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ABSTRACT
Background: A brain tumor is the development of abnormal brain cells, some of
which may progress to cancer. Early identification of illnesses and development of
treatment plans improve patients’ quality of life and life expectancy. Brain tumors are
most commonly detected by magnetic resonance imaging (MRI) scans. The range of
tumor sizes, shapes, and locations in the brain makes the existing approaches
inadequate for accurate classification. Furthermore, using the current model takes a
lot of time and yields results that are not as accurate. The primary goal of the
suggested approach is to categorize whether a brain tumor is present, identify its type
and divide the affected area into segments.
Methods: Therefore, this research introduced a novel efficient DL-based extension
residual structure and adaptive channel attention mechanism (ERSACA-Net) to
classify the brain tumor types as pituitary, glioma, meningioma and no tumor.
Extracting features in brain tumor analysis helps in accurately characterizing tumor
properties, which aids in precise diagnosis, treatment planning, and monitoring of
disease progression. For this purpose, we utilized Enhanced Res2Net to extract the
essential features. Using the Binary Chaotic Transient Search Optimization (BCTSO)
Algorithm, the most pertinent features in terms of shape, texture, and colour are
chosen to minimize complexity.
Results: Finally, a novel LWIFCM_CSA approach is introduced, which is the
ensemble of Local-information weighted intuitionistic Fuzzy C-means clustering
algorithm (LWIFCM) and Chameleon Swarm Algorithm (CSA). Conditional
Tabular Generative Adversarial Network (CTGAN) is used to tackle class imbalance
problems. While differentiating from existing approaches, the proposed approach
gains a greater solution. This stable improvement in accuracy highlights the
suggested classifier’s strong performance and raises the possibility of more precise
and trustworthy brain tumor classification. In addition, our method’s processing
time, which averaged 0.11 s, was significantly faster than that of previous approaches.

Subjects Computational Biology, Artificial Intelligence, Brain-Computer Interface
Keywords Brain tumor, ERSACA-Net, Enhanced Res2Net, Binary chaotic transient search
optimization (BCTSO) algorithm, LWIFCM_CSA

INTRODUCTION
Brain tumors, the primary cause of brain cancer, are the most common type of brain
disease. It is crucial to diagnose brain tumors early on in this type of cancer because it is
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lethal. It is brought on by an unnatural and uncontrollably high brain cell count (Kumar &
Kumar, 2023). There are numerous classification systems for brain tumors. Brain tumors
are often classified as benign or malignant, one of the most popular classification schemes
(Balamurugan & Gnanamanoharan, 2023; Akter et al., 2024). Brain tissue is not where
benign brain tumors originate; instead, they form on the inside of the skull. Sometimes
benign brain tumors can pose a severe threat to life. Approximately 85% of benign tumors
are meningiomas. Meningiomas account for roughly 33% of cases and are slow-growing
tumors. Women are diagnosed with meningiomas more often than men (Deepa et al.,
2023; Ullah et al., 2024). Given their low propensity to spread to nearby brain tissue, they
have a good chance of being surgically removed.

Even so, meningiomas can sometimes grow into cancerous tumors. The pituitary
glands, which regulate hormones and physiological functions, are the site of origin of
pituitary tumors. Non-cancerous pituitary tumors do not metastasize to other organs
(Nanda, Barik & Bakshi, 2023). Pituitary tumors rarely result in cancer, but they can cause
long-term hormone insufficiency, which can cause blindness. Malignant tumor cells are
aberrant cells that proliferate erratically and uncontrollably (Farajzadeh, Sadeghzadeh &
Hashemzadeh, 2023; Ullah et al., 2022; Solanki et al., 2023). These tumors can compress,
invade, or destroy normal tissues.

Brain tumor detection techniques fall into two categories: DL-based and machine
learning (ML)-based methods (Aamir et al., 2023; Raza et al., 2022; Özkaya & Sağiroğlu,
2023). Principal component analysis, fuzzy C-means, decision trees, support vector
machines, and conditional random forests are examples of machine learning techniques
that are frequently applied in diverse applications (Shahin, Aly & Aly, 2023; Sobhaninia
et al., 2023). While DL is capable of learning and making decisions, ML bases its decisions
on its prior knowledge (Jabbar et al., 2023). As a result, DL techniques are now widely
applied. This approach, which is AI-based, allows for multi-level calculations (Kumar &
Kumar, 2023; Sharif et al., 2024; Allah, Sarhan & Elshennawy, 2023). The classification of
Deep Learning is based on supervised and unsupervised methods (Kishanrao & Jondhale,
2023), and DL demonstrated improved performance in many medical applications (Saurav
et al., 2023; Fernando & Tsokos, 2023).

This study aims to create an automated model in the medical domain that is more
accurate, improved, and effective in helping healthcare experts identify brain tumors at an
early stage. This is because, when contrasted to conventional methods, it is becoming
increasingly essential to overcome issues of time consumption, false observations, and
limited expert accessibility. In comparison to the current state-of-the-art approaches, the
proposed model also avoids imbalanced classes, overfitting, the need for high
computational resources, and inadequate generalization on unseen data. It also exhibits
improved, efficient, and more accurate results at early phases in the medical field while
providing timely treatment to patients suffering from brain tumors.

Existing methods have difficulty in accurately classifying brain tumors due to variations
in tumor size, shape, and location. Furthermore, many of these approaches are
computationally expensive and time-consuming, resulting in diagnostic delays. Moreover,
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datasets with class imbalances frequently produce biased predictions. Our proposed
approach, which combines an efficient ERSACA-Net, Enhanced Res2Net for feature
extraction, and novel optimization and segmentation techniques, specifically addresses
these limitations by enhancing classification accuracy, reducing processing time, and
efficiently dealing with class imbalance, making it more suitable for reliable brain tumor
classification.

Motivation
The classification and detection of brain tumors are motivated by the critical need for an
early and precise diagnosis, which significantly improves medical outcomes and survival
rates. While traditional methods rely heavily on manual analysis, which is time-consuming
and prone to subjectivity, recent advances in AI and deep learning provide powerful tools
for automating and improving brain tumor detection from medical images. However,
current AI-based methods frequently struggle to balance accuracy, computational
efficiency, and generalizability across diverse datasets.

To overcome these limitations, our proposed approach incorporates the ERSACA-Net
approach, which distinguishes it from previous research. This method improves detection
precision while minimizing computational cost, ensuring broader applicability in real-
world medical settings. By incorporating this novel methodology, we hope to significantly
improve the scalability, consistency, and accessibility of brain tumor detection systems,
resulting in a more robust solution that better meets the needs of modern healthcare.

Contribution
The major key contributions of this research are as follows:

. Leveraging publicly accessible datasets ensures a diverse and comprehensive collection of
brain tumor images, enhancing the model’s generalizability and robustness.

. Using CTGAN to tackle class imbalance ensures that the model is trained on a more
balanced dataset, which mitigates bias and enhances the model’s ability to classify less
common tumor types accurately.

. Utilizing the Enhanced Res2Net method for multiscale feature extraction, capturing
intricate details such as shape, texture, and colour is crucial for accurate tumor
classification.

. By selecting important features and eliminating unnecessary ones, the Binary Chaotic
Transient Search Optimization (BCTSO) algorithm reduces the complexity of the
experimental performance, leading to faster computation and improved model
efficiency.

. To categorize the tumor types a novel DL based ERSACA-Net is introduced.

. The ensemble of Local-information Weighted Intuitionistic Fuzzy C-means (LWIFCM)
and Chameleon Swarm Algorithm (CSA) enhances clustering performance by
combining local information weighting with an effective optimization algorithm,
improving the precision and reliability of tumor detection.
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Article organization: The remaining sections of the document are arranged as follows:
A thorough analysis of all datasets and methodologies is provided in “Related Works”,
which also covers data preprocessing, classification and segmentation techniques. The
results and the additional training and validation techniques are described in detail in
“Proposed Methodology”. Lastly, “Result and Discussions” contains an appendix with the
conclusion.

RELATED WORKS
This section thoroughly covers some relevant articles because of the substantial
contributions that models based on deep learning can make to this field.

Deep learning based classification and segmentation
The enhanced fully automatic segmentation (IFAS) convolutional neural network (CNN)
model is suggested by Kulshreshtha & Nagpal (2024). In IFAS, brain MRI images are
segmented using a fully automatic algorithm and morphological operations. The CNN
framework is employed for categorization and the U-net structure is considered for
morphological segmentation in the assessment of the fully-automatic segmentation
method.

