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ABSTRACT

Clique counting is a crucial task in graph mining, as the count of cliques provides
different insights across various domains, social and biological network analysis,
community detection, recommendation systems, and fraud detection. Counting cliques
is algorithmically challenging due to combinatorial explosion, especially for large
datasets and larger clique sizes. There are comprehensive surveys and reviews on
algorithms for counting subgraphs and triangles (three-clique), but there is a notable
lack of reviews addressing k-clique counting algorithms for k > 3. This paper addresses
this gap by reviewing clique counting algorithms designed to overcome this challenge.
Also, a systematic analysis and comparison of exact and approximation techniques are
provided by highlighting their advantages, disadvantages, and suitability for different
contexts. It also presents a taxonomy of clique counting methodologies, covering
approximate and exact methods and parallelization strategies. The paper aims to
enhance understanding of this specific domain and guide future research of k-clique
counting in large-scale graphs.

Subjects Data Mining and Machine Learning, Data Science

Keywords Graph mining, Subgraph enumeration, Graphlet counting, Network motifs, Clique
counting, Local graphlet counting, Exact clique counting, Approximate clique counting, Maximal
clique counting, Parallel clique counting

INTRODUCTION

The enumeration of cliques has a complex computational nature in graph mining. The
clique is a subgraph with an edge between every pair of vertices. With the aim of clique
counts, cohesive substructures can be identified within graphs. The combinatorial explosion
is the main challenge of clique counting algorithms due to exponential growth in possible
cliques as the graph size increases.

Clique counting has many application areas: It helps to reveal cohesive structures
within complex networks. For example, clique counting algorithms are used in social
network analysis to identify tightly connected groups of people (Faust, 2010; Han,

Pei ¢ Kamber, 2006; Holland ¢ Leinhardt, 1977; Pan et al., 2023; Schank, 2007; Foucault
Welles, Van Devender ¢ Contractor, 2010; Son et al., 2012; Tsourakakis et al., 2011). This
facilitates community detection (Lu, Wahlstrom ¢ Nehorai, 2018) and the understanding
of social dynamics. In biological network analysis, cliques are used to identify functional
modules within protein-protein interaction networks (Beizler et al., 2011; Przulj, Corneil
& Jurisica, 2004; Saha et al., 2010) and the identification of correlated genes (Presson

et al., 2008). This sheds light on biological pathways and disease mechanisms such as
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epilepsy prediction (lasemidis et al., 2003). Recommendation systems also use clique
analysis to identify cluster users with similar preferences (Vilakone et al., 2018) to enhance
personalized recommendations. In fraud detection applications, the collusive groups of
actors who engage in fraudulent activities (Yu et al., 2023) can be detected with the help of
clique counts. Moreover, clique counting finds applications in diverse fields, such as graph
compression (Buehrer & Chellapilla, 2008) and clustering (Duan et al., 2012). Applying it
to a wide range of real-world problems illustrates the significance of clique analysis.

Comprehensive surveys in the literature (Ribeiro et al., 2021; Al Hasan ¢» Dave, 2018,
Ortmann ¢ Brandes, 2014) provide in-depth insights into subgraph counting and triangle
(three-clique) counting algorithms in the literature. However, there needs to be more
literature that provides a comprehensive review of algorithms for counting k-cliques for
k is greater than three. The existence of larger cliques suggests the presence of a more
robust and cohesive groups, which can be beneficial in identifying tight-knit communities
or clusters. In particular, finding cohesive groups in domains such as social networks or
biological networks facilitate the comprehension of the underlying organization of the
network, as they can reveal more intricate and complex structures in the data. It has been
demonstrated that larger cliques are more stable and reliable clusters than smaller ones.
This is due to their greater resilience to noise and outliers, which allows for more accurate
and meaningful groupings.

This survey’s primary objective is to provide a theoretical understanding of cliques
within graphs and facilitate the development of more robust and scalable algorithms.
This study seeks to illuminate effective strategies for addressing this fundamental problem
in graph analysis by examining existing approaches and identifying their strengths and
weaknesses. The goal of this work is to enhance both theoretical research and practical
applications in the field of graph analysis. Our results will contribute to developing more
efficient algorithms capable of dealing with more intricate network structures.

First, the survey methodology is explained by detailing the study’s purpose, research
questions, data sources, and literature reviewing strategies. Then, it defines terms related to
basic principles and clique counting techniques. Two essential algorithms (Bron ¢ Kerbosch,
1973; Chiba & Nishizeki, 1985) form the basis of most clique counting algorithms. This
paper gives an overview of these algorithms as the baseline for better understanding before
analyzing other algorithms. After this introduction, a systematic evaluation provides
insights into the papers, including their practical applications and performance across
different graphs. We emphasize performance metrics, scalability, and practical applications
to understand the effectiveness of different clique counting methods. Finally, based on
the results presented in their respective papers, we discuss the algorithms. The aim is to
provide a guide for future scalable and efficient clique counting algorithms.

PRELIMINARIES

This section presents concepts and terminology associated with clique counting that will
be employed throughout this article.

Graph: A graph, denoted as G(V,E), comprises a collection of vertices (or nodes)
represented by V and a set of edges denoted by E, which establish connections between
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vertices. A directed graph consists of vertices connected by edges, where the edges have a
specific direction, indicating a one-way flow of information or relationship between the
connected nodes. There is no such direction in the undirected graph. Let n=|V| and
m = |E| represent the number of nodes and edges, respectively, in the graph G. The degree
(denoted as d(u)) of a node u is the number of its neighboring vertices, representing the
count of adjacent edges connected to that node. A k-graph refers to a graph with k nodes.
In a graph, a path is a series of interconnected vertices where each one is linked to the
next by an edge. A graph is connected if any two vertices can be linked via a path and
unconnected if there are pairs of vertices with no path between them. A simple, undirected
graph has no self-loops or multiple edges between the same two vertices. In graph theory,
small, connected subgraphs are called graphlets or motifs. A graph is known as a tree when
it is connected and has no cycles, which means there is only one path between any two
vertices. On the other hand, a collection of trees that are not necessarily interconnected is
known as a forest. The minimum number of forests required to partition the graph’s edges
is the graph’s arboricity.

Subgraph: A graph G(V,E) has a subgraph G,(V,,E;), if V; is a subset of V and E; is a
subset of E. An induced subgraph is a subset of the original graph created by selecting a
set of vertices and including all connecting edges. It resembles a snapshot of the original
graph, emphasizing only the chosen vertices and their interconnected edges.

Subgraph isomorphism: Consider two graphs, G and H. An isomorphism between the
two exists when there is a one-to-one correspondence, or bijection, called f, between their
vertices (f : V(G) — V(H)). For an isomorphism to be valid, any two vertices, u and

v, must be adjacent in G if their corresponding vertices, f (1) and f (v), are adjacent in
H. When graphs meet this criterion, they are considered isomorphic and are said to be
topologically identical.

Degeneracy: The degeneracy d is the smallest integer, so every subgraph within the graph
contains at least one vertex with a degree not exceeding d.

Directed acyclic graph (DAG): A DAG is a graph in which loops do not exist, i.e., it is
impossible to follow a sequence of edges and return to the same vertex.

Clique: A clique is a maximal subgraph where every pair of vertices is connected by an
edge, defining a complete subgraph. A k-clique refers to a clique with k nodes.

Maximal clique: A maximal clique is a clique that cannot be expanded by including one
more adjacent vertex, meaning it is not a subset of any larger clique in the graph.
Bi-clique: A bipartite graph is a graph where the vertices can be divided into two distinct,
non-overlapping subsets if every vertex of the first set is connected to every vertex of the
second set. Such a graph is called a complete bipartite graph or bi-clique.

Quasi-clique: A quasi-clique is a subset of vertices in a graph where each vertex is connected
to a substantial proportion of the other vertices in the subset, although not necessarily all.
In contrast to a complete clique, where every vertex is connected to every other vertex, a
quasi-clique allows some vertices to have fewer connections within the subset. Figure 1
illustrates various types of cliques.

Graph orientation: The fundamental step of graphlet mining algorithms involves a
preprocessing stage to orient the graph. The objective is to establish an acyclic orientation
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(b) Quasi-clique (c) Triangle (d) Bi-clique

Figure 1 (A-D) Clique types.
Full-size & DOI: 10.7717/peerjcs.2501/fig-1

of an undirected graph, whereby each edge is assigned a direction that avoids the formation
of directed cycles and any potential duplication of subgraph determinations. Three primary
approaches are employed to achieve this: degree orientation, degeneracy orientation, and
color orientation. In degree orientation techniques, nodes are arranged in order of priority
based on their degrees. The higher probability is assigned to higher-degree vertices. Then,
the edges are oriented from vertices with low priority to high priority. On the other hand,
degeneracy orientation uses an iterative process of removing vertices with the minimum
degree. The minimum-degree vertex is eliminated, and all remaining vertices” degrees are
updated. The priority is assigned based on removal time. In color orientation technique,

a greedy coloring algorithm (Hasenplaugh et al., 2014; Yuan et al., 2017) is applied to color
the graphs with m colors. Each node is assigned a color between 1,..., in this method,

but it is ensured no two adjacent nodes have the same color. Based on this ordering, the

graph is oriented to construct a directed acyclic graph (DAG).

Edge density: The edge density of a graph quantifies the ratio of existing edges to the total
number of possible edges within the graph. It is computed by dividing the number of edges
in the graph by the total number of possible edges. This ratio is expressed mathematically
as %, where m represents the number of edges present in the graph and 7 is the number
of vertices.

SURVEY METHODOLOGY

This section outlines the purpose and audience of the study and presents a taxonomy of
the methods based on the research questions. A literature review methodology is detailed
to ensure the comprehensiveness of this survey, along with the data sources from which
the articles were collected. The criteria for the inclusion or exclusion of articles for scoping
this research are also explained in the following section.

This paper delves into algorithms for counting k-cliques within a given graph G. Clique
counting is challenging due to the exponential growth in possible combinations, particularly
as the clique size k increases. The study surveys a range of methodologies, spanning
from exhaustive enumeration to approximation techniques, to provide a comprehensive
overview of the strategies used in clique counting. Our research explores algorithms that
can efficiently count simple connected, non-isomorphic subgraphs on a single graph.
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The purpose, importance, and audience of this survey

This survey aims to provide a comprehensive overview of the k-clique counting algorithms.
Therefore, extensive literature reviews have been conducted to thoroughly understand the
evaluation of k-clique counting algorithms, aiming to identify their gaps, strengths, and
limitations for facilitating future research paths.

