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ABSTRACT
Tomatoes are a widely cultivated crop globally, and according to the Food and
Agriculture Organization (FAO) statistics, tomatoes are the third after potatoes and
sweet potatoes. Tomatoes are commonly used in kitchens worldwide. Despite their
popularity, tomato crops face challenges from several diseases, which reduce their
quality and quantity. Therefore, there is a significant problem with global agricultural
productivity due to the development of diseases related to tomatoes. Fusarium wilt
and bacterial blight are substantial challenges for tomato farming, affecting global
economies and food security. Technological breakthroughs are necessary because
existing disease detection methods are time-consuming and labor-intensive. We have
proposed the T-Net model to find a rapid, accurate approach to tackle the challenge
of automated detection of tomato disease. This novel deep learning model utilizes
a unique combination of the layered architecture of convolutional neural networks
(CNNs) and a transfer learning model based on VGG-16, Inception V3, and AlexNet
to classify tomato leaf disease. Our suggested T-Netmodel outperforms earliermethods
with an astounding 98.97% accuracy rate. We prove the effectiveness of our technique
by extensive experimentation and comparison with current approaches. This study
offers a dependable and understandable method for diagnosing tomato illnesses,
marking a substantial development in agricultural technology. The proposed T-Net-
based framework helps protect crops by providing farmers with practical knowledge
for managing disease. The source code can be accessed from the given link.

Subjects Computational Biology, Artificial Intelligence, Computer Architecture, Computer
Vision, Neural Networks
Keywords Tomato Leaf, Tomato disease, Deep learning, Convolutional neural networks (CNNs),
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INTRODUCTION
Tomatoes are widely grown and used around the world, and they are also full of essential
nutrients. In early 2024, the Food and Agriculture Organization (FAO) reported that
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millions of tons of tomatoes were produced globally (FAO, 2024). Tomato growing is a
mainstay of agriculture; various diseases constantly threaten this vital crop, endangering
harvests and food security. In the tomato growing industry, state-of-the-art technology,
such as CNN models, has changed the game regarding disease identification and control
in recent years. There are a variety of minerals and phytochemicals in tomatoes, including
lycopene, potassium, iron, folate, and vitamin C (Borguini & Ferraz Da Silva Torres, 2009).
Tomatoes are a popular vegetable widely farmed throughout the world and a good source
of income for growers (Mba et al., 2024). In addition to their nutritional value, tomatoes
are an excellent addition to a balanced diet because they can be consumed raw or cooked
without losing any dietary qualities (Kang, 2023). Over 80% of commercially grown
tomatoes produce processed goods such as ketchup, soup, and juice (Viuda-Martos et
al., 2014). There are several health benefits associated with tomatoes, many attributed to
their high antioxidant content (Rao & Agarwal, 1999). The article discusses the effects of
growing conditions on tomato cultivars and their potential health benefits.

Plant diseases that cause considerable harm to agricultural yield worldwide include
Fusarium wilt, bacterial blight, and powdery mildew. Early disease identification and
categorization of tomato plants can reduce the need for costly crop treatments and thus
increase food production for farmers. The plant the pathogen has infected is the host
disease from the simultaneous occurrence of these components (Ahmad, Saraswat & El
Gamal, 2023). The classification of tomato plant diseases has been the subject of substantial
research. However, the similarity between affected and healthy leaves makes it challenging
to locate and identify diseases promptly. While bacterial blight results in black lesions
and wilting, fusarium wilt produces yellowing and withering of the leaves (Sreedevi &
Manike, 2024). Powdery mildew creates white, powdery spots. Adequate disease control
is essential to safeguard food security and preserve agricultural productivity. Certain
unique circumstances can cause plant diseases. The link between three crucial elements,
the environment, the host, and the infectious agent, is described explicitly by a conceptual
model called the disease triangle. The disease does notmanifest if any of these three elements
is missing, and the triangle remains incomplete (Thangaraj et al., 2022). Abiotic elements
that can significantly impact the plant include watering, pH, humidity, temperature, and
airflow (Chamard et al., 2024). An organism that assaults a plant, such as a virus, bacterium,
or fungus, is known as an infectious agent. Diseases often cause symptoms that damage
the plant from the bottom up, and many spread very fast after getting an infection from
other affected plants (Khanday et al., 2024). In addition, sensing-based technologies are
utilized to monitor banana leaf diseases and classify a maturity level to enhance production
quality (Wang et al., 2023a;Wang et al., 2023b; Zhang et al., 2024b).

Furthermore, themosaic virus, yellow leaf curl virus, target spot, two-spotted spidermite,
septoria leaf spot, leaf mold, late blight, early blight, and bacterial spot are a few of the most
prevalent diseases that damage tomato leaves, as seen in Fig. 1. Recently, many technologies,
including image processing pattern recognition and computer vision, have advanced fast
and secure use in agriculture, particularly in the automation of pest and disease detection
procedures (Devaraj et al., 2019). The labor and time-intensive complicated preprocessing
and feature construction of traditional computer vision models pose severe challenges.
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Figure 1 Illustrative images of the most prevalent illnesses affecting tomato leaves. Several diseases
can cause spots and blemishes on leaves. The image obtained from the plant village (tomato leaf disease
dataset) images pixel size is 256× 256 (Hughes & Salath, 2015): mosaic virus (A), yellow leaf curl virus
(B), target spot (C), two-spotted spider mite (D), septoria leaf spot (E), leaf mold (F), late blight (H),
healthy (I), early blight (J), bacterial spot (https://data.mendeley.com/datasets/tywbtsjrjv/1).

Full-size DOI: 10.7717/peerjcs.2495/fig-1

Furthermore, the precision of feature extraction procedures and the learning algorithm
used to assess the effectiveness for leaf disease detection (Saleem, Potgieter & Arif, 2019).
Due to advances in computer power, storage capacity, and accessibility of big data sets,
deep learning technology has recently been applied to plant disease detection, a field
gaining popularity in disease diagnosis due to advancements in computer power, storage
capacity, and the availability of big data sets (Rehman et al., 2024). Convolutional neural
networks (CNN) are one of the most popular methods for object identification, semantic
segmentation, and image classification in the deep learning environment (Widiyanto,
Wardani & Pranata, 2021; Shahzad et al., 2023; Yazdan et al., 2022). CNN-based deep
learning models effectively extract features and learn non-linear correlations in the given
data (Liu et al., 2024).

