in the odd columns
are set to 0, indicating the probability of odd column values being non-zero is 0%. This
yields the new probability matrix Pleft−residual , as defined in Eq. (2).

Pleft−residual =


Presidual ifW is even
1(100%) ifW is odd and at position 0
0(0%) ifW is odd and at positions 1 to 510

. (2)

LC-L architecture
Figure 5 shows the LC-L architecture. We will detail it in three parts: Preprocessing,
Residual Image, and Residual Probability Distribution.
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Figure 5 Implementation of LC-L architectures. LC-L is designed to obtain the residual values and
residual probability for Level 2 right subimages.

Full-size DOI: 10.7717/peerjcs.2511/fig-5

Preprocessing. The input Level 1 subimagesXin ∈RN×W
2 ×

H
2 is concatenated with the Level 2

left subimage X ∈R1×W
2 ×

H
2 , resulting in a new input Xin ∈RN+1×W

2 ×
H
2 where N represents

the number of previously compressed Level 1 subimages, with N ∈ {1,2,3}, and 1 indicates
the previously compressed Level 2 left subimage. Next, feature extraction is performed
through three ResBlocks, producing the feature representation as a latent space matrix.

Residual image. This process is similar to LC-H and LC-H-Extend, where the residual
Xresidual is obtained by subtracting the predicted image from the ground truth image,
followed by applying a mask to obtain Xright−residual . The input Level 2 left subimage
provides strongly correlated information for odd-column predictions, making the Level 2
right subimage predictions closer to the actual Level 2 right subimage. Consequently, the
values of Xright−residual tend to be concentrated around 255, which facilitates probability
estimation.

Residual probability distribution. This process is similar to LC-H and LC-H-Extend. The
probability Presidual is obtained through an attention-enhanced UNet. Since the Level 2
left subimage provides highly correlated experience for odd column prediction, Presidual
achieves more accurate probability estimation for the odd columns. Subsequently, we use
a mask to extract the odd column probability from Presidual . Specifically, to mask the even
columns of Presidual , we set the 0th position of the even columns to 1, while positions 1 to
510 in the even columns are set to 0. Ultimately, we obtain Pright−residual , which retains only
the odd column probability.

Attention-enhanced UNet architecture
As shown in Fig. 6, the UNet architecture (Ronneberger, Fischer & Brox, 2015) is enhanced
with SE attention (Hu, Shen & Sun, 2018) to improve sensitivity to key information and
probability estimation. After four downsampling and upsampling stages, the Softmax
function ensures the predicted probabilities sum to 1.
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Figure 6 Implementation of attention-enhanced UNet architecture. To enhance the probability estima-
tion capability of UNet, we integrated the SE attention mechanism into the UNet upsampling process.

Full-size DOI: 10.7717/peerjcs.2511/fig-6

During the upsampling process, we introduce the SE attentionmechanism. Firstly, apply
global average pooling Fsq to the original matrix X ∈RC×W×H to obtain the initial weight
matrix Z ∈RC×1×1. The mathematical expression for Fsq is given by Eq. (3)

Zc =
1

W ×H

W∑
i=1

H∑
j=1

Xc,i,j (3)

where Zc is the channel-wise average of the original matrixX . Next, the initial weightmatrix
Z is transformed into the final weight matrix S through Fex , which is a fully connected
layer. The mathematical expression for Fex is provided in Eq. (4).

S= Fex(Z )= σ (W2 ·ReLU(W1 ·Z )) (4)

where W1 and W2 are weight matrices of the fully connected layers, ReLU denotes the
ReLU activation function, and σ denotes the sigmoid activation function. Finally, the final
weight matrix S is used in the scaling operation Fscale , where it is multiplied channel-wise
with the original matrix X to obtain the weighted matrix X̂ . The mathematical formulation
for Fscale is shown in Eq. (5).

X̂c,i,j = Fscale(X ,S)= Sc ·Xc,i,j (5)

where X̂ is the weighted matrix obtained by scaling the original matrix X with the final
weight vector S.
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Loss function
The loss functions for LC-H and LC-L include the subimage prediction loss (SPL) and the
probability prediction loss (PPL). LC-H-Extend does not include any loss functions, as it
is an extension of LC-H and does not require separate loss functions.

Subimage prediction loss. We define the subimage prediction loss as the absolute difference
between the predicted pixel values and the original pixel values, which is known as the
mean absolute error loss in loss function terminology. It is mathematically defined in Eq.
(6):

LSPL(y,ŷ)=
1
N

N∑
i=1

∣∣yi− ŷi∣∣ (6)

where N represents the total number of pixels in the image in LC-H, N represents the
number of pixels in the odd columns of the image in LC-L, y represents the original pixel
values, and ŷ represents the predicted pixel values by the neural network.