Despite the availability of comprehensive surveys that provide in-depth insights into
subgraph counting and triangle (three-clique) counting algorithms (Ribeiro et al., 2021;
Al Hasan & Dave, 2018; Ortmann & Brandes, 2014), there is a notable gap in the literature
concerning a thorough review of algorithms for counting k-cliques where k is greater than
three. This survey aims to fill that gap, addressing the need for a comprehensive review of
k-clique counting algorithms beyond triangles. The challenges of this problem generally
limit the size of cliques used in various applications to smaller ones. However, larger
cliques can offer different insights and can serve as more robust choices for clustering,
classification, or detection algorithms (Duan et al., 2012; Vishwanathan et al., 2010; Lu,
Wahlstrom ¢ Nehorai, 2018; Yu et al., 2023). By providing a detailed review of k-clique
counting algorithms, this survey aims to support the development of more efficient and
practical techniques for analyzing large and complex datasets.

The researchers and practitioners in network analysis, data mining, bioinformatics, and
any field where understanding the structure of complex networks is crucial can be the
audience of this study.

Research questions
In this survey, the following research questions are formulated considering the research
objectives:

e What are the challenges of exact clique counting algorithms on large and complex
datasets?

e Which strategies are employed to facilitate the exact clique counting on large-scale
datasets?

e Why is there a need for approximate clique counting algorithms?

e How to approximate clique counting techniques scale with increasing graph size and
complexity?

e What is the common preprocessing step in clique counting algorithms to eliminate
duplicate exploration?

e Which parallelization strategies are used to effectively improve the performance of
clique counting algorithms on large-scale graphs? How do they integrate parallelization
strategies with the clique counting algorithms?

The paper critically evaluates clique counting algorithms to reveal their strengths,
weaknesses, and applicability across diverse scenarios, enhancing our understanding of this
fundamental problem in graph analysis. A carefully constructed taxonomy (Fig. 2) that
systematically categorizes the approaches used in clique analysis is presented in light of these
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Clique counting

l l l

Exact Approximate Parallel strategies
¢  Enumeration * Random sampling ¢  Shared memory
¢ Counting . Rejection sampling ¢  MapReduce

. Color-based sampling ¢ GPU

Figure 2 A taxonomy of k-clique counting algorithms.
Full-size & DOI: 10.7717/peerjcs.2501/fig-2

research questions and the evolution of clique counting algorithms. The methodologies for
clique identification and enumeration are categorized based on their level of precision.
Exact techniques meticulously identify all cliques or count their existence within a graph,
whereas approximate counting methods provide estimations that are especially useful for
analyzing large, intricate graphs. The research objectives and the graph’s scale determine the
methodology choice. Exact techniques are well-suited for smaller or medium-sized graphs,
while approximate counting is advantageous for exploring larger network structures.
Within the scope of this study, the investigated approximate approaches rely on different
sampling strategies, including random sampling, rejection sampling, and color-based
sampling. Parallelization strategies delineate how computation is distributed locally across
processors or globally across distributed systems. This structured taxonomy provides
a framework for understanding and organizing clique counting techniques, fostering a
deeper comprehension of the methodologies employed in clique analysis research.

Data sources and literature search methodology
The articles analyzed in this research were collected from Google Scholar, IEEE Xplore,
WoS, Arxiv, ACM Digital Library, SIAM, SpringerLink, and other search engines using the

3 <

keywords “clique counting,” “clique enumeration,” and “k-clique counting.” The articles
were selected manually from these sources by scanning the title, keywords, and abstract. In
addition, a snowballing technique was used to include relevant publications cited by the
selected articles. Table 1 presents the search engines used, their respective links, and the

search keywords.

Criteria for inclusion or exclusion

Many algorithms count or estimate graphlets involve counting cliques of sizes 3, 4, and 5.
However, these algorithms are beyond the scope of this paper because their primary focus
is not on cliques directly. Instead, they aim to count or predict k-graphlets, all graphlets
formed by k nodes, efficiently, typically with a limited value of k such that k < 5 due to
combinatorial explosion (Ahmed et al., 2015; Wang et al., 2017; Pinar, Seshadhri ¢ Vishal,
2017; Rossi, Zhou ¢ Ahmed, 2018; Bressan, Leucci ¢ Panconesi, 2019).
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Table 1 The search engines used, their respective links, and the search keywords.

Links keywords

Google Scholar https:/scholar.google.com/ “clique counting,” “clique enumeration,”
“k-clique counting”

ACM Digital Library https:/dl.acm.org/ *

IEEE Xplore https:/ieeexplore.ieee.org/ *

WoS https:/mwww.webofscience.com/ *

Arxiv https:/arxiv.org/ *

SIAM Journal https:/www.siam.org/ *

SpringerLink https:/link.springer.com/ *

Notes.

*The keywords indicated in the first row are used for all search engines.

Moreover, it is essential to note that this study does not analyze triangles(three-
cliques), bi-cliques, and quasi-cliques. These clique types offer unique insights into graphs’
underlying structure and connectivity (Pagh & Tsourakakis, 2012; Sanei-Mehri, Sariyuce &
Tirthapura, 2018; Jain & Seshadhri, 2020b). Triangles represent the simplest clique form
with three vertices. On the other hand, bi-cliques have a bipartite structure, comprising
two distinct sets of vertices with complete interconnections between them, unlike k-cliques
involving a single set of vertices. Quasi-cliques relax the connectivity requirement, allowing
subsets of vertices to exhibit significant pairwise connections without necessitating complete
subgraphs. While k-cliques focus on complete subgraphs of a specific size, these alternative
clique types, such as triangles, bi-cliques, and quasi-cliques, reveal diverse connectivity
patterns within graphs. The clique counting methods on dynamic graphs that change over
time are not within the scope of this paper.

This study focuses exclusively on algorithms that count k-cliques. In the examined
papers, numerous references were found regarding algorithms for enumerating/counting
maximal cliques, which can be adapted for clique counting. If a maximal clique
enumerating/counting algorithm has contributed to developing a k-clique counting
algorithm, served as its foundation, or evolved into a version of a k-clique counting
algorithm, it has been included in this study. Consequently, these articles are included
within the scope of this paper. In this context, only peer-reviewed conference papers and
journal articles in English that address counting k-cliques are included. Non-peer-reviewed
articles, such as preprints, theses, dissertations(except one (Jain, 2020)), and articles written
in languages other than English, are excluded.

BASE ALGORITHMS

This section introduces two fundamental algorithms: the Bron—Kerbosch algorithm (Bron
& Kerbosch, 1973), the foundation for maximal clique listing, and the ARBO algorithm
(Chiba & Nishizeki, 1985), designed explicitly for k-clique listing. Many subsequent
algorithms either build upon these base algorithms or incorporate enhancements inspired
by them. Thus, it is essential to present these foundational algorithms first before delving
into the details of others.
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The Bron—Kerbosch algorithm (Bron ¢» Kerbosch, 1973) presents a seminal method for
identifying all maximal cliques within an undirected graph. This algorithm employs a
backtracking strategy to systematically traverse the graph’s vertices and edges, rigorously
enumerating all possible maximal cliques. The initial approach of the Bron—Kerbosch
algorithm makes a recursive call for every clique, so this causes inefficiency, especially
in graphs with many non-maximal cliques. To improve efficiency, a strategy is provided
that involves strategically selecting a pivot vertex from the graph. The vertices with higher
degrees are prioritized for this selection. This strategy eliminates the redundant checks by
focusing the search on the pivot’s neighboring vertices. Any maximal cliques among the
pivot’s neighbors would also be found when testing the pivot itself or its non-neighboring
vertices. The vertices adjacent to the current clique are incrementally added to explore the
maximum possible expansion of the clique until no more vertices can be appended. All
possible maximal cliques are explored by traversing exhaustively and avoiding redundant
paths. The presented Algorithm 1 (Bron ¢ Kerbosch, 1973) finds all maximal cliques,
including all R vertices, some P, and none in X. The time complexity of this algorithm is
O(3"/3), and the space complexity is O(m + 1), where n represents the number of vertices,
and m is the number of edges.

Algorithm 1 BronKerboschWithPivoting(R, P, X) (Bron and Kerbosch, 1973)
1: if P ={} and X = {} then

2 report R as a maximal clique
3. end if

4: choose a pivot vertex u in PUX
s: for each vertex v in P\ N (u) do

6: BroNKErRBOSCHWITHPIVOTING(RU{v},PNN (v),X NN (v))
7: P« P\{v}

8 X <« XU{r}

9: end for

The article ARBO (Chiba ¢ Nishizeki, 1985) introduces graphlet counting algorithms
for triangles, quadrangles, complete subgraphs, and cliques using the arboricity concept. It
discusses efficient methods for computing the arboricity of a graph. The algorithm ARBO
operates by selecting a vertex v within the graph and scanning the edges of the subgraph
induced by v’s neighbors to identify pattern subgraphs containing v. Notably, this algorithm
employs an iterative search for each vertex v in a non-increasing order of degree. Then, v
is removed after processing to prevent duplication and provide computational efficiency.
Thus, it also ensures a systematic and comprehensive enumeration of subgraphs. The
ARBO has a time complexity of O(kma*=2) and a space complexity of O(m + n), where
o represents the arboricity of the graph, n is the number of vertices, m is the number of
edges, k is the size of the cliques being examined.

Algorithm 2 is the pseudocode of ARBO, which starts by sorting vertices by degree
order. Then, constructs and induced subgraphs from the neighbors of each vertices. The
algorithm recursively searches (k-1)-cliques in the neighborhood of the current vertex
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Algorithm 2 The Algorithm ARBO (Chiba and Nishizeki, 1985)
1: function ARBO(G, k)
Let Clig denotes @.

