
Submitted 22 July 2024
Accepted 21 October 2024
Published 17 January 2025

Corresponding author
Ying Qian, qianying@cqupt.edu.cn

Academic editor
Bilal Alatas

Additional Information and
Declarations can be found on
page 17

DOI 10.7717/peerj-cs.2504

Copyright
2025 Wan et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

MSSA: multi-stage semantic-aware neural
network for binary code similarity
detection
Bangrui Wan1,2, Jianjun Zhou1, Ying Wang1, Feng Chen1,2 and Ying Qian1,2

1 School of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
2Chongqing Engineering Research Center of Software Quality Assurance, Testing and Assessment, Chongqing,
China

ABSTRACT
Binary code similarity detection (BCSD) aims to identify whether a pair of binary
code snippets is similar, which is widely used for tasks such as malware analysis,
patch analysis, and clone detection. Current state-of-the-art approaches are based
on Transformer, which require substantial computation resources. Learning-based
approaches remains room for optimization in learning the deeper semantics of binary
code. In this paper, we propose MSSA, a multi-stage semantic-aware neural network
for BCSD at the function level. It effectively integrates the semantic and structural
information of assembly instructions within and between basic blocks, and across
the entire function through four semantic-aware neural networks, achieving deep
understanding of binary code semantics. MSSA is a lightweight model with only 0.38M
parameters in its backbone network, suitable for deployment in CPU environments.
Experimental results show that MSSA outperforms Gemini, Asm2Vec, SAFE, and
jTrans in classification performance and ranks second only to the Transformer-based
jTrans in retrieval performance.

Subjects Artificial Intelligence, Security and Privacy, Programming Languages, Software
Engineering
Keywords Binary analysis, Similarity detection, Neural network

INTRODUCTION
Binary code similarity detection (BCSD) aims to identify whether a pair of binary code
snippets is similar. It has broad application value across multiple fields, including malware
analysis (Cesare, Xiang & Zhou, 2013; Shirani et al., 2018; Xu et al., 2017a; Liu et al., 2018),
detection of software piracy (Luo et al., 2014; Luo et al., 2017), patch analysis (Xu et al.,
2017b; Kargén & Shahmehri, 2017), reverse engineering (Luo et al., 2023), and vulnerability
detection (Gao et al., 2018; Eschweiler, Yakdan & Gerhards-Padilla, 2016; David, Partush &
Yahav, 2018). In these practical scenarios, software is often closed-source or its source code
is difficult to access, highlighting the importance of BCSD. BCSD typically use functions
as the basic unit of analysis.

Traditional BCSD approaches often rely heavily on specific features of binary code.
Approaches like BinHunt (Gao, Reiter & Song, 2008) and BinDiff (Zynamics, 2021) extract
syntactic information from functions by capturing control flow graphs (CFG) and then
compute the similarity between two functions. Approaches like TEDEM(Pewny et al., 2014)

How to cite this article Wan B, Zhou J, Wang Y, Chen F, Qian Y. 2025. MSSA: multi-stage semantic-aware neural network for binary
code similarity detection. PeerJ Comput. Sci. 11:e2504 http://doi.org/10.7717/peerj-cs.2504

https://peerj.com/computer-science
mailto:qianying@cqupt.edu.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2504
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.2504

and XMATCH (Feng et al., 2017) use graph or tree edit distances to evaluate code similarity.
BinGold (Alrabaee, Wang & Debbabi, 2016) and Libv (Qiu, Su & Ma, 2016) detect binary
code similarity from the semantic and CFG perspectives using graph algorithms. However,
these approaches often struggle to capture the in-depth semantics of binary code and
usually present unsatisfactory accuracy.

With the rapid advancement of machine learning technologies, learning-based BCSD
approaches have emerged as a focal point of research, characterized by representing binary
code as vector embeddings and calculating the similarity within the vector spaces. For
instance, Asm2Vec (Ding, Fung & Charland, 2019), InnerEye (Zuo et al., 2019), and SAFE
(Massarelli et al., 2019a) adopt deep neural networks to convert assembly instructions and
functions into vector representations, capturing in-depth semantic information of the
code. Genius (Feng et al., 2016), Gemini (Xu et al., 2017a), and Vulseeker (Luo et al., 2014)
employ graph neural networks (GNN) to learn representations of functions’ attributed
control flow graphs (ACFG) and then compute their similarity. Recently, Transformer-
based approaches such as jTrans (Wang et al., 2022) and Trex (Pei et al., 2020), leveraging
the self-attention mechanism, grasp a thorough and comprehensive understanding of the
contextual relationships within code sequences, demonstrating exceptional performance.

Despite the impressive progress, there still exist main challenges:
Firstly, Transformer-based BCSD approaches, which typically have a large number of

parameters, require substantial computational resources and time for both training and
execution. Consequently, training and deploying these models on devices with limited
computational resources and time constraints is challenging.

Secondly, learning-based BCSD approaches often focus on either the semantic or
structural information of binary code.However, the potential optimization from integrating
both structural and semantic information is not yet fully explored.

Given these challenges, it is worthwhile in the BCSD field to investigate how to reduce
dependency on computational resources while maintaining desirable performance. In this
paper, we propose MSSA, a multi-stage semantic-aware neural network for BCSD with a
backbone network of only 0.38M parameters. MSSA effectively integrates the semantic and
structural information of assembly instructions within and between basic blocks, and across
the entire function. This integration is implemented through four semantic-aware neural
networks, namely Block Embedding, Intra-Block Learning, Inter-Block Learning, and
Function-Level Learning. In doing so, MSSA would be able to grasp a deep understanding
of binary code semantics. We evaluated the performance of MSSA against approaches
including Gemini, Asm2Vec, SAFE, and jTrans on BinaryCorp-3M (Wang et al., 2022)
dataset.

In summary, we have made the following contributions:
(1) We propose MSSA, a multi-stage semantic-aware neural network for BCSD. MSSA

has a model size of only 0.38M parameters, enabling its deployment in CPU environments.
The code for MSSA is available at GitHub (https://github.com/SQAbin/MSSA).

(2) We demonstrate that the multi-stage learning strategy employed by MSSA is
crucial for enhancing BCSD. This approach effectively captures semantic and structural

Wan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2504 2/22

https://peerj.com
https://github.com/SQAbin/MSSA
http://dx.doi.org/10.7717/peerj-cs.2504

information through Intra-Block Learning, Inter-Block Learning, and Function-Level
Learning, significantly improving BCSD performance.

(3) We conducted extensive experiments to evaluate MSSA. The results demonstrate
thatMSSA outperforms Gemini, Asm2Vec, SAFE, and jTrans in classification performance,
while ranking second only to the Transformer-based jTrans in retrieval performance.

RELATED WORK
BCSDapproaches can be categorized in three classes: traditional approaches, learning-based
approaches, and Transformer-based approaches. The following section will detail related
work pertaining to each of these categories.

