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ABSTRACT
Diabetic retinopathy (DR) is a condition that can lead to vision loss or blindness and
is an unavoidable consequence of diabetes. Regular eye examinations are essential to
maintaining a healthy retina and avoiding eye damage. In developing countries with
a shortage of ophthalmologists, it is important to find an easier way to assess fundus
photographs taken by different optometrists. Manual grading of DR is time-
consuming and prone to human error. It is also crucial to securely exchange patients’
fundus image data with hospitals worldwide while maintaining confidentiality in real
time. Deep learning (DL) techniques can enhance the accuracy of diagnosing DR.
Our primary goal is to develop a system that can monitor various medical facilities
while ensuring privacy during the training of DL models. This is made possible
through federated learning (FL), which allows for the sharing of parameters instead
of actual data, employing a decentralized training approach. We are proposing
federated deep learning (FedDL) in FL, a research paradigm that allows for collective
training of DL models without exposing clinical information. In this study, we
examined five important models within the FL framework, effectively distinguishing
between DR stages with the following accuracy rates: 94.66%, 82.07%, 92.19%,
80.02%, and 91.81%. Our study involved five clients, each contributing unique
fundus images sourced from publicly available databases, including the Indian
Diabetic Retinopathy Image Dataset (IDRiD). To ensure generalization, we used the
Structured Analysis of the Retina (STARE) dataset to train the ResNet50 model in a
decentralized learning environment in FL. The results indicate that implementing
these algorithms in an FL environment significantly enhances privacy and
performance compared to conventional centralized learning methods.
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Learning
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INTRODUCTION
When diabetic retinopathy (DR) is not identified in its early stages, it can become the
primary cause of blindness among working-age adults globally. This eye disease damages
the blood vessels in the retina as a result of high blood sugar levels. The damaged vessels
can leak, causing blurry vision or even complete vision loss. Individuals with long-standing
diabetes are especially vulnerable, particularly if they do not receive proper diagnosis and
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treatment. Early detection of the disease allows for effective medical treatment (Mohan
et al., 2023). Estimates suggest that the number of people affected by DR could reach 700
million by 2045. Consequently, individuals with diabetes need to have regular eye check-
ups to prevent vision loss. As the severity of DR increases, the risk of visual impairment
also rises (Ruamviboonsuk et al., 2022; Yadav et al., 2023). Deep learning (DL) has been
employed to detect and classify various eye conditions using retinal photos, optical
coherence tomography (OCT), and OCT-angiography images. The training process for DL
often requires large and diverse datasets to be gathered and stored in a “centralized
location” to ensure the model performs well in various situations. However, this method of
sharing data can pose real challenges for patient privacy and data security (Basha et al.,
2017). The study presents a framework that utilizes machine learning (ML) classifiers to
diagnose diabetes. The classifiers used include logistic regression, support vector machines
(SVM), random forest, decision tree, naive Bayes, and K-nearest neighbor. The SVM
classifier is particularly notable for achieving an accuracy of 96.0%. The model aims to
increase awareness of diabetes in rural areas and enhance treatment methods (Rajput et al.,
2022). Federated learning (FL) is a machine learning (ML) approach that involves training
the model across multiple decentralized edge devices or servers, each of which stores local
data. FL allows the model to be trained on data distributed across many sites without the
need to exchange raw data, as opposed to collecting all the data in one central location
(Sharma & Kumar, 2023). The collaborative model training method allows for multiple
contributors to work together on model training while ensuring privacy and data security.
FL, a distributed collaborative learning model, enables coordination among several
contributors without the need to share sensitive information. This distributed training
strategy significantly reduces the risk of data leakage from data sharing or centralization,
and ensures data privacy among many organizations (Rauniyar et al., 2023).

Motivation
The motivation behind this study is to address gaps in DR detection by leveraging
federated learning. This novel approach allows training machine learning models across
decentralized devices without exchanging local data, enhancing privacy and utilizing
diverse datasets. DR, a major diabetes complication, can lead to blindness if not detected
early. Current methods face inefficiencies, inconsistencies, and limited accessibility,
especially in remote areas. Federated learning offers a promising solution by developing
accurate and scalable DR detection models, facilitating more efficient screening programs
without compromising patient privacy.

Contributions
The major contributions of this article are as follows:

. We present a new FedDL model for the central server paradigm using FL, which
significantly improves the accuracy of DR stage classification.

. Data augmentation was performed on the fundus photographs.
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. Five cutting-edge CNN architectures, including ResNet50, DenseNet201, AlexNet,
EfficientNetB7, and VGGNet19, were used in the FL environment.

. The experimental evaluations indicate that the proposed methodology exceeds the
performance of traditional FL approaches. Specifically, the FedDL method for training
DL models in a distributed environment demonstrates enhanced accuracy.

Article organization
The article is organized into several sections. “Background and Related Work” provides an
overview of background and related work in DL and FL. “Proposed Methodology”
describes the proposed framework, including database preparation, pre-processing, FL
approaches, and DR classification accuracy improvement. “Results and Discussion”
presents the results and discussion, including experimental setup, and result analysis.
“Conclusion and Future Directions” provides the conclusion and future research
directions.

BACKGROUND AND RELATED WORK
Diabetic retinopathy is a leading cause of vision impairment and blindness in people with
long-standing diabetes. Accurate detection of DR is crucial for ophthalmologists, as it can
greatly help them manage the increasing number of patients and their corresponding
medical records. DL is a crucial approach for analyzing and testing medical images for
multiclass classification, segmentation, localization, etc. It can quickly learn from and
accurately identify images to support human specialists with quantitative outcomes.
Convolutional neural networks (CNNs) have demonstrated robust performance in image
categorization tasks (Patel et al., 2022). Shankar et al. (2020) synergic deep learning (SDL)
model was developed to classify DR fundus images into different severity levels. This
model was tested on the Messidor DR dataset. Future improvements could include
incorporating filtering techniques to enhance image quality before processing. Li et al.
(2019) proposed a novel deep neural network named OCTD-Net, specifically designed for
early-stage DR classification using OCT images. The model was rigorously trained and
evaluated on a comprehensive database of OCT images fromWenzhouMedical University
(WMU), captured using a custom-built spectral domain OCT (SD-OCT) system. The
significance of this work lies in its potential to assist ophthalmologists in evaluating and
treating DR cases, thereby reducing the risk of vision loss. By enabling timely and accurate
diagnosis, OCTD-Net demonstrates the promise of OCT images for cost-effective and
time-efficient early-stage DR detection.