In this research, we develop a T-Net model to identify tomato foliar disease. Our
models, which used deep learning, have multiple convolution layers, with each convolution
layer selected with a schematization function and best normalization to improve energy
efficiency and future extraction. We guarantee proportionality and accuracy in disease
identification by incorporating the latest and most advanced techniques like dropout
regression and submit activation. Our T-Net model is designed to examine tomato leaf
images and extract complex patterns and features of various diseases. In addition, we use
regularisation and data augmentation techniques to improve the training, which reduces
overfitting and makes the modern moral generation of the MARA. The model builds
on deep learning, significantly advancing tomato disease detection and control. We have
combined state-of-the-art architecture with experimental setup and additional techniques
to create a robot and flexible system to accurately identify tomato leaf disease interplay
between the reprocessing pipeline and our model design of old agriculture environments.
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Contributions of our study are as follows:

• Develop a lightweight T-Net model based on CNN to identify and classify tomato leaves
and compare results to existing related research.
• Develop a comprehensive pre-processing pipeline to enhance the ability of the proposed
T-Net model and existing DL models to generalize and improve the accuracy of tomato
disease classification.
• Highlight the empirical effectiveness and computational efficiency of the proposed
T-Net model over the existing CNN based DL models.
• Furthermore, a comprehensive analysis is given to highlight the findings of proposed
T-Net model to address the challenges of changing agricultural environments by
developing effective methods for identifying and treating tomato diseases.

The rest of this paper is organized as follows: ‘Introduction’ presents a general
introduction to Tomatoes and their disease. ‘Related Work’ is Related Works on Tomatoes
Classifications, and ‘Proposed Model’ is a detailed methodology of the system that
explains how our system works. ‘Performance Analysis’ discusses performance analysis and
experimental setup. ‘Result and Discussion’ is about results, compression with past results,
confusion matrix, and overall study concludes in ‘Conclusion’.

RELATED WORK
With the rapid evolution of artificial intelligence (AI), deep learning (DL) has
achieved significant strides in tackling computer vision challenges. Numerous classical
computational deep learning models have been meticulously refined and expanded
upon over the past twenty years. Research literature has documented the effectiveness of
various models in discerning and diagnosing diverse plant diseases. Recently, a pioneering
architectural innovation emerged, combining deep learning techniques with Squeeze
and Excitation (SE) modules tailored explicitly for data analysis. The identification of
plant diseases has long been researched. Plant disease identification has been studied for
an extended period. Many methods have been developed for detecting tomato diseases,
including color-focused algorithms (Lubis et al., 2023), texture (Hlaing & Zaw, 2018), or
form of tomato leaves (Kaur, Pandey & Goel, 2019). Support vector machine (SVMs),
decision trees (DTs), or neural network (NN) based classifiers were the main focus of early
plant leaf disease detection. Visual spectrum images from professional cameras are used for
disease detection in tomato leaves. Under laboratory circumstances, the acquired images
were processed using clustering and step-wise multiple linear regression methods. Notably,
the sample populations for the two studies were 180 samples for the second experiment
and ranged from 22 to 47 for the first approach.

CNNs have quickly emerged as one of the most popular techniques for plant disease
identification (Lakshmanarao, Babu & Kiran, 2021). Certain studies have concentrated on
finding higher-quality characteristics by removing the constraints caused by homogeneity
and illumination in complicated environmental scenarios. Several writers have created real-
timemodels to speed up identifying plant diseases. Models developed by other authors have
helped in the early diagnosis of plant diseases (Liu & Wang, 2020).Mim et al. (2019) utilized
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images of tomato leaves to identify various illnesses. The authors develop a classification
model using CNN and artificial intelligence (AI) algorithms, achieving a 96.55% accuracy
rate in identifying five disorders. InHuang et al. (2022), the authors introduced a self-paced
learning approach to obtain more sparse classification and interoperable results. Similarly,
in Yin et al. (2024), the authors suggested a hybrid classification strategy combining
convolutions and transformers to extract and learn features from image data efficiently.
In addition, in Zhang et al. (2024a) and Yang et al. (2024), classification approaches based
on a few-shot learning and multi-path guidance networks are developed to enhance the
accuracy of visual classification tasks. However, a few studies have assessed the effectiveness
of deep neural network models when used to detect tomato leaf diseases. For example,
in Elfatimi, Eryiğit & Shehu (2024), the authors compared the performance of the Le-Net,
VGG16, ResNet, and Xception models in classifying nine different types of diseases. The
study solved the identical problem presented in Gangadevi et al. (2024) using the AlexNet,
GoogleNet, and LeNet models; the accuracy results ranged from 94% to 95%. Using a
dataset of 300 images, we utilized a tree classification model and segmentation to identify
and categorize six distinct forms of tomato leaf disease (Paul et al., 2023). A method with a
93.75% accuracy rate for identifying and categorizing plant leaf disease has been suggested
by Salih (2020). Plant leaf disease is more accurately detected and classified thanks to
image processing technologies and classification algorithms (Imanulloh, Muslikh & Setiadi,
2023). Sample data is gathered using a smartphone camera with 8 megapixels, and it is
split into 50% categories for healthy and 50% categories for unhealthy users. Three steps
comprise the image processing: enhancing contrast, segmenting the image, and extracting
features. Two network architectures are examined, and classification tasks are carried out
using an artificial neural network that uses a multi-layer feed-forward neural network. The
mission distinguishes between the healthy and sick portions of the plant blade image; it
cannot identify the type of illness. The authors employed color space analysis, color time,
histogram, and color coherence to identify leaf illnesses and obtain 87.2% classification
accuracy (Sabrol & Kumar, 2016). In addition, in Huang, Shu & Liang (2024), the authors
employed a learning algorithm using multi-omics data to capture biological processes to
enhance diagnostic performance.

