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ABSTRACT
Salient object detection aims to identify the most prominent objects within an image.
With the advent of fully convolutional networks (FCNs), deep learning-based saliency
detection models have increasingly leveraged FCNs for pixel-level saliency prediction.
However, many existing algorithms face challenges in accurately delineating target
boundaries, primarily due to insufficient utilization of edge information. To address
this issue, we propose a novel approach to improve the boundary accuracy of salient
target detection by integrating salient target and edge information. Our approach
comprises two key components: a Self-attentive Group Pixel Fusion module (SGPFM)
and a Bidirectional Feature Fusion module (BFF). The SGPFM extracts salient edge
features from the lower layers of ResNet50 and salient target features from the higher
layers. These features are then optimized using a self-attentive mechanism. The BFF
module progressively fuses the salient target and edge features, optimizing them based
on their logical relationships and enhancing the complementarities among the features.
By combining detailed edge information and positional target information, ourmethod
significantly enhances the detection accuracy of target boundaries. Experimental results
demonstrate that the proposed model outperforms the latest existing methods across
four benchmark datasets, providing accurate and detail-rich salient target predictions.
This advancement marks a significant contribution to the development of the field.

Subjects Artificial Intelligence, Computer Vision, Neural Networks
Keywords Salient object detection, SGPFM, BFF, Deep learning, Edge information

INTRODUCTION
Salient object detection (SOD) aims to mimic the human visual attention mechanism to
identify the most salient regions in an image and accurately localize critical foreground
information. As an important preprocessing step in the field of computer vision, SOD
is widely used in several visual tasks such as image retrieval (Jain et al., 2023), visual
tracking (Chen et al., 2023), medical image segmentation (Santhirasekaram et al., 2023),
photo synthesis, and collaborative saliency detection(Fan et al., 2021). In addition, research
in video saliency target detection, RGB-D saliency target detection, and weakly supervised
saliency target detection is also gaining momentum.

Traditional saliency target detection models are mainly based on a bottom-up approach
to classify the saliency of samples by utilizing different underlying visual features. Significant
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Figure 1 In the existing SODmodel, background objects are incorrectly predicted as salient objects in
the case of M3Net (yellow box), and some salient details are missing in the case of ICON (blue box).

Full-size DOI: 10.7717/peerjcs.2494/fig-1

progress in SOD has been made with the widespread use of convolutional neural networks
(CNNs) (LeCun et al., 1998). CNNs have performed well in several image tasks, such
as target detection, semantic segmentation (Lu, de Geus & Dubbelman, 2023), and edge
detection. For SOD, CNNs introduce new ideas and show significant improvements in
many studies. Due to its multi-stage and multi-scale nature, CNN is able to accurately
capture the most salient regions without prior knowledge. In addition, the multi-stage
feature helps CNNs to locate the boundaries of salient objects more accurately even in the
face of situations such as shadows or reflections. As a result, CNN-based SOD methods
have set records on almost all existing datasets and become mainstream methods.

With the rise of fully convolutional neural networks (FCNs), SOD methods based
on deep learning are further developed to achieve more effective feature representation.
Inspired by FCNs, more and more pixel-level SOD methods have emerged. However,
despite the excellent performance of CNNs in SOD, existing methods still face two major
challenges: (1) partial missing of salient targets or incorrectly predicting backgrounds as
foregrounds; and (2) lack of fine edge information in the predicted saliency results. As
shown in Fig. 1.

To solve these problems, we propose the Bidirectional Self-Attention Edge Fusion
Network (BSEFNet). BSEFNet improves the accuracy of feature representation and
edge details by introducing the Self-Attention Group Pixel Fusion module (SGPFM)
and Bidirectional Feature Fusion (BFF); BSEFNet improves the accuracy of feature
representation and edge details. Our main contributions are as follows:

(1) SGPFM is designed for optimization within a network to enhance the representation
of salient target features and edge features. The module generates groups of features with
different receptive fields via the Self Attention Group Pixel Module (SGPM), while the Self
Attention Group Fusion Module (SGFM) achieves the optimal combination.
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(2) A BFF module is introduced to leverage the logical relationship between salient
edge features and salient object features by cross-optimizing them. Through top-down
optimization, this module enables the multi-scale features of salient objects to gradually
acquire more details while suppressing the background interference of salient edges.