Malhi, Grewal & Pannu (2023) introduce an automated approach that precisely predicts
the presence of exudates and microaneurysms in fundus images. These findings serve as
essential indicators for grading DR, allowing us to determine whether it falls into the mild,
moderate, or severe category. Future research plans to combine exudates and
microaneurysms to enhance the grading process. Additionally, we aim to incorporate
other relevant features, such as cotton wool spots and hemorrhages, for improved DR
detection. Furthermore, expanding the dataset size will be a crucial step in refining this
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approach. Qureshi, Ma & Abbas (2021) used the EyePACS dataset, sponsored by the
California Healthcare Foundation, using 35,000 images. As a consequence, the utilization
of diverse fundus images demonstrates that the innovative active deep learning (ADL)
CNN architecture surpasses other methods in detecting lesions related to DR and
accurately identifying the severity levels of DR. Furthermore, the ADL-CNN multi-layer
architecture has the potential to extend its applications to various multimedia tasks, such
as image dehazing, video tracking, and data mining. Several ML and DL algorithms are
necessary. Improvements can be applied to the research findings by incorporating data
augmentation and employing diverse preprocessing techniques to reduce noise and
remove artifacts from the input photographs.

Patil et al. (2023) automate the detection of DR using DL through transfer learning. In
this study, we achieved improved results by employing multiclass classification and
enhancing generalization. Key techniques included appropriate pre-processing, data
augmentation, and leveraging test-time augmentation (TTA). Despite dealing with an
imbalanced dataset, our DL model demonstrated promising performance.Monteiro (2023)
hybrid DL approach was developed by training separate DL models using a five-fold cross-
validation technique and aggregating their predictions into a final score. To improve
performance, researchers aim to improve the detection of lesions with mild and
proliferative DR. Timely diagnosis of DR is essential, as it enables early treatment that can
significantly reduce or avoid vision loss. Additionally, automatically detecting regions
within the retinal image that may contain lesions could aid experts in their identification
process. Zago et al. (2020) the CNNs were introduced, which has greatly impacted medical
image analysis. The early diagnosis of DR using a CNN deep network technique in retinal
images. Das et al. (2021) have utilized a small number of fundus images in their studies,
often limited to a single dataset. Sikder et al. (2021) and Xia et al. (2021) concentrated on
segmenting retinal lesions and evaluating the severity of DR based on the number of
lesions in fundus images. Implementing medical imaging techniques requires
computational resources, rigorous testing across diverse datasets, and real-time dataset
collection from diabetic patients (Nasajpour et al., 2022; Yu et al., 2021). Maintaining a
balance between data privacy and security is essential, particularly in compliance with the
Health Insurance Portability and Accountability Act of 1996. As described in Bonawitz
et al. (2019), conscious system design decreases failures. This author used a deep network
that captures local, global, and intermediate information, offering a more detailed and
comprehensive understanding of fundus images from various clients (Vishnu & Rajput,
2020). Based on the background research, there are very few researchers focusing on DR
classification using FL. This study presents a cutting-edge method for DR classification
using FL with fundus images. Our proposal presents a federated learning (FL) framework
that leverages a novel central server model to address the identified challenges. In FL, the
central server is crucial in directing the training process and consolidating input from all
participating clients. We preprocess and perform image augmentation on fundus images
before server execution to enhance quality. Tests indicate that FL effectively generalizes
fundus classification of images based on DR severity. Table 1 describes research on existing
systems by considering parameters such as research approach, dataset, and challenges.
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Deep learning
DL is a subset of artificial intelligence that is adept at detecting and classifying DR from
fundus images. DL models can automatically extract relevant features, assign probabilities
to different DR grades, and achieve high accuracy rates. This automation can aid in the
early detection and prevention of vision loss associated with DR. The study introduces a
DL method for automated DR classification using the microvascular structure of fundus
images. It uses U-Net models for optic disc and blood vessel segmentation, followed by a
hybrid CNN-SVD model for feature extraction and classification (Sivapriya et al., 2024).
This approach identifies retinal biomarkers and achieves high accuracy on datasets like
EyePACS-1, Messidor-2, and DIARETDB0, significantly improving DR detection and
classification. The author presents a hybrid DL model for detecting DR by analyzing
lesions in fundus images. It combines GoogleNet and ResNet models with an adaptive
particle swarm optimizer (APSO) for feature extraction, followed by classification using
MLmodels (Jabbar et al., 2024). The model achieves 94% accuracy on benchmark datasets,
significantly improving precision, recall, accuracy, and F1 score for different DR severity
levels. The study introduces a DL multistage training method for DR using stained retinal
fundus images. It utilize models like InceptionResNetV2, VGG16, VGG19, DenseNet121,
MobileNetV2, and EfficientNet2L. The training process involves extracting features with a
customized classifier head, followed by fine-tuning. Data augmentation enhances model
resilience and reduces overfitting (Guefrachi, Echtioui & Hamam, 2024). The method

Table 1 Research studies on existing systems.

Authors Approach Dataset Challenges

Patil et al. (2023) ResNet-50 DL model EyePACS dataset
and APTOS
dataset

Restricted dataset and features

Abidin & Ismail
(2022)

Hybrid model of SVM and KNN Kaggle dataset FL approaches also has smaller loss than the standard ML
model

Nasajpour et al.
(2022)

Standard transfer learning, FedAVG, and
FedProx

Messidor, EyePACS,
APTOS and
IDRiD

Data access is prohibited under privacy regulations

Wang et al.
(2023)

Federated uncertainty-aware aggregation
paradigm (FedUAA)

Messidor, DDR,
DRR, APTOS, and
IDRiD

Improve collaborative DR staging performance by dynamically
collecting reliable client data

Malhi, Grewal &
Pannu (2023)

SVM and KNN Messidor, DiaretDb
and E-optha

Other features like cotton wool spots and hemorrhages will also
be utilized in identifying DR. The dataset size will also
improve

Sundar &
Sumathy (2023)

Graph convolutional neural network
(GCNN)

EyePACS dataset In contrast, the graph model faces challenges with sharp edges
and small image imperfections.

Ishtiaq, Abdullah
& Ishtiaque
(2023)

Fusing deep learning with local binary
pattern (LBP) characteristics

EyePACS dataset The method has the potential to detect retinal conditions like
glaucoma, age-related macular degeneration (AMD), and
cataracts.