The circumstances of a tomato plant have been determined using a basic CNN model
that contains eight hidden layers. Compared to other traditional models, the suggested
strategies inKaur & Gautam (2021) produced optimal results. The image processing system
recognizes and categorizes tomato plant illnesses using deep learning techniques (Goel &
Nagpal, 2023). The author implemented a whole system using CNN and the segmentation
approach. To achieve higher accuracy, we have made modifications to the CNN model. In
addition, Xu, Li & Chen (2022); Chen et al. (2023), the authors used pre-trained DLmodels
to remove specular highlights from gray-scale images to improve the classification accuracy.
By analyzing various spectral responses of leaf blade fractions, hyper-spectral images are
used to diagnose rice leaf illnesses, including sheath blight (ShB) leaf diseases (Kaur et
al., 2024). The author used CNN, segmentation, and image processing to categorize leaf
illness. This studywill classify and detect tomato illnesses affecting greenhouses and outdoor
plants. Using the image from the sensor, the author employed deep learning and a robot to
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detect plant illnesses in real-time. Various illness samples have generated a spectral library
(Sharma & Jindal, 2023).

The literature review demonstrates how methods for identifying tomato leaf diseases
have evolved, moving from conventional classifiers that relied on color, texture, and leaf
shape to more sophisticated approaches like convolutional neural networks (CNNs).
Current research shows that CNN-based models may achieve high accuracy rates (e.g.,
96.55% accuracy in diagnosing different tomato leaf diseases). The performance levels
of various CNN designs, such as VGG16, ResNet, and AlexNet, vary; some models
may achieve up to 99.25% accuracy. Developments in image processing technology
and classification algorithms also allow more precise plant disease identification and
classification. Improved CNN models and hyperspectral imaging significantly improve
disease diagnosis, demonstrating the ongoing innovation and progress in plant disease
detection techniques.

Moreover, improving a network’s scope and depth will raise the number of parameters
and increase error rates, which is the cause of overfitting in the results. Additionally, the
computational cost of such a network develops with its complexity, providing problems
for real-time implementation in agricultural challenges. A thoughtful distribution of
computer resources is necessary due to the limitations of computational resources. Given
these factors, this study introduces a lightweight classification model for tomato leaf
identification. The suggested model is more appropriate for agricultural applications since
it successfully addresses problems with lightweight network designs, reduces the number
of training parameters, and improves training stability.

PROPOSED MODEL
Deep learning techniques have substantially influenced image processing, plant disease
detection, and categorization. As part of our research, deep learning techniques were used
to revolutionize the field of image processing, particularly in detecting tomato plant leaf
diseases (Radovanovic & Dukanovic, 2020). A new DL model, T-Net, was introduced and
tailored to identify and categorize tomato diseases. The dataset was collected from the
publicly available ‘‘PlantVillage’’ database (Hughes & Salath, 2015; Pandian & G, 2019).
The total images of 16,569 are used in this research before augmentation. We classified
diseases into 10 classes and fed tomato images into our T-Net model to evaluate their
effectiveness. We also designed a T-Net architecture with Convn layers. We reorganized
the dataset to ensure balanced training data, adjusting the number of images per disease
class to between 1,500 and we employed traditional image data augmentation techniques
to address imbalances in the dataset. For instance, we increased the number of images
for classes like leaf mold and tomato mosaic virus by augmenting existing data through
contrast, brightness, and horizontal flipping adjustments. Conversely, for diseases like
tomato yellow leaf curl virus (TYLCV), where the dataset was overrepresented, we reduced
the number of images to achieve balance and prevent bias in the classification network.
The details of the restructure data are in Table 1. We aimed to utilize the capabilities of DL
to enhance crop management and agriculture practices through the development of such a
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Table 1 Determine the number of images linked to each disease class and specify the scientific names
of tomato leaf diseases.

Disease name Disease scientific name Image number

Bacterial spot Xanthomonas campestris pv.Vesicatoria 2,127
Early blight Alternaria solani 1,000
Late blight Phytophthora infestans 1,909
Leaf mold Fulvia fulva 952
Septoria leaf spot (SLS) Septoria lycopersici 1,771
Two-spotted spider mite (TSSM) Tetranychus urticae 1,676
Target spot Corynespora cassiicola 1,404
Tomato mosaic virus (TMV) Tomato mosaic virus 373
Tomato yellow leaf curl virus (TYLCV) Begomovirus (Fam. Geminiviridae) 5,357

Figure 2 The proposed method and the steps involved and the image used in the figure collected
from the plant village tomato leaf dataset, Pandian & G (2019) for the plant leaf images we access
data Open source dataset link. For the icon using in figure, we access through data preprocessing,
data cleaning, data transformation, data reduction, data intergration, data augmentation, training,
validation, testing.

Full-size DOI: 10.7717/peerjcs.2495/fig-2

robust framework for accurately detecting and categorizing tomato diseases. We provided
a detailed, step-by-step explanation of our method in Fig. 2. It outlines each stage clearly
and is easy to understand.

In preprocessing, we divide by 255, and the image’s pixel values are scaled to fall between
0 and 1. Shearing modifications are applied to the photos at random. The zoom range
of the image is subjected to arbitrary zooming adjustments, flipping images horizontally
at random. The CNN model uses two bases: the advanced model and another that uses
a VGG16 base for transfer learning. Convolutional layers, batch normalization layers,
flattening layers, max-pooling layers, dropout layers, activation functions (ReLU), and
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dense (ultimately linked) layers are the components of these models. Spatial dimensions
and prevent overfitting, the model topologies include multiple convolutional layers with
increasing filter sizes and depths, followed bymax-pooling layers. Dropout layers randomly
remove units from the model during training to regularize and avoid overfitting. Model
compilation and training The binary cross entropy loss function and the Adam optimizer
are used to compile the models. The data generators (train_generator and val_generator)
are sent into the fit_generator function, which trains themodel. A predetermined number of
epochs and themodel’s performance are tracked using the validation data. Data preparation
is essential to train the CNN model using tomato photos efficiently. Normalization and
resizing are the two primary components of the data preparation operations. First, resizing
guarantees that every image is standardized to a single size, which is necessary to make the
CNNmodel’s input layer compatible. All photos are resized to a consistent dimension (e.g.,
256× 256 pixels) to reduce variances in image size with 224× 224 and improve themodel’s
ability to learn features across samples. Second, using the normalizing technique, the images’
pixel values are scaled to a joint range, usually between 0 and 1. By preventing significant
pixel value differences from controlling the optimization process, this normalizing phase is
essential for improving the convergence and stability of the training process. Furthermore,
data augmentation methods like horizontal flipping, shearing, and zooming are frequently
used to vary the training sample further, improving the model’s capacity to generalize well
to new data. The input data provided to the CNN model must be appropriately prepared,
standardized, and enhanced by these preprocessing steps. It offers an adequate basis for
accurate tomato disease classification and robust model training.