Probability prediction loss. For the probability prediction loss function, cross-entropy loss
was selected due to its well-established effectiveness in classification tasks, as demonstrated
in various studies (Mentzer et al., 2019; Rhee et al., 2022; Wang et al., 2023a). The cross-
entropy loss function (De Boer et al., 2005) is used to minimize the divergence between
the predicted probability distribution and the true label distribution, thereby aligning
the model’s output distribution as closely as possible with the actual distribution. It is
mathematically defined in Eq. (7):

LPPL
(
p,p̂
)
=−

1
N

N∑
i=1

C∑
j=1

pi,j · log
(
p̂i,j
)

(7)

where N represents the total number of pixels in the image in LC-H, N represents the
number of pixels in the odd columns of the image in LC-L, and C represents the number of
residual value classes, ranging from 0 to 510, making a total of 511 classes. pi,j denotes the
probability that the i-th pixel actually belongs to the j-th class. More precisely, if the i-th
pixel belongs to the j-th class, pi,j equals 1; otherwise, it is 0. p̂i,j is the model’s predicted
probability that the i-th pixel belongs to the j-th class.

EXPERIMENT AND ANALYSIS
In this section, we first introduce the experimental setup, followed by a comparative analysis
of the proposed method with the current state-of-the-art lossless compression techniques.
Subsequently, we use probability heatmaps to visually demonstrate the effectiveness of
the proposed design in improving probability estimation accuracy in complex texture
regions. Finally, we validate the proposed design through ablation experiments, showing
its effectiveness in addressing the impact of complex textures on compression performance.
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Experimental setup
Datasets. To comprehensively validate the effectiveness of the proposedmethod in practical
applications, the experiments selected medical imaging datasets of different organs and
grayscale processed natural image datasets as the test sets.

The datasets were chosen to ensure comprehensive coverage of common imaging
modalities, thereby enhancing the model’s generalizability. These datasets were sourced
from reputable open-source platforms such as Kaggle, which not only facilitates the
reproducibility of our experiments but also ensures that the data usage complies with legal
and ethical standards. Moreover, these datasets have been widely used in previous research,
underscoring their reliability and broad acceptance within the academic community.

It should be noted that there are significant differences between medical images (such as
CT and MRI) and natural images in terms of the number of channels and image content.
Medical images are typically single-channel grayscale images. Therefore, we converted
natural images to grayscale to simulate the single-channel characteristics of medical
images. This conversion ensures that the processed grayscale natural images are similar to
medical images in terms of channel structure while retaining rich texture information.

(1) Medical Imaging Dataset: The dataset includes images from four different medical
imaging datasets: the Large COVID-19 CT scan slice dataset (Maftouni et al., 2021), the
COVID-19 Radiography Dataset (Viradiya, 2021), the Brain Tumor MRI Images dataset
(Bhuvaji et al., 2020), and the Breast Ultrasound Images Dataset (Al-Dhabyani et al.,
2020). In this experiment, 100 images were randomly selected from each dataset to serve
as the test set.

(2) COCO: COCO dataset (Lin et al., 2014) is a large natural image dataset, and its
complexity can thoroughly validate our model’s performance in handling complex
images. Tomaintain consistency with the characteristics of medical images, we converted
the images in the COCO dataset to grayscale. This preprocessing step aims to ensure
the effectiveness of our method when processing grayscale medical images while also
demonstrating our model’s robustness on complex images. We randomly selected 200
images from this dataset to serve as the test set.

Training. To ensure data diversity and the generalization ability of themodel, we employed
the Flickr2k dataset (Lim et al., 2017) for training our network, which contains 2,650 high-
quality images. During the training process, we referred to the experimental configurations
from Tissier et al. (2023) and Rhee et al. (2022), and implemented a series of measures
to increase the variability of the dataset. Specifically, we randomly extracted 128×128
pixel image patches from the original images. Throughout the training, we utilized the
Adam optimizer (Kingma & Ba, 2014) with a batch size of 24. The training schedule
lasted for 2,000 epochs, ensuring that the network had sufficient opportunity to learn
complex patterns in the data. To achieve an optimal balance between exploration and
exploitation, we set the initial learning rate to 1×10−3. Additionally, to prevent overfitting,
we implemented a learning rate decay strategy, halving the learning rate every 500 epochs.
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Table 2 Summary of compression performance comparison. Performance is measured in Bits Per Pixel (bpp), the best performance is highlighted
in bold, the second best performance is indicated with an asterisk (*).