Current
approach

Examined five models (Resnet50,
Densenet201, Alexnet, EfficientnetB7
and VGGnet19)

IDRiD Lacks a discussion on explainable AI (XAI).
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InceptionResnetV2 achieves 96.61% accuracy on Kaggle’s DR detection dataset. The article
proposes an ensemble DL model to detect five severity levels of DR using fundus
photographs. Initially, These CNNs are then combined to form an ensemble model, which
is retrained on the dataset with five labels: No-DR, Mild, Moderate, Severe, and
Proliferative-DR. The ensemble model achieves a validation accuracy of 87.31%, effectively
classifying the severity of DR (Kale & Sharma, 2023).

The DL models used for detecting and classifying DR may have limitations, including
restricted generalization, interpretability issues, concerns about preserving privacy, and
sensitivity to data bias. To address these challenges, transfer learning techniques, strategies
to improve model interpretability, and methods to mitigate data bias can be employed.

Federated learning
Traditionally, the DL approach required consolidating data from multiple institutions into
a single location for model training and testing. In contrast, the distributed learning
paradigm known as FL allows participants to train models locally using their data. They
then submit their updates to a central server, aggregating these modifications to improve
the model’s accuracy. This approach enhances the model’s performance without requiring
collaborators to directly access sensitive data or consolidate all collected data in one place
(Nguyen et al., 2022; Yarradoddi & Gadekallu, 2022). Every institution stores its data
locally; none is transferred or immediately accessed by another institution, as shown in
Fig. 1. In the FL architecture, through the use of its training dataset, every institution trains
a local model. After one training period, all local model parameters are then sent to the
central server. The central server collects and aggregates all local parameters, which safely
updates the global model. The updated model is then distributed back to each center for an
additional training session. The global model is iterated until convergence occurs (Supriya
& Gadekallu, 2023; Thummisetti & Atluri, 2024). The study highlights that FL models for
DR classification are vulnerable to gradient inversion attacks, which can reconstruct
sensitive patient data. The author used Bayesian Active Learning by Disagreement (BALD)
score to identify images at risk. Results on the Fine-Grained Annotated Diabetic
Retinopathy (FGADR) dataset show a negative correlation between the BALD score and
image reconstruction quality, indicating that lower BALD scores mean higher
susceptibility (Nielsen, Tuladhar & Forkert, 2022). The study emphasizes the privacy risks
in FL for medical imaging. It proposes the BALD score to protect vulnerable data points,
offering insights for privacy-preserving medical image analysis. The study uses FL to
classify DR with OCT-angiography images, ensuring data privacy. Three institutions
trained a VGG19 model locally and shared weights for central aggregation. The federated
model performed comparably to individual models, maintaining classification accuracy
while enhancing privacy and robustness (Yu et al., 2021). The study introduces a DL
method for classifying retinal diseases using OCT images. It modifies three pre-trained
models (DenseNet-201, InceptionV3, and ResNet-50) for feature extraction, optimized
with ant colony optimization. The final classification uses k-nearest neighbors and support
vector machines, achieving a high accuracy of 99.1%, outperforming existing techniques
(Subasi, Patnaik & Subasi, 2024). The focus of these images was primarily on the region

Bhulakshmi and Rajput (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2508 6/29

http://dx.doi.org/10.7717/peerj-cs.2508
https://peerj.com/computer-science/


near the macula. The study develops a privacy-preserving deep learning model for
glaucoma detection using FL with OCT images. Seven eye centers participated, training
models locally and sharing parameters for central aggregation. The FL model performed
well across centers and on unseen datasets, ensuring patient privacy and data security (Ran
et al., 2024).

In our study, we are introducing a new approach based on insights from related work.
We propose a FedDL methodology for detecting and classifying DR using an FL
environment. This methodology involves data aggregation, privacy preservation, model
architecture selection, iterative model improvement, and inference and deployment. Our
goal is to improve the diagnosis of DR while ensuring privacy and supporting collaborative
healthcare efforts.

PROPOSED METHODOLOGY
This section focuses on developing a FedDL model to identify DR and accurately assess its
severity. Early detection is crucial for preventing vision loss associated with DR. We
present the dataset description, the proposed FedDL method, federated averaging, and
federated learning with model personalization.

Dataset description
The proposed method examines the experimental results of DR identification using the
IDRiD. A publicly accessible dataset created to study DR is called the IDRiD. A diabetes-
related eye condition that damages the retina is called DR. The IDRiD dataset aims to aid

Figure 1 FL concept in the healthcare sector. Full-size DOI: 10.7717/peerj-cs.2508/fig-1
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in the creation and assessment of algorithms for the detection and classification of DR
(Kalpana Devi & Mary Shanthi Rani, 2022). The dataset contains retinal fundus images or
pictures of the back of the eye. A significant challenge associated with publicly available
healthcare datasets is their limited availability, often forcing researchers to work with the
few accessible datasets. A publicly accessible dataset developed for DR research is called the
IDRiD. A diabetes-related eye condition that damages the retina is called DR (Porwal et al.,
2018). The dataset comprises retinal fundus images, capturing the back of the eye. Within
this collection of 516 images, various pathological DR conditions are depicted. These
images were captured using the Kowa VX-10 alpha digital fundus camera, which boasts a
50-degree field of view (FOV) (Alyoubi, Shalash & Abulkhair, 2020). The photos have a
resolution of 4,288� 2,848 pixels. To generalize the work, we used the STARE dataset,
contains 400 fundus images captured using the Topcon TRV-50, which has a 35-degree
field of vision (Bali & Mansotra, 2024).

Dataset pre-processing
Raw data must be cleaned and arranged as part of the dataset preparation process before
being utilized for training DL models. This procedure ensures that the data is in the right
format and quality for efficient model training. These are a few typical stages in preparing
datasets.

Data augmentation
Data augmentation is a crucial technique utilized to enhance the diversity and quality of
the dataset, particularly for tasks such as detecting and classifying DR using the IDRiD
dataset. Below are some common data augmentation techniques applied to retinal images.
In order to make the dataset more flexible, we are using augmentation techniques to
balance it and prevent underfitting. These techniques involve horizontal and vertical
flipping, rotation, zooming, and contrast enhancement. We rotate images by 360 degrees,
flip them horizontally and vertically, zoom them to their original size, and enhance
contrast to improve lighting. The augmented images are from train 890 and test 223. Data
augmentation is an effective method in applications involving vision, such as the detection
of DR, whereby the training dataset’s diversity is artificially enhanced by applying different
modifications to the pre-existing images. This enhances the generalization and resilience of
the model. Given the scarcity of labeled images and the requirement that a model be
invariant to specific transformations, data augmentation can be essential for detecting DR
(Naik et al., 2023).