Let V denotes the list of degree ordered vertices in G.
for each vertex v in V do

2:
3
4
5; NbrList, < GETNEIGHBORS(G, V)
6 Gn, < GETINDUCEDSUBGRAPH(G, NbrList, )
7 Clig, < LisTCLIQUES(GNpyList,» kK — 1, {v})

8 Clig < CligU Clig,

9 DeLETEVERTEX(G, V)

10: end for

11: return kCligues

12: end function

13: function ListCrL1QUES(G, [, C)
14: if | =2 then

15: return {{u,v}UC|(u,v) € E(G)}

16: end if

17: IClig <0

18: for uin V(G) do

19: NbrList, < GETNEIGHBORS(G, 1)

20 Gn, < GETINDUCEDSUBGRAPH(G, NbrList,)
21: ICliq, < L1stCLIQUES(GN,, | — 1, CU{u})
22: IClig < ICliqU IClig,,

23: DEeLETEVERTEX(G, u)

24: end for

25: return [Clig

26: end function

using the ListCliques function. The processed vertices are removed from the graph at the
end of each iteration to eliminate the duplicate discovery of cliques in subsequent steps.

In summary, these two algorithms, Bron—Kerbosch and ARBO, can be seen as the
foundation of other methods for clique enumeration. Therefore, their detailed analysis and
pseudocodes are presented in this section to make the other sections more understandable.
Although both algorithms serve the same purpose, they differ in their innovative strategies,
efficiency, and computational characteristics. Both algorithms form the foundation of
many algorithms in literature and offer critical contributions to clique counting problems
with different computational advantages.

EXACT METHODS

Exact algorithms for counting cliques fall into two main categories: those that enumerate
cliques, where each is explicitly identified in the graph, and those that count cliques
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without explicitly listing each. Identifying each clique is computationally intensive due to
the combinatorial explosion. Counting-based algorithms determine the total number of
cliques using combinatorial methods. It is optional to list all cliques, especially when there
is a need for more efficient algorithms. The following subsections describe clique counting
algorithms based on either enumeration or counting methodologies.

Enumeration

In the enumeration techniques, each clique is identified explicitly. The algorithms generally
employ a recursive backtracking strategy similar to the Bron—Kerbosch algorithm (Bron ¢
Kerbosch, 1973). In this method, a potential clique is expanded iteratively with a pruning
strategy for an option that is not promising for cliques. Identifying each clique presents
comprehensive information about the graph. However, especially for large and dense
datasets, the number of possible cliques grows exponentially as the graph size increases.
So, working on such large and dense datasets becomes computationally costly.

The Algorithm 3 presents a pseudocode for clique enumeration based on the ARBO
algorithm using degeneracy orientation. The algorithm, derived from the work of Jain
(2020), has been further refined to enumerate all k-cliques within a given graph G. All cliques
are stored in a list during the enumeration steps and initialized at the algorithm’s beginning.
Then, a directed acyclic graph (DAG) is constructed using degeneracy orientation. For
each vertex, the algorithm recursively finds all (k — 1)-cliques in the out-neighborhood of
the current vertex and adds the current vertex to each resulting (k — 1)-clique, forming
new k-cliques. At the end of the algorithm, it returns the list of cliques.

The algorithm proposed by Akkoyunlu (1973) is equivalent to the Bron—Kerbosch
algorithm, even though they are explained differently. Both algorithms build the same
search tree structure and yield the same results. The algorithm proposed by Akkoyunlu
efficiently finds maximal cliques in large graphs by decomposing the problem into smaller,
non-overlapping sub-problems and managing them using a stack-based approach. It
begins by splitting the problem into smaller, disjoint sub-problems to avoid generating
duplicate or sub-maximal cliques. Subsequently, it employs a push-down stack to store
partially solved sub-problems, minimizing memory usage by focusing on the current
task. The algorithm iteratively divides each sub-problem into two disjoint parts—one
including a selected element and one excluding it—before pushing them onto the stack for
processing. This iterative refinement continues until specific criteria are met. At this point,
the algorithm applies a particular method to determine the maximal clique associated with
the subset. The algorithm systematically explores the graph structure through these steps
to identify all maximal cliques efficiently.

The paper MACE (Makino ¢ Uno, 2004) comprehensively explores algorithms tailored
for enumerating both maximal and bipartite cliques within graphs. For maximal cliques,
it introduces two distinct strategies. The first approach utilizes matrix multiplication,
capitalizing on the parent—child relationship inherent in maximal cliques to efficiently
compute their children. This method constructs adjacency matrices to identify valid
child cliques, resulting in a streamlined computation process that significantly improves

efficiency, especially in denser graphs. The algorithm’s time complexity is O(knma*=2),
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Algorithm 3 BruteForceCliqueEnumeration(G, k)

1: Let n denote the number of vertices in G.
Let V denote the set of vertices in G.
if k =1 then

return Each vertex in V as a singleton clique
else if G is a clique then

return All combinations of size k from V
end if
Let Cliques denotes )

R A A U R o

Order the vertices of G using degeneracy ordering.
Convert it into a Directed Acyclic Graph (DAG) DG.
: for each vertex v € V do

—_
_— O

Let Nt < GeTOUTGOINGNEIGHBORS(DG, v)

—
»

Let subCliques < BRUTEFORCECLIQUEENUMERATION( (N, k—1))

— =

for each clique C in subCligues do
Addvto C
Add C to Cliques

end for

— = e
N 2 =

end for

,_.
*

return Cligues

—
hd

and space complexity is O(m + n), where n is the number of vertices, m is the number of
edges, o is the arboricity of the graph, and k is the clique size. The second algorithm for
maximal cliques leverages the maximum degree of the graph. It recognizes that in sparse
graphs, each maximal clique (except the lexicographically largest one) can have at most A?
children, in which A represents the maximum degree. By avoiding the explicit construction
of the complete set of candidate child indices and checking candidates in lexicographic
order, this method reduces computation time, particularly benefiting graphs with small
maximum degrees.

The paper proposed by Tomita, Tanaka ¢ Takahashi (2006) introduces a depth-first
search algorithm for efficiently generating all maximal cliques in an undirected graph,
leveraging pruning techniques reminiscent of the Bron—Kerbosch algorithm (Bron ¢
Kerbosch, 1973). Unlike Bron—Kerbosch, which directly enumerates maximal cliques, this
new algorithm outputs them in a tree-like structure, conserving memory space. It operates
by iteratively expanding a global variable Q, representing the current clique, from an empty
starting point to larger cliques. At each step, the algorithm examines the intersection of
neighborhoods of vertices in Q, determining if it forms a maximal clique. If not, it explores
potential extensions by recursively considering induced subgraphs. During the search
process, the algorithm maintains two lists called FINI (processed vertices) and CAND
(remaining candidates). The Q is expanded only to the vertices in CAND. This minimizes
the unnecessary exploration. Another strategy to reduce the number of vertices needing
further exploration is to choose vertices from the neighborhood intersection. When a

Calmaz and Ergen¢ Bostanoglu (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2501 11/35


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2501

PeerJ Computer Science

maximal clique is discovered, the algorithm prints a marker instead of the clique itself.
The cliques can be reconstructed from this output. The complexity of the algorithm is
O(3/3)), and the space complexity is O(m+ n), where n is the number of vertices, and m
is the number of edges.

The algorithm (Eppstein, Loffler ¢~ Strash, 2010) presents a variation of the Bron—
Kerbosch algorithm (Bron ¢ Kerbosch, 1973). This algorithm orders the vertices according
to degeneracy ordering. Then, the neighbors of each vertex are divided into two sets: P
and X. P is the vertices that follow the current vertex in order of degeneration, while X is
the set of vertices that precede it. Thus, the size of P is limited by the graph’s degeneracy.
This algorithm uses the Bron—Kerbosch algorithm with the parameters P, X, and current
vertex. The pivot vertex is selected from the P and X sets during the recursive iteration.
This strategy optimizes the complexity of the Bron—Kerbosch algorithm by reducing the
number of recursive calls. The time complexity is O(dn3/3), and the space complexity
is O(m+ n), where n is the number of vertices, m is the number of edges, and d is the
degeneracy of a graph.

The pbitMCE method (Dasari, Ranjan ¢ Mohammad, 2014) employs a degeneracy
ordering strategy similar to that presented by Eppstein, Loffler & Strash (2010). However, it
uses a different strategy to represent the subgraphs. The algorithm presents a data structure
called a partial bit adjacency matrix (pbam). This pbam comprises sets of bit vectors.

It facilitates representing the necessary information for efficient vertex processing. This
algorithm is implemented on the Hadoop framework. The algorithm starts by ordering
vertices and determining the degeneracy d of the graph. Thus, each vertex has at most

d neighbors appearing later in the ordering. Subsequently, each vertex’s adjacency list is
partitioned into pre and post-lists, containing vertices with lower and higher degeneracy
orders. This pbam consists of sets of bit vectors, each corresponding to vertices in the pre
and post-lists, encoding connections between the post-list and those in the candidate set P.
The pbam is generated using a renumbering technique to assign unique identities to vertices
in P and X. Following a similar structure to the algorithm proposed by Eppstein, Liffler ¢
Strash (2010), pbitMCE counts maximal cliques by computing the sets P and X for each
vertex v in the degeneracy ordering and using the algorithm introduced by Tomita, Tanaka
& Takahashi (2006) for efficient exploration of the v-rooted search tree. Each clique is
associated with the node with the lowest number. This facilitates the unique reporting of
each maximal clique. The complexity is O(kn3*/3), where the k-degree of a graph is defined
as the minimum value such that every vertex v has at most k neighbors with a degree greater
than or equal to the degree of v. It is hard to compute the degeneracy ordering of vertices
in a distributed environment. So, implementing pbitMCE on Hadoop is a challenging task.
This task requires extensive inter-node communication. To reduce this complexity, the
paper proposes to explore alternative vertex orderings, such as degree-based ordering in
some scenarios.

The kClist (Danisch, Balalau ¢ Sozio, 2018) algorithm improves the ARBO algorithm
(Chiba & Nishizeki, 1985) for listing all k-cliques. The degeneracy orientation is used, and
a directed acyclic graph (DAG) is constructed to eliminate duplicate discovery of cliques.
Besides, the algorithm utilizes parallelization techniques and special data structures to
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improve its performance for large-scale graph analysis. The time complexity of kClist is
O(ma*=2), where « represents the arboricity of the graph G, m is the number of edges, k
is the size of the cliques being examined. The algorithm has the O(m + Pa?) space on P
processors when using a work-stealing scheduler (Blumofe & Leiserson, 1993; Shi, Dhulipala
& Shun, 2021).