To precisely identify and categorize tumor cells from MRI images using the Crossover
Smell Agent Optimized Multilayer Perception (CSA-MLP) was introduced by Arumugam
et al. (2024). Preprocessing is done on the images to eliminate unwanted noise after they
are gathered Brain tumor datasets. The images’ features are extracted to carry out the
process of categorization following preprocessing. It is also possible to classify healthy and
unhealthy brain cells using the CNN classifier. To reduce errors and improve the efficacy of
the suggested method, the multilayer perceptron (MLP) is utilized to categorize the
category.

An enhanced deep learning-based framework for effective brain tumor detection is
suggested by Mandle, Sahu & Gupta (2024). Preprocessing techniques are used with the
compound filter, which consists of the Gaussian, mean, and median filters, to enhance the
quality of brain images. The texture and intensity patterns are extracted using the GLCM
based method to identify tumor areas. Utilizing the Whale Social Spider-based
Optimization Algorithm (WSSOA)-based metaheuristic, the best selection of features was
carried out. Lastly, the deep convolutional neural network (DCNN) was employed to
precisely detect tumors.

Lee, Chae & Cho (2024) presented an improved algorithm for computer-aided diagnosis
tailored to classify brain tumors. Gaussian filters were used to eliminate noise from the
MRI data, and Grid Mask was used to enhance the deep learning models’ generalization
capabilities. Next, utilize a technique they had developed to lessen the problem of brain
tumors being hidden by regular grid masks: patterned grid masks.

Creating an algorithm that combines the principles of the Interval Type-II fuzzy logic
system (IT2FLS) and artificial bee colony to identify the tumor region, which is
surrounded by intricate brain tissues was introduced by Alagarsamy, Govindaraj &
Senthilkumar (2023). The key to any successful therapeutic sequence is the oncologists’
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ability to make snap decisions. The algorithm described in this article dramatically
enhances decision-making by utilizing technology.

Asiri et al. (2023) suggested an MRI-based brain tumor detection method that uses the
SVM classifier and U-Net framework. The proposed study is predicated on enhancing and
filtering MRI images to remove noise and improve contrast. To extract the area of interest,
the modified U-Net architecture is utilized for MRI segmentation. The normal and tumor-
affected images are classified using the support vector machine (SVM) algorithm following
segmentation.

Machine learning-based based classification and segmentation
Classification and detection of brain tumor using Kernel based SVM was proposed by Rao
& Karunakara (2022). The next step was to extract features using a combination of GLCM
and SGLDM strategies. The Harris Hawks Optimization (HHO) algorithms were
employed for selecting the features. Subsequently, KSVM-SSD was utilized to perform
categorization. Here, the brain tumor was categorized as benign or malignant employing
KSVM, and the malignant tumor was further categorized as low, medium, or high
employing the social ski driver (SSD) optimization algorithm. Sekhar et al. (2021)
developed a model based on TL to categorize the tumors into three types. The
characteristics of the brain MRI images were extracted employing a pre-trained CNN, i.e.,
Google LeNet. The characteristics are subsequently categorized using classifiers like
softmax, SVM, and K-Nearest Neighbor.

Amin et al. (2024) suggested an unsupervised clustering strategy for tumor
segmentation. Furthermore, a fused characteristic vector is employed, consisting of Gabor
wavelet features (GWF), histograms of oriented gradient (HOG), local binary pattern
(LBP), and segmentation-based fractal texture analysis (SFTA) characteristics. The
random forest (RF) classifier was used to distinguish among three subtumoral regions:
complete, enhancing, and non-enhancing tumor.

Major challenges
Among the problems with standard BT classification models are the following:

Although machine learning has made significant progress in classifying and segmenting
brain tumors, large research gaps still present opportunities for new deep learning-based
methods. Managing tumor heterogeneity and the lack of high-quality annotated data are
two obstacles. Integrating multimodal imaging data and creating interpretable, broadly
applicable models are still challenging. In particular, when it comes to small or
asymmetrical tumors, current models frequently have trouble correctly drawing the
borders of the tumors. There are still issues with seamlessly integrating AI models into
clinical workflows, prospectively validating them in real-world scenarios, and connecting
imaging features to genomic data. It’s also crucial to manage the high computational
demands of advanced models, address model biases, and ensure patient data privacy. By
utilizing cutting-edge methods for data augmentation, multimodal learning,
interpretability, and efficient computation, novel deep-learning approaches can close these
gaps and create reliable, accurate, and clinically valuable tools for brain tumor analysis.
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PROPOSED METHODOLOGY
Early BT detection is essential for treatment planning and patient care. For BT to be
manually classified using MRI with similar structures or appearances, the radiologist’s skill
and experience in identifying and classifying BT is necessary. The main objective is to
create and refine an efficient method. Initially, the raw data is fed into the preprocessing
phase. The raw is noise-reduced, skull-stripped and enhanced. Then, the significant
features are extracted and selected with the help of the Binary Chaotic Transient Search
Optimization (BCTSO) Algorithm and Enhanced Res2Net.

We introduced a novel DL-based ERSACA-Net to categorize the tumor types. Then, to
segment the tumor categories, we utilized an efficient ensemble Local-information
weighted intuitionistic Fuzzy C-means clustering algorithm (LWIFCM) and Chameleon
Swarm Algorithm (CSA). Figure 1 shows the overall proposed framework.

Preprocessing
The following are the main actions that will be taken on the MRI images in this step to
ensure that the system can read the correct input and create a better environment for
image analysis:

Skull removal: Since the focus of neuroimaging analysis is on brain tissue, the skull and
surrounding structures are removed. Advanced image processing techniques are employed
to accurately segment and extract the brain tissue from MRI scans, eliminating irrelevant

Figure 1 Overall framework of the proposed methodology.
Full-size DOI: 10.7717/peerj-cs.2496/fig-1
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background noise and artifacts. This process ensures that subsequent analysis focuses
solely on the brain, improving the precision of classification and segmentation tasks.

Image filtration: A median filter is applied to the MRI images to reduce noise while
preserving essential features. This filter is particularly effective in enhancing the quality of
MRI images by suppressing unwanted noise and highlighting important anatomical
structures. As a result, this step ensures cleaner input data, which improves the reliability
of the machine-learning algorithms used for brain tumor analysis.

Contrast enhancement: To further improve image quality, we utilize Adaptively
Clipped Contrast Limited Adaptive Histogram Equalization (ACCLAHE). This technique
enhances local contrast by adaptively adjusting the contrast limits for different regions of
the image. By doing so, ACCLAHE significantly increases the visibility of tumor
boundaries and tissue differentiation, making the features more distinguishable for
accurate classification and segmentation. This contrast enhancement is crucial for
improving the overall performance of the model, especially in detecting fine details in brain
tumor images. The sample preprocessed image is shown in Fig. 2.

Data augmentation
To address the imbalanced data problem and lessen network fitting, CTGAN-based data
augmentation is carried out following the preprocessing. It subtracts a few samples from
majority classes and adds more samples to minority classes. It is an architecture based on

Figure 2 Sample preprocessed image with their histogram. Full-size DOI: 10.7717/peerj-cs.2496/fig-2
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GANs and intended for tabular data synthesis. Reducing the difficulties associated with using
GAN structure for tabular data modelling is the main objective of CTGAN’s features. More
precisely, the CTGAN architecture handles non-Gaussian and multimodal distribution by
using the mode-specific normalization (MSN) that transforms constants of any distribution
into a bounded vector. This is an appropriate representation for neural networks.

The two neural network stages of CTGAN are a generator G and a critic C, which
resembles the discriminator in a traditional GAN architecture. To manage the non-
Gaussian and multimodal variation of successive fields in tabular data, CTGAN employs
mode-specific normalization. An approach to the issue of imbalanced collections in
continuous columns is to use sample-based training in conjunction with a conditional
generator. Additionally, CTGAN uses some of the most recent developments in GAN
training, such as the loss function of WGAN-GP and the critical framework of PacGAN, to
improve the quality of generated data and training stability. The following equation
displays the CTGAN loss function.