One of the main challenges in training DL models is the lack of sufficient and diverse
datasets. DL models are characterized by numerous tunable parameters, which necessitate
a proportional volume of data relative to the task’s complexity. A mismatch in this
proportionality can adversely impact the model’s predictive accuracy and lead to
overfitting, where the model fails to generalize to new data (İncir & Bozkurt, 2024). This
issue is particularly pronounced in domains such as plant or human disease classification,
where data collection is inherently challenging. Moreover, even with adequate data, the
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class imbalance can pose a significant problem, as some classes often have abundant data
while others do not (Liu et al., 2024). Data augmentation techniques are employed to
synthetically enhance the dataset to combat these issues. This process involves applying
various transformations—such as cropping, rotation, flipping, translation, scaling,
adjusting color spaces, injecting noise, varying brightness, and altering color balance—to
generate new data from existing samples. The goal is to ensure a diverse and ample dataset
for robust model training (Prabhakar et al., 2024).

Federated averaging
Federated averaging is a powerful technique used in FL to detect and classify DR, a
consequence of diabetes that causes lesions on the retina. This condition can potentially
lead to vision impairment or blindness. Detecting DR early is crucial to prevent irreversible
vision loss. The primary goal of our work is to develop a model capable of detecting and
classifying DR to prevent its progression to a severe stage. We propose using the FedDL
technique, which involves sending the best score (parameters or weights) to the server.
Before we talk about our proposed methodology, we will look over the standard FedAvg
algorithm. FL follows the sequence outlined in the Algorithm 1. In line 4, the client selected
for the current round is chosen. Lines 5 and 6 describe the process of receiving weights
from various clients. Line 8 calculates the weighted average to determine the global
weights. After aggregation, the global model is sent from the server to the client, and this
cycle repeats until an optimal model is achieved.

In FL, models are trained locally, allowing the model to access client data without
transferring it to a central server. However, data sensitivity often makes compiling broad
and varied datasets challenging, which is crucial for building robust DL models. FL
addresses this challenge by decentralizing the training of ML models (Chetoui & Akhloufi,
2023). The approach used for detecting DR utilizes the weighted average of models,
commonly known as Fedavg. Initially, a global model is established. In each round t, the
central server sends the current global model wt to a selected subset C of all participating
institutions K. These selected institutions are denoted by the set St. After training the
model on its local data Pk, Each institution, denoted as ‘k’, updates its local model
parameters and forwards them to a central server, which then integrates these
contributions to construct a model wt + 1k (Riedel et al., 2023). The server then creates a
new global mode by combining the weights of the incoming models using the Eq. (1).

wtþ1 ¼
Xn
k¼1

eSt � wk � nk � nt: (1)

In this, nt denotes the total number of samples across all institutions, while nk
represents the number of samples at each institution k. Once the training process
concludes, the server distributes the aggregated model to all institutions connected to the
network. The FL framework is an iterative approach that partitions the development of a
global central DL model while preserving client privacy. It operates in rounds, where each
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round involves interactions between clients and the server. The fundamental premise is
that a predefined set of clients exists, each with local private data dk kept separate from
other clients and the server. That is kept separate from the server and other clients. The
number of rounds be represented by t = 1, 2,…, T. At the start of each round, a group of
clients m is selected, and the server communicates the current state of the global algorithm
to these clients (Matta et al., 2023). A prominent FedAvg method trains a global model
across several decentralized devices or servers without transferring raw data in FL. Instead
of examining the proposed approach, we will examine the FedAvg algorithm as it is
standard (Sun, Li & Wang, 2022). The FedAvg algorithm’s basic steps are in Algorithm 1.

The proposed FedDL method
FL is a decentralized approach where multiple clients, such as devices or institutions,
collaborate to train a model without sharing their local data. Instead, they share model
updates, like gradients or weights, with a central server that aggregates these updates to
enhance a global model. The clients, which can be devices or institutions with local datasets
and computational power, train the models, while the server is a central entity that
coordinates the training process and aggregates model updates. Various DL models, such
as ResNet50, DenseNet201, AlexNet, EfficientNetB7, and VGG19, are used. These models
are pre-defined and chosen based on the task requirements and computational constraints.
A brief explanation of the proposed framework’s working process follows.

Algorithm 1 Federated average algorithm (Supriya & Gadekallu, 2023).

1: function SERVERAGGREGATION(gN)

2: Initialise w0

3: for every iteration a ¼ 1; 2; . . . do

4: Sa  (clients are chosen randomly from set of maxðCK ; 1Þ)
5: for every client t 2 Sa in parallel do

6: wk;aþ1  UPDATECLIENT(k, wa)

7: end for

8: waþ1  average of the weights that are collected wk;aþ1 of Sa clients

9: end for

10: end function

11: function UPDATECLIENT(k, w)

12: Continue the learning process on client t with weight w until the client completes the task

13: the client arrives at E epochs

14: Update the weight accordingly after the learning phase

15: return w to the server

16: end function
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Input and output:
Input The IDRiD dataset, a retinal image dataset annotated for DR classification tasks.
Output The best-performing model for DR classification, based on key performance

metrics such as accuracy, AUC, precision, and recall.
Loading and preprocessing the IDRiD Dataset:
Image preprocessing includes resizing images to match the input requirements of DL

models and normalizing pixel values to a range of 0 to 1 for improved model convergence.
Data augmentation techniques such as random rotations, flips, zooms, and brightness
adjustments are applied to the training data to enhance model robustness and prevent
overfitting. The dataset is divided into training and test sets, with the training set
distributed across clients in a FL environment.

Deep learning model initialization:
Several pre-existing deep learning architectures are initialized, including ResNet50,

DenseNet201, AlexNet, EfficientNetB7, and VGG19, each chosen for its ability to handle
image classification tasks effectively. ResNet50 is known for its deep architecture and use of
skip connections, DenseNet201 promotes feature reuse with densely connected layers to
improve accuracy, AlexNet is a simpler, early CNN architecture with proven success in
image classification, EfficientNetB7 is known for compound scaling that balances
performance and efficiency, and VGG19 is a deep network with a simple architecture
effective in image-based tasks.