Method Breast
ultrasound
images

Brain
tumorMRI
images

COVID-19
radiography

COVID-19
CT scan

COCO

PNG 3.45 +30.7% 3.52+29.4% 3.10 +35.4% 4.56 +10.7% 4.31+26.4%
JPEG2000 3.01 +14.6% 3.34 +22.8% 2.77 +21.0% 4.47 +8.5% 4.10 +20.2%
WebP 3.08 +16.7% 3.27 +20.2% 2.79 +21.8% 4.35 +5.6% 4.11 +20.5%
JPEG-LS 2.98 +12.9% 3.19 +17.3% 2.66 +16.2% 4.38 +6.3% 4.03 +18.2%
FLIF 2.86 +8.3% 3.15 +15.8% 2.59 +13.1% 4.27 +3.6% 3.95 +15.8%
JPEG-XL 2.85 +8.0% 3.13 +15.1% 2.42 +5.7% 4.34 +5.3% 3.79 +11.1%
L3C 3.21 +21.6% 3.38 +24.3% 3.05 +33.2% 5.11 +24.0% 4.09 +19.9%
L-Infinite 3.09 +17.0% 3.20 +17.6% 2.73 +19.2% 4.80 +16.5% 3.89 +14.1%
LC-FNet 2.78 +5.3% 2.91 +7.0% 2.40 +4.8% 4.27 +3.6% 3.71 +8.8%
LC-FNet++ 2.83 +7.2% 2.87 +5.5% 2.44 +6.6% 4.24 +2.9% 3.70 +8.5%
DLPR 2.76 +4.5% 2.88 +5.9% 2.34* +2.2% 4.21 +2.2% 3.68 +7.9%
Propose (fast ) 2.72* +3.0% 2.79* +2.6% 2.34* +2.2% 4.19* +1.7% 3.52* +3.2%
Propose (slow) 2.64 2.72 2.29 4.12 3.41

Evaluation. Our method includes a comprehensive comparison between learning-based
and non-learning-based algorithms. For non-learning-based algorithms, we selected
PNG (Boutell, 1997), JPEG2000 (Christopoulos, Skodras & Ebrahimi, 2000), JPEG-LS
(Weinberger, Seroussi & Sapiro, 2000), JPEG-XL (Alakuijala et al., 2019), FLIF (Sneyers
& Wuille, 2016), and WebP (WebEngines, 2000). To ensure reproducibility, we chose
learning-based methods with publicly available network model: L3C (Mentzer et al., 2019),
L-Infinite (Bai et al., 2021), LC-FDNet (Rhee et al., 2022), LC-FDNet++ (Rhee & Cho,
2023), and DLPR (Bai et al., 2024).

Performance comparisons
Table 2 presents the comparative results on the specified evaluation set. Evidently, our
method, Propose (fast), outperforms both existing conventional codecs and learning-
based codecs while Propose (slow) performs even better than Propose (fast). Compared
to the traditional algorithm JPEG-XL, Propose (slow) shows an average improvement of
9.0%; compared to the learning-based algorithm DLPR, Propose (slow) averages a 4.5%
improvement.

Furthermore, we found that in ultrasound and natural image datasets, our method,
Propose (slow), significantly outperforms DLPR. However, in CT and X-ray datasets, the
advantage of Propose (slow) is relatively smaller. This is because imaging methods like
ultrasound produce images with more complex texture structures. The LC-L module used
by Propose (slow) has more accurate inference capabilities for complex texture areas,
hence showing superior performance in datasets with complex textures. In contrast, CT
and X-ray imaging methods produce smoother images with fewer complex textures, which
limits the scope for compression improvements by Propose (slow).
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Table 3 Summary of compression time comparisons. Performance was measured in average encoding time per image (spp), the best performance
is highlighted in bold, the second best performance is indicated with an asterisk (*).