(3) Numerous experiments demonstrate that our proposed BSEFNet performs better
compared to the current state-of-the-art algorithms on four classical benchmark datasets.
The framework is not only capable of accurately segmenting salient targets, but also of
accurately detecting salient edges.

In conclusion, BSEFNet effectively solves the two main challenges in SOD by combining
the self-attention mechanism and bi-directional feature fusion, which significantly
improves the accuracy and fineness of detection.

RELATED WORK
Over the past few years, the development of conventional techniques involved early
algorithms (Wang et al., 2019) for the recognition of salient targets in images. These
early algorithms usually involved manual extraction of features and visual cues such as
color, texture, position and luminance. Traditional techniques usually require a priori
knowledge in detecting salient targets and do not adequately consider contextual semantic
information, resulting in low detection performance. With the rise of CNNs, more and
more models have begun to employ deep learning for salient target detection. Although
deep learning-basedmethods havemade some progress (Chen et al., 2020; Pang et al., 2020;
Liu et al., 2021), how to effectively combine spatial information and contextual semantic
details is still a key issue.

Hierarchical feature fusion model
Ren et al. (2020) introduced a local and global context fusion approach to provide a more
effective solution for salient target detection, and experimentally verified its superior
performance, providing valuable insights into the field. Wei et al. (2020) proposed a label
decoupling framework, which solves the feature confusion problem of the traditional
approach by separating different salient features, and significantly improves the detection
performance. The framework provides new perspectives and methods for research in this
area. Zhu et al. (2019) developed a feature aggregation method that combines inflated
convolution and attention mechanisms, which significantly improves the performance
of salient target detection, especially in complex scenes. This research provides a new
technical approach for the field of saliency detection and promotes the development of
this field. Zhang, Shi & Zhang (2020) provide a new solution for salient target detection by
introducing the attention mechanism and boundary guidance technique, which effectively
improves the detection performance of themodel in complex scenes. This researchmakes an
important contribution to the development of this field and has a wide range of application
potential. Hu et al. (2020) significantly improved the accuracy and robustness of salient
target detection by introducing the innovative concept of spatial decay context, which
provides new methods and ideas for research and application in this field.Several studies
have introduced Transformer (Dosovitskiy et al., 2021) to dense prediction tasks. Due
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to Transformer’s ability to quickly establish long-term dependencies, Transformer-based
SODmethods (Yun & Lin, 2022; Tang et al., 2022) performwell in localizing salient regions
compared to CNN alternatives. However, using only global self-attention may result in the
loss of a large amount of local details.

To overcome these problems, this paper proposes SGPFM,which is able to autonomously
optimize the in-layer information and enhance the characterization of salient and edge
features by employing a group-optimized fusion strategy.

Boundary guided models
In recent research on supervised learning-based segmentation models, some models have
been trained to embed edge-related knowledge into the SOD task by generating a saliency
graph that preserves boundaries using labeled data. In order to enhance the boundary of
the saliency graph (Feng, Lu & Ding, 2019), the loss function is adjusted along with the
boundary loss, and an attention-based feedback method is used to evaluate the object
structure. In EGNet (Zhao et al., 2019), edge information is extracted from the low-level
features of the backbone network by modifying the edge and global position details of
the fused object with target features. In order to be more accurate and maintain the
saliency map of edges, Wu, Su & Huang (2019) employs an edge detection mechanism
and combines it with a target detection algorithm. BASNet (Qin et al., 2019) estimates the
saliency map through an encoder–decoder network and improves it by employing residual
refinement techniques.It is worth noting that these edge-guided models employ different
optimization strategies. Some use only edge information to refine the contours of salient
objects, but such edge information may contain too much background interference and
appear coarse. Some other edge-guided models use a bidirectional optimization strategy
but fail to take full advantage of the relationship between edge information and saliency
information.

To solve this problem, this paper proposes a BFF module, which is designed based
on the relationship between the two, and can transfer information in both directions
between the SOD task and the SED task to realize the top-down gradual acquisition of
more complementary details of multilevel features.

METHOD
Overall framework
Our proposed BSEFNet adopts an encoder–decoder architecture and comprises four main
components: the backbone ResNet50 (He et al., 2016), DASPP (Yang et al., 2018), SGPFM,
and BFF. An overview of our network is illustrated in Fig. 2.