Federated learning setup:
In the FL environment, the dataset is divided amongN clients, with each client receiving

a distinct subset of the training data to ensure that the data is not stored in a central
location. The global model is initialized on the server to match the architecture of the client
models, and its weights are updated step by step during the training process.

FedDL process:
The training process in federated learning consists of multiple rounds (1 to R). In each

round, clients receive the current global model from the server and train it locally on their
data using optimization techniques such as stochastic gradient descent (SGD). This local
training allows the model to learn from the distributed data without needing to access data
from other clients. Once training is complete, clients send their updated model weights
(gradients or parameters) back to the server. The server then combines these weights using
FedAvg, which calculates a weighted average of the models based on the size of each
client’s dataset (Eq. (2)).

w ¼
XK
i¼1

ni
N
wi (2)

where: wi are the model weights from client i, ni is the number of samples in client i’s
dataset, K is the number of participating clients, and N is the total number of samples
across all clients according to Eq. (3).
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N ¼
XK
i¼1

ni (3)

The global model is updated with the aggregated weights, enabling the server to utilize
the combined insights from the distributed datasets.

Model evaluation:
After several rounds of federated training, the global model is evaluated on a centralized

test set, unseen during the training process. Performance is assessed using the following
metrics. Accuracy refers to the proportion of correctly classified diabetic retinopathy (DR)
cases, while precision indicates the percentage of correctly predicted positive DR cases.
Recall measures the model’s ability to detect true positive DR cases, and the F1 score,
which is the harmonic mean of precision and recall, provides a balanced view of the
model’s performance. Sensitivity, similar to recall, reflects the model’s ability to identify
true positive DR cases, whereas specificity measures the model’s ability to correctly identify
true negative DR cases. Lastly, the Area Under the Curve (AUC) reflects the model’s ability
to distinguish between DR-positive and DR-negative classes.

Model comparison and selection:
The global models based on ResNet50, DenseNet201, AlexNet, EfficientNetB7, and

VGG19 are compared based on the performance metrics mentioned above. The model
with the highest AUC or accuracy is selected as the best-performing model for DR
classification.

The proposed FedDL framework allows for effective diabetic retinopathy detection and
classification across distributed institutions, enhancing privacy and security by keeping
data local. Using powerful deep learning models in combination with federated learning,
this framework ensures high accuracy while addressing the limitations of centralized
model training. This approach is particularly valuable in healthcare scenarios, such as DR
detection and classification, where privacy concerns and regulations limit the sharing of
sensitive medical data. The proposed model states the FL in DR detection and classification
in Fig. 2.

The proposed framework Algorithm 2 outlines a comprehensive approach for
classifying DR using DL models in an FL environment. The algorithm is divided into
several key steps, beginning with data pre-processing and augmentation using the IDRiD
dataset. It then involves initializing pre-trained DL models such as ResNet50,
DenseNet201, AlexNet, EfficientNetB7, and VGG19, and setting hyperparameters for each
model. The algorithm also describes the setup for FL in a multi-client environment,
including the initialization of a global model and the FL process using FedAvg. After FL,
the final global model is evaluated on the test dataset, and a comparison of the
performance of the different DL models is conducted to select the best-performing model
based on evaluation metrics.
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Federated learning with model personalization
FL is a decentralized ML approach in which multiple clients collaborate to train a global
model while preserving the privacy of their raw data. DL models can be effectively utilized
within the FL environment. Each client trains DL models locally on their datasets, and the
global model is updated by aggregating the individualized model updates from all clients.

ResNet50:Using for DR detection and classification involves leveraging. The ResNet-50
architecture is used for the specific task of identifying signs of DR in retinal images. DR is a
medical condition associated with diabetes that affects the retina, and early detection is
crucial for timely intervention. ResNet-50 is a deep CNN architecture that includes 50
layers. It is characterized by using residual blocks, which contain shortcut connections to
mitigate the vanishing gradient problem (Karthika, Durgadevi & Rani, 2023). ResNet50
has shown effectiveness in training very deep networks. ResNet50 is often pre-trained on
large-scale image datasets, such as ImageNet. This pre-training allows the model to learn
general features from diverse images before being fine-tuned for the specific task of DR
detection.

Densenet201: Similar to other DenseNet architectures, DenseNet201 is a deep neural
network suitable for detecting and classifying DR. DenseNet, which stands for densely
connected convolutional networks, is characterized by densely connected blocks where
each layer receives input from all preceding layers. These dense connections promote
feature reuse, enhance gradient flow, and contribute to more efficient training. Below is a
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Figure 2 A proposed FedDL architecture for DR detection and classification. Full-size DOI: 10.7717/peerj-cs.2508/fig-2

Bhulakshmi and Rajput (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2508 13/29

http://dx.doi.org/10.7717/peerj-cs.2508/fig-2
http://dx.doi.org/10.7717/peerj-cs.2508
https://peerj.com/computer-science/


concise overview of how DenseNet201 can be utilized for DR detection (Dinpajhouh &
Seyyedsalehi, 2023). DenseNet-201 is a specific variant of the DenseNet architecture with
201 layers. It consists of densely connected blocks that contain bottleneck layers and skip
connections, fostering feature reuse and mitigating the vanishing gradient problem.

AlexNet: is a pioneering CNN that rose to prominence due to its victory in the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012. This achievement
marked a significant breakthrough in the field of DL. Even though it was one of the first DL
architectures, more sophisticated models like VGG, ResNet, and others have supplanted it.
Nevertheless, AlexNet can still be used for DR detection and classification, particularly in
cases where computational resources are limited. Here is a brief overview: AlexNet is
structured with five layers of convolution followed by a sequence of three layers that are

Algorithm 2 Proposed framework algorithm for DR classification using FL.