Traditional approaches
Traditional approaches for BCSD primarily fall into two categories: static and dynamic
analyses. Static approaches utilize structured information such as CFG and Call Graphs
(CG), along with graph/tree edit distance techniques, to assess binary code similarity.
For instance, tools like BinClone (Farhadi et al., 2014), BinSign (Nouh et al., 2017), and
BinShape (Shirani, Wang & Debbabi, 2017) leverage statistical features or graphs of CFG
and CG for similarity analysis, whereas TEDEM (Pewny et al., 2014) and XMATCH (Feng
et al., 2017) employ graph or tree edit distances. On the other hand, dynamic approaches
rely on information collected during program execution including symbolic execution and
deep taint analysis etc., aiming to determine code similarity based on runtime behavior.
Approaches such as iBinHunt (Ming, Pan & Gao, 2012) extract semantic information of
functions through symbolic execution and deep taint analysis, while BinGo (Chandramohan
et al., 2016) and BinGo-E (Xue et al., 2019) obtain function input/output values by
executing target programs. HGE-BVHD (Xing et al., 2024) enhances BCSD accuracy
by integrating basic block features into function representations using heterogeneous
graph embeddings, which adapt to control and data flows for better discrimination of
non-homologous functions.

In summary, traditional approaches have limitations in capturing the deep semantic
information of binary code, especially in complex scenarios where compiler optimizations
are applied. As a result, they usually do not offer satisfactory performance in BCSD.
Some of these approaches do not rely on machine learning models, thus eliminating
concerns about model size. Others that do employ machine learnings typically have smaller
model sizes because they focus directly on analyzing binary code features or execution
behaviors without incorporating complex model training processes. Traditional BCSD
approaches struggle to handle compiler optimizations, leading to reduced detection
accuracy. Additionally, these approaches have shallow semantic understanding, making
it difficult to identify structurally different but semantically similar code. Furthermore,
they rely on specific execution environments, resulting in poor scalability and subpar
performance when dealing with complex scenarios and large-scale data.

Learning-based approaches
In recent years, the rapid development of deep learning technology has introduced new
approaches and techniques for BCSD. By constructing complex neural network models

Wan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2504 3/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2504

such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and
Graph Neural Network (GNN), these approaches can automatically learn and extract deep
features of code to capture more profound semantic information, thereby enhancing the
accuracy and efficiency of BCSD. For instance, αdiff (Liu et al., 2018) utilizes CNN to
learn function embeddings directly from raw byte sequences, while VulSeeker extracts
features from basic blocks and inputs them into a Deep Neural Network (DNN) to
generate function embeddings for vulnerability function searches. Studies like Gemini (Xu
et al., 2017a), Genius (Feng et al., 2016), and GraphEmb (Massarelli et al., 2019b) utilize
ACFG and employ GNN to learn graph embeddings of the code, effectively capturing the
structural and semantic information of programs. The successful application of Natural
Language Processing (NLP) techniques in understanding textual semantics has also inspired
new approaches in the field of BCSD. By treating binary code as a form of ‘‘language’’,
researchers have attempted to use NLP models and techniques, such as word2vec and
LSTM, to learn semantic representations of code. Studies like Asm2Vec (Ding, Fung &
Charland, 2019), InnerEye (Zuo et al., 2019), and SAFE (Massarelli et al., 2019a) translate
assembly instructions and functions into vector representations using NLP, capturing deep
semantic information of binary code.

In summary, learning-based approaches can learn and capture the deep semantic
information of binary code, increasing the accuracy of BCSD.However, existing approaches
often focus on learning either the semantic or the structural aspect, and there is still room for
improvement by simultaneously capturing both the semantic and structural information.
Deep learning models require a large number of parameters to capture complex data
features, typically ranging from tens of thousands to tens of millions. For example, the
backbone network of SAFE has over 4.47M parameters. Additionally, these approaches rely
on large-scale, high-quality training data and face challenges of limited generalizability of
models.

Transformer-based approaches
The approaches based on Transformer (Vaswani et al., 2017) demonstrate exceptional
performance in BCSD. The self-attention mechanism of Transformer enables them to
understand long-distance dependencies in instruction sequences and their corresponding
dynamic values, making them adept at learning the subtle behaviors of functions. jTrans
(Wang et al., 2022) is the first to incorporate the control flow information of binary code
into a Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al.,
2019) model, employing novel jump-aware representations and customized pre-training
tasks for BCSD. Trex (Pei et al., 2020) utilizes a new neural architecture called hierarchical
Transformer, specifically designed to capture execution semantics from micro-traces
during the pre-training phase. Codeformer (Liu et al., 2023), a model that nests GNN
within a Transformer, leverages the strengths of both GNN and Transformer to effectively
identify and compare similar segments within binary code. UniASM (Gu, Shu & Hu, 2022),
another Transformer-based binary code embedding model, designs two new training tasks
that make the spatial distribution of the generated vectors more uniform, allowing these
vectors to be directly used for BCSD without any further fine-tuning.

Wan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2504 4/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2504

In summary, Transformer-based approaches exhibit significant advantages in
understanding the contextual information of binary code and in mining its deep semantic
features. However, they typically have a very large number of parameters, often reaching
hundreds of millions to billions. For example, the backbone network of jTrans has over
14.76M parameters, which is already a very small one based on the Transformer. These
approaches far exceed traditional approaches and learning-based approaches in terms
of resource consumption. Their high training and inference costs severely limit their
application in resource-constrained environments.

Overall, as research approaches of BCSD have evolved, there has been a transition
from traditional approaches to learning-based techniques, and now to transformer-based
methods, all of which increasingly depend on computational resources. In the absence of
costly computing power, advancing related research becomes a challenge. Existing studies
primarily concentrate on improvingmodel detection performance but often overlook some
scenarios with limited computational resources. Moreover, the current trend of BCSD is to
treat code as natural language. However, there is a lack of analysis from a code perspective.
For example, for assembly instructions, each line of code initially has a strong semantic
correlation with its adjacent context, then extending further to encompass interactions
within and between code blocks, which may ultimately affect the entire function. This kind
of multi-stage analysis from a code perspective is currently lacking in BCSD.

DESIGN
Overview
To ensure high detection performance while reducing dependency on computational
resources, we propose MSSA, a multi-stage semantic-aware neural network for BCSD.
MSSA effectively integrates the semantic and structural information of assembly
instructions within and between basic blocks, and across the entire function through
four semantic-aware neural networks. This integration enables a comprehensive and
precise detection of similarities in binary code.

Figure 1 shows an overview of MSSA. MSSA comprises three main phases: Pre-
Processing, Embedding Network, and Similarity Detection.
MSSA takes a pair of disassembled functions as input. Initially, the input undergoes the
Pre-Processing phase, which includes the normalization of the disassembled functions and
the construction of the functions’ CFG and adjacency matrix as outputs.

Subsequently, the Embedding Network phase, which is also the core component
of MSSA, encompasses four semantic-aware embedding networks in sequence: Block
Embedding, Intra-Block Learning, Inter-Block Learning, and Function-Level Learning.
They represent four stages of learning. The Embedding Network ultimately produce feature
vectors that integrate deep semantic and structural information of disassembled functions.

Finally, the Similarity Detection component, built on top of the previous two
components and based on the siamese neural network architecture and a Multi-Layer
Perceptron (MLP) network, determines whether a given pair of functions is similar.