In the encoder section of our model, we employed a combination of a backbone
network, a Dense Atrous Spatial Pyramid Pooling (DASPP) module, and five SGPFMs.
We chose ResNet50 as the backbone network because its deep architecture effectively
addresses the gradient vanishing problem in deep networks through the introduction of
residual blocks, which enhances training stability and convergence speed. Additionally,
ResNet50 is renowned for its ability to efficiently extract rich feature representations and
has been extensively validated across various computer vision tasks. This makes it ideal for
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Figure 2 Schematic diagram of the network structure of the proposed BSEFNet. The overall framework
consists of ResNet50, a dense spatial pyramid pooling model (DASPP), five SGPFMs and BFF modules.
The second layer of our backbone extracts the edge information and then optimizes both information in a
top-down interaction.

Full-size DOI: 10.7717/peerjcs.2494/fig-2

providing robust feature extraction and an efficient training process when constructing
complex encoder–decoder architectures. We selected DASPP for its capability to extract
multi-scale features effectively by employing dilated convolutions, which improve the
model’s robustness to various object sizes and backgrounds by expanding the receptive
field without increasing the computational load.

To optimize the network, we removed the fully connected layers from the final set of
ResNet50 blocks and labeled the remaining convolutional blocks as F1 through F5. Given
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the high computational cost associated with fully connected layers, we retained all the
convolutional layers of ResNet50 as our backbone to efficiently extract salient features
across multiple scales. Following the F2 block, we introduced an SGPFM to extract rough
foreground edge features, which are then supervised using salient edge labeling. Alongside
the F1 through F5 blocks, we implemented four additional SGPFMs to extract multi-scale
salient target features.Moreover, at the apex of the F5 block, we applied the DASPPmodule,
with expansion rates set to 1, 6, 12, and 18, to extract global saliency features and supervise
them with segmentation labeling. These extracted features are then passed to the decoder
section for further optimization.

The decoder section utilizes a progressive optimization architecture for multi-scale
feature aggregation and cross-optimization of edge and object features. It comprises four
BFF modules, each with a similar structure. For instance, BFF3 has four inputs: salient
object features and salient edge features from BFF4, salient object side features from
SGPFM4, and global semantic saliency features sampled from DASPP. BFF4 fuses the
salient object features from these four inputs and cross-optimizes them with the salient
edge features to produce refined features. Notably, we discard the feature from F1 due to
its high content of non-significant information. The final prediction graph is generated by
BFF1 and is supervised by saliency and edge labeling. This structure’s advantage lies in its
multi-level and multi-scale optimization of saliency features, which significantly enhances
the model’s performance in the saliency target detection task.

Self attention group pixel fusion module
The SGPFM module aims to autonomously optimize features within the convolutional
layer and enhance feature representation. It comprises two key components: SGPM and
SGFM. SGPM accepts inputs from backbone blocks F2-F5 and generates a set of features
with progressively increasing receptive fields in a top-down feature fusion manner. On the
other hand, SGFM efficiently combines features grouped in different receptive fields. Each
output of SGPFM1-SGPFM5 has the same number of channels. Compared to other feature
refinement methods in the SOD task, SGPFM can produce more representative features
with the assistance of SGPM and SGFM, as depicted in Fig. 3.

For SGPM, the objective is to achieve self-optimization of features within layers. Initially,
the input of SGPFM is divided into a set of features, represented as {Xj},j =1 ,{...,N }.
Feature X1 is merged with the output of SGPFMi+1 to incorporate additional semantic
information. Subsequently, each Xj is passed through the self-attentive convolutional layer
for feature refinement. Since Xj+1(j = 1,...,N −1) is combined with Xj , the portion of
Xj+1 undergoes more convolutional operations, resulting in a progressive increase in the
receptive field of the grouped features of the output (denoted as Fj,j =1 ,...,N ). Overall,
SGPM achieves semantic enhancement of intra-layer features.

The SGFM is devised to amalgamate the grouped features output by SGPM. As
mentioned earlier, the grouped features exhibit progressively increasing receptive fields.
Features grouped with larger receptive fields encapsulate more global information,
whereas those with smaller receptive fields contain finer local details. Acknowledging
the complementary nature of local and global information, we design a residual structure

Gao et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2494 6/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2494


Figure 3 Illustration of the SGPFM. The SGPFM consists of two key components: SGPM and SGFM.
Full-size DOI: 10.7717/peerjcs.2494/fig-3

to integrate the grouped features with varying receptive fields. The general formula for
SGFM is expressed as follows:

Yi= Fi+Conv3×3(Fi ∗FN+1−i),i= 1,...,N . (1)

In the general formula for SGFM, N represents the number of splits in a group, and the
symbols + and * denote the average values obtained by summation and multiplication of
elements, respectively. The grouped features Yi are subsequently concatenated to generate
the final output.