Feature extraction
In our proposed study, the ALVIN methodology enhances tomato plant disease detection
by employing active learning with a lightweight T-Net model. Initially trained on small,
labelled subsets, themodel uses uncertainty sampling to identify complex patterns in a large
pool of unlabelled images. Convolutional kernels are refined based on these uncertainties
to improve feature extraction, capturing critical patterns like texture and colour variations.
Expert feedback is incorporated to label challenging images, and the model is trained
iteratively. This process reduces manual labeling efforts, enhances feature extraction, and
improves the model’s accuracy and generalization while maintaining low computational
cost. The method also allows the model to adapt effectively to novel diseases and ensures
efficient performance without excessive computational overhead. By refining kernels based
on uncertain data, it strengthens the model’s ability to extract meaningful features from
complex image inputs. Mathematically, we can represent the convolutional operation as
explained in Eqs. (1), (2) and (3):

(I ∗K )(x,y)=
∑
i

∑
j

I (i,j)K (x− i,y− j). (1)

Here:

• I is the input image.
• K is the convolutional kernel or filter.
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• (x,y) are the coordinates of the output feature map.

These convolutional filters essentially slide over the input image, performing calculations
at each position to extract specific features. It’s like looking through different windows to
see what’s inside.

A popular choice is the rectified linear unit (ReLU), which is a simple yet effective
function:

f (x)=max(0,x). (2)

This function replaces all negative values with zero, while leaving positive values
unchanged, similar to flipping a switch—if there’s no signal, it turns off; if there’s a signal,
it passes through. Another technique used in Alvin’s methodology is max pooling, which
reduces the spatial dimensions of the data by selecting the maximum value from a region,
effectively retaining the most important features

max pooling(x,y)=max_i,jI (x+ i,y+ j). (3)

The pooling layer reduces computational complexity, simplifies the subsequent layers, and
retains only the most essential information. This allows the model to focus on key features
and patterns in the input images. Using specialized tools, like glasses for clarity, a tuning
fork for precision, and a magnifying glass for detail, the model is further empowered
to accurately identify tomato disease failures. These combined techniques enhance the
model’s ability to recognize critical distinguishing features within the images.

Data augmentation
Data augmentation is an important preprocessing method for enhancing the diversity
and strength of the training dataset in image classification problems. It reduces overfitting
and improves the model’s capacity for generalization by artificially increasing the dataset
with modified copies of the original images. The Keras library’s ImageDataGenerator
class makes data augmentation easier by transforming input images in several ways. This
code illustrates augmentation methods that help build a more resilient model, including
shearing, zooming, rescaling, and horizontal flipping.

• Rescaling: By dividing each pixel value by 224, the image’s pixel values are rescaled to
fall between (0, 1). Since this normalization, optimization is more reliable and effective
since all pixel values are kept within a constant numerical range.
• Shearing: Shearing transformations move pixels along the horizontal or vertical axes
to randomly deform the images. Introducing heterogeneity in the orientation of items
inside the images helps strengthen the model’s resistance to various viewpoints and
orientations.
• Zooming: Zooming changes arbitrarily enlarge or reduce the size of certain image
regions. The model can learn characteristics at different degrees of detail thanks to this
scale variation, which enhances its capacity to identify things at varied sizes and distances
from the camera.
• Horizontal flipping: This technique randomly reflects the images along the vertical axis.
By feeding the model photos with objects oriented both left-to-right and right-to-left,
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this modification contributes to the dataset’s diversity. The dataset is essentially increased
by using these augmentation strategies, exposing the model to various variances and
deformations that may occur in real-world situations. This leads to better performance
and generalization on unobserved data as the trained model becomes more robust
against noise, changes in illumination, and varied object orientations.

Proposed T-Net model
This section presents step-by-step ALVIN methodology for developing an enhanced
lightweight T-Netmodel based onCNNarchitecture for tomato plant leaf disease detection.

Proposed Alvin methodology
ALVIN methodology is known as Active Learning through Verification of Interesting
Knowledge. It uses active learning to minimize the need for large amounts of labeled data.
In our proposed study, the ALVIN methodology consists of several steps:

Train a lightweight T-Net model: A lightweight T-Net model based on CNN
architecture is developed and trained on small, labeled subsets of tomato leaf images
covering different diseases. The lightweight trained T-Net model specifically developed for
tomato plant leaf disease detection, focusing on low computational cost while maintaining
accuracy.

Apply active learning: After initial training, apply the T-Net model to a large pool of
unlabeled images of tomato plant leaves. Use active learning techniques and uncertainty
sampling to identify patterns of the tomato plant disease images where the model is
uncertain or likely to make errors. Based on the identified uncertainty, our proposed T-Net
can adjust the convolutional kernels to better capture the relevant features, improving the
feature extraction process. In contrast, traditional CNN uses convolutional kernels (or
filters) to extract features from input data by performing convolutions at various layers.

Refinement of convolutional kernels: Once the input images’ uncertain features
are identified, convolutional kernels in the T-Net model are refined to focus on these
challenging areas. Therefore, kernels in earlier layers are modified to capture better subtle
texture differences or color variations in diseased vs. healthy tomato leaves, or deeper layers
may be adjusted to focus on more complex patterns like lesion shape or size.

Domain expert knowledge: After identifying the most uncertain or informative images,
the model queries a domain expert (such as lant pathologist) to label these images. This
ensures that the model receives accurate labels for the most challenging images, improving
its performance in these cases.

Re-training of the model: The newly labeled tomato plant disease images are added to
the training set, and the T-Net model is refined and retrained. This step helps the T-Net
model refine its feature extraction bymodifying convolutional kernels, improving its ability
to distinguish between different diseases, especially for complex or ambiguous cases.

Iterative learning: This process of identifying uncertain tomato plant disease images,
querying for labels, refining convolutional kernels, and retraining the model is repeated in
cycles. Over a few cycles, the T-Net model equipped with optimized convolutional kernels
achieves high accuracy in detecting tomato plant diseases. It also becomes more accurate
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and requires fewer queries from the domain expert, making it more efficient and capable
of generalizing well on new, unseen tomato plant leaf images.