A new heuristic for k-clique listing and counting algorithm, using a color ordering
method derived from greedy graph coloring techniques (Hasenplaugh et al., 20145 Yuan et
al., 2017) are proposed by Li ef al. (2020). A graph colorization technique using a greedy
coloring algorithm is employed to graph, and distinct color values are assigned to adjacent
nodes from 1 to the chromatic number x. The nodes are sorted in descending order
based on this color number, and then a DAG is constructed. Thus, inefficient search
paths are eliminated during the iterative enumeration process. The time complexity of
O(km(%)kfz), and the space complexity is O(m + n), where k is the clique size, A is the
maximum degree, and m is the number of edges, # is the number of vertices. Additionally,
this paper provides a thorough experimental evaluation of existing algorithms for listing
and counting k-cliques.

Yuan et al. (2022) presents two k-clique listing algorithms: SDegree and BitCol.
These algorithms aim to accelerate the k-clique listing algorithms with merge-based
set intersections and parallelism. For this purpose, the paper proposes two pre-processing
techniques: Pre-Core and Pre-List. First, Pre-Core reduces the search space by removing
redundant vertices not contained in a k-clique. Then, Pre-List checks all connected
components; if a connected component is a clique, it directly lists and removes cliques.
The SDegree algorithm employs degree-based orientation and constructs a DAG. The
novelty of this algorithm is to use the merge-join strategy while merging two vertex sets
rather than the hash join, which is used by the other algorithms in the literature. If the
vertex sets are ordered, the merge-join strategy efficiently merges these sets. The BitCol
algorithm improves the SDegree algorithm by employing degeneracy and color-based
ordering techniques and compressing the vertex sets using bitmaps. First, the input graph
is converted to DAG using degeneracy orientation; then, the algorithm iteratively searches
each vertex neighborhood. An induced subgraph is obtained from the current node’s
neighborhood, and the DAG of this subgraph using color-based orientation is constructed.
This algorithm also uses advanced parallelization strategies for efficient k-clique listing.
The time complexity of both algorithm is O(km(%)k_z). The space complexity of SDegree
is O(m+kN A) and BitCol is O(m+ N ATZ), where k is the clique size, N is the number
of threads, A is the maximum out-degree, L is the size of nodes that each number can
represent, and m is the number of edges.

The k-clique listing algorithms traditionally employ a vertex-based branching strategy,
where larger cliques are constructed incrementally by adding a single vertex to an existing
clique. A new algorithm EBBkC (Wang, Yu ¢ Long, 2024) in the literature proposes an
edge-based branching strategy. Instead of adding a single vertex, it tries to obtain larger
cliques more efficiently by adding two nodes with edges between them, thus narrowing
the search space. The algorithm incorporates three distinct edge-ordering methods to
optimize the branching process. The first is truss-based edge ordering, which leverages
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truss decomposition to order edges to minimize the size of the resulting subgraphs,
thus enhancing efficiency. The second is color-based edge ordering, which utilizes vertex
colorings to prune branches, effectively reducing the number of candidate cliques and
further improving performance. The third method is a hybrid approach, combining the
strengths of truss-based and color-based ordering to provide theoretical and practical
improvements. Besides, the paper introduces a method to terminate branches early if the
subgraph is a dense structure like a clique or each vertex is connected to at least k —2 other
vertices within the subgraph, leveraging efficient combinatorial algorithms to list cliques
in these cases to increase efficiency. This algorithm has the O(md +k - m - (%)k_z) time
complexity, where d is the degeneracy of the graph, 7 is the maximum truss number of
the graph (Wang, Yu ¢ Long, 2024), k is the clique size, m is the number of edges. This
algorithm presents better time complexity than the vertex-based branching algorithms
(Chiba & Nishizeki, 1985; Makino ¢ Uno, 2004; Danisch, Balalau ¢ Sozio, 2018), which
have O(kma*=2). The authors demonstrate that the 7 is smaller than d, leading to better
performance in edge-based branching. The space complexity is O(m + n). This paper
also incorporates parallelism techniques to further enhance the efficiency of the proposed
algorithm and provides a comparison with the state-of-the-art k-clique listing algorithms
depending on vertex-based branching strategy.

We review various enumeration-based k-clique algorithms, focusing on their
methodology and complexity. Bron—Kerbosch (Bron ¢ Kerbosch, 1973) and Akkoyunlu
(Akkoyunlu, 1973) are similar algorithms because they construct similar search trees but
are presented in different terms. They utilize recursive backtracking and stack-based
approaches to identify maximal cliques. A matrix multiplication technique and the
information of maximum degree in the graph are used for efficient clique enumeration in
the MACE algorithm (Makino ¢» Uno, 2004). Tomita, Tanaka ¢ Takahashi (2006) proposes
an improvement based on a depth-first search approach to Bron—Kerbosch, and they use
pruning techniques for optimal memory usage. Eppstein, Liffler ¢ Strash (2010), and
pbitMCE (Dasari, Ranjan ¢» Mohammad, 2014) algorithms leverage degeneracy ordering
and parallel processing for the performance in large-scale graph analysis based on Bron—
Kerbosch algorithm. The kClist algorithm also (Danisch, Balalau ¢ Sozio, 2018) provides
similar contributions based on the ARBO algorithm. A heuristic method by Li et al. (2020)
uses color order to optimize the search process by pruning unproductive paths. The paper
(Yuan et al., 2022) presents two parallel k-clique listing algorithms, SDegree and BitCol,
which use merge-based set intersections and preprocessing techniques to provide a time
and space-efficient approach than the algorithms proposed by Li et al. (2020). The EBBKC
(Wang, Yu ¢ Long, 2024) introduces a new edge-based branching strategy and edge-based
ordering techniques to improve ARBO and presents better time complexity.

Counting
Counting-based algorithms determine the total number of cliques in a graph without
needing to identify and list each clique explicitly. Combinatorial methods, dynamic

programming, or algebraic approaches are used to calculate the overall count of cliques.
The Ahmed et al. (2015) algorithm and the ESCAPE (Pinar, Seshadhri & Vishal, 2017)
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algorithm provide some combinatorial methods for graphlet types, including cliques of
different sizes, but they are beyond the scope of our paper. Identifying each clique is
a challenging task. For this reason, the literature diverges its direction counting-based
algorithms to provide more scalable and efficient approaches for larger datasets.
Algorithm 4, provided by Jain (2020), presents k-clique counting algorithms based on
ARBO (Chiba ¢ Nishizeki, 1985). This algorithm presents a modified version, rearranged
for counting rather than listing (Jain, 2020), leverages degeneracy ordering to partition the
graph into multiple subgraphs, and then recursively counts cliques within these subgraphs.
It begins by initializing variables to store the number of vertices n and the set of vertices
V. According to this algorithm, if k =1, the number of vertices # is returned as each vertex
forms a singleton clique. If the graph is a clique, the algorithm returns the number of
k-combination of n vertices. After that, a DAG is constructed using degeneracy orientation.
The algorithm searches the (k-1)-cliques in the outgoing neighborhood of each vertex.
Finally, it returns the number of k-cliques at the end of the procedure.

Algorithm 4 BruteForceCliqueCounting(G, k) (Jain, 2020)
1: Let n denotes the number of vertices in G.

2: Let V denotes the set of vertices in G.
3 if k=1 then
return n
else if G is a clique then
return (Z)
end if
Let C, =0
Order the vertices of G using degeneracy ordering.
10: Convert it into a Directed Acyclic Graph (DAG) DG.
11: for each vertexv € V do

Y ® N w ok

12: Let N;r < GETOUTGOINGNEIGHBORS(DG, v)
13: Cx = Ci + BruteForceCliqueCounting(N,F, k — 1)
14: end for

15: return Cy

The paper proposed by Finocchi, Finocchi ¢ Fusco (2015) presents two exact and
approximate solutions for the issue of counting the number of k-cliques in large-scale
graphs by focusing on theoretical and experimental aspects. It introduces parallel solutions
using the degree orientation technique in the MapReduce framework. First, it provides an
exact approach, then presents a sampling-based approach that significantly reduces the
exact approach’s computational demands. The second step identifies all the other nodes
with a lower degree than those nodes and forms a triangle with them. In the third and
final stage, the reduce phase, the algorithm finds clique patterns for each node using the
information collected in the previous round. The paper explores approximate counting
using two sampling strategy variants and the exact counting approach. The exact algorithm
of this study is efficient for counting up to seven-node cliques in relatively small datasets;
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approximate counts are provided for larger datasets due to computational complexity. This
algorithm requires O(m*/?) computational effort and O(m +n) space, where m represents
the number of edges in the graph, » is the number of vertices, and k is the size of the
examined cliques.

The Pivoter is designed by Jain ¢ Seshadhri (2020a) to deal with the challenge of exact
counting k-cliques in graphs, especially as the size of k increases. Pivoter utilizes pivoting to
construct a Succinct Clique Tree (SCT), which provides a compressed representation of all
cliques in the graph. SCT provides a strategy different from existing methods that explicitly
enumerate every clique. A vertex v is selected to construct SCT, and the neighborhood
of v is explored to form larger cliques recursively. The aim is to find all cliques that
include v. The neighbors of v form the candidate set, and a pivot vertex is chosen from
the candidate set. A vertex that maximizes the number of neighbors it shares with other
vertices in the candidate set is chosen as a pivot. The search space is divided into two
parts: cliques containing the pivot vertex and cliques not containing the pivot vertex. The
splitting search space helps in reducing the number of recursive calls. After selecting the
pivot, the algorithm recursively searches the remaining vertices in the candidate set to form
cliques. This manner is repeated for each vertex in the graph. Using SCT, Pivoter counts
k-cliques cliques of any size without complete enumeration and reduces the recursion tree
of backtracking algorithms. Thus, Pivoter states it overcomes scalability issues and achieves
accurate clique counts in large graphs. Key contributions are the counting cliques for both
globally and locally, for each vertices and edges, and the creation of SCTs through pivoting.
Besides, a parallel version is also presented to enhance the algorithms’ performance and
scalability on large datasets. The Pivoter has O(na3%/?) time complexity, and O(m 4+ n)
space complexity, where n represents the number of vertices, m is the number of edges,
and « is the degeneracy of the graph (Jain ¢ Seshadhri, 2020a). However, as stated in the
research paper, even the parallel version of the algorithm has limitations on large graphs.
Pivoter needs help to compute clique counts beyond k = 10.