L ¼ EG zð Þ�Pg DðG zð Þ½ � � Ex�Pr D xð Þ½ � þ kEy�Py ðryD yð Þ � 1Þ2� �
: (1)

Here, the gradient penalty factor is represented by the symbol λ, and the sample y is
continuously interpolated to the actual data x. Pr and Pg show how the generated and
accurate data are distributed. The generator in CTGAN receives conditioning information
(y) and random noise (z) from the tabular data (T). In addition to other characteristics of
the final data, the conditioning information may define the range or type of samples in
each column. After that, the discriminator (D) receives the fake samples the generator
produced to reach a final judgment. Once the discriminator has established via
backpropagation if the instance is genuine or fraudulent, it sends a sign to the generator.
The generator uses this indication to adjust its weights and enhance its capacity to generate
accurate data. Figures 3 and 4 show the distribution of categories after and before
augmentation.

Feature extraction
The process of feature extraction is essential to categorization. To accurately represent
images of brain tumors, we retrieve the colors, textures, and shapes that are essential in
them. It is difficult to extract the best features from brain images. The feature extraction
process converts unprocessed data into numerical data while preserving the original
content. Features can be extracted using manual models or automated ones. While all
significant features are extracted by manual feature extraction, only issue-related
significant features are extracted by automated feature extraction. We extracted the
features using the Enhanced Res2Net model.

For brain tumor analysis, the Enhanced Res2Net approach to feature extraction
provides superior multiscale representation, enhancing the accuracy and robustness of
tasks related to classification and segmentation. With little computational overhead, it
effectively captures both fine and coarse details. More accurate treatment planning and
improved diagnostic support result from this.
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However, in the context of brain tumor categorization, standard deep learning models
can struggle to detect the intricate details of MRI images, such as subtle differences in
tumor shape, texture, and intensity, which are critical for accurate diagnosis. To capture
multi-scale features and rich contextual information, we used an improved feature
extraction approach called Enhanced Res2Net. This allowed us to focus on the most
important aspects of the images, improving the classification process’s accuracy and
robustness.

While deep and transfer learning algorithms are well-known for their ability to extract
characteristics from images, we chose to use Enhanced Res2Net for extracting features in
our approach to address the unique challenges of brain tumor classification. Brain tumors
vary significantly in size, shape, texture, and location, making it difficult for generic deep-
learning models to capture all critical features effectively. Using Enhanced Res2Net, we can
extract multi-scale features that provide a more complete and detailed representation of
tumor characteristics. This multi-scale feature extraction captures not only the tumor’s
overall structure but also the fine details required for accurate classification.

Res2Net approach
Res2Net performs better in terms of generalization than ResNet. The residual structure of
cells of the model incorporates hierarchical small residual blocks, thereby augmenting the
effective sensory field of every layer and enhancing the overall network’s extraction of

Figure 3 Label distribution of proposed dataset before data augmentation.
Full-size DOI: 10.7717/peerj-cs.2496/fig-3
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features effectiveness. We chose the Res2Net model as the foundation network for the
antler slice categorization task because of its ability to extract meaningful features from
such images, considering the small size and difficulty of identifying deer antler slices.

Enhanced Res2Net approach
The feature extraction module employed the Res2Net convolutional neural network as its
foundational network. The three-by-three convolution group of the multi-level residual
architecture replaced the bottleneck structure’s three-by-three convolution. This expands
the network’s receptive field, allowing it to gather various degrees of fine-grained scale
characteristic data regarding objects. This multiscale refers to the conjunction of various
receptive fields at a finer granularity rather than the combination of levels. Initially, the
input map of features underwent a 1 × 1 convolution process. Then, they were split equally
into s-map subsets in the channel dimension. The number of channels in these subsets was
decreased to 1/s of the input channels, but they still have the same scale size. The receptive
field is then increased, and all the characteristic data collected in the previous stage is
contained in every 3 × 3 convolution operation. While the hierarchical residual
connections within distinct residual blocks can capture fine-grained changes globally and
for details, Res2Net can obtain combined data on features of different numbers and
receptive field sizes. To obtain the last feature information, the output characteristics of

Figure 4 Label distribution of proposed dataset after data augmentation.
Full-size DOI: 10.7717/peerj-cs.2496/fig-4
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every phase were parallelized using the concat function. The extracted features histogram
is shown in Fig. 5.

Feature selection
In optimization problems, feature selection algorithms built on bio-inspired metaheuristic
have proven successful and significant. Numerous wrapping-based algorithms that employ
binary metaheuristic algorithms have been used to solve the selecting features issue. High-
accuracy feature-obtaining algorithms are essential. We employed a Binary Chaotic
Transient Optimization Algorithm (BCTSO) to select the features.

There are several advantages to using the BCTSO for brain tumor analysis feature
selection, including improved accuracy, robustness, efficiency, and interpretability. This
strategy improves model performance and guarantees scalability and adaptability to large-
scale and complex medical imaging datasets by concentrating on the most pertinent
features. In the end, this helps to improve the accuracy and dependability of brain tumor
diagnosis and treatment planning.

Chaos theory
Chaotic systems unpredictably behave in deterministic systems because of their
seemingly random and irregular motions. Chaotic systems are defined by their inherent,
ubiquitous nature. Chaotic behaviour is not completely disordered; instead, it is
deterministic. Research has revealed that their initial values strongly influence the
behaviour of chaotic systems. Chaotic models are additionally stochastic, ergodic, and
sensitive to initial values.

Figure 5 Histogram equalization of extracted features. Full-size DOI: 10.7717/peerj-cs.2496/fig-5
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Transient search optimization
To optimize outcomes of searches based on the transient behaviours of switched electrical
systems containing capacitors and inductances as storage elements, transient search
optimization (TSO) is utilized. Equation (2) illustrates the transient and steady-state
responses (final responses) of a circuit with fully reacting resistive components (R) and
energy-storing components like capacitors (C), inductors (L), or both (LC).

Complete response ¼ Transient responseþ Final response (2)

A circuit with just one storing component (either RL or RC) is referred to as first-order.
There are two storage components (RLCs) in a second-order circuit. No amount of
switching these circuits will quickly shift the procedure toward a subsequent steady state.
This allows one to compute the first-order circuit’s transient response using Eq. (3).

d
dt

x tð Þ þ x tð Þ
s

¼ K (3)

The solution x tð Þ can be found by solving the equation for differentials, as shown in
Eq. (4).

x tð Þ ¼ x 1ð Þ þ x 0ð Þ � x 1ð Þð Þe�t
s (4)

An RL circuit needs an inductor current (i(t)) to function. For an RL circuit, it is L/R,
and for an RC circuit, it is RC. τ is the circuit’s time constant. The response value at the end
is indicated by x 1ð Þ. The transient effect of the second-order circuit can be found by
solving the Formula (5).

d2

dt2
x tð Þ þ 2a

d
dt

x tð Þ þ x2
0x tð Þ ¼ f tð Þ (5)

Equation (6) illustrates how to get the solution to the second-order differential equation.

x tð Þ ¼ e�at B1 cos 2pfdtð Þð Þ þ x 1ð Þ (6)

The damping coefficient, denoted by α, the resonant frequency, denoted by x2
0 the

damped resonant frequency, and the constants B1B2 are all included in this formula. There
are three primary steps in TSO:

(1) Assign the search agents’ upper and lower boundaries for the search area; (2)
Consider options (3) Determining the best course of action.

Y ¼ lbþ rand � ub� lbð Þ (7)

TSO is exploitable since the initial order discharge decays exponentially. The random
number, r1, is chosen so that the exploitation and exploration of TSO algorithms are
balanced (r1 ≥ 0.5). The TSO algorithm is utilized and mathematically investigated, as
shown in Eq. (7), obtained from Eqs. (5) and (7).
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Ylþ1 ¼ Y�
l þ Yl � Cl � Y�

l

� �
e�T r1 < 0:5

Y�
l þ e�T cosð2pTÞ þ sinð2pTÞ½ �Y1 � Cl � Y�

l r1 � 0:5

�
: (8)

The optimal solution Y�
l of the TSO algorithm approximates the state of equilibrium

x 1ð Þ of an electrical circuit

T ¼ 2� z � r2 � z (9)

C1 ¼ k� z � r2 þ l (10)

z ¼ 2� 2 l=LmaxðÞð Þ: (11)

A search area’s lower and upper bounds are denoted by lb and ub, accordingly. Equation
(6) involves a uniformly distributed random number, rand, and a change in z from 2 to 0.
T and C1 are the random coefficients, and the random numbers r1, r2, and r3 are uniformly
distributed among 0 and 1. The position of a search agent is denoted by Yl optimal position
by Y�

l , and iteration number by l. k is a constant and Lmax has the greatest number of
iterations. Additionally, the process’s exploration and exploitation balance is determined
by the coefficient T, which varies between (−2, 2). While the TSO algorithm is explored
when T < 0, it is exploited when T > 0.