Furthermore, ALVIN methodology focuses only on the most uncertain or informative
images, which minimizes the need for extensive manual labeling, reducing costs and time.
In addition, the performance of the proposed T-Net model is improved because it learns
from its mistakes or areas of uncertainty, resulting in better generalization and more
accurate disease detection with fewer labeled examples. The ALVIN methodology also
enhances the adaptability of our proposed T-Net model by enabling it to handle novel,
previously unseen diseases. This is achieved through an intelligent querying of domain
expert knowledge, allowing themodel to evolve and respond to new disease types effectively
and continuously. The T-Net architecture is developed to be lightweight, so combining
it with ALVIN’s method ensures that kernel adaptation and active learning do not add
excessive computational overhead.

Detailed overview of the proposed T-Net
The T-Net model is based on deep learning techniques for image classification applications.
This architecture is divided into layers, which extract hierarchical information from the
input images and predict output based on the layers. Convolutional layers comprise the
T-Net architecture’s framework and identify spatial patterns and characteristics in the
input images. This particular design stacks many convolutional layers. Each convolutional
layer convolves the input image with tiny receptive fields to create feature maps using a
series of learnable filters. These feature maps draw attention to significant visual patterns
in the images, such as edges, textures, and forms. Various activation functions (ReLU) and
convolutional layers extract more sophisticated input image features (e.g., 32, 64, and 128).

Max-pooling layers are used to downsample the feature maps after each convolutional
layer, keeping the most pertinent data while lowering the feature maps’ spatial dimensions.
By dividing the feature maps into smaller sections and keeping just the maximum value
inside each zone, max-pooling performs this downsampling. As a result of this process,
the model is more robust in its ability to resist spatial translations and changes in object
placement. Figure 3 shows the whole summary of the model in our proposed system T-Net
model with its multiple layers. The architecture consists of flattening and fully connected
dense layers as well as convolutional and max-pooling layers. The dense layers operate as
the classifier by executing high-level reasoning based on the retrieved features, while the
flattening layers turn 2D feature maps into 1D vectors. The given code further processes
the flattened features and produces predictions using activation functions (ReLU) and
dense layers divided into different numbers (128, 64, etc.) The T-Net model incorporates
the ‘‘Fire module’’ and ‘‘squeeze layer’’ terminology, which are inspired by the SqueezeNet
architecture developed by Iandola et al. (2016). This architecture enhances efficiency by
using squeeze layers that consist of 1 × 1 convolutions followed by expand layers that mix
1 × 1 and 3 × 3 convolutions. As described in SqueezeNet, the Fire module effectively
reduces the number of parameters while maintaining performance, making it an optimal
choice for lightweight models.
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Figure 3 The architecture of the T-Net model (Iandola et al., 2016; Pandian & G, 2019; https://data.
mendeley.com/datasets/tywbtsjrjv/1.

Full-size DOI: 10.7717/peerjcs.2495/fig-3

Unlike ReLU, Leaky ReLU allows non-zero outputs for negative inputs, thusmaintaining
the flow of information and enhancing the model’s classification performance. Table 2
shows the architecture of the T-Netmodule, a pivotal component enhancing deep learning-
based object detection systems.

The output from the standalone convolution (first convolution layer) flows into the Fire
1 module, explicitly targeting its initial squeeze layer (the second convolution layer with a
1 × 1 filter), following normalization, activation, and pooling. Subsequently, the output
of the first squeeze layer progresses to the third convolution layer (the first expand layer),
implementing 64 filters of size 3× 3 with a padding of 1 pixel. This expanded layer’s output
then advances to the fourth convolution layer (expand layer), which utilizes 64 filters of
size 1× 1. This process iterates, with each Fire module’s output forwarded to the following
Fire module’s initial convolution layer (squeeze layer). Finally, the output of the fifth
Fire module is directed to the first fully connected dense (FCD) layer, which converts the
two-dimensional feature map extracted by the convolution layers into a one-dimensional
feature vector.

PERFORMANCE ANALYSIS
This research evaluates the effectiveness of the proposed T-Net across 10 distinct tomato leaf
disease classes: BS, LM, SLS, TMV, and TYLCV. Data augmentation is applied explicitly
to the 10 classes, while the data for the TYLCV class is restructured to improve model
performance. Evaluating the T-Net classifier’s effectiveness involves a comprehensive
analysis across eight performancemetrics, including parameters count, accuracy, error rate,
precision, recall, sensitivity, specificity, and F1-score. Comparative analysis is conducted
against seven contemporary transfer learning models. The subsequent section provides
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Table 2 Overview of the architecture of the T-NetFire Module, a pivotal component enhancing deep learning-based object detection systems.

No Operation Layer Filters F size Padding Stride Parameters

1 Input 0
2 Standalone CNN Convolutional (BN + LR) 64 3× 3 — 2× 2 1,792
3 Pooling layer MaximumPooling 1 3× 3 — 2× 2 0

Convolutional (BN + LR) 16 1×1 — — 1,040
4 Fire one Convolutional (BN + LR) 64 3× 3 [1 1 1 1] — 9,280

Convolutional (BN + LR) 64 1×1 — — 4,160
Convolutional (BN + LR) 16 1×1 — — 1,040

5 Fire two Convolutional (BN + LR) 64 3× 3 [1 1 1 1] — 9,280
Convolutional (BN + LR) 64 1×1 — — 4,160

6 Pooling layer MaximumPooling 3× 3 [0 1 0 1] 2× 2 0
Convolutional (BN + LR) 32 1×1 — — 2,080

7 Faire three Convolutional BN + LR) 128 1×1 — — 4,224
Convolutional (BN + LR) 128 3× 3 [1 1 1 1] — 147,584
Convolutional (BN + LR) 32 1×1 — — 16,512

8 Fire four Convolutional (BN + LR) 128 3× 3 [1 1 1 1] — 36,992
Convolutional (BN + LR) 128 1×1 — — 16,512

9 Pooling layer MaximumPooling 3× 3 [0 1 0 1] 2× 2 0
Convolutional (BN + LR) 48 1×1 — — 6,192

10 Fire five Convolutional (BN + LR) 192 1×1 — — 9,408
Convolutional(BN + LR) 192 3× 3 1×1 — 331,968

11 FC + BN + LR + Dropout
12 FC + BN + LR + Dropout
13 FC + Soft max + classification

detailed descriptions of the experimental setup and dataset characteristics, offering a
thorough understanding of the analysis conducted.