Bidirectional feature fusion module
We’ve developed the BFFmodule to facilitate bidirectional message passing between salient
features and salient edge features.

As depicted in Fig. 4, three saliency features are initially combined by the fusion module
and subsequently optimized in conjunction with edge features. By incorporating these
BFFs in a top-down manner, the multi-scale edge and segmentation features gradually
acquire additional details. The multi-scale saliency features are initially aggregated using
the feature fusion module (FFM). For each BFFi, the global semantic salient features from
DASPP are represented as Sg , the upper salient features from BFFi+1 are denoted as Su, the
current layer salient features from SGPFMi are denoted as S, and the output of the fusion
module is labeled as Sf . This fusion process can be described as follows:

F1= relu
(
Conv3×3(S)∗upsample (Conv3×3(Su))

)
(2)
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Figure 4 BFFmodule. The three salient features are first integrated by FFM and then cross-optimized
with the edge features.

Full-size DOI: 10.7717/peerjcs.2494/fig-4

F2= relu
(
Conv3×3(Conv3×3(S))∗upsample(Su)

)
(3)

F3= relu
(
Conv3×3(S)∗upsample

(
Conv3×3(Sg )

))
(4)

Sf =Conv3×3
(
Conv3×3

(
Concat (F1,F2,F3)

))
(5)

where F1, F2, and F3 represent intermediate features, the operation ‘‘Concat’’ signifies that
the features are concatenated along the channel dimension. High-level features encapsulate
abundant semantic information, enhancing the ability to localize targets and emphasize
foreground objects. Consequently, this paper introduces a feature fusion algorithm to
refine the current layer salient features by incorporating multi-layer salient features.
This process aims to diminish background interference in the current layer features
and augment semantic information. Subsequently, the fused saliency features undergo
cross-optimization with edge features.

The cross-optimization component of BFF, grounded in the logical relationship between
SOD and SED, is depicted in Fig. 3. In this context, for each BFFi, the edge feature from
BFFi+1 is labeled as E, while the resulting edge feature and saliency feature are denoted as
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E∗ and S∗, respectively. Accordingly, the process of cross-optimization can be elucidated
as follows:

E1=Conv3×3(upsample(E)) (6)

E∗= E1+Conv3×3
(
Conv3×3(E1 ∗Sf )

)
(7)

S∗= Sf +Conv3×3
(
Conv3×3

(
E∗+Sf −E∗ ∗Sf

))
. (8)

In the provided equation, B1 represents the intermediate edge feature, and Sf denotes
the output of the fusion model. The operation E1 ∗ Sf preserves the shared portion of
salient and edge features. Additionally, the operation E∗+Sf −E∗ ∗Sf refines the edges of
salient features. Specifically, the operation E∗+Sf compensates for the contours of salient
features, while the operation −E∗ ∗Sf removes the extra edge portion introduced by the
addition. Following the top-down configuration of the BFF module, the salient target
features gradually acquire finer edge information, effectively suppressing background
interference in the salient edge features.

Loss function
For efficient training, multi-supervision is used for both salient target detection and salient
edge detection. We just use a binary cross-entropy (BCE) loss function to define the loss
for the SED task. In order to efficiently train SOD and significant edge detection (SED), we
adopt a multi-supervised strategy to fully utilize the information and improve the accuracy
and robustness of the detection. For the SED task, we chose BCE loss function because it is
suitable for dealing with binary classification problems, provides stable gradients, and has
flexibility in dealing with positive and negative sample imbalances. Compared to other loss
functions used for salient target detection, such as the Dice loss, which is mainly used to
deal with unbalanced data, the IoU loss, which has high computational complexity, and the
Focal loss, which requires tuning of more hyper-parameters, the BCE loss function is more
straightforward and effective in the salient edge detection task.The BCE loss is expressed
as follows:

LBCE =
∑

p∈P,g∈G
−[g logp+ (1−g )log(1−p)] (9)

where P ∈ [0,1]H×W×1 denotes the prediction and G ∈ {0,1}H×W×1 denotes the true value.
Unlike BCE loss, which operates at the pixel level, cross-entropy loss (CEL) (Pang et al.,