Wan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2504 5/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2504

Figure 1 The Overview of MSSA. MSSA contains three main phases Pre-processing, Embedding Net-
work, and Similarity Detection, where the Embedding Network phase has four stages Block Embed-
ding, Intra-Block Learning, Inter-Block Learning, and Function-Level Learning.

Full-size DOI: 10.7717/peerjcs.2504/fig-1

Pre-processing
Like most BCSD approaches, we utilize the reverse engineering tool Interactive
Disassembler Pro (IDA Pro) (Hex-Rays, 2015) to disassemble binary code files, deriving
a set of disassembled functions. Each function is a sequence of assembly instructions. To
enhance feature learning of assembly instructions, we incorporate a Pre-Processing phase,
consisting of two tasks: Function Representation and Instruction Normalization.

Function representation
For those disassembled functions containing conditional branching, jumping, looping, etc.,
basic blocks can be further extracted. In MSSA, we represent a function by constructing
its CFG at the basic block level. In the constructed CFG, nodes represent basic blocks, and
edges represent control flow transitions during the execution of the function. Each basic
block contains a sequence of assembly instructions.

Additionally, the CFG is also represented as an adjacency matrix. Nodes in the CFG are
mapped to the rows and columns of the matrix respectively. Matrix elements are used to
indicate whether there is a connecting edge between nodes. Given a control flow graph
G= (V ,E), where V is the set of basic block nodes and E is the set of edges between basic
blocks, in the corresponding adjacency matrix A, the matrix element for any two basic
block nodes Vi and Vj in the graph G is defined as follows:

Aij =

{
1, (Vi,Vj)∈ E
0, (Vi,Vj) 6∈ E

, (1)

where Aij represents the element in the i-th row and j-th column of the adjacency matrix,
used to indicate whether there is an edge between Vi and Vj . If there is an edge connecting
these two nodes, Aij is 1; otherwise, it is 0.

Wan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2504 6/22

https://peerj.com
https://doi.org/10.7717/peerjcs.2504/fig-1
http://dx.doi.org/10.7717/peerj-cs.2504

Instruction normalization
In the field of BCSD, when encountering assembly instructions that were not included in
the training data, referred to as the Out-of-Vocabulary (OOV) issue, it can significantly
impair the detection performance. To address the OOV issue, it is helpful to abstract and
standardize the opcodes and operands in assembly instructions. We apply the following
strategies to normalize assembly instructions and reduce their vocabulary size:

(1) Keep all opcodes and registers not normalized, just as the way it is.
(2) Replace all literals with const . For example, sub rsp, 07h becomes sub rsp, const .
(3) Retain operations involving +, -, and * in operands.
(4) Replace the operand following the call operation with foo. For example, call

sub_401E85 becomes call foo.
(5) Preserve offset values in operands.
(6) Replace occurrences of var or arg in operands with ptr , since they are typically

associated with pointers. For example, test[ebp+arg_0],1 becomes test [ebp+ptr], const .
(7) Represent all the other symbols apart from the above six situations as tag .

Embedding network
Taking the output of the Pre-Processing phase as input, the Embedding Network
component aims to produce comprehensive function feature vectors that integrate both
semantic and structural information of the disassembled functions. As illustrated in Fig. 1
and mentioned earlier, this component contains four neural networks that are designed
and arranged in a specific order. Here we regard each neural network as a stage of learning
in this component.

Block embedding
The basic block embedding stage involves learning the semantic relationships between
assembly instructions and converting the assembly instructions within a basic block into
fixed-dimension vector representations. MSSA employs the CBOW (Continuous Bag of
Words) pre-training model from Word2Vec (Mikolov et al., 2013) to learn the semantic
relationships between assembly instructions in a self-supervised manner.

Assuming that a function F consists of n basic blocks, each block containing at most m
instruction sequences while each instruction is mapped to a d-dimensional vector through
the CBOW model, the function F can be defined as:

F ={b1,b2,...,bi,...,bn},bi ∈Rm×d , (2)

where bi is the feature vector of the basic block.

Intra-block learning
The execution behavior of assembly instructions is influenced by preceding instructions and
can affect subsequent ones, creating complex dependencies. This challenges unidirectional
models in capturing the complete semantic information. To address this challenge, the
Intra-Block Learning stage employs Bidirectional Gated Recurrent Unit (Bi-GRU) (Schuster
& Paliwal, 1997) to further learn the semantic relationships between assembly instructions
within a single basic block. Bi-GRU processes data in both directions (forward and

Wan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2504 7/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2504

Figure 2 Iterative network and computation process (a) Iterative network; (b) The computation pro-
cess of basic block embedding vectors during a t-layer iteration.

Full-size DOI: 10.7717/peerjcs.2504/fig-2

backward), thereby capturing the semantic flow from front to back and the dependencies
from back to front simultaneously. This bidirectional processing enables a comprehensive
understanding of the sequence of assembly instructions within a basic block, ensuring that
the semantic context is fully represented.

The feature vector of a basic block bi as derived in the Block Embedding stage can then
be transformed to b

′

i after Intra-Block Learning. b
′

i can be formulated as:

b
′

i=Bi_GRU (bi),b
′

i ∈R
m×k, (3)

where k is the number of neurons in the Bi-GRU and m is the maximum number of
instruction sequences contained in a basic block.

Inter-block learning
As a function typically consists of multiple basic blocks, understanding the structural
relationships between these basic blocks is essential for comprehensively grasping the
function’s overall functionality. The Inter-Block Learning stage aims to thoroughly capture
this structural information and integrate it with the semantic information of each basic
block as derived from the Intra-Block Learning stage. MSSA employs an iterative network
to uncover and integrate structural information among basic blocks. The iterative network
processes the adjacency matrix A, as derived in the Pre-Processing phase, through multiple
rounds of iteration, enhancing the model’s ability to generate a more robust and nuanced

Wan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2504 8/22

https://peerj.com
https://doi.org/10.7717/peerjcs.2504/fig-2
http://dx.doi.org/10.7717/peerj-cs.2504

representation of the function’s overall structure and behavior. The iterative network is
shown in Fig. 2.

Figure 2A is composed of vertices and edges, where vertices represent basic blocks, and
edges represent control dependencies between basic blocks. The iterative network includes
T iterations. After T iterations, the initial features of basic blocks are further enriched with
both structural and semantic information across all basic blocks. In contrast to Gemini (Xu
et al., 2017a), we omitted the addition operation in the output of the iterative network. We
contend that simply adding the basic block features to derive function-level features risks
losing critical information.