As a summary, Finocchi, Finocchi ¢ Fusco (2015) proposes two parallel exact and
approximate algorithms that handle the limitation of the exact approach based on the
MapReduce framework. The Pivoter brings innovation using an SCT data structure that
eliminates complete enumeration. Both algorithms offer promising solutions for large-scale
graph analysis.

APPROXIMATE METHODS

Since the exact approaches are challenging for massive datasets, the approximate solutions
have significantly attracted attention in the literature and aim to estimate the number of
k-cliques in a graph dataset instead of thoroughly examining every possible combination.
Typically, sampling strategies and statistical methods are employed to estimate clique
counts close to the exact value. The sampling strategies select a subset of nodes and edges
from a graph. These subsets are expected to capture the essential structural properties of a
graph while staying computationally manageable. For this purpose, a suitable sampling size
must be selected. The sampling size affects both the computational efficiency and accuracy
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of the algorithm. The sampling strategies represent the large datasets by a smaller subset and
enable the analysis of large datasets that are impractical to handle using exact algorithms.
A well-chosen sample size accelerates analysis, conserves computational resources, and
provides meaningful insights.

In this context, we explore various sampling strategies from the literature and focus on
those specifically used in clique counting algorithms.

Random sampling

In the random sampling method, vertices or edges are uniformly selected regardless of their
attributes or relevance within the graph. This method provides an unbiased estimation and
graph representation but risks the critical structural components or nodes crucial to graph
dynamics that must be paid attention to.

The Turan-shadow (Jain ¢ Seshadhri, 2017) algorithm is a randomized approach that
aims to estimate the number of k-cliques (where k < 10) in a graph based on Turan’s
theorem (Turdn, 1941). Turan’s theorem provides insights about a graph’s maximum
number of edges without having a (k + 1)-clique according to the number of vertices.
Formally, Turdn’s theorem states that in a graph G = (V,E) with n vertices that do not
contain a clique of size k+ 1 (where k is greater than zero), the number of edges is bounded
by (1— %) ”72 That means if the edge density of a graph exceeds (1— k—il), it must contain
a k-clique. The algorithm starts by orienting the graph according to degeneracy ordering
to reduce the search space and then continues creating the TurdnShadow. It explores the
neighborhoods of vertices iteratively to identify denser subgraphs. If the edge density of
an out neighborhood exceeds the Turdn density threshold for (k — 1)-cliques, the induced
subgraph is added to the TurdanShadow. Otherwise, the process is applied recursively to
find denser sets. The resulting TurdnShadow comprises sets with densities above the Turdn
threshold, forming a collection of potential k-cliques. A sampling strategy is employed
to randomly select subsets of vertices from these sets, which are then checked for clique
formation. The time complexity is O(na*~!), and the space complexity is O(na*=2 +m),
where 7 is the number of vertices, m is the number of edges, « is the degeneracy, and k is
the clique size.

This YACC algorithm (Jain ¢ Tong, 2022) is an extension of the Turan-shadow
algorithm (Jain & Seshadhri, 2017) to improve the counting of large cliques in graphs.
Algorithms Turdn-shadow and Pivoter (Jain ¢ Seshadhri, 2020a) previously proposed
algorithm by the authors excel at counting small cliques, but they face challenges with
larger cliques. YACC improves approximate clique counting by reducing the recursion
tree’s size and exploiting insights from real-world graph structures. YACC relaxes the
stopping condition of Turdn-shadow, which relies on a fixed density threshold from Turdn’s
theorem. Thus, YACC efficiently identifies dense subgraphs with a more adaptable stopping
condition by significantly reducing the size of the recursion tree and the computation time.
This improvement makes clique counting possible for challenging graphs like com-lj
(Leskovec & Krevl, 2014). The framework enhances control over the construction-sampling
balance by introducing a parameter, ., which affects the balance between computational
complexity and accuracy of results. This parameter redefines what is needed for a graph
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to be considered dense. The algorithm divides the graph into two regions: dense and
sparse. A sampling strategy is employed to estimate the clique counts in dense regions. The
cliques in the sparse area counted exactly in a recursive manner. As a result, the efficiency
and adaptability of Turdn-shadow are improved by YACC with heuristics in practical
applications. The complexity of time and space is similar to TurdnShadow.

The Turan-shadow, YACC (extended version of Turdan-shadow), and DP-ColorPath (Ve
et al., 2024), which will be explained in the color-based sampling section, are outstanding
approximate k-clique counting algorithms based on a sampling strategy. A typical step of
these algorithms is constructing a sampling space consisting of dense subgraphs containing
k-cliques. These algorithms then sample a fixed element from the sampling space to
estimate k-clique counts. However, this fixed sampling does not guarantee accuracy. The
SR-kCCE (Chang, Gamage ¢» Yu, 2024) algorithm presents a sampling-stopping strategy
that guarantees accuracy while providing efficiency. Like the Turdn-shadow, YACC, and
DP-ColorPath algorithms, this algorithm consists of two steps: constructing the sampling
space and sampling randomly from that space to estimate k-clique counts. The algorithm
becomes inefficient when the sampling space construction time is high, especially for large
datasets. On the other hand, if the sampling space is not refined from the non-cliques,
the relative error worsens. The SR-kCCE algorithm constructs a balance between these
two steps. This algorithm estimates the expected duration of the sampling phase. When
this expected duration is approximately the same as the construction/refinement sampling
space, called a shadow, the algorithm stops the refinement sampling space. Thus, it ensures
that both phases are balanced regarding computational effort. This algorithm improves

k-clique estimation compared to previous methods, especially for large datasets.

Rejection sampling

This method is a Monte Carlo-based (Mackay, 1998) technique that generates samples
from a target probability distribution function when direct sampling is impractical or
infeasible. Firstly, a simpler distribution, which is relatively easy to sample from and covers
the support of the target distribution, also known as the proposal distribution, is chosen.
The samples are generated from this distribution, and then a decision is made whether
to accept or reject them based on their adherence to the characteristics of the target
distribution. At each proposed sample point, the ratio of the probability density function
of the target distribution is calculated to that of the proposal distribution. Accordingly, it is
decided whether the sample is accepted or rejected. The purpose of this selective approach
is to ensure that the samples generated are consistent with the properties of the target
distribution. The effectiveness of rejection sampling depends on choosing an appropriate
proposal distribution. Overly simplistic or complex choices can lead to inefficiency.

Eden et al. (2017) introduce a sublinear-time algorithm for triangle counting that
defies the conventional linear-time norm for such computations. The paper uses degree,
neighbor, and pair queries within the standard query model for sublinear algorithms on
general graphs. Building on this significant advancement, an algorithm called ERS (Eden,
Ron & Seshadhri, 2018) is introduced to extend its application beyond triangle counting.
It aims to approximate the count of k-cliques within sublinear time, thus covering the
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previously established result for k = 3. The algorithm selects a sample set of vertices to
estimate the number of k-cliques connected to this subset. A crucial aspect is to sample
each k-clique connected to the sample set with almost equal probability. However, random
sampling can compromise the selection of high-degree vertices likely to form cliques.
The algorithm randomly samples high-degree vertices and tries to strike a careful balance
between predicting cliques formed by high-degree vertices and cliques formed by low-
degree vertices. A uniform edge (u,v) is sampled, and more vertices are added to that edge
iteratively to attempt to form a k-clique. Depending on whether v is a low- or high-order
vertex, the algorithm employs different sampling strategies, including uniform neighbor

selection and rejection sampling. The complexity of algorithm O (C—?/k— + %) , where 7 is
k

the number of vertices, C is the number of k-cliques, and m is the number of edges. The
algorithm has the O(m + n) space complexity.

Color-based sampling

This sampling method samples each edge in the graph with a probability p, where N =1/p
is an integer. Each vertex is randomly assigned one of N colors with equal probability p.
An edge is designated as monochromatic if both endpoints share the same color. Then,
a subgraph is constructed from these monochromatic edges. Initially, this method is
proposed by Pagh ¢ Tsourakakis (2012) and counts the number of triangles (three-cliques)
in this subgraph using either an exact or approximate triangle counting method. The
resulting estimation value is scaled by multiplying p—2 for the total number of triangles in
the original. The focus is to create a subgraph that preserves the original graph’s structural
attribute based on the connectivity of vertices according to their color. Thus, large graphs
can be analyzed computationally more efficiently using smaller samples representing them.
This can also highlight the more meaningful structural patterns or cliques by eliminating
less significant edges in the graph. Shi, Dhulipala ¢ Shun (2021) proposes an extension of
this approach for the applicability of larger clique sizes.

The paper DP-ColorPath proposed by Ye et al. (2024) combines exact and approximate
solutions to enable working with large and dense datasets. The graph is partitioned into
dense and sparse regions. The algorithms that implement exact clique counting use the
efficiency of the Pivoter algorithm for sparse areas and adapted sampling-based techniques
for denser areas. Initially, a linear-time greedy coloring process is employed (Hasenplaugh
et al., 2014; Yuan et al., 2017), establishing a non-decreasing node ordering based on
color values and constructing a directed acyclic graph (DAG) accordingly. Following the
computation of a DAG, nodes are partitioned into sparse and dense regions based on the
average degree of the neighborhood subgraph. The Pivoter algorithm accurately computes
(k-1)-clique counts in the sparse areas. At the same time, dense regions are addressed
using three sampling-based methods: k-color set sampling, k-color path sampling, and
k-triangle path sampling. These three algorithms utilize dynamic programming techniques
and conduct uniform sampling. In the k-color set sampling method, k-color sets are
selected, each consisting of k nodes with unique colors. The k-color path sampling samples
from connected k-color sets are called k-color paths. It ensures the induced subgraph
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by the k nodes stays connected. The most effective of the trio, k-triangle path sampling,
selects connected k-color sets where any three consecutive nodes form a triangle, known
as k-triangle paths. The time complexity of k-color set sampling is O(x¥), and the space
complexity is O(m+n+ x*). The time complexity of k-color path sampling is O(x " 4 m),
and the space complexity is O(kn+ m). The time complexity of k-triangle path sampling is
O(kA), and the space complexity is O(km). The x is the number of colors of the graph G
obtained by the greedy coloring algorithm (Hasenplaugh et al., 2014; Yuan et al., 2017), k is
the clique size, # is the number of vertices, m is the number of edges and A is the number
of triangles of the input graph.