Method Breast
ultrasound
images

Brain tumor
MRI images

COVID-19
radiography

COVID-19
CT scan

COCO

L3C 0.77 +83.3% 0.27 +145.4% 0.35 +191.7% 0.69 +86.5% 0.79 +132.3%
LC-FNet 0.53* +26.2% 0.13* +18.2% 0.14* +16.7% 0.41* +10.8% 0.42* +23.5%
LC-FNet++ 0.57 +35.7% 0.13* +18.2% 0.15 +25.0% 0.44 +18.9% 0.46 +35.3%
DLPR 1.57 +273.8% 0.49 +345.5% 0.59 +391.7% 1.18 +218.9% 1.28 +276.5%
Propose (slow) 0.65 +54.8% 0.21 +90.9% 0.22 +83.3% 0.54 +45.9% 0.56 +64.7%
Propose (fast ) 0.42 0.11 0.12 0.37 0.34

Time comparisons
Table 3 displays the timing comparison results on the specified evaluation set, with
experiments conducted on an Nvidia 2080Ti and Intel 12700. In tests across various
types of datasets, Propose (fast) consistently demonstrated the fastest compression speed,
highlighting its high practicality for real-world applications.

The speed advantage of Propose (fast) is attributed to the use of the LC-H module,
which can obtain all residuals and residual probability distributions of subimages in a
single inference. In contrast, Propose (slow) employs both LC-L and LC-H-Extend for
more detailed subimages compression, resulting in Propose (slow) requiring twice the
number of inferences as Propose (fast). Although Propose (slow) is slower than Propose
(fast), itmaintains a reasonable speedwhile offering state-of-the-art compression efficiency.
Thus, Propose (slow) remains a highly efficient mode worth adopting.

The experiments did not include comparisons with traditional algorithms because
traditional algorithms rely on CPU computations, whereas learning-based algorithms
primarily depend on GPU computations, leading to a lack of comparability between the
two. Additionally, the L-Infinite algorithm does not support GPU operations, to ensure
fairness, it was excluded from the comparisons.

Probability heatmap analysis
According to Shannon’s information entropy theory, the optimal number of bits is
−log2P(j), where j is the residual value to be compressed, and P(j) is the probability of
j predicted by the neural network. A higher P(j) leads to better compression. In Fig. 7,
different colors correspond to different values of the residual probability P . Red indicates
P is close to 0, meaning poor compression, while green indicates P is close to 1, meaning
excellent compression.

Figure 7A shows the probability heatmap of an ultrasound image. Due to the unique
characteristics of ultrasound imaging, the texture is highly intricate. It can also be observed
that red spots are widely distributed, indicating that the neural network often struggles
with probability estimation in complex textured images. However, after applying the
LC-H-Extend and LC-L modules, the number of red spots significantly decreases. This
suggests that our Propose (slow) compression scheme can achievemore accurate probability
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Figure 7 Probability heatmaps. In each set of subimages, the upper image group utilizes LC-H for prob-
ability estimation, while the lower image group employs LC-L and LC-H-Extend for probability estima-
tion.

Full-size DOI: 10.7717/peerjcs.2511/fig-7

estimation in regions with complex textures, effectively addressing the issue of inaccurate
probability estimation in these areas.

Figure 7B shows the probability heatmap of an X-ray image. Since the lungs are primarily
filled with air, their texture is relatively simple. In Fig. 7B, the number of red spots is very
low, regardless of whether LC-L or LC-H is used. This demonstrates that the neural
network is highly efficient in reasoning when dealing with smooth images. After using the
LC-H-Extend and LC-L combination for compression, the green areas become even more
prominent, further proving that the Propose (slow) compression scheme can still enhance
performance on smooth images.

Using the ultrasound image in Fig. 7A as an example, the experiment qualitatively
analyzed residual probability values by dividing them into three ranges: greater than 0.1,
between 0.01 and 0.1, and less than 0.01. Table 4 shows that after applying the LC-L and
LC-H-Extend modules, the proportion of pixels with residual probability greater than
0.1 increases, while those below 0.01 decrease. This confirms that our Propose (slow)
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Table 4 Residual probability proportions. This table presents the proportions of pixels within different
residual probability ranges for subimages (D, B, C) using the LC-L and LC-H-Extend modules versus the
LC-H module. The proportions are expressed as percentages.

Module Subimage P > 0.1(%) 0.01≤P ≤ 0.1(%) P ≤ 0.01 (%)

D 64.24 30.09 5.67
B 68.76 28.34 2.90LC-L and LC-

H-Extend
C 70.58 26.64 2.78
D 60.14 32.79 7.07
B 61.89 31.80 6.31LC-H
C 64.20 32.57 3.23

Figure 8 Residual probability comparison. The residual probability at coordinate (788,919) is estimated
using both LC-H and LC-L.

Full-size DOI: 10.7717/peerjcs.2511/fig-8

compression scheme improves probability estimation, especially in complex textured
regions.