Figure 2B illustrates the computation process for the i-th basic block in the t -th iteration
where the block’s initial feature vector b

′

i is transformed into its inter-block vector µ(t)i .
The inputs for this process are: b

′

i, the feature vector of basic block i; and the sum of µ(t−1)
j ,

namely the inter-block vectors of all the basic blocks adjacent to the i-th block in the
adjacency matrix A. The computation process can be formulated as:

µ
(t)
i = tanh(b

′

i+σ (
∑
j∈N (i)

µ
(t−1)
j)), (4)

where the tanh function is used as the activation function, and σ is a multi-layer fully
connected network responsible for computing an embedding vector with more powerful
representation capabilities. N (i) represents the set of basic blocks adjacent to the basic
block i. σ can be formulated as:

σ (x)= P1×ReLu(P2× ...ReLU (Pu×x)), (5)

where u represents the embedding depth of each basic block vertex, x represents the input,
and P represents a fully connected parameter matrix. Through T layers of iteration, the
features of each vertex are propagated to other vertices via the iterative network, ensuring
that control flow information is disseminated among all basic blocks.

Define the output layer dimension of the iterative network as l. The iterative network
can convert the feature vectors of all basic blocks into the corresponding function’s feature
vector f. f can be formulated as:

f = IterNet ((b
′

1,b
′

2,...,b
′

i,...,b
′

n),A),f ∈R
n×m×l . (6)

Function-Level learning
The high-level semantic meaning of a function extends beyond its constituent basic blocks
and is implied throughout the entire structure of the function. The arrangement of all
the basic blocks within a function directly reflects the core semantics and logical structure
of the function, which are crucial for understanding the function’s overall behavior.
Therefore, conducting in-depth learning at the function level is necessary to capture these
comprehensive semantics.

MSSA utilizes Bi-GRU with an attention mechanism (Bahdanau, Cho & Bengio, 2014),
where Bi-GRU performs bidirectional learning on the function’s feature vector f, and

Wan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2504 9/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2504

the attention mechanism enhances the model’s ability to focus on key features. This
combination enables the model to more accurately identify the critical features that
determine the function’s semantics, thereby achieving a deeper semantic capture of the
entire function.

The calculation formula for the attention (att) mechanism is as:

att = sum(x ∗ softmax(tanh(x ·W +b))), (7)

where x represents the input, W represents the weight matrix, and b represents the bias
vector.

Let us define the output layer dimension of Bi-GRU as h. The function’s feature vector
f is transformed to f

′

.f
′

can be formulated as:

f
′

=Bi_GRUatt
(
f
)
,f
′

∈Rh. (8)

Similarity detection
The Similarity Detection phase is actually an application of the previous two phases and
employs a siamese neural network architecture (Feng et al., 2020) for BCSD. Siamese
networks can share parameters when processing comparative tasks and is widely used in
BCSD.

We input two disassembled functions into Pre-Processing and followed by the
Embedding Network component, resulting in two feature vectors respectively. We
then concatenate these feature vectors, and pass them through MLP to achieve feature
dimensionality reduction and enhanced classification. Finally, the output similarity score
is computed through a sigmoid activation function. This score ranges between 0 and 1,
where a value closer to 1 indicates that the input function pair is more similar, and a value
closer to 0 indicates less similar.

The parameters are shared between the siamese networks, and the binary cross-entropy
loss function [49] is used. The Loss function can be formulated as:

Loss=−
1
N

N∑
i=1

yi · log (p(yi))+ (1−yi) · log (1−p(yi)), (9)

where y is a binary label, either 0 or 1, and p(y) is the probability that the output belongs
to the y label.

EVALUATION
The evaluation aims to answer the following questions:

RQ1:HowdoesMSSAperform inBCSD comparedwith other baselines? (‘Performance’)
RQ2: How complex and efficient is MSSA in terms of parameter size and execution

speed? (‘Complexity and Efficiency’)
RQ3: How much does the main module contribute to the performance of MSSA?

(‘Ablation Study’)

Wan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2504 10/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2504

Table 1 BinaryCorp-3M datasets.

Datasets Projects Binaries Functions

BinaryCorp-3M Train 1,612 8,357 3,126,367
BinaryCorp-3M Test 364 1,908 444,574

Experimental setups
Dataset
To evaluate MSSA in detail, we used the BinaryCorp-3M (Wang et al., 2022) dataset, which
is a large dataset constructed by jTrans, based on the ArchLinux official repository and the
Arch User Repository. Each project in these repositories is compiled for one architecture
x86 and five optimization levels O0, O1, O2, O3, and Os. The statistical data of the dataset
are shown in Table 1.

Baselines
We compared MSSA to the following four baselines.

Gemini (Xu et al., 2017a): A graph embedding network to compute the embedding
vector for each node in the ACFG, ultimately forming the embedding vector for the entire
ACFG (https://github.com/Yunlongs/Gemini)

Asm2Vec (Ding, Fung & Charland, 2019): An assembly language embedding model
based on the Distributed Memory Model of Paragraph Vectors (PV-DM) (Luo et al., 2023)
model (https://github.com/oalieno/asm2vec-pytorch).

SAFE (Massarelli et al., 2019a): An attention-based assembly language embeddingmodel
that uses an RNN architecture and attention mechanism to generate function embeddings
(https://github.com/gadiluna/SAFE).

jTrans (Wang et al., 2022): A jump-aware Transformer-based model for assembly
language embedding, stands as one of the state-of-the-art approaches (https://github.com/
vul337/jTrans).

Evaluation metrics
Determining whether a function pair is similar or not is a classification task. Therefore,
we adopt the Accuracy, Precision, Recall, F1-Score (F1) and Area Under the Curve (AUC)
metrics to evaluate the classification performance of BCSD. AUC is the area under the
Receiver Operating Characteristic (ROC) curve, where the ROC curve is plotted based on
the True Positive Rate (TPR) and False Positive Rate (FPR). The calculation formulas for
each indicator can be formulated as:

Accuracy =
TP+TN

TP+TN +FP+FN
, (10)

Precision=
TP

TP+FP
, (11)

Recall =
TP

TP+FN
, (12)

Wan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2504 11/22

https://peerj.com
https://github.com/Yunlongs/Gemini
https://github.com/oalieno/asm2vec-pytorch
https://github.com/gadiluna/SAFE
https://github.com/vul337/jTrans
https://github.com/vul337/jTrans
http://dx.doi.org/10.7717/peerj-cs.2504

F1=
2∗Precision∗Recall
Precision+Recall

, (13)

TPR=
TP

TP+FN
, (14)

FPR=
FP

FP+TN
, (15)

where the True Positive (TP) refers to a correctly defined patient sample, True Negative
(TN) refers to a correctly defined healthy case, False Positive (FP) refers to a patient who
has been incorrectly identified, False Negative (FN) refers to a health case with an incorrect
definition.

Besides, Recall@1 and Mean Reciprocal Rank (MRR) are often used to evaluate the
retrieval performance of BCSD (Wang et al., 2022; Gu, Shu & Hu, 2022; Bottou, 2010).
Rank@1means whether the true similar function pair has the highest score, namely ranking
first, within a given set of functions.MRR calculates the average of themultiplicative inverse
of the rank at which the first correct function is retrieved for a given set of functions. The
calculation formulas for MRR and Recall@1 indicators can be formulated as:

Recall@1=
1
|F|

∑
fi∈F

τ (Rankfgti <= 1), (16)

MRR=
1
|F|

∑
fi∈F

1
Rankfgti

, (17)

where F= f1,f2,f3,...fn represents the function pool, f gti represents the similar functions
of the corresponding function fi, Rankf gti

represents its ranking in the retrieval list, τ (·) is
defined as :

τ (x)=

{
0,x= False
1,x=True

. (18)

Hyperparameter selection
We used Adaptive Moment Estimation (Adam) (Kingma & Ba, 2014), Stochastic Gradient
Descent (SGD) (Dozat, 2016), and Nesterov-accelerated Adaptive Moment Estimation
(Nadam) (Hinton & Salakhutdinov, 2006) for optimization. In addition, we conducted
multiple experiments on the number of neurons in each network based on empirical values
to select the parameters with the best performance.