Besides these sampling strategies, there is an algorithm BDAC (Calmaz ¢» Bostanoglu,
2024) that presents an approach to approximate k-clique counts, especially for large
datasets, without using any sampling strategy. Rather than providing an approximate result,
it provides lower and upper boundary based on extremal graph theorems. To the best of
our knowledge, this algorithm is the first to provide such a boundary for k-cliques. Existing
methods have efficiency issues, especially beyond k = 10, or require accuracy and resource
consumption trade-offs. The BDAC algorithm aims to overcome these challenges by using
triangle density information and established extremal graph theorems such as the Turdn
(Turdn, 1941), Zykov (Zykov, 1949), Kruskal-Katona (Kruskal, 1963; Katona, 1987), and
Reiher’s (Reiher, 2016) theorems to provide both lower and upper bounds on the k-clique
count at the local (per vertex) and global levels. The Turdan-shadow algorithm inspires
this algorithm. It follows the vertex iterative manner as the Turan-shadow algorithm. The
BDAC eliminates the construction of TurdanShadow, which requires a recursion tree and the
sampling phase. This paper offers consistent complexity regardless of k, making it suitable
for large datasets, and demonstrates its effectiveness for k-clique counts up to k = 50. This
algorithm, however, faces limitations with large and sparse graphs. When the density of
a sparse subgraph falls below the Turdn threshold, it fails to provide a minimum clique
count, and the gap between the lower and upper bounds increases. The time complexity
of BDAC is O(a?), and the space complexity is O(m +n+«a), where m is the number of
edges, n is the number of vertices, « is the arboricity.

In conclusion, the Turdn-shadow algorithm (Jain ¢ Seshadhri, 2017) and its extension,
YACC (Jain & Tong, 2022), propose randomized sampling-based solutions based on
Turan’s theorem (Turdn, 1941) for the k-clique counting problem. While Turan-shadow
is suitable for k values less than 10 and relatively small datasets, the YACC algorithm can
handle k values up to 40 and has shown results for large datasets that were not previously
reported in the literature. The algorithm ERS presents the sublinear-time solution (Eden,
Ron & Seshadhri, 2018) defying traditional linear-time norms. The algorithms proposed
by DP-ColorPath (Ye et al., 2024) combine exact and sampling-based techniques to handle
large and dense graphs. The fixed number of samples used by algorithms like Turdn-
shadow, YACC, and DP-ColorPath impacts their accuracy; the SR-kCCE (Wang, Yu &
Long, 2024) algorithm addresses this limitation by balancing the construction sampling
space and sampling phases. The algorithm both provides efficiency for k-clique estimation
and guarantees accuracy. Unlike these approximation algorithms, the BDAC algorithm
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provides a boundary instead of an estimation for the k-clique count without relying on any
sampling strategy or recursive process.

PARALLELIZATION STRATEGIES

Parallelization strategies comprise methodologies designed to break down intricate
computational tasks into smaller, manageable components, executed concurrently to
bolster efficiency and tackle scalability challenges. Leveraging shared memory systems,
MapReduce frameworks (Dean ¢ Ghemawat, 2004), and distributed platforms like
Hadoop harness computational resources. These methods decompose computations
into parallel sub-tasks executed simultaneously across distributed systems. Significant
performance enhancements are achieved by distributing workload and executing tasks
concurrently, circumventing the constraints of sequential processing and effectively
addressing computationally intensive problems. Multiple parallelization strategies exist,
but this work focuses on the methods used in clique counting.

Shared memory

It is a programming model where numerous processes or threads can access and modify
a shared memory space, enabling efficient communication and data sharing without
explicit message passing. All processes/threads have access to the same address space in
shared memory systems, allowing them to read from and write to shared variables for
synchronization. In shared memory systems, load imbalance is a critical issue, especially
for clique counting. This is because different parts of the graph have different levels of
complexity, with some subgraphs containing many cliques and others very few.

Shi, Dhulipala & Shun (2021) introduces a series of parallel algorithms designed to
address challenges in k-clique counting and densest subgraph detection. At its core,
the ARB-Count algorithm enhances Chiba-Nishizeki’s approach (Chiba ¢» Nishizeki,
1985) by leveraging low out-degree orientations of graphs, achieved through efficient
parallel implementations of algorithms such as those by Goodrich ¢ Pszona (2011) and
Barenboim ¢ Elkin (2008). This orientation technique aims to direct the edges of a graph
to minimize the number of outgoing edges (out-degrees) from each vertex. Doing so
simplifies the recursive clique counting process by limiting the number of vertices that
must be considered at each step. This directly improves the algorithm’s time and space
complexity. The orientation reduces overall work by peeling vertices in parallel, resulting in
a poly-logarithmic span and more efficient performance. ARB-Count exploits parallelism
by recursively intersecting out-neighbors of vertices to build k-cliques efficiently. Utilizing
parallel hash tables, filtering, and reduction operations, it achieves notable speed-ups,
particularly for large graphs and values of k. The complexity of ARB-Count is O(ma*—2).
Additionally, the paper presents ARB-PEEL and ARB-APPROX-PEEL algorithms for
approximating k-clique densest subgraphs, which capitalize on parallel k-clique counting
to peel vertices in parallel based on their k-clique counts iteratively. Colorful sparsification
technique is employed to estimate k-cliques by drawing inspiration from earlier work on
approximating triangle and butterfly(bi-clique) counts (Pagh ¢ Tsourakakis, 2012; Sanei-
Mehri, Sariyuce ¢ Tirthapura, 2018). It leverages the proposed ARB-Count algorithm as
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a subroutine to achieve this approximation. The time complexity of the approximate
algorithm is O(pmozk_2 +m), where m is the number of edges p =1/c, and c is the number
of colors used. The ARB-Count algorithm requires O(m + Po) space on P processors.

The kClist (Danisch, Balalau ¢~ Sozio, 2018; Li et al., 2020), Pivoter (Jain ¢~ Seshadhri,
2020a; Yuan et al., 2022; Ye et al., 2024), and EBBKC (Wang, Yu ¢ Long, 2024) algorithms
similarly provide parallel solutions for clique counting, leveraging shared memory
architectures.

MapReduce
MapReduce (Dean & Ghemawat, 2004) is a programming model where large datasets are
processed in parallel across a distributed cluster. It divides the computational task into
a Map phase, where input data is split and processed in parallel, and a Reduce phase,
where the intermediate results are combined and aggregated. Hadoop is an open-source
framework that implements the MapReduce model, consisting of the Hadoop Distributed
File System (HDFS) for distributed storage and the Hadoop MapReduce framework for
distributed processing, handling task scheduling, data partitioning, and fault tolerance. The
distributed environment presents significant bottlenecks, particularly in the computation
of degeneracy ordering, which necessitates extensive inter-node communication (Dasari,
Ranjan & Mohammad, 2014).

The algorithms pbitMCE (Dasari, Ranjan ¢ Mohammad, 2014; Finocchi, Finocchi &
Fusco, 2015) algorithms utilize the MapReduce framework for parallel implementation.

Graphics processing units

They are specialized hardware devices optimized for parallel processing. With thousands
of processing cores, graphic processing units (GPUs) are particularly adept at executing
numerous computations simultaneously. By offloading computations from the CPU

to the GPU, parallel tasks can be processed more efficiently. This parallel processing
capability enables significant performance improvements, especially for tasks suitable
for parallel execution. GPUs distribute workloads across multiple cores, allowing for
concurrent execution of independent sub-tasks, which leads to enhanced efficiency and
faster processing times. The GPUs have many bottlenecks explained in Almasri et al.
(2022), especially regarding clique counting. They require fine-grained parallelism as
the computational resources are organized hierarchically. Because of this structure, it is
challenging to balance the workload. The recursive nature of clique counting exacerbates
this imbalance by introducing irregular workloads. In addition, GPUs have limited memory,
which constraints the number of threads that can run in parallel, as each thread requires
memory to store its state while traversing the search space.

Almasri et al. (2022) integrates the graph orientation and pivoting (Jain & Seshadhri,
2020a) techniques to GPU accelerate existing algorithms for counting k-cliques in graphs.
These algorithms are based on vertex-centric and edge-centric parallelization strategies,
with binary coding and sub-warp partitioning methods that optimize memory usage and
maximize parallel resources. One process that requires the most effort in clique counting
algorithms is intersection operations. If we give an example of intersection operations on
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a triangle, which is the simplest of cliques (three-clique), to find the triangle formed by an
edge, the intersection of the neighbors of the two nodes forming the edge is needed. This
paper uses binary encoding to facilitate the intersection process and represents each vertex’s
induced subgraph with binary encoding. This strategy facilitates the intersection processes
with bit-wise operations. On the parallelization side, sub-warp partitioning divides thread
blocks into smaller groups, allowing tasks to be executed more efficiently on the GPU
and helping to increase the level of parallelism. Additionally, it facilitates operations like
list intersections. A hybrid version of degree and degeneracy orientation techniques is
employed while orienting the graph. A comparison of vertex-centric and edge-centric
parallelization strategies is provided regarding load balancing and weighing of parallelism
granularity trade-offs. This paper also provides solutions for GPU memory constraints by
using memory management techniques like binary encoding, pre-allocating memory for

the largest potential-induced subgraph size, and substituting recursive tree traversal with

2

~ ax) Space to store

an iterative method using a shared stack. The algorithm requires O(d
binary-encoded adjacency lists of induced subgraphs, where the largest induced subgraph
has at most d,,,,, vertices.

To the best of our knowledge, ARB-Count (Shi, Dhulipala ¢ Shun, 2021) provides the
most efficient CPU-based parallel k-clique counting algorithm, while Almasri et al. (2022)
offers a GPU-based parallel k-clique counting algorithm, and both algorithms provide
the most efficient parallel versions of the base algorithms in the literature. The typical
initial step of these algorithms is graph orientation. While Shi, Dhulipala ¢ Shun (2021)
employs degeneracy orientation and parallel hash tables as a parallel strategy, Almasri et
al. (2022) introduces a hybrid version of degree and degeneracy orientation and provides
GPU acceleration.