Population encoding
Each individual was encoded using binary encoding. In this method, an individual is
represented as a string of binary ‘0s’ and ‘1s’. The feature is said to be enabled when its
value is 1, and disabled when its value is 0. The sigmoid function was used to convert
continuous numbers produced by ITSO operators to binary values, as demonstrated in
Eq. (13).

sigmoid xdi
� � ¼ 1

1þ exp �xdi
� � (12)

binary xdi
� � ¼ 1 if sigmoid xdi

� �
> rd

0 else

�
: (13)

The range of the random number, rd , is 0 to 1. T Using our dataset, we first apply cross-
validation, choosing one fold for testing and the other four for training. During the
training phase, the TSO algorithm generates a feature subset. The fitness function then
assesses the quality of the generated subset of features. This iterative process illustrates the
systematic approach used to train and evaluate our model since it is repeated until a preset
amount of iterations is reached.

Objective function
The suggested ITSO algorithm removes the superfluous attributes before choosing the best
set of features. The algorithm uses fitness functions to complete this task. The fitness
function unifies two competing goals: selecting features ratio n=N and classifier
effectiveness Acc. Fitness is calculated for every individual vector Yl using the Eq. (14).
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Fit ¼ w1 � Accþ w2 � n
N
: (14)

N is the overall number of features, n is the number of characteristics that have been
chosen, and Acc denotes the classification accuracy. Accordingly, the weight coefficients
allocated to the accuracy and selecting features ratio components in Eq. (14) are w1 and w2,
respectively. The algorithm emphasizes accuracy while taking the significance of
minimizing the set of features into account, as shown by the values of w1 and w2, which are
set at 0.6 and 0.4.

Improved transient search optimization (ITSO)
This section introduces an Improved transient search optimization (ITSO) algorithm.
Without a doubt, the TSO method provides a quasi-optimal answer to an optimization
issue. Chaotic maps were utilized in TSO to improve results and speed up convergence.
The exploration space might not be thoroughly examined because most intelligent
algorithms employ a random initialization population. Chaos theory has proven useful in
many areas of mathematics, including algorithmic initialization.

Nonlinear deterministic bounded systems lack periodicity and convergence and are
called chaotic systems. A chaotic system also depends significantly on its initial conditions
and parameters. Because chaos is unpredictable, ergodic, regular, and random, it offers
trustworthy randomness. Compared to random sequences produced from uniform
distributions, chaotic sequences offer heuristic optimization algorithms a more efficient
search strategy. In this article, a logistic map is employed to create solution sequences.

xtþ1 ¼ r � xt � 1� xtð Þ; t ¼ 1; 2; 3;…:; tmax: (15)

A random coefficient slightly impacts the effectiveness of TSO. This problem might
cause local optima to become stuck. You can go past this bottleneck by thoroughly
exploring the search space. Because chaotic sequences are non-periodic, they have lower
repetition values than conventional random data, which allows them to cover the entire
search area. Our investigations show that chaotic maps produce this feature, and the TSO
algorithm’s coefficient C1 aids in searching the search space.

Classification
Our suggested approach and its variations are thoroughly explained in this section. There
are various advantages to categorizing brain tumors using the ERSACA-Net. By fusing
adaptive attention with residual learning, ERSACA-Net improves feature extraction by
directing the model’s attention to the most pertinent channels and regions within the brain
tumor images. This methodology enhances the precision of differentiating between tumor
types by efficiently capturing minute details and tumor morphological variations.
Furthermore, the network’s capacity to adaptively weigh features guarantees strong
performance in various imaging scenarios and patient demographics, which eventually
contributes to more accurate and dependable tumor classification and improved diagnosis
and individualized treatment planning.
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Firstly, the CER-Block is introduced, combining channel expansion concepts and
residuals to extract image information accurately. The ER-Net, the network’s backbone for
the categorization of brain tumor diseases, is built based on the CER-Block. Secondly, the
design of the ACA-Block directs the network’s backbone to concentrate on tumor disease
data to minimize redundant data interference.

CER‑Block and ER‑Net
Convolutional operations are typically used by traditional image classification networks to
scale their channels, which can increase the number of parameters. Gradient information
will disappear as the network gets deeper because many training settings lead to a
significant computational aspects load. By triple-expanding the amount of channels
without adding more parameters this aids in broadening the perceptual field.
Subsequently, the data aggregation layer receives the features acquired through max-
pooling, enabling the network to concentrate on leaf disease data from various angles.

CER-Block is the foundation upon which ER-Net, the leading network, is built. The
CER-Net comprises three CER-Blocks and two downsampling layers, as illustrated in
Fig. 6. The CER-Block consists of a residual link layer and data extracted from the
characteristics of images. Three maximum pooling layers with varying window sizes and a
data aggregation layer comprise the image characteristic data extraction layer. A basic
convolutional layer finds it challenging to convert composite characteristic data from
simple to abstract because tumor diseases frequently appear as combinations of attributes
like color, texture, and shape.

ACA‑Block and ERC‑Net
The CBAM integrates spatial and channel attention. Let x the kernel’s size in the
convolution and y be the feature map’s channel count. Next, the following represents the
original Gaussian likelihood density function:

y ¼ 1

r
ffiffiffiffiffi
2p

p e�
ðx�lÞ2
2r2 : (16)

The following is a comparison of the formulas used to determine the map of the
featured data:

F0
BAM ¼ BN MLP Avgpool Fð Þð Þð Þ þMs Fð Þ (17)

F0
CBAM ¼ r MLP Avgpool Fð Þð Þ þMLP Maxpool Fð Þð Þð Þ þMs Fð Þ (18)

F0
ACA�Block ¼ F þ r IGPDFðAvgpool Fð Þ þ IGPDFðMaxpool Fð Þð ÞÞ þMs Fð Þ (19)

where the outcome of the CBAM, BAM, and ACA-Block are, in that order F0
BAM , F

0
CBAM ,

and F0
ACA�Block. Batch-normalization is known as BN. Two two-dimensional convolutions

combine to form the multilayer perceptron known as MLP. SPACE is represented by
Ms Fð Þ. F is the input data. Inverse Gaussian likelihood density function, or IGPDF for
short. Average pooling is known as AvgPool. MaxPool is the maximum pooling. To
increase the accuracy of the classification of brain tumors, as depicted in Fig. 7, the
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ACA-Block can focus on tumor features, remove unnecessary data, and further boost the
information connections among the feature maps.

ERCP‑Net
The output layer of the conventional image categorization network receives the prediction
results. However, the semantic information obtained from the network’s lower layers is all
that can be sent to this output layer. It is challenging to concentrate on the image’s pixel-
level details in the interim. The enhanced output layer can produce a reliable prediction
result by concentrating on semantic and pixel-level data. The ERCP-Net network’s
structure is shown in Fig. 8.

The semantics is applied to the shallow data, and more profound information about
pixels is added, resulting in a combined map of features with more channels. Further
semantic and pixel information refinement is achieved by downsampling and recombining
the merged feature data with the characteristics data from the last CER-Block+ACA-Block
structure. Feedback from the final set of information is sent to the output layer for accurate

Figure 6 ER-Net network structure. Full-size DOI: 10.7717/peerj-cs.2496/fig-6

Figure 7 ACA-Block framework. Full-size DOI: 10.7717/peerj-cs.2496/fig-7
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classification results. Table 1 shows all of the output tensor dimensions of the ERCP-Net
layers.

Segmentation based on LWIFCM_CSA approach
We introduced LWIFCM_CSA to segment the tumors. By combining the advantages of
both methods, the ensemble of the Chameleon Swarm Algorithm (CSA) and the LWIFCM
approach provides improved segmentation accuracy. While CSA maximizes cluster
centres for better boundary delineation, LWIFCM efficiently manages image noise and
intensity inhomogeneity. In complex medical imaging scenarios such as brain tumor
delineation, this fusion approach improves the robustness and precision of segmentation
tasks.

Intuitionistic FCM algorithm
By including two additional parameters, the degree of non-membership c and the degree of
uncertainty are denoted as p the intuitionistic fuzzy sets (IFS), a significant expansion of
fuzzy sets, delicately capture the fuzzy nature of the objective world. On the set X, the IFS A
is specified as

Figure 8 The framework of the ERCP-Net network. Full-size DOI: 10.7717/peerj-cs.2496/fig-8

Table 1 The ERCP-Net specifications and the tensor sizes of every result layer.