We ultimately chose the following hyperparameters for MSSA: the word vector length
d = 100, the number of basic blocks n = 20, the number of instructions per basic block m
= 20, the number of Bi-GRU neurons k = 128, the number of iterations of the network
T = 5, the embedding depth of the iterative network u = 3, the output dimension of the
iterative network l = 128, the function embedding dimension h = 256, and the training
batch size is 1,024.

Wan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2504 12/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2504

Table 2 BCSD results on classification performance.

Model Accuracy Precision Recall F1 AUC

Gemini 0.7926 0.7164 0.9693 0.8237 0.9490
Asm2Vec 0.6916 0.7401 0.8944 0.7801 0.8411
SAFE 0.9758 0.9617 0.9882 0.9761 0.9937
jTrans 0.9708 0.9825 0.9586 0.9704 0.9941
MSSA (ours) 0.9776 0.9667 0.9894 0.9779 0.9976

Notes.
*The best results are shown in bold. The second best results are underlined.

Performance
We divide our experiments into two parts. In the first part, we evaluate the model’s
classification performance through measuring the above mentioned five metrics. The
second part assesses the model’s retrieval performance to analyze its effectiveness in
finding similar functions within a function pool.

Classification performance
We conducted experiments to evaluate the classification performance ofMSSA as compared
to other four baselines using the BinaryCorp-3M dataset.

The results, presented in Table 2, show that MSSA consistently outperforms all the
baselines in terms of Accuracy, Recall, F1 and AUC on classification performance, and
ranks second only to jTrans regarding Precision. Specifically, MSSA outperforms jTrans by
0.0035 in AUC, surpasses SAFE by 0.0012 in Recall, 0.0018 in Accuracy, and 0.0018 in F1.
However, its Precision is only 0.0158 lower than jTrans.

Retrieval performance
We also conducted experiments to evaluate the retrieval performance ofMSSA as compared
to other baselines using the BinaryCorp-3M dataset. We set the function pool size to 32
and divided BinaryCorp-3M into six groups based on optimization levels: O0-O3, O0-Os,
O1-O3, O1-Os, O2-O3, and O2-Os.

The BCSD results on retrieval performance are presented in Tables 3 and 4. The results
indicate that the retrieval performance of MSSA is second only to jTrans. In terms of MRR,
the gap betweenMSSA and jTrans is most significant in the O0-O3 group withMSSA being
0.1162 lower. Meanwhile, the gap is minimal in the O2-Os group with MSSA being 0.0181
lower. On average, MSSA’s MRR is 0.0497 lower than jTrans. Similarly, for Recall@1,
MSSA exhibits the largest gap with jTrans in the O0-O3, being 0.1772 lower. In the O2-Os
group, the gap is minimal, with MSSA being 0.0343 lower. On average, MSSA’s Recall@1
is 0.0811 lower than jTrans.

The results also show that the retrieval performance of MSSA surpasses other baselines.
In terms of MRR, MSSA exhibits the most significant advantage over SAFE in the O2-Os
group, achieving an improvement of 0.0517. In theO1-O3 group, although the performance
gain of MSSA is smaller, it still achieves an increase of 0.0135. Overall, MSSA averages
a 0.0273 higher MRR than SAFE. Furthermore, considering the Recall@1 metric, MSSA
demonstrates themost notable difference compared to SAFE in the O2-Os group, achieving

Wan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2504 13/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2504

Table 3 BCSD results on retrieval metric MRR.

Models MRR

O0-O3 O0-Os O1-O3 O1-Os O2-O3 O2-Os Average

Gemini 0.6090 0.6878 0.8076 0.8040 0.9007 0.8128 0.7703
SAFE 0.8221 0.8610 0.9177 0.9327 0.9374 0.9095 0.8967
Asm2Vec 0.3146 0.3220 0.6253 0.6007 0.7603 0.6491 0.5453
jTrans 0.9626 0.9591 0.9790 0.9768 0.9857 0.9793 0.9737
MSSA (ours) 0.8464 0.8887 0.9312 0.9507 0.9660 0.9612 0.9240

Notes.
*The best results are shown in bold. The second best results are underlined.

Table 4 BCSD results on retrieval metric Recall@1.

Models Recall@1

O0-O3 O0-Os O1-O3 O1-Os O2-O3 O2-Os Average

Gemini 0.4463 0.5516 0.7141 0.7017 0.8473 0.7237 0.6641
SAFE 0.7346 0.7692 0.8648 0.8868 0.8967 0.8461 0.8330
Asm2Vec 0.1865 0.1926 0.5126 0.4838 0.6839 0.5461 0.4343
jTrans 0.9362 0.9324 0.9638 0.9592 0.9746 0.9641 0.9550
MSSA (ours) 0.7590 0.8177 0.8868 0.9109 0.9395 0.9298 0.8739

Notes.
*The best results are shown in bold. The second best results are underlined.

a boost of 0.0837. While the advantage of MSSA in the O1-O3 group is relatively modest,
it still manages to achieve an increase of 0.022. On average, MSSA outperforms SAFE by
0.0409 in the Recall@1.

Complexity and efficiency
We conducted experiments to evaluate the complexity and efficiency of MSSA in contrast
to other comparable approaches, namely SAFE and jTrans which have better performance
than Gemini and Asm2Vec as indicated in the previous experiment, using the BinaryCorp-
3M dataset again. The complexity metric is measured by the number of model parameters,
while the efficiency is evaluated based on the execution speed of a model on a CPU
environment. Note that we modified MSSA and SAFE to detect one by one of a pair of
functions, as same as jTrans, in this section.

The number ofmodel parameters is counted through the corresponding library functions
in the deep learning frameworks for each baseline model. MSSA uses summary(), SAFE
employs trainable_variables(), and jTrans use parameters().

The experiments were conducted on a Windows 10 desktop computer, equipped with
an Intel Core i5-11400 CPU, 16 GB RAM, and without Graphics Processing Unit (GPU).

We run each test for 10 times, and Table 5 shows the average results. The experimental
results show that MSSA has the fewest parameters in the backbone network, with SAFE
closely following in second place, while jTrans has the highest number of parameters.
Even after incorporating pre-trained parameters, MSSA maintains top ranking in total
parameter count, which remains lower than that of SAFE and jTrans. In terms of execution

Wan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2504 14/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2504

Table 5 Results on complexity and efficiency.