DISCUSSION OF ALGORITHMS

This section compares the algorithms according to results reported in related research
papers. Algorithms are categorized according to the main features of their approach. Table 2
displays this categorization, and each column entry provides detailed information. The
column Approximate indicates whether an algorithm uses an approximation technique,
typically sampling strategies, and specifies the type of sampling strategy if available.
Otherwise, there is no entry. A similar approach is employed to Exact column. An algorithm
may provide both approximate and exact algorithms; both exact and approximate columns
indicate the corresponding strategies. The Parallelization column indicates whether the
algorithm supports parallel execution; if the corresponding entry for the algorithm is
empty, it does not support parallelization. If an algorithm is based on one of the two base
algorithms mentioned in this publication and provides suggestions for improving this
algorithm, the Base algorithm column specifies this base algorithm. Most clique counting
algorithms use an orientation technique such as degree, degeneracy, or color-based
method as a pre-processing step to eliminate the duplicate exploration of cliques. The
undirected input graph is converted to a directed acyclic graph (DAG) using one of these
orientation techniques. The column Orientation indicates the orientation methods used by
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the algorithm; an empty entry indicates that no orientation techniques are used. The column
Objective details the specific goal of each algorithm, indicating whether the algorithm is
designed to enumerate maximal cliques or count k-cliques. Maximal and k-clique counting
tasks overlap since a maximal clique can contain several smaller k-cliques. While counting
maximal cliques, one can indirectly gather information about k-cliques. Many algorithms
designed for k-clique counting have been inspired by maximal clique counting algorithms,
particularly the Bron—Kerbosch algorithm. Several k-clique counting algorithms built upon
innovations introduced by maximal clique counting techniques and improvements to Bron
¢ Kerbosch (1973) have been adapted for k-clique counting. For this reason, Table 2 also
covers both maximal and k-clique counting algorithms, which are differentiated from the
Objective column. The Time Complexity column specifies the computational complexity of
the algorithms, while the Space Complexity column outlines the memory requirements if
such information is available; otherwise, the entry states “not reported.” The explanations
of complexity parameters are also included in the section detailing the algorithm.

The Bron—Kerbosch algorithm (Bron ¢ Kerbosch, 1973) and ARBO (Chiba ¢ Nishizeki,
1985) represent distinct approaches to the problem of enumerating cliques in a graph.
Bron—Kerbosch uses a backtracking strategy, leveraging pivot vertices to thoroughly
identify all maximal cliques. In contrast, ARBO relies on arboricity, scanning subgraphs
induced by vertices to a decreasing degree to enumerate cliques efficiently. While the
Bron—Kerbosch algorithm guarantees exhaustive coverage of all maximal cliques, the time
complexity of ARBO is linked to the arboricity of the graph, making it particularly efficient
for real-world graphs with low arboricity.

Akkoyunlu’s algorithm (Akkoyunlu, 1973), although described differently, essentially
mirrors Bron—Kerbosch by generating an identical search tree (Johnston, 1976).

The algorithms proposed by Tomiita, Tanaka ¢ Takahashi (2006); Eppstein, Liffler
& Strash (2010); Dasari, Ranjan ¢ Mohammad (2014) (pbitMCE) each present unique
approaches to finding all maximal cliques in an undirected graph, sharing a common
heritage rooted in the Bron—Kerbosch algorithm (Bron & Kerbosch, 1973). Tomita, Tanaka
¢ Takahashi (2006)’s algorithm is notable for using depth-first search combined with
effective pruning techniques. While these techniques are reminiscent of the Bron—Kerbosch
method, Tomita, Tanaka & Takahashi (2006) algorithm structures the output in a memory-
efficient tree-like format, unlike Bron—Kerbosch, which directly enumerates cliques without
such organization.

If we compare the algorithms in terms of time and space complexity, the classic
algorithms Bron—Kerbosch (Bron ¢ Kerbosch, 1973; Akkoyunlu, 1973) have exponential
time complexity due to the combinatorial nature of the problem and require linear space
mainly to store recursion data. They are suitable for small to moderate-sized graphs where
exact enumeration of maximal cliques is feasible. The algorithm proposed by Tomita,
Tanaka & Takahashi (2006) has a similar complexity to Bron—Kerbosch. However, it has
the advantage of slightly improved performance due to incorporating pivoting techniques.
These algorithms are not suitable for large datasets due to exponential time complexity.

Eppstein, Loffler & Strash (2010) introduced a significant variation by incorporating
degeneracy ordering, which optimizes vertex processing. This strategic ordering ensures
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Table 2 A comparison of algorithms based on different characteristics.

Algorithm Approximate  Exact Parallelization Base algorithm Orientation Objective Time Space
complexity Complexity
Bron—Kerbosch (Bron & Kerbosch, 1973) enumeration maximal 0(3") O(m+n)
(Akkoyunlu, 1973) enumeration maximal 0(3") O(m+n)
ARBO (Chiba ¢ Nishizeki, 1985) enumeration k-clique O(kmak=2) O(m+n)
MACE (Makino ¢ Uno, 2004) enumeration maximal O(knma*=2) O(m+n)
(Tomita, Tanaka & Takahashi, 2006) enumeration Bron—Kerbosch maximal 0(3"?) O(m+n)
(Eppstein, Liffler & Strash, 2010) enumeration Bron-Kerbosch degeneracy maximal O(dn34/?) O(m+n)
pbitMCE (Dasari, Ranjan & Mohammad, 2014) enumeration MapReduce Bron-Kerbosch degree/degeneracy maximal O(kn3k/3) not reported
(Finocchi, Finocchi & Fusco, 2015) color-based enumeration MapReduce ARBO degree k-clique O(mh/?) O(m+n)
Turan-shadow (Jain & Seshadhri, 2017) random degeneracy k-clique O(nak=1) O(na*=2+m)
kClist (Danisch, Balalau & Sozio, 2018) enumeration shared memory ARBO degeneracy k-clique O(ma*=2) O(m+Pa?)
- k
(Eden, Ron & Seshadhri, 2018) rejection degree k-clique (0] ( %/k + %) O(m+n)
oS g
(Li et al., 2020) enumeration shared memory ARBO color k-clique O(km % kiz) O(m+n)
Pivoter (Jain ¢ Seshadhri, 2020a) counting shared memory Bron—Kerbosch degeneracy k-clique O(na3®/?) O(m+n)
ARB-Count (Shi, Dhulipala & Shun, 2021) color-based enumeration shared memory ARBO degeneracy k-clique exact: O(mak—2) O(m+Pa)
approximate:
O, pmotk_z +m)
YACC (Jain & Tong, 2022) random Turén-shadow degeneracy k-clique O(na*=1) O(na*=2 +m)
(Yuan et al., 2022) enumeration shared memory ARBO degree/color k-clique O(km( % )kiz) SDegree:
O(m + kNA)
BitCol: O(m+N 42)
(Almasri et al., 2022) counting GPU Bron-Kerbosch degeneracy/degree k-clique not reported O(d*max)
DP-ColorPath (Ye et al., 2023) color-based shared memory degeneracy k-clique k-color set: O(x*) k-color set:
k-color path: O(m + n+ x*)
o(x™ + m) k-color path:
k-triangle path: O(kn + m)
O(kA) k-triangle path:
O(km)
EBBKC (Wang, Yu & Long, 2024) enumeration shared memory color k-clique O(md+k-m- (%)kiz) O(m+n)
SR-KCCE (Chang, Gamage & Yu, 2024) random degeneracy k-clique not reported not reported
BDAC (Calmaz & Bostanoglu, 2024) without sam- degeneracy k-clique O(a?) O(m+n+a?)

pling

Notes.

*These algorithms themselves are base algorithms.
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that each vertex is processed more locally and efficiently, considering its neighbors.
Building on this, Dasari, Ranjan ¢ Mohammad (2014) developed the pbitMCE algorithm,
which also leverages degeneracy ordering but diverges in its approach by using a partial
bit adjacency matrix (pbam) to handle subgraphs. This data structure enhances vertex
processing efficiency in a distributed computing environment like Hadoop, highlighting
pbitMCE’s suitability for large-scale graph data. The time complexity of the algorithm
(Eppstein, Loffler ¢ Strash, 2010) is affected by degeneracy, so it is suitable for sparse graphs
with low degeneracy. The pbitMCE algorithm employs pivoting and uses parallelism to
enhance the efficacy of Bron—Kerbosch-style algorithms; however, the resulting complexity
remains exponential in k.

The paper MACE (Makino ¢ Uno, 2004) proposes two strategies to list all maximal
cliques but different than the Bron—Kerbosch, leveraging the matrix multiplication and
maximum degree of the graph. This algorithm does not apply an ordering strategy and
uses a depth-first backtracking procedure. The MACE algorithm has a similar complexity
to ARBO (Chiba ¢ Nishizeki, 1985). However, its efficiency decreases when the graphs get
larger due to an additional factor, n. With a new strategy, the EBBKC (Wang, Yu & Long,
2024) presents better time complexity for k-clique listing than the ARBO, MACE, and
kClist algorithms. It presents an edge-based branching strategy that explores larger cliques
by adding connected vertex pairs. Besides, it also introduces three-edge sorting methods
and early branch termination and incorporates parallelization techniques for improved
performance over traditional vertex-based approaches.

To summarize, all the algorithms discussed so far are algorithms that count maximal
cliques efficiently, using their own strategies and data structures for this purpose.
These differences reflect trade-offs between memory usage, computational efficiency,
and suitability for various computational environments. Bron ¢ Kerbosch (1973) and
Akkoyunlu (1973) emphasize direct enumeration, Tomita, Tanaka ¢ Takahashi (2006)
focus on memory-efficient structuring of the output, Eppstein, Liffler ¢ Strash (2010)
optimize through degeneracy ordering, and Dasari, Ranjan ¢ Mohammad (2014) extend
the strategy further with specialized data structures and distributed processing. While these
algorithms use a similar approach to those proposed in Bron—Kerbosch, except the ones
proposed in the paper MACE, they offer different strategies.

Finocchi, Finocchi & Fusco (2015) presents a MapReduce-based version of the ARBO
algorithm and provides an approximate solution to relax the limitation of the exact
approach. This algorithm complexity grows exponentially with k but efficiently handles
smaller cliques (lower k) in dense graphs.

Chiba and Nishizeki’s ARBO (Chiba ¢ Nishizeki, 1985) framework is improved by the
kClist (Danisch, Balalau ¢ Sozio, 2018) algorithm incorporating degeneracy ordering and
parallelization techniques to enhance performance, particularly in handling large-scale
graphs.