Layer Size of the tensor Layer Size of the tensor

Input (3, 416, 416) CER_Block_3 (432, 13, 13)

Conv (16, 208, 208) ACA_Block_3 (432, 13, 13)

MaxPool (16, 104, 104) BIF_Block (1,296, 13, 13)

CER_Block_1 (48, 52, 52) Global average pool (1,296, 1, 1)

ACA_Block_1 (48, 52, 52) Fully connected layer (1,296)

CER_Block_2 (144, 26, 26) Softmax (38)

ACA_Block_2 (144, 26, 26)
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A ¼ uA xð Þ; cA xð Þ;pA xð Þj8x 2 Xf g: (20)

In the case when xð Þ ! 0; 1½ �, where 0 	 u xð Þ þ cA xð Þ 	 1. Furthermore,
xð Þ ¼ 1� xð Þ � c xð Þ can be used to define the degree of uncertainty. The following is a
definition of intuitionistic fuzzy entropy (IFE):

IFE Að Þ ¼
Xn
i¼1

pA xið Þexpð1� pA xið ÞÞ: (21)

The degree of non-membership is written as

cA xið Þ ¼ ð1� uAðxiÞaÞ1=a; x 2 X: (22)

While the uncertainty parameter is called a. The degree of uncertainty can then be
stated as

pA xið Þ ¼ 1� uA xið Þ � ð1� uAðxiÞaÞ1=a; x 2 X: (23)

Consequently, the IF set A is written as follows:

AIFS ¼ uA xið Þ; ð1� uAðxiÞaÞ1=a; 1� uA xið Þ � ð1� uAðxiÞaÞ1=ajx 2 X
h i

: (24)

Moreover, the fuzzy membership degree in the original FCM is changed to the
intuitionistic fuzzy membership degree, which forms the IFCM clustering algorithm. The
IFCM’s objective function, J� U ;Vð Þ is described as

J� U;Vð Þ ¼
Xc
i

Xn
j

u�mi;j d
2 xj; vi
� �þXc

i¼1

p�i exp 1� p�i
� �

: (25)

The membership degree U updating mode in the IFCM remains unchanged, while the
clustering centre V modifying mode is modified to

v�i ¼
XN
j¼1

u�mi;j xk

 !
=
XN
j¼1

u�mi;j : (26)

Nevertheless, there are some disadvantages to the IFCM clustering algorithm, including
its sensitivity and noise susceptibility.

LWIFCM approach
This section proposes the LWIFCM clustering algorithm to solve the aforementioned
algorithms’ drawbacks. To avoid over-reliance on local data in low-noise regions and
undervaluing the impact of the degree of membership, the local weight of information is
denoted as kij is incorporated to modify the extent of the adaptive influence of local
information on clustering outcomes. Conversely, the suggested clustering algorithm can
fully utilize the local information factor G in high noise regions. The local information
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weight kij and the optimization function with the objective in the LWIFCM are
represented as

Ĵ U ;Vð Þ ¼
Xc
i

Xn
j

ûijd
2 xj; vi
� �þXc

i¼1

p�i expð1� p�i Þ þ kijGij (27)

kij ¼
r2j þ q

r2 þ q
(28)

whereas r2 is represented as mean squared error of the sample, and r2j is the variance. The
terms Nj and k have definitions that align with Eq. (28).

Boosted LWIFCM approach with Chameleon Swarm algorithm
Two factors primarily influence the segmentation approach based on fuzzy clustering: the
initial clustering centers selection and the key parameter setting. The uncertainty
parameter (a) and fuzzifier constant (m) are essential parameters in the LWIFCM and are
typically found through trial and error investigations. The choice of starting clustering
centers significantly impacts the clustering outcomes, which are correlated with the
accuracy of image segmentation. To maximize the effectiveness of clustering techniques
and boost adaptability, algorithms based on swarm intelligence are typically added. This
article proposes the Chameleon Swarm algorithm (CSA), a novel swarm intelligence
algorithm that mimics the social behaviours of a swarm and is inspired by those
behaviours. This section introduces the CSA implementation and the clustering algorithm
based on the CSA (CSA-LWIFCM).

The CSA initializes the population as a metaheuristic algorithm to facilitate the
optimization process. Assume that there are C people in the population overall and they
are in the D search space. The way the initial population is produced in the dimension and
the search space is randomly initialized can be expressed as follows:

ai ¼ Lj þ rand � Uj � Lj
� �

: (29)

The representation of an i represents the ith chameleon’s initial vector. In the jth

dimension, the search area’s lower and upper bounds are denoted, respectively, as Lj
and Uj. The number generated at random and falling between 0 and 1 is called a rand. The
improved chameleons’ search capabilities in the field of search can be stated as follows:

q ¼ d exp �at=Rð Þ: (30)

In this case, q is the iteration-specific parameter that decreases as the number of
iterations increases. The preset parameters that are used to control the exploration and
exploitation phases are δ, α, and β. The following are the revolving centred coordinates that
are used to update the chameleons’ positions in the search space:

arandir ¼ m� acir: (31)
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The chameleon’s rotating centred coordinates are called randir . The rotation matrix is
represented by m, and the centring coordinates at the rth iteration are represented by acir .
The iteration inertia weights are provided as follows:

W ¼ 1� r=Rð Þ k
ffiffiffiffiffiffi
r=R

p� �
: (32)

In this case,W it represents the inertia’s weight, and λ is the random number regulating
exploitation capacity. A value of one is associated with λ. The chameleon’s rate of
acceleration is expressed as

y ¼ 2590� ð1� exp� logðrÞÞ (33)

where the chameleon’s acceleration is calculated y. We see that the CSA starts the
optimization process and uses the equations to update the locations of the chameleons.

ai;jrþ1 ¼
ai;jr þ p1 Pi;j

r � Gj
r

� 	
rand1 þ p2 Gj

r � ai;jr
� 	

rand2 randi � P

aijr þ q Uj � Ljð Þrand3 þ Ljbsgn rand � 0:5ð Þ randi < P

(
(34)

airþ1 ¼ arandir þ a�1
r (35)

airþ1 ¼ a�i
r þ vijr

� �2 � vijr�1

� 	2
 �
= 2yð Þ: (36)

Gj
r It represents the chameleon’s ideal global location and vijr denotes its new velocity. If

a chameleon leaves the search space, it will return to its previously established constraints.
The fitness function is estimated in each iteration to ascertain which chameleon is the fit.
The fitness function is employed to determine which chameleon is the best at catching its
prey first. These can be carried out repeatedly until the entire iteration cycle is satisfied.

Research question
R1: How can the proposed method effectively classify and segment brain tumors from
MRI scans, given the variability in tumor size, shape, and location?
R2: What advantages does the ERSACA-Net offer over existing deep learning-based
classification approaches?
R3: How does the utilization of Enhanced Res2Net for feature extraction and Binary
Chaotic Transient Search Optimization (BCTSO) for feature selection impact the accuracy
and efficiency of brain tumor classification?
R4: Can the novel LWIFCM_CSA approach and CTGAN effectively handle class
imbalance and improve segmentation performance compared to traditional methods?
R5: What improvements in classification accuracy and processing time can the proposed
approach achieve compared to state-of-the-art techniques?

RESULT AND DISCUSSIONS
In this section, the performance and efficacy of the suggested methods and present the
results of our brain tumor categorization and segmentation approach in this nt metrics like
recall, accuracy, precision, and the Dice similarity coefficient are used to assess the results.
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We address the effects of our results and draw comparisons between our findings and
current methods to identify areas for improvement. We also discuss possible drawbacks,
the robustness of our techniques, and future research directions to improve brain tumor
analysis even more.

A variety of hyperparameters were used in the training of our proposed models. The
suggested models were trained with the following parameters: categorized cross-entropy
loss function, Adam optimizer, 200 epochs, 32 batch size, and 0.0001 learning rate. The
Softmax classifier was used for pretraining; however, scratch-based DL models have been
proposed. A total of 80% of the data is used to train the suggested models, with the
remaining 20% being used for validation and testing. The evaluation metrics for both
estimated and ground truth labels have been computed for the brain tumor dataset.

Experimental setup
The experiments were conducted on a system equipped with an Intel i5 2.60 GHz
processor and 32 GB of RAM, running onWindows 10. The software environment utilized
includes Python, Keras, and TensorFlow, all executed within the Anaconda3 framework.