Models Number of model parameters Execution Speed
(pairs/s)

Pre-trained Backbone Total

SAFE 52,768,300 4,477,000 57,245,300 6.78
jTrans 73,110,528 14,766,336 87,876,864 0.74
MSSA (ours) 16,109,336 379,229 16,488,565 32.20

speed, MSSA exhibited the highest performance at 32.20 pairs per second. SAFE followed
closely with a speed of 6.78. As for jTrans, its execution speed is very slow, only reaching
0.74.

In summary, MSSA strikes a balance between complexity and efficiency, maintaining
a low parameter count while delivering high performance. Additionally, its ability to be
deployed in a CPU environment further enhances its versatility for broader applications.

Ablation study
In this section, we try to find out the key factors that affect the performance of MSSA in
BCSD. We evaluate the following three parts:
(1) How does the Intra-Block Learning stage affect the performance of MSSA?
(2) How does the structural information in the Inter-Block Learning stage affect the

performance of MSSA?
(3) How does the attention mechanism in the Function-Level Learning stage affect the

performance of MSSA?
The results are presented in Fig. 3. The MSSA label in the figure represents the complete

approach, MSSA-NIB represents the approach without the Intra-block stage, MSSA-NAM
represents the approach without the Inter-block stage, and MSSA-NA represents the
approachwithout the attentionmechanism. In comparingMSSA andMSSA-NIB, we found
that learning the sequence of assembly instructions within the basic blocks is essential. The
inclusion of the Intra-block stage significantly enhances MSSA’s performance. Specifically,
its introduction improvesMSSA’s MRRmetric by 30.7% and Recall@1 by 52.5% compared
to the absence of this stage.

In comparing MSSA and MSSA-NAM, we determined that in understanding the
semantic relationships between basic blocks, the structural information of these blocks plays
a pivotal role. It enables themodel to capture the logical relationships betweendifferent basic
blocks more accurately, thereby enhancing MSSA’s performance. Specifically, introducing
the adjacency matrix of basic blocks during the Inter-Block Learning stage to leverage
structural information increases MSSA’s MRR metric by 0.1493, and improves Recall@1
by 0.2257 compared to not utilizing this information.

In comparing MSSA and MSSA-NA, we noted that while the inclusion of the attention
mechanism in the Function-Level Learning phase enhances MSSA’s performance, its
impact is relatively minor. Specifically, compared to its absence, the introduction of the

Wan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2504 15/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2504

Figure 3 BCSD results on ablation study of MSSA.
Full-size DOI: 10.7717/peerjcs.2504/fig-3

attention mechanism increases MSSA’s MRR metric by only 0.011 and Recall@1 by only
0.017.

DISCUSSION
In this study, we introduce MSSA, a multi-stage semantic-aware neural network designed
for binary code similarity detection. MSSA effectively integrates both semantic and
structural information from assembly instructions through four stages of learning: Block
Embedding, Intra-Block Learning, Inter-Block Learning, and Function-Level Learning.
This approach enables MSSA to achieve a deeper understanding of binary code semantics.

Our experimental results demonstrate that MSSA outperforms existing methods like
Gemini, Asm2Vec, SAFE, and jTrans in classification tasks, while ranking just behind the
Transformer-based jTrans in retrieval performance. Notably, MSSA’s backbone network
consists of only 0.38 million parameters, significantly smaller than Transformer-based
models, making it highly advantageous in resource-constrained environments, especially
those lackingGPUs. Specifically, the results of the ablation study demonstrate that the Intra-
Block and Inter-Block Learning stages contribute most significantly to the performance of
MSSA, indicating that they can effectively capture both semantic and structural information

Wan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2504 16/22

https://peerj.com
https://doi.org/10.7717/peerjcs.2504/fig-3
http://dx.doi.org/10.7717/peerj-cs.2504

of assembly instructions for code embeddings. This in turn has implications for other code
tasks, such as code generation, which may also benefit from gradual learning at varying
levels of granularity.

However, there is still room for improvement in MSSA’s retrieval metrics, an area
where Transformer-based models excel. Additionally, MSSA faces challenges in detecting
obfuscated binary code. While Transformer models excel in retrieval performance, their
large number of parameters and high training costs remain significant drawbacks. Future
research will focus on optimizing and balancing four key factors: model size, training cost,
detection speed, and overall performance. Moreover, obfuscation techniques introduce
extraneous code that disrupts original structures and semantics, presenting a challenge
for MSSA in learning and detecting such patterns effectively. Future work will aim to
enhance the model’s robustness against obfuscation, potentially through the incorporation
of anti-obfuscation techniques or by improving generalization to obfuscated patterns.

In conclusion, MSSA offers a lightweight yet powerful solution for binary code similarity
detection, balancing high performance with resource efficiency. This opens up new
possibilities for deploying advanced BCSD in resource-constrained settings and has
significant implications for both research and practical applications in related fields.

CONCLUSIONS
In this study, we have proposed MSSA, a multi-stage semantic-aware neural network
for BCSD. MSSA efficiently integrates semantics and structural information of assembly
instructions at multiple levels—within basic blocks, between basic blocks, and across entire
function—facilitating thorough understanding and precise similarity detection of binary
code. Our experimental results demonstrate MSSA’s superior classification performance
compared to established approaches such as Gemini, Asm2Vec, SAFE and jTrans. While
MSSA’s retrieval performance slightly trails behind the Transformer-based jTrans, its
backbone network parameter size of only 0.38M positions MSSA as an optimal choice
for deployment in CPU environments. MSSA represents a new lightweight approach for
BCSD, offering novel insights and tools that can impact research and applications across
related fields.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This paper was funded by the Chongqing Technology Innovation and Application
Development Special Major Project under Grant No. CSTB2023TIAD-STX0034. The
funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Chongqing Technology Innovation and Application Development Special Major Project
under: CSTB2023TIAD-STX0034.

Wan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2504 17/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2504

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Bangrui Wan conceived and designed the experiments, analyzed the data, performed
the computation work, authored or reviewed drafts of the article, and approved the final
draft.
• Jianjun Zhou conceived and designed the experiments, performed the experiments,
performed the computation work, prepared figures and/or tables, authored or reviewed
drafts of the article, and approved the final draft.
• Ying Wang performed the experiments, performed the computation work, prepared
figures and/or tables, and approved the final draft.
• Feng Chen analyzed the data, authored or reviewed drafts of the article, and approved
the final draft.
• Ying Qian conceived and designed the experiments, authored or reviewed drafts of the
article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available at Github and Zenodo:
- https://github.com/SQAbin/MSSA.
- SQA. (2024). SQAbin/MSSA: MSSA (BCSD). Zenodo. https://doi.org/10.5281/zenodo.

13881709.
The third party dataset from the approach jTrans is available at Github: https:

//github.com/vul337/jTrans.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2504#supplemental-information.

REFERENCES
Alrabaee S, Wang L, Debbabi M. 2016. BinGold: towards robust binary analysis by

extracting the semantics of binary code as semantic flow graphs (SFGs). Digital
Investigation 18:S11–S22 DOI 10.1016/j.diin.2016.04.002.

Bahdanau D, Cho K, Bengio Y. 2014. Neural machine translation by jointly learning to
align and translate. Computer Science DOI 10.48550/arXiv.1409.0473.