Lietal (2020) presents a k-clique listing and counting approach based on the color
orientation technique, which differs from the typical degree and degeneracy orientation
methods. Similar to ordering-based k-clique algorithms such as kClist, this method deviates
from the traditional degeneracy ordering approach. Instead, it employs color ordering to
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list k-cliques within graphs effectively. Li et al. (2020) presents a decision tree to help select
the most suitable k-clique listing algorithm based on different scenarios. This algorithm
has similar time complexity with kClist but scales with maximum degree A instead of
arboricity, making it suitable for sparse graphs. The SDegree and BitCol algorithms (Yuan
et al., 2022) claim to have comparable time complexity and slightly better space efficiency
than the algorithms proposed by Li et al. (2020).

Exact k-clique counting algorithms depend on k-clique enumeration, which becomes
infeasible for large graphs with high k values (e.g., k > 8) due to combinatorial explosion.
The Pivoter algorithm (Jain ¢ Seshadhri, 2020a), inspired by the Bron—-Kerbosch algorithm
(Bron & Kerbosch, 1973), tackles this issue. The critical innovation of Pivoter is its ability
to implicitly construct a succinct clique tree(SCT) using a pivoting technique during
the search process. This SCT structure provides a unique and compact representation of
all k-cliques, significantly reducing the space required compared to the total number of
k-cliques. However, the authors of Pivoter note that there are certain graphs, such as com-lj
(Leskovec & Krevl, 2014); even the parallel version of Pivoter struggled to count beyond
k = 10. The Pivoter algorithm is also suitable for large and sparse graphs due to its time
complexity, which depends on arboricity.

In response to the challenges of combinatorial explosion, there has been a shift towards
approximation solutions using sampling methods. The Turdn-shadow algorithm (Jain &
Seshadhri, 2017) is the state-of-the-art sampling-based approximate k-clique algorithm
for k values up to 10. This algorithm constructs a recursion tree, the Turdn-shadow, to
create dense subgraphs covering the entire graph, followed by an unbiased estimator to
count the cliques. However, this process is time-intensive due to the construction of the
shadow. Building on this approach, the YACC algorithm (Jain & Tong, 2022) reduces the
recursion tree size to handle larger k values (up to 40) by relaxing the stopping condition
during tree creation, improving efficiency but at the cost of accuracy. This reduction
requires a significant increase in the number of samples to maintain reliable estimates.
Both algorithms represent substantial advancements in approximate k-clique counting,
balancing efficiency and accuracy through innovative techniques. The Turdn-shadow
algorithm is highly efficient for counting cliques in large, sparse graphs with low arboricity.
Since the time and space complexity depends on the arboricity of the graph, it is suitable
for sparse graphs. The YACC algorithm provides the same time and space complexity as
Turan-shadow.

The algorithm ERS developed by Eden, Ron ¢ Seshadhri (2018) is a randomized method
for approximating the number of k-cliques in a given graph. ERS uses a query model,
unlike the Turdn-shadow algorithm (Jain ¢ Seshadhri, 2017), which relies on constructing
the Turdn-shadow. ERS is more space-efficient compared to the memory-intensive Turdn-
shadow. However, while ERS theoretically achieves a 1 + ¢ approximation, its practical
accuracy tends to be lower than that of Turdn-shadow, as demonstrated in experiments
reported by Li et al. (2020). Additionally, Li et al. (2020) illustrates that for approximation
algorithms, the worst-case time complexity of Turdn-shadow is typically higher than that
of ERS. Nonetheless, Turdan-shadow’s time overhead remains substantially lower than most
exact algorithms.
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The ARB-Count (Shi, Dhulipala ¢ Shun, 2021) demonstrates it significantly
outperforms the state-of-the-art parallel kClist algorithm and the parallel version of Pivoter.
While Pivoter can handle all cliques in some large graphs, it could be more efficient for
fixed k values and faces substantial slowdowns, particularly for smaller k. Moreover, Pivoter
requires considerable memory and help with large graphs, often running out of space and
failing to compute k-clique counts for higher k values. In contrast, ARB-Count shows
superior performance and efficiency, making it more suitable for practical use.

Almasri et al. (2022) compares GPU implementations with two CPU baselines:
ARB-Count (Shi, Dhulipala ¢ Shun, 2021), the top parallel graph orientation method,
and Pivoter (Jain ¢ Seshadhri, 2020a), the leading parallel pivoting method. Two key
observations are presented. First, for small values of k, the graph orientation approach
outperforms pivoting, which excels for larger k values; this pattern holds for both CPU
and GPU. Typically, the pivoting approach becomes superior around k = 7. Second, the
best GPU implementation consistently outperforms the best parallel CPU implementation
across all k values. The ARB-Count and kClist (Danisch, Balalau ¢ Sozio, 2018) algorithms
are based on the ARBO (Chiba ¢ Nishizeki, 1985) algorithm, and ARB-Count has better
space complexity than kClist. The exact version is suitable for large and sparse graphs with
low arboricity. The approximate version is suitable for large, sparse datasets where exact
counting is infeasible.

Ye et al. (2024) proposes a framework for estimating the number of k-cliques by
integrating Pivoter with three novel dynamic programming and color-based sampling
techniques. The k-color set sampling algorithm’s time and space complexities are affected
by the number of colors used and k values. It can be suitable for small k values and graphs
with low chromatic numbers (). The k-color path sampling algorithm is suitable for small
and moderate-size graphs and smaller k values, as the complexity increases exponentially
regarding »n and k values. The complexity of the k-triangle algorithm depends on the
number of triangles in the input graph and the desired clique size. This algorithm can
suffer from scalability problems, especially for large, dense datasets with many triangles.
This paper states that these sampling techniques outperform kClist and Pivoter across
various datasets and k values. Additionally, they note that the space overheads of their
algorithms and Pivoter are comparable, while kClist consumes slightly more space than
their methods.

The BDAC algorithm (Calmaz & Bostanoglu, 2024) establishes a boundary for the
counts of k-cliques using existing extremal graph theorems. Notably, its complexity remains
unaffected by the values of k. The authors demonstrate that BDAC is particularly well-suited
for large and dense graphs, making it especially valuable for handling extensive datasets
and larger k values. Unlike most approximate algorithms, which rely on fixed-size samples
and may not ensure sufficient sampling for large datasets, BDAC offers minimum and
maximum k-clique counts. This provides guarantees grounded in theoretical foundations.
However, this algorithm is not suitable for sparse datasets, failing to provide minimum
clique counts and widening the gap between bounds.

The SR-kCCE (Chang, Gamage ¢ Yu, 2024) algorithm provides an efficient approximate
k-clique counting algorithm with guaranteeing accuracy. It does not specify explicit time
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and space complexity but claims to generally outperform DP-ColorPath in execution time
while being compatible with both Pivoter and DP-ColorPath regarding memory usage.

The algorithms whose time complexity depends on degeneracy or arboricity often
perform well on large real-world graphs because the degeneracy and arboricity of a graph
are much smaller than the maximum degree of the graph.

CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have explored the landscape of algorithms dedicated to counting k-cliques
within a given graph G. Counting cliques is challenging because as the clique size k grows,
the number of possible combinations increases exponentially. This survey analyses a
wide range of methods that offer the solution for the clique counting problem, including
detailed enumeration techniques, approximation strategies, and parallelization methods.
The evolution of this algorithm from the past to the present, the strengths and weaknesses
of the algorithms, and their limitations, if any, are detailed, then a comparative table is
presented, highlighting their differences to guide future strategies.

Within this research’s scope is a meticulously created taxonomy that systematically
categorizes the approaches used in clique analysis. This taxonomy not only differentiates
methodologies based on their precision—contrasting exact enumeration with approximate
counting—but also includes parallelization strategies, delineating how computational tasks
are distributed locally and globally.

A study proposed by Li et al. (2020) has explored and compared k-clique algorithms -
particularly by introducing innovative heuristics to improve k-clique listing through greedy
graph coloring - the primary focus has been developing specific techniques for pruning
search paths. Our study provides a more comprehensive and well-organized overview of
k-clique counting algorithms and covers a wider taxonomy covering exact, approximate,
and parallelized techniques. The goal of classifying these methods is to make it easier for
scholars to comprehend the state of k-clique counting and to recognize the advantages and
disadvantages of the different strategies. It also stands out by incorporating more recent
exact and approximate algorithms.

This paper addresses a significant gap in the literature by presenting a structured
framework and in-depth analysis. It offers valuable insights and aims to foster a deeper
comprehension of the methodologies used in k-clique counting research. The work
establishes a solid foundation for future studies to develop more efficient and scalable
algorithms for counting cliques in increasingly large and complex network structures.

Based on our thorough examination, we have identified several promising areas for
future research. One potential improvement is incorporating advanced probabilistic
models and machine learning algorithms to enhance the approximation methods. In the
literature, there are articles that count graphlets using deep learning strategies (Liu et al.,
2018; Liu et al., 2021). Still, no study has been found that employs machine learning, deep
learning, or graph neural networks specifically for clique counting based on extracted
features.

Almasri et al. (2022) utilizes the power of GPUs to accelerate parallel k-clique counting
algorithms, including ARB-Count and Pivoter. These advancements demonstrate the
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potential of GPUs to enhance the efficiency of k-clique counting significantly, providing
faster solutions for large-scale graphs. There are also existing maximal clique counting
algorithms optimized for GPU architectures that are not considered in this work (Almasri
et al., 2023; Wei, Chen & Tsai, 2021). While GPUs offer significant potential to improve
efficiency and provide faster solutions for large graphs, they also impose some limitations.
A comprehensive benchmarking framework can be developed to evaluate the strengths and
weaknesses of both GPU-based and CPU-based algorithms under different conditions. In
addition, a hybrid approach that integrates CPU pre-processing with GPU acceleration can
be developed to optimize resource usage and improve the efficiency of k-clique counting
algorithms.

Additionally, only one algorithm currently provides local k-clique counts, which gives
per-edge and per-vertex k-clique counts (Jain ¢ Seshadhri, 2020a). In addition, the BDAC
(Calmaz & Bostanoglu, 2024) provides boundaries per vertices on large and dense graphs.
Expanding on this approach could open up new opportunities for leveraging cliques in
different contexts, such as clustering classification tasks, analyzing social and biological
networks, and community detection/hiding. Using high-order cliques in these applications
can provide different insights.
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