Dataset description
The datasets used in our experiments were chosen for their ability to represent the various
challenges of brain tumor classification. These datasets cover a wide range of tumor types
(pituitary, Glioma, meningioma, and no tumor), as well as characteristics like shape,
texture, and location. To effectively test our CTGAN-based solution, we prioritized high-
quality MRI scans for their clinical relevance and detailed imaging capabilities, as well as
datasets with class imbalance. This ensures that our approach is reliable and applicable in
real-world situations.

Brain MRI dataset: The dataset used to model the performance of the suggested
approach is from the Kaggle license CCO: Public Domain. In total, there are 3,264 MRIs.
The four classes of MRIs in the training dataset are represented by the numbers 826, 822,
395, and 827, respectively, for brain MRIs with gliomas, meningiomas, and pituitary
tumors. The dataset was accessed from https://www.kaggle.com/datasets/
masoudnickparvar/brain-tumor-mri-dataset.

BRATS 2020 dataset: The primary goals of the BRATS 2020 dataset (19) are to examine,
evaluate, and disseminate high-quality data. Kaggle Datasets allows for the private or
public sharing of datasets. The patient’s chances of survival are the main focus. The
training, validation, and testing data consists of numerous GBM/HGG and lower grade
glioma (LGG), with pathologically confirmed diagnosis and available OS. Brain MRI. The
dataset was accessed from https://www.kaggle.com/datasets/awsaf49/brats2020-training-
data.

Figshare: We used 3,064 brain MRI slices from 233 patients from a public brain tumor
data set from Figshare. It involves three different views (sagittal, axial, and coronal) and
three different types of brain tumors (glioma, pituitary, and meningioma). The dataset was
accessed from https://www.kaggle.com/datasets/rahimanshu/figshare-brain-tumor-
classification.
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Br35H dataset: The Brain Tumor Detection 2020 (BR35H) dataset is utilized,
comprising 255 MRIs showing positive and 255 negative brain tumors. Both T1-weighted
and T2-weighted image sequences are included in the dataset. The dataset was accessed
from https://www.kaggle.com/datasets/ahmedhamada0/brain-tumor-detection.

Performance metrics
The performance metrics assessed for the suggested method are accuracy, precision, recall,
and F-score.

Accuracy ¼ Tn þ Tp

Tn þ Fn þ Tp þ Fp
(37)

Precision ¼ Tp

Fp þ Tp
(38)

Recall ¼ Tp

Fn þ Tp
(39)

F � Score ¼ 2� Precision� Sensitivity
Precisionþ Sensitivity

(40)

MSE ¼ 1
n

Xn
i¼1

ðai � aið Þ2 (41)

RMSE ¼
ffiffiffi
1
n

r Xn
i¼1

ðai � âiÞ2 (42)

MAE ¼ 1
n

Xn
i¼1

ðai � âiÞ (43)

Analysis of brain MRI dataset (dataset 1)
To show enhancements in categorized brain tumors and segmentation, we thoroughly
analyse the Brain MRI dataset in this subsection. We assess the effectiveness of our
proposed methods on a number of metrics and compare the outcomes with those of
previous approaches. Figure 9 shows the outcome of dataset 1.

The existing approaches like DNN, Adaptive ANFIS, 2DCNN and CNN-GA are
utilized to compare with the proposed approach. Table 2 illustrates the differentiation of
various approaches using dataset 1.

While differentiating from existing approaches, the proposed approach yields a greater
solution, which is shown in Fig. 10.

Analysis of Figshare dataset (dataset 2)
This subsection showcases the effectiveness and efficacy of our suggested techniques on the
extensive Figshare dataset, providing a detailed analysis of our brain tumor segmentation
and classification methods. The sample outcome of dataset 2 is shown in Fig. 11.

Table 3 and Fig. 12 show prior differentiation with the proposed approach using
dataset 2. The table highlights the accuracy, precision, and recall of the different methods
used for classifying brain tumors on the Br35H MRI dataset. The suggested approach
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Figure 9 Sample outputs of dataset 1. Full-size DOI: 10.7717/peerj-cs.2496/fig-9

Table 2 Differentiation of various approaches using dataset 1.

Approach Class Accuracy (%) Precision (%) Recall (%)

DNN No tumor 96.46 95.45 95.46

Glioma 96.46 95.63 95.74

Meningioma 96.73 95.36 95.47

Pituitary 96.13 95.63 95.37

Adaptive ANFIS No tumor 97.35 98.46 98.68

Glioma 97.15 98.73 98.74

Meningioma 97.36 98.27 98.37

Pituitary 97.37 98.21 98.62

2DCNN No tumor 96.46 97.57 98.54

Glioma 96.75 97.14 98.36

Meningioma 96.84 97.47 98.27

Pituitary 96.85 97.78 98.73

CNN based approaches No tumor 93.53 94.36 95.63

Glioma 93.14 94.62 95.93

Meningioma 93.62 94.52 94.63

Pituitary 93.52 94.26 95.62

(Continued)
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Table 2 (continued)

Approach Class Accuracy (%) Precision (%) Recall (%)

CNN-GA No tumor 97.03 98.17 98.67

Glioma 97.19 98.31 98.91

Meningioma 97.25 98.25 98.89

Pituitary 97.26 98.37 98.59

Fuzzy C-Means No tumor 99.37 99.84 99.57

Glioma 99.24 99.74 99.85

Meningioma 99.50 99.85 99.84

Pituitary 99.56 99.57 97.85

Proposed No tumor 99.42 99.86 99.63

Glioma 99.36 99.80 99.85

Meningioma 99.57 99.89 99.88

Pituitary 99.63 99.65 99.19

Figure 10 Differentiation of prior with proposed approach using dataset 1. Full-size DOI: 10.7717/peerj-cs.2496/fig-10
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Figure 11 Sample outputs of dataset 2. Full-size DOI: 10.7717/peerj-cs.2496/fig-11

Table 3 Differentiation of various approaches using the Figshare dataset.

Method Class Accuracy (%) Precision (%) Recall (%)

CNN No tumor 97.86 98.49 98.33

Glioma 97.31 98.17 99.14

Meningioma 97.59 97.33 98.64

Pituitary 97.45 98.51 99.15

DBFS-EC No tumor 98.31 97.22 89.74

Glioma 94.86 98.49 98.30

Meningioma 97.09 98.62 99.16

Pituitary 98.09 94.59 94.59

CNN-Bayesian No tumor 94.57 98 98.50

Glioma 95.85 92.10 89.74

Meningioma 95.45 98.24 94.91

Pituitary 96.79 98.61 98.89

KNN-SVM No tumor 94.89 95.90 94.59

Glioma 95.04 97.51 98.98

Meningioma 94.89 91.89 87.17

Pituitary 97.17 96.49 93.22

ADRU-SCM Pituitary 93.53 97.45 91.42

No tumor 92.45 95.35 90.35

Glioma 95.35 88.45 96.56

Meningioma 95.45 90.35 97.45

(Continued)
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performs better than the others, attaining the highest accuracy (99.13–99.21%) and
consistently high precision and recall for every class of tumor. This illustrates how much
better the suggested method is at recognizing and classifying different types of tumors.

Analysis of BraTs dataset (dataset 3)
This subsection explores the analysis we performed on the BraTs 2020 dataset, which is a
standard for brain tumor segmentation, to assess our suggested techniques. Using this
complex and varied dataset, we evaluate the robustness and effectiveness of our models
and offer comprehensive findings and insights. Figure 13 shows the sample outcome of
dataset 3.

The performance of various methods for classifying brain tumors is compared in the
table. With the highest accuracy (99.13%), precision (99.05%), recall (99.01%), and F-Score
(99.03%), the proposed approach performs superior to any other technique. Remarkably, it
outperforms the deep neural network (DNN), Differential Evolution Neural Network
(DENN), Multi-SVM, artificial neural network (ANN), and others in terms of brain tumor
classification. Figure 14 and Table 4 shows the comparison of dataset 3.

Analysis on Br35H MRI dataset (dataset 4)
A thorough examination of the Br35H MRI dataset is provided in this subsection, with the
primary objective being to assess how well our suggested techniques for brain tumor. The
sample output is shown in Fig. 15.