Bottou L. 2010. Large-scale machine learning with stochastic gradient descent. In: Pro-
ceedings of the 19th international conference on computational statistics (COMPSTAT
2010). Springer.

Cesare S, Xiang Y, ZhouW. 2013. Control flow-based malware variantdetection. IEEE
Transactions on Dependable and Secure Computing 11(4):307–317.

ChandramohanM, Xue Y, Xu Z, Liu Y, Cho CY, Tan HBK. 2016. Bingo: cross-
architecture cross-os binary search. In: Proceedings of the 24th ACM SIG-
SOFT international symposium on foundations of software engineering, FSE

Wan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2504 18/22

https://peerj.com
https://github.com/SQAbin/MSSA
https://doi.org/10.5281/zenodo.13881709
https://doi.org/10.5281/zenodo.13881709
https://github.com/vul337/jTrans
https://github.com/vul337/jTrans
http://dx.doi.org/10.7717/peerj-cs.2504#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2504#supplemental-information
http://dx.doi.org/10.1016/j.diin.2016.04.002
http://dx.doi.org/10.48550/arXiv.1409.0473
http://dx.doi.org/10.7717/peerj-cs.2504

2016, Seattle, WA, USA, November (2016) 13–18. New York: ACM, 678–689
DOI 10.1145/2950290.295035.

David Y, Partush N, Yahav E. 2018. Firmup: precise static detection of com-
mon vulnerabilities in firmware. ACM SIGPLAN Notices 53(2):392–404
DOI 10.1145/3296957.3177157.

Devlin J, ChangMW, Lee K, Toutanova K. 2019. BERT: pre-training of deep bidirec-
tional transformers for language understanding. In: Proceedings of the 2019 conference
of the North American chapter of the Association for Computational Linguistics: human
language technologies, Minneapolis, Minnesota, USA. Kerrville: Association for
Computational Linguistics, 4171–4186.

Ding SHH, Fung BCM, Charland P. 2019. Asm2Vec: boosting static representation
robustness for binary clone search against code obfuscation and compiler opti-
mization. In: IEEE symposium on security and privacy. Piscataway: IEEE, 472–489
DOI 10.1109/SP.2019.00003.

Dozat T. 2016. Incorporating nesterov momentum into Adam. In: ICLR workshop.
Appleton: ICLR, 1–4.

Eschweiler S, Yakdan K, Gerhards-Padilla E. 2016. discovRE: efficient cross-architecture
identification of bugs in binary code. In: NDSS, vol. 52. Reston: Internet Society,
58–79 DOI 10.14722/ndss.2016.23185.

Farhadi MR, Fung BCM, Charland P, Debbabi M. 2014. Binclone: detecting code clones
in malware. In: Eighth international conference on software security and reliability,
SERE 2014, San Francisco, California, USA, June 30–July 2 2014. Piscataway: IEEE,
78–87.

Feng C,Wang T, Yu Y, Zhang Y, Zhang Y,Wang H. 2020. Sia-RAE: a siamese network
based on recursive autoencoder for effective clone detection. In: Proceedings of the
2020 27th Asia-Pacific software engineering conference (APSEC), Singapore, Singapore,
238–246. LE Q, MIKOLOV T. Distributed representations of sentences and documents.
International conference on machine learning, Beijing, China, 2014. Piscataway: IEEE,
1188–1196.

Feng Q,WangM, ZhangM, Zhou R, Henderson A, Yin H. 2017. Extracting conditional
formulas for crossplatform bug search. In: Proceedings of the 2017 ACM on Asia
conference on computer and communications security, AsiaCCS 2017, Abu Dhabi,
United Arab Emirates, April 2–6. New York: ACM, 346–359.

Feng Q, Zhou R, Xu C, Cheng Y, Testa B, Yin H. 2016. Scalable graph-based bug search
for firmware images. In: ACM conference on computer and communications security.
New York: ACM, 480–491 DOI 10.1145/2976749.2978370.

Gao D, Reiter MK, Song D. 2008. Binhunt: automatically finding semantic differences
in binary programs. In: Information and communications security, 10th international
conference, ICICS 2008, Birmingham, UK, October (2008), 20–22, Proceedings, ser.
Lecture Notes in Computer Science, vol. 5308. Cham: Springer, 238–255.

Gao J, Yang X, Fu Y, Jiang Y, Sun J. 2018. VulSeeker: a semantic learning based vul-
nerability seeker for cross-platform binary. In: 2018 33rd IEEE/ACM international

Wan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2504 19/22

https://peerj.com
http://dx.doi.org/10.1145/2950290.295035
http://dx.doi.org/10.1145/3296957.3177157
http://dx.doi.org/10.1109/SP.2019.00003
http://dx.doi.org/10.14722/ndss.2016.23185
http://dx.doi.org/10.1145/2976749.2978370
http://dx.doi.org/10.7717/peerj-cs.2504

conference on automated software engineering (ASE). New York: ACM, 896–899
DOI 10.1145/3238147.3240480.

Gu Y, Shu H, Hu F. 2022. UniASM: binary code similarity detection without fine-tuning.
ArXiv arXiv:2211.01144.

Hex-Rays. 2015. IDA pro disassembler and debugger. Available at https://www.heX-
rays.com/products/ida/index.shtml (accessed on 10 April 2018).

Hinton GE, Salakhutdinov RR. 2006. Reducing the dimensionality of data with neural
networks. Science 5786(313):504–507 DOI 10.1126/science.1127647.

Kargén U, Shahmehri N. 2017. Towards robust instruction-level trace alignment of
binary code. In: Proceedings of the 2017 32nd IEEE/ACM international conference on
automated software engineering (ASE), Urbana-Champaign IL, USA, 30 October–3.
Piscataway: IEEE, 342–352 DOI 10.1109/ASE.2017.8115647.

Kingma DP, Ba J. 2014. Adam: a method for stochastic optimization. In: International
conference on learning representations (ICLR) DOI 10.48550/arXiv.1412.6980.

Liu B, HuoW, Zhang C, LiW, Li F, Piao A, ZouW. 2018. αdiff: cross-version binary
code similarity detection with dnn. In: Proceedings of the 33rd ACM/IEEE inter-
national conference on automated software engineering. New York: ACM, 667–678
DOI 10.1145/3238147.323819.

Liu G, Zhou X, Pang J, Yue F, LiuW,Wang J. 2023. Codeformer: a GNN-Nested trans-
former model for binary code similarity detection. Electronics 1722(12):1722–1722
DOI 10.3390/electronics12071722.

Luo L, Ming J, WuD, Liu P, Zhu S. 2014. Semantics-based obfuscation-resilient binary
code similarity comparison with applications to software plagiarism detection. In:
Proceedings of the 22nd ACM SIGSOFT international symposium on foundations of
software engineering. New York: ACM, 389–400 DOI 10.1145/2635868.26359.

Luo L, Ming J, WuD, Liu P, Zhu S. 2017. Semantics-based obfuscation-resilient
binary code similarity comparison with applications to software and algorithm
plagiarism detection. IEEE Transactions on Software Engineering 43(12):1157–1177
DOI 10.1109/TSE.2017.2655046.