LC-L ablation experiment
The ablation experiment is analyzed from two perspectives: performance improvement
for a single pixel and performance improvement for the entire subimage. As shown
in Fig. 8, the experiment selects the residual point at the coordinates (788,919) as
an example. The residual obtained by LC-H is 195, with a corresponding probability
PLC−H (195)= 0.00257. The residual obtained by LC-L is 220, with a corresponding
probability PLC−L(220)= 0.00779. According to Shannon’s information entropy formula,
bit=−log2P(j), the compression bit count for LC-H is 8.6 bits, and for LC-L, it is 7.4 bits.
At (788,919), LC-L saves approximately 14% of the space compared to LC-H.

To evaluate the overall bits per pixel (bpp) improvement of LC-L on subimages (D, B,
C), the experiment compares Model 1 using LC-H andModel 2 using LC-L. The network is
evaluated on the Breast Ultrasound Images Dataset, excluding the JPEG-XL part (1.05 bpp).
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Table 5 Comparison of bpp improvement using LC-H and LC-L. This table compares the bpp perfor-
mance between Model 1 using LC-H and Model 2 using LC-L across different subimages (D, B, C) in the
Breast Ultrasound Images Dataset.

Subimage Model 1 using LC-H Model 2 using LC-L

D 0.914 +8.6% 0.841
B 0.388 +1.8% 0.381
C 0.372 +0.5% 0.370
Total 1.674 +5.1% 1.592

Table 5 shows the ablation results for LC-L. Model 2 shows the greatest improvement on
subimage D and the smallest improvement on subimage C. The reason for this difference
lies in the input context of Model 1 during compression. When compressing subimage
C, Model 1′s input includes subimages A, D, and B, providing ample prior knowledge to
accurately estimate probability in complex texture regions. However, when compressing
subimage D, Model 1′s input only includes subimage A, lacking sufficient prior knowledge,
resulting in inaccurate probability inference. In this scenario, Model 2′s input includes
both subimages A and D-Left, with D-Left providing strong prior knowledge for D-Right,
significantly enhancing probability estimation accuracy. Overall, using LC-L improved the
model’s performance by 5.1%.

CONCLUSIONS
The primary academic contribution of this study lies in the proposal of a flexible
tree-structured subimage segmentation mechanism, which significantly enhances the
inference capabilities of neural networks in regions with complex textures by effectively
leveraging subimage priors. Furthermore, the integration of an attention mechanism into
the probabilistic estimation model extends its applicability in the domain of lossless
compression. The results of the study indicate that the proposed flexible subimage
segmentation scheme allows for the selective combination of subimages at different
scales during the compression process, thereby enabling variable-speed compression. This
approach achieves a balance between inference speed and accuracy, making it suitable for
a variety of application scenarios and demonstrating broad applicability.

Despite the improvements in inference accuracy and compression flexibility achieved
by this study, some limitations remain. Currently, the system requires loading both
the LC-H and LC-L modules for variable-speed compression. Although these modules
produce identical outputs, their differing input dimensions necessitate separate loading
and processing, leading to high GPU memory usage and increased computational resource
demands. This issue is particularly pronounced when inferring high-resolution image data.
Additionally, while the relatively basic attention mechanism in the current network helps
reduce computational cost and improve inference speed, it still has limitations in feature
extraction. As a result, there is room for further enhancement in the model’s inference
capability.Lastly, the experiments in this study are designed for medical images, which are
typically stored in a single-channel format. While the proposed method is effective for
single-channel data, its applicability in multi-channel compression scenarios is limited.
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Future research could focus on two main optimization strategies and extending the
application domain. First, introducing a blank matrix of size 1× W

2 ×
H
2 in the LC-H

module would align its input dimensions with those of LC-L, allowing the system to
load only the LC-H module. This adjustment would reduce memory consumption and
computational redundancy. Second, incorporating more advanced attention mechanisms,
as suggested by existing literature (Ruan et al., 2022;Wang et al., 2023a), from both channel
and spatial perspectives could refine feature selection and enhance the network’s inference
capability and compression performance. These improvements would facilitate broader
deployment of the system in resource-constrained environments while ensuring efficient
and accurate compression in complex scenarios. For multi-channel compression, inter-
channel correlations can be exploited by inferring multi-channel data from single-channel
priors, thereby extending the application scope of this study.
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https://www.kaggle.com/datasets/aryashah2k/breast-ultrasound-images-dataset.
The COCO dataset is available at: https://cocodataset.org/#download.
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