Input: IDRiD Dataset

Output: Best-performing model for DR classification

1: Load and preprocess the IDRiD dataset

2: Resize images to fit model input size

3: Normalize pixel values between 0 and 1

4: Split the dataset into training, and test sets

5: Apply data augmentation to training data

6: Augment images with random rotations, flips, zoom, and brightness adjustments

7: Initialize DL models: ResNet50, DenseNet201, AlexNet, EfficientNetB7, VGG19

8: Distribute the dataset to N clients in the FL environment

9: Each client receives a subset of the training data

10: Initialize the global model with the same architecture as client models

11: for each round of FL (1 to R) do

12: for each client (1 to N) do

13: Receive the global model from the server

14: Train the model locally on the client’s dataset

15: Send the updated model weights to the server

16: end for

17: Server-side aggregation:

18: Aggregate the model weights from all clients using Federated Averaging

19: Update the global model with the aggregated weights

20: end for

21: Evaluate the global model on the centralized test dataset

22: Calculate performance metrics: Accuracy, Precision, Recall, F1 score, specificity, sensitivity, AUC-ROC

23: Compare the performance of the models (ResNet50, DenseNet201, AlexNet, EfficientNetB7, VGG19)

24: Select the best model based on performance metrics (highest AUC or accuracy)
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fully connected (Das, Biswas & Bandyopadhyay, 2023). It introduced the use of ReLU
activation functions and dropout for regularization. Max-pooling is applied after the first
and second convolutional layers.

EfficientB7: is a variant of the EfficientNet architecture introduced to achieve better
model performance while maintaining computational efficiency. Efficient-NetB7 is one of
the larger models in the EfficientNet family, and its use in DR detection and classification
involves leveraging its scalability and generalization capabilities (Giroti et al., 2023). Here is
a brief overview: EfficientNetB7, like other EfficientNet models, employs a compound
scaling approach to ensure a harmonious balance between its depth, width, and resolution.
The architecture includes multiple blocks of convolutional layers, such as MBConv
(Mobile Inverted Residual Bottleneck) blocks, designed for efficiency.

VGGNet19: Visual geometry group network (VGG) is a CNN architecture that gained
attention for its simplicity and effectiveness. VGGNet19, a variant of VGGNet, comprises
19 layers, including 16 convolutional layers and three fully connected layers (Rakesh et al.,
2023). While VGGNet is an older architecture compared to more recent models like
ResNet and EfficientNet, it can still be applied to DR detection and classification. Here’s a
brief overview. VGGNet19 comprises 16 convolutional layers, each accompanied by a
rectified linear unit (ReLU) activation function and three fully connected layers. The
convolutional layers have small 3 × 3 filters, and max-pooling is applied after some
convolutional blocks.

We have evaluated five different models for use in an FL setting to identify and
categorize DR based on their strengths in processing complex image data. The deep
architecture and residual connections of ResNet50 can help address the vanishing gradient
issue, while DenseNet201’s dense connections facilitate maximum information flow
between layers, making it ideal for extracting features from medical images. AlexNet’s
straightforward yet effective approach to image classification tasks also makes it a strong
candidate, and EfficientNetB7’s balanced model size and accuracy through scaling depth,
width, and resolution are advantageous. Furthermore, VGGNet19’s simplicity and depth
make it suitable for capturing detailed features in images, which is essential for DR
classification in an FL environment.

RESULTS AND DISCUSSION
In the following section, we present the results obtained from our proposed model,
comparing them with conventional FL methods that rely on centralized training. We
outline the experimental setup, dataset collection and preparation, hyperparameters and
tuning strategies, performance metrics, experimental results, performance of the proposed
approach, analysis and discussion, evaluation of performance using a different dataset, and
strengths and weaknesses in real-world clinical settings.

Experimental setup
The implementation was done in Python on a Windows 11 Pro PC with an Intel i9 core
processor. The system runs on a 64-bit operating system with 32.0 GB of RAM and an
NVIDIA GeForce MX150 GPU. The experiments were conducted over 100 iterations
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spanning 10 epochs. We utilized Keras version 2.4.3 and TensorFlow version 2.3.0 to
implement FL. Our approach focuses on improving communication efficiency in FL
scenarios. Specifically, we utilize the FedAvg algorithm and five DL models performed in
the FL environment. We iteratively update weights transmitted from clients to the server,
improving overall performance.

Dataset acquisition and preparation
This work utilized an image dataset sourced from Kaggle (https://www.kaggle.com/
datasets/aaryapatel98/indian-diabetic-retinopathy-image-dataset), accessed on 11 July
2023. Specifically, We accessed the IDRiD, which comprises a diverse collection of 516
images. These images were divided into training and testing sets with an 80:20 ratio after
augmentation, specifically for DR detection and classification. IDRiD stands out as the first
database representing an Indian population, providing unique pixel-level annotations for
both typical DR lesions and normal retinal structures. Furthermore, each image includes
detailed information on the severity of DR.

Hyperparameters and tuning strategies
Hyperparameters are settings or parameters that are determined before the training of a
machine learning algorithm and are not learned from the data during training. These
settings control the behavior of the algorithm. Common hyperparameters in machine
learning include the learning rate, which determines how quickly the model updates its
parameters during training; the number of epochs, which is the number of times the entire
dataset is passed through the model during training; batch size, which is the number of
samples processed at once during training; regularization strength, which controls the
amount of regularization applied to prevent overfitting; and network architecture, which
includes the number of layers, neurons per layer, and activation functions in the neural
network.

Random search. It involves randomly sampling hyperparameter values from a specified
distribution and evaluating the model’s performance for each set. This process is repeated
multiple times, and the best hyperparameters are selected based on the evaluation results.

Performance metrics
The performance of the proposed model is evaluated using metrics such as accuracy,
precision, recall, specificity, F1 score, sensitivity, receiver operating characteristic (ROC),
and area under the curve (AUC). These metrics are defined in Eqs. (4) through (12).

Accuracy: Accuracy quantifies the correctness of predictions for a given dataset, with
values ranging from 0 to 1.

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

(4)

Precision: Precision gauges the accuracy of predictions made by the classifier, with
values ranging from 0 to 1.
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Precision ¼ TP
TP þ FP

(5)

Recall: Recall assesses the classifier’s ability to capture relevant predictions, with values
ranging from 0 to 1.

Recall ¼ TP
TP þ FN

(6)

Specificity: Specificity refers to the capacity to accurately recognize true negatives in a
classification system. It is quantified on a scale from 0 to 1.

Specificity ¼ TN
TN þ FP

(7)

F1 score: The F1 score leverages recall to determine the proportion of true positive
records out of the total actual positive records.

F1 score ¼ 2 � Precision � Recall
Precisionþ Recall

�100 (8)

Sensitivity: Sensitivity, also referred to as the true positive rate or recall, is a crucial
metric in ML. It quantifies the proportion of actual positive cases that a model correctly
identifies.