Luo Z,Wang P, XieW, Zhou X,Wang B. 2023. IoTSim: internet of things-oriented
binary code similarity detection with multiple block relations. Sensors 23(18):7789
DOI 10.3390/s23187789.

Massarelli L, Di Luna GA, Petroni F, Baldoni R, Querzoni L. 2019a. SAFE: self-attentive
function embeddings for binary similarity. In: Detection of intrusions and malware,
and vulnerability assessment DOI 10.48550/arXiv.1811.05296.

Massarelli L, Di Luna GA, Petroni F, Querzoni L, Baldoni R. 2019b. Investigating
graph embedding neural networks with unsupervised features extraction for binary
analysis. In: Proceedings of the 2nd workshop on binary analysis research (BAR).
Reston: Internet Society, 1–11 DOI 10.14722/bar.2019.23020.

Mikolov T, Chen K, Corrado G, Dean J. 2013. Efficient estimation of word represen-
tations in vector space. In: International conference on learning representations
DOI 10.48550/arXiv.1301.3781.

Wan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2504 20/22

https://peerj.com
http://dx.doi.org/10.1145/3238147.3240480
http://arXiv.org/abs/2211.01144
https://www.heX-rays.com/products/ida/index.shtml
https://www.heX-rays.com/products/ida/index.shtml
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1109/ASE.2017.8115647
http://dx.doi.org/10.48550/arXiv.1412.6980
http://dx.doi.org/10.1145/3238147.323819
http://dx.doi.org/10.3390/electronics12071722
http://dx.doi.org/10.1145/2635868.26359
http://dx.doi.org/10.1109/TSE.2017.2655046
http://dx.doi.org/10.3390/s23187789
http://dx.doi.org/10.48550/arXiv.1811.05296
http://dx.doi.org/10.14722/bar.2019.23020
http://dx.doi.org/10.48550/arXiv.1301.3781
http://dx.doi.org/10.7717/peerj-cs.2504

Ming J, PanM, Gao D. 2012. iBinhunt: binary hunting with inter-procedural control
flow. In: Information security and cryptology—ICISC 2012—15th international
conference, Seoul, Korea, November (2012) 28–30, Revised selected papers, ser. Lecture
notes in computer science, vol. 7839. Cham: Springer, 92–109.

Nouh L, Rahimian A, Mouheb D, Debbabi M, Hanna A. 2017. Binsign: fingerprinting
binary functions to support automated analysis of code executables. In: ICT systems
security and privacy protection—32nd IFIP TC 11 International Conference, SEC 2017,
Rome, Italy, May (2017) 29-31. Proceedings, ser. IFIP Advances in Information and
Communication Technology, vol. 502. Cham: Springer, 341–355.

Pei K, Xuan Z, Yang J, Jana S, Ray B. 2020. Trex: learning execution semantics from
micro-traces for binary similarity. ArXiv arXiv:2012.08680.

Pewny J, Schuster F, Bernhard L, Holz T, Rossow C. 2014. Leveraging semantic signa-
tures for bug search in binary programs. In: Proceedings of the 30th annual computer
security applications conference, ACSAC 2014, New Orleans, LA, USA, December 8–12.
New York: ACM, 406–415.

Qiu J, Su X, Ma P. 2016. Using reduced execution flow graph to identify library func-
tions in binary code. IEEE Transactions on Software Engineering 42(2):187–202
DOI 10.1109/TSE.2015.2470241.

Schuster M, Paliwal KK. 1997. Bidirectional recurrent neural net works. IEEE Transac-
tions on Signal Processing 45(11):2673–2681 DOI 10.1109/78.650093.

Shirani P, Collard L, Agba BL, Lebel B, Debbabi M,Wang L, Hanna A. 2018. Binarm:
scalable and efficient detection of vulnerabilities in firmware images of intelligent
electronic devices. In: International conference on detection of intrusions and malware,
and vulnerability assessment. Cham: Springer, 114–138.

Shirani P, Wang L, Debbabi M. 2017. Binshape: scalable and robust binary library
function identification using function shape. In: Detection of intrusions and malware,
and vulnerability assessment—14th international conference, DIMVA 2017, Bonn,
Germany, July (2017) 6–7, Proceedings, ser. Lecture Notes in Computer Science, vol.
10327. Cham: Springer, 301–324.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polo-
sukhin I. 2017. Attention is all you need. Advances in Neural Information Processing
Systems 30:5998–6008.

Wang H, QuW, Katz G, ZhuW, Gao Z, Qiu H, Zhuge Jw, Zhang C. 2022. jTrans:
jump-aware transformer for binary code similarity detection. In: Proceedings of
the 31st ACM SIGSOFT international symposium on software testing and anal-
ysis (ISSTA ’22), July (2022), Virtual, South Korea. New York: ACM, 18–22
DOI 10.1145/3533767.3534367.

Xing J, Luo S, Pan L, Hao J, Guan Y,Wu Z. 2024.HGE-BVHD: heterogeneous graph
embedding scheme of complex structure functions for binary vulnerability ho-
mology discrimination. Expert Systems with Applications 238(Part C):121835
DOI 10.1016/j.eswa.2023.121835.

Xu X, Liu C, Feng Q, Yin H, Song L, Song D. 2017a. Neural network-based graph
embedding for cross-platform binary code similarity detection. In: Proceedings of the

Wan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2504 21/22

https://peerj.com
http://arXiv.org/abs/2012.08680
http://dx.doi.org/10.1109/TSE.2015.2470241
http://dx.doi.org/10.1109/78.650093
http://dx.doi.org/10.1145/3533767.3534367
http://dx.doi.org/10.1016/j.eswa.2023.121835
http://dx.doi.org/10.7717/peerj-cs.2504

2017 ACM SIGSAC conference on computer and communications security. New York:
ACM, 363–376 DOI 10.1145/3133956.3134018.

Xu Z, Chen B, ChandramohanM, Liu Y, Song F. 2017b. Spain: security patch analysis
for binaries towards understanding the pain and pills. In: 2017 IEEE/ACM 39th
international conference on software engineering (ICSE). Piscataway: IEEE, 462–472.

Xue Y, Xu Z, ChandramohanM, Liu Y. 2019. Accurate and scalable cross-architecture
cross-os binary code search with emulation. IEEE Transactions on Software Engineer-
ing 45(11):1125–1149 DOI 10.1109/TSE.2018.2827379.

Zuo F, Li X, Young P, Luo L, Zeng Q, Zhang Z. 2019. Neural machine translation
inspired binary code similarity comparison beyond function pairs. In: Net-
work and distributed system security symposium. Reston: Internet Society, 1–15
DOI 10.14722/ndss.2019.23492.

Zynamics. 2021. BinDiff. Available at https://www.zynamics.com/bindiff.html (accessed on
20 February 2023).

Wan et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2504 22/22

https://peerj.com
http://dx.doi.org/10.1145/3133956.3134018
http://dx.doi.org/10.1109/TSE.2018.2827379
http://dx.doi.org/10.14722/ndss.2019.23492
https://www.zynamics.com/bindiff.html
http://dx.doi.org/10.7717/peerj-cs.2504