Experimental setup
The experiment was conducted on a 64-bit operating system, an x64-based server, housing
an Intel(R) Core(TM) i7-8700 CPU @ 3.20 GHz, which can turbo boost up to 3.19 GHz.
This CPU is known for its high performance, especially in tasks requiring significant
computational power. Moreover, to further enhance the server’s capabilities, it was
augmented with an NVIDIA GeForce GTX GPU, which boasts 6 GB of GPU memory. The
GPUoperates at frequencies up to 1060MHz,making it suitable for daily parallel processing
tasks in deep learning applications. Its single-precision performance, rated at six TE-LOPS,
underscores its ability to handle complex computations efficiently. To utilize powerful
computational resources, such as GeForce GTX GPU, to primarily reduce the training time
of the proposed lightweight T-Net architecture. It also provided us with real-time feedback
to reduce the training time, which was invaluable for refining the proposed lightweight
T-Net architecture. The secondary aim was to handle real and augmented image data more
efficiently than traditional CPU-based machines. The proposed model was implemented
using TensorFlow, a widely adopted deep-learning framework known for its flexibility and
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Table 3 Configuration of the proposed model system’s environment involves the setup process.

Configuration resource Value details

Device name DESKTOP-KIQGQ3F
CPU Intel(R) Core(TM) i7-8700 CPU @ 3.20 GHz 3.19 GHz
RAM 32.0 GB
GPU NVIDIA GeForce GTX 1060 6Gb
Software Jupyter Notebook
Language Python
Operating system 64-bit operating system, x64-based processor

scalability. In Table 3, the hardware and software configurations utilized in the study are
detailed, providing a comprehensive overview of the experimental setup.

Performance measure
After preprocessing, the dataset comprising 10,000 images of tomato diseases was prepared
for experimentation. The dataset was divided into training and testing subsets to facilitate
model training and evaluation, with proportions of 80% and 20%, respectively. Deep
learning models automatically extracted disease features via convolution operations,
eliminating the need for manual feature extraction. The classification performance
evaluation varied between deep learning approaches to assess performance; the proposed
network is bench-marked against well-known CNN architectures, including the transfer
learning models VGG-16, Inception V3, and AlexNet. The standard evaluation metric
for image classification, average accuracy, is employed. This evaluation employs distinct
metrics such as accuracy, precision, recall, and F1 score. These metrics were calculated
using Eqs. (4), (5), (6) and (7).

Accuracy = TP+TN
TP+TN+FP+FN (4)

Precision(P)= TP
TP+FP (5)

Recall = TP
TP+FN (6)

F1Score= 2PR
P+R . (7)

Parameter setting
In this experiment, we chose a batch size of 32 to make our process more efficient and
address the issue of insufficient data. When we use larger batch sizes, our classification
accuracy decreases because the learning rate decreases. We kept all the model settings at
their default values. During training, we went through the data in batches, updating the
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Table 4 Hyperparameters are configuration settings used to tune the behavior of the learning algo-
rithm.

Hyperparameter Values

Dropout rate 0.5
Batch size 32
Activation function ReLU
Learning rate 0.01
Epoch 80
optimizer Adam

neural network’s weights as we went along throughout 80 epochs. We wanted our models
to get as good as possible before they started to over-fit, so we stopped at 80 epochs. We
used a fixed learning rate of 0.01 and ensured the models saved themselves automatically
as they trained. We used the Adam optimizer because it’s good at handling moving targets
and situations where we don’t have much information about the gradients. We used a
particular loss function called sparse categorical cross-entropy for our classification tasks.
We randomly dropped half of the connections between neurons during training to prevent
our models from memorizing the training data too much (which is overfitting), which
helped our models perform better. We tried many different combinations of settings while
building our models to find the ones that worked the best. You can see the specific settings
in Table 4.

RESULT AND DISCUSSION
Result
This section describes the performance of the proposed model and transfer learning-based
models that have been utilized. Accuracy and loss graphs are used to understand the model
behavior better. The ROC-AUC curve of all tomato leaf classes, a significant measure of
the model’s performance, has been demonstrated. Moreover, the proposed model was
compared with other studies to determine reverence. The left graph in Fig. 4 illustrates how
effectively the model learns from the training data and generalizes to unknown validation
data by displaying the model’s accuracy across epochs on both the training and validation
datasets. The right graph displays the loss, showing the variation between the predicted
and actual values during training and validation. Understanding the model’s convergence,
spotting possible over- or underfitting, and fine-tuning the model’s parameters for better
performance depend on these visual aids.

The graphical representation of our proposed model shows model accuracy, training,
test, loss, and epoch of the model. The T-Net model’s ability to categorize tomato images
into categories corresponding to health or sickness is shown visually by the confusion
matrix. The left graph in Fig. 5 displays the number of true positive, true negative, false
positive, and false pessimistic predictions, offering valuable information on how well the
model can categorize various cases. The confusion matrix visually represents these metrics,
which helps evaluate the model’s overall accuracy, precision, recall, and F1 score. By doing
so, practitioners can identify biases or incorrect classifications and enhance reliability and
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Figure 4 Accuracy and loss graph of the proposed model.
Full-size DOI: 10.7717/peerjcs.2495/fig-4

Figure 5 Confusionmatrix and ROC curve of the tomato leaf disease classes according to DL tech-
niques.

Full-size DOI: 10.7717/peerjcs.2495/fig-5

performance. The right graph of Fig. 5 shows the ROC-AUC of the tomato leaf classes.
The target spot of the tomato leaf has the lowest AUC score compared to the other classes.
However, the bacterial spot performs better compared to other courses.
In addition, Table 5 outlines the performancemetrics of a proposedmodel across various

classes or categories within a dataset. The model demonstrates high precision and recall
for classes like leaf mold, spider mites, two-spotted spider mites, tomato yellow leaf curl
virus, and tomato mosaic virus, with F1-scores ranging from 0.94 to 0.98. Notably, the
model achieves an exceptional F1-score of 0.97 for the healthy leaf class, with precision
and recall values of 0.99 and 0.96, respectively, and an accuracy of 100%. However, classes
like target spot and early blight exhibit slightly lower precision and recall scores, leading to
comparatively lower F1-scores of 0.89 and 0.91, respectively. These metrics were calculated
using macro-level averaging, guaranteeing that every class contributes equally to the final
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Table 5 Proposed model refers to evaluating the model’s performance across individual classes or cat-
egories within the dataset, providing insights into its effectiveness for specific tasks or targets.