Sensitivity ¼ TP
TP þ FN

(9)

ROC: The ROC curve graphically represents the trade-off between the true positive rate
(TPR) and the false positive rate (FPR) across different threshold settings. True positive
rate (TPR) is defined as:

TPR ¼ TP
TPþ FN

(10)

False positive rate (FPR) is defined as:

FPR ¼ FP
FPþ TN

(11)

AUC: The AUC, which stands for the area under the ROC curve, provides a single
metric that summarizes the model’s overall performance. An AUC value of 1 indicates a
perfect model, while 0.5 suggests a random classifier. The AUC is calculated as the integral
of the ROC curve:

AUC ¼
Z 1

0
TPRðtÞdðFPRðtÞÞ (12)

where TP (true positives), TN (true negatives), FP (false positives), and FN (false negatives)
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are defined, the classifier with the highest precision, recall, F-measure, and accuracy is
considered the best predictive classifier.

Experimental results
This section outlines the experiments performed to evaluate and analyze DL models in a
FL setting. Subsequently, we examine the performance of the FedAvg-enabled DL
approach on the IDRiD dataset and STARE and compared it with conventional DL
models.

Performance of the proposed approach

This component evaluates the training and performance evaluation of the model. The
samples from the IDRiD dataset are initially used to train the server model. The server
model is then assigned to the clients. Typically, we evaluate the model’s performance with
five clients. We decided on 0.0025 as the learning rate number. Random selection is used to
select observations for every client device in the collection. The accuracy results are
depicted in Fig. 3, showing that the proposed model’s correctness improves over time. The
model’s accuracy starts low but steadily increases as the proposed approach learns, making
it more reliable in detecting and classifying DR images. Figure 4 illustrates the loss graph of
the proposed model, indicating a continuous decrease in loss over time. Although the
model’s loss graph initially appears large, it gradually diminishes as the proposed approach
learns, enhancing its stability and competency in detecting and classifying DR images. The
test accuracy for the proposed model is shown in Fig. 3 over the 10 epochs for the resnet50
model, and the loss is depicted for the proposed model in Fig. 4. Additionally, Fig. 5
illustrates the test accuracy for the other four different models, while Fig. 6 displays the loss
for those models. The proposed work is compared with existing research regarding
accuracy, dataset, and technology. Author-wise details are provided in the following
Table 2. Table 3 illustrates the performance of the DenseNet model within a FL framework.
Table 4 describes the performance of the AlexNet model in the FL environment. Table 5
describes the performance of the EfficientNetB7 model in the FL environment. Table 6
describes the performance of the VGGNet19 model in the FL environment.

Figure 3 Test accuracy for the proposed model. Full-size DOI: 10.7717/peerj-cs.2508/fig-3
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Figure 4 Test loss for the proposed model. Full-size DOI: 10.7717/peerj-cs.2508/fig-4

Figure 5 Test accuracy for other four models. Full-size DOI: 10.7717/peerj-cs.2508/fig-5

Figure 6 Test loss for other four models. Full-size DOI: 10.7717/peerj-cs.2508/fig-6
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Performance comparison with other techniques
To evaluate the effectiveness of our proposed FL framework, we conducted experiments
using various nature-inspired optimization techniques, including Ant Colony
Optimization (ACO) and Artificial Bee Colony (ABC). These experiments were conducted

Table 2 Comparing the performance of the proposed work with existing DR detection methods.

Work Acc. % Dataset Technique used

Proposed work 94.66% IDRiD FedDL

Sunkari et al. (2024) 93.51% APTOS Resnet18

Saranya & Prabakaran (2020) 90.29% IDRiD CNN

Nasajpour et al. (2022) 86.52% IDRiD FL approach

Goswami, Ashwini & Dash (2023) 82.13% IDRiD InceptionV3 model

Chetoui & Akhloufi (2023) 71.00% IDRiD Vision transformer architecture

Table 3 Performance metrics for the DenseNet201 model in a FL environment.

Performance metrics Pre. % Rec. % F1. % Spec. % Sen. %

Epoch1 95% 95% 95% 95% 95%

Epoch2 94% 94% 94% 94% 94%

Epoch3 91% 91% 91% 91% 91%

Epoch4 90% 90% 90% 90% 90%

Epoch5 88% 88% 88% 88% 88%

Epoch6 87% 87% 87% 87% 87%

Epoch7 86% 86% 86% 86% 86%

Epoch8 85% 85% 85% 85% 85%

Epoch9 86% 86% 86% 86% 86%

Epoch10 90% 90% 90% 90% 90%

Table 4 Performance metrics for the AlexNet model in a FL environment.

Performance metrics Pre. % Rec. % F1. % Spec. % Sen. %

Epoch1 87% 87% 87% 87% 87%

Epoch2 92% 92% 92% 92% 92%

Epoch3 88% 88% 88% 88% 88%

Epoch4 87% 87% 87% 87% 87%

Epoch5 92% 92% 92% 92% 92%

Epoch6 92% 92% 92% 92% 92%

Epoch7 89% 89% 89% 89% 89%

Epoch8 88% 88% 88% 88% 88%

Epoch9 88% 88% 88% 88% 88%

Epoch10 88% 88% 88% 88% 88%
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on the IDRiD dataset. Figure 7 provides a comprehensive comparison of the performance
metrics achieved by our proposed methodology with the ACO and ABC techniques. The
ROC curve is a graph that shows the performance of a classification model by plotting the
false positive rates against the true positive rates. It is effective for detecting the presence or
absence of a disease. For accurate detection, a low false positive rate and a high true
positive rate are essential. According to the Fig. 8, the proposed method achieves a true
positive rate close to 0.93 at lower false positive rates. This indicates that the proposed
method classifies the disease with higher accuracy. In comparison, the other techniques,
ACO and ABO, showed AUC values of 0.88 and 0.87, respectively.

Analysis and discussion
Our proposed framework achieved impressive results in detecting and classifying DR,
outperforming traditional centralized approaches in terms of accuracy and AUC. By
leveraging data augmentation and FedAvg, we enhanced model generalization and
reduced overfitting, while nature-inspired algorithms for hyperparameter optimization

Table 5 Performance metrics for the EfficientNetB7 model in a FL environment.