The proposed approach achieves the best accuracy (99.20%), precision (99.02%), and
recall (99.08%) compared to all other methods. Xception, MobileNetV2, InceptionV3, and

Table 3 (continued)

Method Class Accuracy (%) Precision (%) Recall (%)

PDCNN Pituitary 97.34 98.02 95.67

No tumor 97.57 98.11 95.78

Glioma 97.56 97.13 96.84

Meningioma 97.37 97.24 97.47

DCNN-GAP Pituitary 98.35 97.36 97.25

No tumor 98.64 97.46 97.19

Glioma 98.50 98.14 99.01

Meningioma 98.36 97.43 97.43

Fuzzy C-Means No tumor 98.56 99.14 99.25

Glioma 98.24 98.66 99.19

Meningioma 98.50 99.14 99.10

Pituitary 98.56 97.43 97.43

Proposed No tumor 99.08 99.25 99.32

Glioma 99.13 99.11 99.24

Meningioma 99.21 99.08 99.12

Pituitary 99.09 99.10 99.05
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EfficientB0, on the other hand, perform worse; EfficientB0 has the lowest accuracy
(90.88%), precision (93.12%), and recall (89.12%). Figure 16 and Table 5 shows the
differentiation of various approaches using dataset 4.

Overall investigation over the proposed approach
In this section, we analyze the overall categorization and segmentation of the
performances. Table 6 shows the performance impact of image enhancement approaches.

Figure 12 Differentiation of prior with proposed approach using dataset 2.
Full-size DOI: 10.7717/peerj-cs.2496/fig-12
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Figure 13 Sample outputs of dataset 3. Full-size DOI: 10.7717/peerj-cs.2496/fig-13

Figure 14 Differentiation of prior with proposed using dataset 3.
Full-size DOI: 10.7717/peerj-cs.2496/fig-14

Table 4 Comparison of existing approaches with proposed using dataset 3.

Approaches Accuracy (%) Precision (%) Recall (%) F-Score (%)

DNN 89 81 88 94

Multi-SVM 81 76 79 81

ANN 85 76 84 90

DENN 98 96 97.2 97

Proposed 99.13 99.05 99.01 99.03
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The Table 7 and Fig. 17 presents a comparison of different segmentation strategies
based on metrics including weighted IOU, mean BF-Score, mean accuracy, and mean IOU.

With the best results across all metrics, including a mean IOU of 99.31% and a global
accuracy of 99.21%, the suggested method beats all other approaches. This illustrates how
well it performed correctly segmenting brain tumor images from the MRI dataset. The
proposed method outperforms other approaches in all metrics compared to other methods
for tumor classification and segmentation, as Table 7 and Fig. 17 illustrate.

It maintains the lowest MAE (0.024), MSE (0.03), and RMSE (0.164) while achieving the
highest accuracy (99.42%), recall (99.21%), and precision (99.14%). The proposed
approach achieves the highest accuracy of 99.42%, significantly outperforming the next

Figure 15 Sample outputs of dataset 4. Full-size DOI: 10.7717/peerj-cs.2496/fig-15

Figure 16 Differentiation of proposed with an existing method using dataset 4.
Full-size DOI: 10.7717/peerj-cs.2496/fig-16
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best method, TA-DCAE, which has an accuracy of 97.28%. This shows that the proposed
method correctly classifies a larger proportion of brain tumor cases. Furthermore, the
model’s recall of 99.21% demonstrates its exceptional ability to detect positive cases, while
the precision of 99.14% indicates that nearly all identified tumors are correctly predicted.
Furthermore, the proposed method has the lowest MAE of 0.024 and RMSE of 0.164,
indicating its consistency in making accurate predictions with minimal error. These results
outperform previous methods, such as Dense Conv AE and Con-AE, which have higher
MAE and RMSE values. This illustrates how the suggested method outperforms other
approaches regarding performance and robustness. Overall classification differentiation is
shown in Fig. 18 and Table 8.

Figure 19 compares the effectiveness of existing and proposed approaches for various
k-fold values. The k-fold validation evaluation examines the categorizing efficiency of the
data that is new. If the proposed framework performs well in k-fold examination, it will be
better suited for new data and real-time brain tumor predictions. This study examines

Table 5 Comparison of existing approaches with proposed using dataset 4.

Approaches Accuracy (%) Precision (%) Recall (%)

InceptionV3 97.12 97.97 96.59

Xception 95.67 96.62 95.09

MobileNetV2 95.45 95.45 94.73

EffecientB0 90.88 93.12 89.12

Proposed 99.20 99.02 99.08

Table 6 Performance comparison over various image enhancement approaches.

HE CLARE BBHE NSCT Proposed method

PSNR Contrast PSNR Contrast PSNR Contrast PSNR Contrast PSNR Contrast

Meningioma 19.12 39.30 21.22 40.98 20.01 38.12 23.93 74.89 25.67 98.57

Glioma 20.34 27.21 20.97 29.01 19.94 28.98 24.99 71.22 28.06 96.85

Pituitary 18.95 41.01 22.01 42.97 21.05 42.02 25.46 79.98 32.14 99.01

Table 7 Differentiation over existing with proposed segmentation approaches.

Approaches Global accuracy Mean IOU Mean accuracy Mean BF-Score Weighted IOU

U- SegNet 98.24 64.79 91.68 84.51 98.22

Seg-UNet 99.11 73.40 93.12 85.07 98.63

U-Net 98.08 59.21 90.42 63.49 97.56

SegNet3 97.62 53.64 89.32 77.26 95.85

Res-SegNet 98.85 68.91 93.35 82.14 98.29

SegNet5 98.19 60.21 91.78 64.46 98.56

Proposed 99.21 99.31 98.99 99.24 99.35
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Figure 17 Differentiation of existing with proposed segmentation approaches. Full-size DOI: 10.7717/peerj-cs.2496/fig-17
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brain tumor prediction algorithms at k-fold values of 5, 10, 15, 20, and 25. Performance
indicators include accuracy, kappa, recall, specificity, F1 score, and precision.

Table 9 shows the differentiation between the existing approach and the proposed
approach. While differentiating from existing methods, the proposed approach yields a
greater solution.

Figure 18 Overall classification evaluation. Full-size DOI: 10.7717/peerj-cs.2496/fig-18
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Figure 20 and Table 10 show the computational complexity analysis proposed with
existing approaches. While differentiating from existing approaches, the proposed
approach takes less time to execute, which is 0.11 s.

The knowledge gap in this study centers around the challenges in accurately classifying
brain tumors fromMRI scans due to the wide variability in tumor size, shape, and location.
Existing methods are often inadequate in capturing these complexities, leading to less
accurate classifications and slower processing times. Additionally, many current
approaches struggle to handle class imbalance in datasets, where certain tumor types are
underrepresented, and further affecting classification accuracy.

Our study contributes to closing this gap by introducing a novel deep learning-based
approach, ERSACA-Net, which combines an Extension residual structure with an
Adaptive Channel Attention Mechanism to enhance classification accuracy. We also
employ Enhanced Res2Net for multi-scale feature extraction, capturing essential details of
tumors, and the Binary Chaotic Transient Search Optimization (BCTSO) Algorithm for
selecting the most relevant features, thereby reducing computational complexity.
Moreover, we address class imbalance using the Conditional Tabular Generative
Adversarial Network (CTGAN), ensuring the model performs effectively across all tumor
types. This integrated approach not only improves accuracy and processing time but also
offers a more robust solution to the challenges present in previous methods.

Table 11 displays the ablation study of the proposed framework across various modules.
The algorithm is evaluated without considering pre-processing, extraction of features, and
segmentation. Applying pre-processing, feature extraction, and segmentation improves the
efficiency of the model that was proposed. The proposed model requires all processes to
achieve accurate brain tumor categorization.

Discussion on performance of proposed method
Compared to current methods, the proposed pipeline’s results show notable improvements
in a number of areas when it comes to classifying meningioma vs pituitary tumors. The
performance that was attained according to each parameter is broken down here:

. With an accuracy value of 99.42, the method demonstrates high precision in correctly
identifying tumors without misclassifying tumors.

Table 8 Overall comparison of existing approaches.

Approaches Accuracy Recall Precision MAE MAP RMSE

Autoencoder 86.6 79.9 80 0.235 0.303 0.551

Att-CNN 88.24 82.35 82.41 0.207 0.269 0.519

Con-AE 90.09 85.13 85.18 0.174 0.227 0.476

Dense Conv AE 92.48 88.73 88.87 0.132 0.171 0.414

TA-DCAE 97.28 95.92 95.94 0.046 0.05 0.225

Proposed 99.42 99.21 99.14 0.024 0.03 0.164
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Figure 19 K-fold analysis. Full-size DOI: 10.7717/peerj-cs.2496/fig-19
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Table 9 Comparison of existing related work with proposed.