Classes Precision Recall F1-Score Support

Bacterial_Spot 0.96 0.95 0.95 100
Early_Blight 0.91 0.88 0.89 100
Healthy 0.99 0.96 0.97 100
Late_Blight 0.90 0.96 0.93 100
Leaf_Mold 0.98 0.93 0.95 100
Septoria_Leaf_Spot 0.90 0.92 0.91 100
Spider_mintes T0-spotted_spider_mite 0.98 0.91 0.94 100
Target_Spot 0.88 0.95 0.91 100
Tomato_Yellow_Lef_Curl_Virus 0.96 0.97 0.97 100
Tomatoes_Mosiaic_Virus 0.97 0.98 0.98 100

Table 6 Comparison of the proposed model with based model.

Model Precision Recall F1 score Accuracy

Inception V3 95% 93% 92% 95%
AlexNet 94% 92% 93% 95%
VGG16 96% 94% 95% 96%
Proposed model 98.75% 98.78% 98.97% 97.90%

evaluation. They provide information on the model’s general performance for particular
tasks or targets within the dataset and how well it labels various classes.

Furthermore, Table 6 compares the empirical effectiveness of the proposed T-Net model
with the existing DL models, such as Inception V3, AlexNet, and VGG16. Different metrics
are used to evaluate the empirical effectiveness of the proposed T-Net model over the
existingmodels, such as precision, recall, F1 score, and accuracy. The empirical effectiveness
highlights that the proposed T-Net model yields better classification performance than the
existing models. The proposed model significantly outperforms Inception V3, AlexNet,
and VGG16. The proposed model demonstrates its ability to identify relevant instances and
accurately minimize false predictions. Therefore, our proposed model with classification
improvement over existing models helps farmers mitigate risk in advance to save large
portions of the plants from being affected. In addition, our proposed model can lead to
better plant disease detection compared to the existing models, which further helps farmers
reduce plant losses and optimize resources.

Discussion
The results demonstrate the performance of the T-Net model trained for image
classification. First, the evaluation of model performance parameters, such as loss and
accuracy, provides crucial clues about the predictive power of the models. High accuracy
scores show robust classification abilities, and low loss values indicate the successful
alignment of the predicted and accurate labels. These measures function as essential
standards for assessing the effectiveness of the model.
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More information about the learning dynamics of the models is obtained from the
training and validation curves over epochs. When both curves smoothly converged,
training was practical, and no overfitting occurred; nevertheless, when there were
significant differences between the two, problems like under- or overfitting may have
occurred. Furthermore, examining confusion matrices and viewing sample predictions aid
in comprehending the categorization behavior of the models. Patterns in misclassifications
may be found by analyzing right and wrong predictions, providing essential information
for model improvement.

Understanding the relative performance of various model designs, preprocessing
approaches, and regularization strategies requires comparative analysis. Adjusting
hyperparameters such as batch size and learning rate may optimize model training,
improving classification resilience and accuracy. Additionally, examining the models’
scalability and generalizability to different datasets or domains clarifies their usefulness
outside the current context. Future research paths and improvements are made possible
by discussing the results. It emphasizes areas needing development, such as investigating
more intricate designs, utilizing group approaches, or adding cutting-edge strategies like
attention processes. Furthermore, resolving any restrictions or difficulties found during
assessment encourages the creation of more efficient image classification models with
broader applicability and improved performance.

The empirical findings of our proposed T-Net model was evaluated against existing
models in Fig. 6 such as InceptionV3, AlexNet, andVGG16, showing notable improvements
in key performance metrics: accuracy, precision, recall, and F1 score. To substantiate the
importance of these improvements, we conducted a paired sample t -test analysis, which
confirmed that the enhancements were statistically significant, with p-values below 0.05
across all metrics. Specifically, the T-Net model’s accuracy improvement of 3–5% over the
baseline models was statistically significant (p= 0.0083), as was the increase in precision,
particularly compared to AlexNet, which was higher by 5.05% (p= 0.0229). The T-Net
model also demonstrated a substantial improvement in recall, outperforming AlexNet
by 7.37% (p= 0.0098), which is especially significant for minimizing false negatives in
practical applications. Additionally, the model achieved a 7.57% enhancement in F1 score
over Inception V3 (p= 0.0236), indicating a balanced increase in both precision and recall.
These findings validate the T-Net model’s robustness and practical applicability for tomato
disease classification. Even minor gains in accuracy can be crucial in real-world agricultural
settings, reducing misclassifications and enabling farmers to manage plant diseases more
effectively.

In addition, Table 7 compares the computational efficiency of the proposed T-Net
model with the existing DL models. The computational efficiency analysis indicates that
the proposed model requires fewer trainable parameters than the existing models. The
proposed model reduces the number of parameters by approximately 37.17% compared
to Inception V3. Similarly, our proposed model requires 96.03% fewer parameters than
AlexNet, which indicates the efficiency of the proposed model to faster processing times.
Besides Inception V3 and AlexNet, our proposed model reduces the number of parameters
by approximately 98.25% compared to the VGG16. Hence, our proposed model achieves
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Figure 6 Illustrating accuracy, precision, recall, and F1-score enables us to evaluate the model effec-
tiveness on the best-performing approach.

Full-size DOI: 10.7717/peerjcs.2495/fig-6

Table 7 Computational efficiency in terms of trainable parameters.

Model name Number of total parameters

Inception V3 3,851,784
AlexNet 60,954,656
VGG16 138,357,544
Proposed model 2,420,615

high accuracy and offers substantial improvements in computational efficiency compared
to existing deep learning models. This makes it an efficient and impactful solution for
applications in tomato agriculture.