Performance metrics Pre. % Rec. % F1. % Spec. % Sen. %

Epoch1 90% 90% 90% 90% 90%

Epoch2 92% 92% 92% 92% 92%

Epoch3 91% 91% 91% 91% 91%

Epoch4 92% 92% 92% 92% 92%

Epoch5 85% 85% 85% 85% 85%

Epoch6 89% 89% 89% 89% 89%

Epoch7 90% 90% 90% 90% 90%

Epoch8 89% 89% 89% 89% 89%

Epoch9 90% 90% 90% 90% 90%

Epoch10 90% 90% 90% 90% 90%

Table 6 Performance metrics for the VGGNet19 model in a FL environment.

Performance metrics Pre. % Rec. % F1. % Spec. % Sen. %

Epoch1 88% 88% 88% 88% 88%

Epoch2 88% 88% 88% 88% 88%

Epoch3 88% 88% 88% 88% 88%

Epoch4 88% 88% 88% 88% 88%

Epoch5 88% 88% 88% 88% 88%

Epoch6 88% 88% 88% 88% 88%

Epoch7 89% 89% 89% 89% 89%

Epoch8 89% 89% 89% 89% 89%

Epoch9 89% 89% 89% 89% 89%

Epoch10 87% 87% 87% 87% 87%
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further boosted performance. This approach allowed us to train models on distributed
datasets without compromising patient privacy, a significant advantage in healthcare
settings where data sharing is challenging. In this work, we compare our proposed
approach to existing methods regarding the dataset and methodology employed for
detecting and classifying diabetic retinopathy. Additionally, we critically examine the
limitations identified in the literature. Table 2 provides a comprehensive comparison with
the current method, demonstrating that our proposed approach yields significant

Figure 7 The performance comparison with other techniques.
Full-size DOI: 10.7717/peerj-cs.2508/fig-7

Figure 8 The AUC-ROC performance comparison with other techniques.
Full-size DOI: 10.7717/peerj-cs.2508/fig-8
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improvements. Furthermore, we present the simulation results obtained from our
proposed diabetic retinopathy detection model, evaluated on a dataset comprising 1,113
fundus images after augmentation with train and test sets. To gauge the model’s efficiency,
we assess a set of performance measures, including accuracy, sensitivity, specificity, recall,
precision, F1 score, and AUC-ROC. Despite these promising results, future research could
explore different FL algorithms and investigate the impact of varying data distributions
across clients to gain further insights into the effectiveness of this approach.

Evaluate the performance using a different dataset
To generalize the robustness of our proposed methodology using FedAvg. We have
conducted additional experiments using the STARE dataset. In our study, we focused on
detecting DR using the STARE dataset. The model exhibited a remarkable upward
accuracy trend throughout multiple training rounds. Initially, in the first round, the
accuracy stood at 92%, but as we progressed, it steadily improved. By the sixth round, the
model achieved a peak accuracy of 98%. Simultaneously, the corresponding loss
consistently declined, indicating successful model optimization over consecutive rounds.
This iterative process allowed us to fine-tune the model and enhance its performance in
identifying early signs of DR from retinal images. Figures 9 and 10 illustrates the accuracy
and loss performance of the ResNet50 model using the STARE dataset.

Strengths and weaknesses in real-world clinical settings
To facilitate a more thorough discussion, it is essential to address both the strengths and
weaknesses of our work on the detection and classification of DR using DL models in a FL
environment.

Figure 9 Test accuracy for the ResNet50 model on the STARE dataset.
Full-size DOI: 10.7717/peerj-cs.2508/fig-9

Bhulakshmi and Rajput (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2508 23/29

http://dx.doi.org/10.7717/peerj-cs.2508/fig-9
http://dx.doi.org/10.7717/peerj-cs.2508
https://peerj.com/computer-science/


Strengths
Data privacy: FL enhances patient data privacy by keeping data localized and only sharing
model updates.

Generalization: The model benefits from diverse data sources, improving its ability to
generalize across different populations.

Scalability: FL allows for scalable model training across multiple institutions without
the need for centralized data storage.

Performance: The integration of advanced techniques like transfer learning and
privacy-preserving methods can maintain high model accuracy.

Weaknesses
Data heterogeneity: Variability in data quality and distribution across institutions can
affect model performance and consistency.

Communication overhead: FL requires significant communication between nodes,
which can be resource-intensive and slow down training.

Complexity: Implementing FL involves complex coordination and management of
multiple models and data sources.

Ethical and legal challenges: Ensuring compliance with ethical guidelines and legal
frameworks for patient data privacy can be challenging and may vary across regions.

CONCLUSION AND FUTURE DIRECTIONS
The proposed methodology FedDL implements the ResNet50, Densenet201, AlexNet,
EfficientNetB7, and VGGNet19 models in a FL environment. In this environment,
multiple clients train their local models on their data and update them to the central server.
The central server aggregates the client data and sends it to the global model. The IDRiD
dataset is used for image augmentation during the training of the client models. Simple DL
models are used as the base model for each client, and their performance on a validation set
is evaluated. The accuracy of each client’s model on the test set is then used to update their

Figure 10 Test loss for the ResNet50 model on the STARE dataset.
Full-size DOI: 10.7717/peerj-cs.2508/fig-10
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local models. The primary objective of this system is to benefit multiple medical facilities.
To address privacy concerns, FL was adopted—an approach that shares model parameters
without exposing actual patient data. Using the FedDL framework, the study investigated
five key DL models capable of distinguishing DR. The FL approach’s overall performance
is assessed based on the highest accuracy achieved by the Resnet50 model out of the five
models on the test set.

In the field of medical imaging, FL raises ethical concerns regarding patient data
privacy. To address this, it is important to minimize shared data, implement secure
aggregation, enforce strict access controls, and obtain patient consent. These measures are
essential to ensure responsible and ethical FL, thereby protecting patient privacy and
promoting trust. Specific measures include using techniques like FedAvg, training models
locally, encrypting model updates, conducting regular security assessments, and
communicating the process and its benefits to patients.

Future Directions
Future studies on detecting and classifying DR using DL models in an FL environment
could explore several research questions and hypotheses. These include examining how
data heterogeneity across institutions affects model performance, identifying effective
model aggregation techniques, and integrating privacy-preserving methods like differential
privacy without compromising accuracy. Additionally, investigating the role of transfer
learning in enhancing model performance across different populations, developing real-
time adaptation mechanisms for incorporating new data, and addressing ethical and legal
implications are crucial. These directions provide a detailed roadmap for advancing
federated learning in DR detection.
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