Reference Method used Accuracy (%) Precision (%) Recall (%)

Kulshreshtha & Nagpal (2024) CNN 98.23 95.14 –

Arumugam et al. (2024) CSA-MLP 98.56 96.52 –

Mandle, Sahu & Gupta (2024) WSSOA 99.29 99.04 98.79

Lee, Chae & Cho (2024) Patterned GridMask 99.74 – –

Alagarsamy, Govindaraj & Senthilkumar (2023) IT2FLS-ABC 99.01 – –

Asiri et al. (2023) CNN 98.45 – –

Rao & Karunakara (2022) KSVM 98.26 95.41 –

Sekhar et al. (2021) SVM 97.56 94.65 96.66

Amin et al. (2024) RF 98.87 – –

Proposed 99.42 99.14 99.21

Figure 20 Graphical illustration of computational analysis.
Full-size DOI: 10.7717/peerj-cs.2496/fig-20

Table 10 Computational complexity.

Method Computational time (s)

DCNN 0.23

GCNN 0.92

DWAE 0.43

Kernel-based SVM 0.83

GA 2.8

RCNN 0.32

Proposed 0.11
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. A precision of 99.14 indicates that pituitary tumors and meningioma tumors can be
distinguished with this method’s efficacy.

. Notably, the suggested approach shows efficiency and computational speed with an
execution time of 0.11 s less than previous works.

The findings suggest that the suggested approach outperforms current accuracy, recall,
precision, MAE, RMSE and IOU metrics. These advancements in medical imaging have a
lot of potential to produce more accurate and effective diagnoses. This can ultimately
improve the care of patients with pituitary tumors and meningioma by speeding up
treatment decisions.

The proposed ERSACA-Net effectively classifies and segments brain tumors by
leveraging adaptive residual and channel attention mechanisms, addressing variability in
tumor size, shape, and location. Compared to existing deep learning methods, ERSACA-
Net enhances feature learning, leading to improved classification outcomes. The use of
Enhanced Res2Net for feature extraction and BCTSO for feature selection significantly
reduces computational complexity while maintaining high classification accuracy. The
novel LWIFCM_CSA approach and CTGAN effectively handle class imbalance and
segmentation, providing more reliable segmentations and model robustness. This
approach is highly applicable in the medical field, offering automated brain tumor analysis
that reduces medical professionals’ workload and provides more consistent assessments,
ultimately improving patient outcomes. Regarding explainability, the proposed method’s
adaptive channel attention mechanisms identify important features influencing
classification, allowing visualization of attention maps. This enhances transparency,
making it easier for medical professionals to understand and trust the model's decisions,
thus intertwining explainability with the proposed approach.

Proposed strengths and limitations: a comprehensive analysis
The approach we proposed has the advantages listed below, along with some
disadvantages.

Table 11 Ablation study.

Metrics Without preprocessing Without feature extraction Without segmentation Proposed

Accuracy 95.66 94.12 92.45 99.42

Recall 94.87 89.54 91.45 99.21

Precision 95.60 92.74 93.88 99.14

F-Measure 93.41 90.14 94.17 99.175

MAP 0.0821 0.1152 0.1547 0.03

MAE 0.0947 0.1348 0.1147 0.024

RMSE 0.2651 0.3241 0.4717 0.164
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. One notable aspect of the research is the implementation of an advanced automated
segmentation pipeline. This new method streamlines the segmentation and categorizing
of brain tumors in MRI images, potentially improving accuracy. It incorporates
sophisticated preprocessing techniques like diffusion filtering and contrast-limited
adaptive histogram equalization (ACCLAHE).

. A significant advantage is the segmentation process’s use of the Novel LWIFCM_CSA
algorithm. Acknowledged for its effectiveness in defining structures in medical
images, it enhances the precision of identifying anomalous areas associated with brain
tumors. However, care must be taken because LWIFCM is sensitive to noise and outliers.
Hybrid strategies were used to overcome this, combining FCM with additional
techniques.

. By adding an ERSACA-Net classifier, the suggested method can now handle more
complex classification tasks.

. The approach has a noticeably faster processing time (0.11 s), which is an important
feature for real-world application in clinical settings where prompt diagnosis is essential.
This efficiency is a noteworthy strength that adds a new dimension to the suggested
strategy when compared to traditional methods. Although the proposed MRI-based
automatic tumor segmentation and categorization method has yielded encouraging
results, it is crucial to recognize its inherent limitations:

Absence of clinical validation: The suggested approach has not been validated in a large-
scale clinical context, which could provide a risk to its safety and dependability in practical
situations.

• Future data drift and updates: As imaging technology advances, clinical procedures
alter, or new datasets become available, the method’s effectiveness may erode over time. To
stay relevant, medical imaging must be updated frequently and adjusted to new
developments.

• Limited generalization: There may be difficulties translating the method’s optimal
performance on the particular CE-MRI database used for testing to other datasets or
populations. These issues will be resolved in subsequent iterations.

• Dependency on image quality: Artifacts, low resolution, or other quality problems in
the input MRI images could cause segmentation and classification accuracy to be
compromised, thereby compromising the effectiveness of the suggested method.
Preprocessing must be validated on large databases in order to improve performance, and
this is a critical step in improving future brain tumor techniques.

The proposed approach’s robustness and practicality will be greatly strengthened by
addressing these limitations through future research, especially in a variety of clinical
settings.
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Limitation and future scope
One limitation is that the model’s performance may vary when applied to different
imaging modalities or datasets not included in our experiments, potentially affecting its
robustness across diverse clinical environments. Additionally, while our approach
efficiently handles class imbalance and enhances classification accuracy, its reliance on
specific MRI features may limit generalizability to other types of medical images or unseen
conditions. To address these concerns, future work will explore the adaptability of the
method to other datasets and imaging types to ensure broader applicability.

CONCLUSION
This work provides a thorough pipeline for brain tumor automated segmentation and
categorization. The suggested approach is proof of creativity and effectiveness in the
identification of brain tumors. Our method emphasizes its innovative nature by
introducing distinct modifications at each step. Its actual distinctiveness comes from the
careful blending and modification of these methods, which are adapted to the nuances of
magnetic resonance (MR) images. We have acknowledged and addressed the challenges
posed by MR images and have deliberately adjusted established methodologies by carefully
choosing and integrating them to maximize their performance. Significantly, our approach
presents a new framework that includes cutting-edge preprocessing methods such as
adaptively clipped contrast-limited adaptive histogram equalization (ACCLAHE). To
tackle the class imbalance problem CTGAN is introduced. Brain tumor essential features
are extracted and selected based on Enhanced Res2Net and BCTSO algorithm. Glioma,
meningioma and pituitary tumors are categorized by using Deep learning based novel
ERSACA-Net model. Finally to segment the affected tumors we ensemble local-
information weighted intuitionistic fuzzy C-means clustering algorithm (LWIFCM) and
Chameleon Swarm Algorithm (CSA).

To investigate and analyze the proposed approach performance we utilized four
benchmark datasets. While differentiating with existing approaches, our proposed
approach gain superior performances in 99.42% accuracy, 99.21% precision, 99.14% recall,
0.024% MAE, 0.164% RMSE and 0.03% MSE. This shows while comparing with existing
state of the art approaches our proposed approach gain superior performances.

ABBREVIATION
ACCLAHE Adaptively Clipped contrast-limited adaptive histogram equalization

LWIFCM Local-information weighted intuitionistic Fuzzy C-means clustering
algorithm

CSA Chameleon Swarm Algorithm

MRI Magnetic Resonance Imaging

ERSACA-Net Extension residual structure and Adaptive Channel Attention Mechanism

CTGAN Conditional Tabular Generative Adversarial Network

BCTSO Binary Chaotic Transient Search Optimization

IFAS Enhanced fully automatic segmentation

CSA-MLP Crossover Smell Agent Optimized Multilayer Perception
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CNN Convolutional Neural Network

DCNN Deep Convolutional Neural Network

WSSOA Whale Social Spider-based Optimization Algorithm

IT2FLS Interval Type-II fuzzy logic system

SVM Support vector machine

HHO Harris Hawks Optimization

SSD Social Ski Driver

LBP Local Binary Pattern

GWF Gabor wavelet features

SFTA Segmentation-Based Fractal Texture Analysis
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