Furthermore, to evaluate the model’s efficacy in incorrectly identifying healthy and
infected tomatoes, its performance metrics accuracy. The conversation may also cover
identifying any difficulties discovered in developing the model, such as imbalanced data,
overfitting, or underfitting, and suggest possible remedies or directions for more research.
It would also be beneficial to investigate parallels with current approaches or earlier
studies on categorizing tomato diseases to put the results in perspective and emphasize the
improvements or originality of the T-Net model. In conclusion, the T-Net architecture
in the given code uses convolutional, pooling, flattening, and dense layers to extract
hierarchical features from input photos and provide predictions for binary classification
tasks. This architecture is well-suited for various image identification and classification
applications because it can automatically train discriminative features from raw pixel
data. Table 8 compares multiple architectures used in research articles, each evaluated on
different datasets for image classification tasks. In the study by LeafNet (Tm et al., 2018),
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Table 8 Comparisons of results with related studies indicate performance trends and validate findings
in the broader research context using plant village dataset.

Ref Year Architecture Accuracy Limitations

Tm et al. (2018) 2018 LeafNet 95% Apply a single model without
rewriting for deployment.

Zhang et al. (2018) 2018 MPC 96% Reduce both the number
of classes and the size ofthe
dataset

Agarwal et al. (2020) 2020 CNN 91% Decrease accuracy without
implementing deployment
changes.

Chen et al. (2022) 2022 AlexNet 96% Single model applied
Ni et al. (2023) 2023 ResNet 96% Model unable to adapt

to varying conditions
Chen et al. (2024) 2024 CNN 95% Limitations exist in capturing

localized feature representations.
Proposed model 2024 T-Net 98.97% May pose challenges due to

resource constraints

which utilized the Plant Village dataset consisting of 18,100 images across 10 classes, an
accuracy of 95% was achieved. However, deployment posed challenges as the model was
applied without any modifications. MPC (Zhang et al., 2018) achieved a slightly higher
accuracy of 96% by reducing the dataset size and the number of classes to 5,000 images
and 9 classes, respectively. MobileNet (Elhassouny & Smarandache, 2019) attained 90%
accuracy on a self-collected dataset of 7,200 images with 10 classes, yet the smaller dataset
size may limit its applicability. A CNN architecture (Agarwal et al., 2020) reached 91%
accuracy on the Plant Village dataset but experienced a decrease in performance when
deployed without modifications. SE-ResNet (Ahmad et al., 2020) achieved 96% accuracy
on a smaller self-collected dataset of 4,600 images, indicating potential limitations in data
availability. Both AlexNet (Zhao et al., 2021) and ResNet (Ni et al., 2023) achieved 96%
accuracy on the Plant Village dataset but struggled with adaptability to varying conditions,
raising concerns for real-world deployment. A CNN architecture in Chen et al. (2024)
achieved 95% accuracy on the Plant Village dataset but was limited in capturing localized
feature representations. The proposed model achieved the highest accuracy of 98.97%
compared to other existing models.

Theoretical implications
This research develops a unique T-Net architecture. First, the trained model’s performance
on previously unknown data shows how well it can apply newly acquired patterns to
new situations. The model’s ability to capture underlying patterns across several datasets
through its consistent performance demonstrates the resilience of the selected architecture
and learning strategy. This supports the idea that machine learning models may learn
complex patterns in data and that these algorithms can reliably predict outcomes based on
hypothetical cases. In addition, studying the learned feature representations offers essential
insights into how the model processes incoming data. Convolutional neural networks
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(T-Net) are examples of deep learning models that automatically learn hierarchical feature
representations from unprocessed input. Gaining a better grasp of representations can
help us better understand feature representation, learning in neural networks, and the
discriminative characteristics the model has detected. The expressiveness of the model
architecture is also significantly influenced by its complexity. More intricate models run
the danger of overfitting to noise in the training set, even though they could perform
better. Developing machine learning models that work effectively on unknown data
requires balancing model complexity and generalization capacity.

Challenges and Limitations
Developing the T-Net model for tomato disease classification faced several challenges. One
major issue was the quality and availability of the dataset. Despite our efforts to collect a
diverse range of tomato photos at different disease stages, we encountered problems like
uneven class distributions and not enough samples for some diseases. To address this, we
must emphasize the need for more annotated photos, as they are crucial for improving
the model’s accuracy. Careful data curation and data augmentation to diversify the dataset
are also essential tasks. Another challenge was the complexity of accurately categorizing
tomato diseases. Variations in disease appearance, background clutter, lighting, and image
resolution made it hard for the T-Net model to identify diseases correctly. This made it
difficult for the model to adapt to new or challenging situations in real agricultural settings.

A further limitation was the model’s scalability and resource requirements. The
deep T-Net design needs a lot of processing power and memory, especially with many
layers and parameters. Training large T-Net models can be impractical for practitioners
without high-performance computing equipment. Future studies should investigate
more computationally efficient model designs, such as lightweight or trimmed versions
of T-Net. Techniques like transfer learning, where we fine-tune pre-trained models on
our dataset, can also reduce computational needs. Cloud-based platforms or federated
learning can also allow distributed training, making it easier for those with limited local
resources. These strategies can help overcome resource limitations while maintaining or
improving the model’s performance. The T-Net model’s interpretability is a significant
issue, especially in agricultural settings where stakeholders need clear insights into disease
classifications. As a black-box model, T-Net can be hard to understand in terms of its
decision-making process. To build trust and acceptance among agricultural practitioners,
we must incorporate methods that improve interpretability or explore alternative models
emphasizing transparency and explainability.

CONCLUSION
In conclusion, our research represents an essential development in agricultural technology,
particularly in identifying tomato foliar diseases. We have successfully identified and
characterized the averseness of various tomato foliar diseases by applying deep learning
techniques such as our new T-Netmodel. Every convolutional layer in our T-Netmodel has
been evolved to extract sequential information from the input image, ensuring stability and
accuracy in disease classification. Our solutions address real-world agricultural problems.
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This comprehensively analyzes patterns in different data sets by incorporating explained
prediction and augmentation techniques. Our approach prioritizes and uses practicality and
provides solutions with practical knowledge for disease management. Further collaboration
and synthetic improvements will allow farmers to maintain tomato leaf health despite
changing synthetic environments. As a future work, our proposed lightweight T-Net
architecture will be extended by employing explainability methods, such as model agnostic
methods (e.g., LIME and SHAP), gradient-based method (grad-CAM), etc., to gain insights
into how the proposed architecture processes the inputs to make classification decisions.
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