2020) can incorporate global content and has been demonstrated to preserve consistency
in foreground highlights. Consequently, a combination of BCE and CEL is employed as
the loss function for the salient target detection task. The CEL loss is denoted as follows:

LCEL=
∑

(p−pg )+
∑

(g−pg )∑
p+

∑
g

. (10)
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In the provided equation, p∈P , and g ∈ G. To summarize, the marginal loss and the
significance loss are denoted by:

Ledge = LBCE (11)

Lsal = ∂ ∗LBCE+ (1−∂)∗LCEL. (12)

The overall loss function is:

L= λ1Lmedge+λ2L
m
sal+Ledge+Lsal . (13)

In the provided equation, Lmedge and Lmsal represent the significance loss and edge loss in
the middle layer, respectively. The symbol o, as defined in Eq. (12), balances the BCE loss
and CEL loss in the saliency supervision. Additionally, λ1 and λ2, as defined in Eq. (12),
balance the significance loss and edge loss in the intermediate layer, respectively. We set to
o= 0.8 and λ1 = λ2= 0.6.

EXPERIMENTAL RESULT
Experimental setup
The proposed BSEFNet is implemented using the public PyTorch toolkit, and all
experiments are conducted on a single Nvidia-GTX 3090 GPU. We utilized ResNet50
for pre-training the backbone network, with subsequent fine-tuning of the BSEFNet
network using the DUTS-TR dataset. The weights of the other convolutional layers are
initialized using a normal distribution with a mean of zero and a standard deviation of
0.01.

In the SGPFM, we set specific hyperparameters for different modules: the number of
segments N = 2 for SGPFM1 and SGPFM2, and N = 4 for SGPFM3 through SGPFM5.
The batch size is set to 3, and the input image sizes are resized for data augmentation to
[448 × 448], [224 × 224], [112 × 112], [56 × 56], and [28 × 28].

The model is trained using the Adam optimizer over 50 epochs. The initial learning rate
is set to 2e−5 and is decayed by a factor of 0.5 at epochs 14 and 22. To prevent gradient
explosion, the gradient in the optimizer is clipped within the range of [−0.5, 0.5]. This
training strategy ensures a stable and efficient learning process, contributing to the robust
performance of the BSEFNet model.

Data set
For the saliency detection task, the popular DUTS-TR (Wang et al., 2017) dataset was
used to train our BSEFNet. DUTS-TE (Wang et al., 2017) and three other popular datasets
HKU-IS (Li & Yu, 2015), ECSSD (Yan et al., 2013), and PACSALS (Everingham et al.,
2010) were used to evaluate the performance of the model. DUTS (Wang et al., 2019) is
the largest significant target detection dataset containing 10,553 images for training and
5,019 images for testing. Most of the images have significant variations in position and
scale. The PASCAL-S dataset contains 850 images, all of which were selected from the
PASCAL VOC dataset. ECSSD contains 1,000 natural and meaningful semantic images
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with a variety of complex scenarios. These images weremanually selected from the Internet.
HKU-IS contains 4,447 images with high-quality annotations, many of which havemultiple
disconnected salient objects and low contrast.

Evaluation indicators
To evaluate the quantitative performance, we used the mean absolute error MAE, F-
measure, and precision recall (PR) aspects for comparison.We first threshold the prediction
map to binary and compute the precision and recall value pairs for different thresholds.
We compute the F-measure for different precision–recall pairs with Eq. (14):

Fβ =
(1+β2)Precision ×Recall
β2×Precision +Recall

. (14)

In line with prevalent methodologies (Su et al., 2019; Perazzi et al., 2012), we adopt
β2
= 0.3 as the metric for assessing precision over recall. The maximal F-measure and the

mean F-measure are derived from the maximal and average F-measure values, respectively,
computed across all exact recall pairs.

Furthermore, PR curves delineating various precision-recall pairs are plotted to juxtapose
the efficacy of our algorithm against alternative methods across the four datasets. Eq. (15):

Precision=
TP

TP+TF
,Recall =

TP
TP+FN

. (15)

Themean absolute error (MAE) serves as a prevalent metric for quantifying the disparity
between predicted and true value maps. Herein, we denote the predicted significance map
and the corresponding ground truth as P and G, respectively. The MAE score is calculated
as follows. Eq. (16):

MAE =
1

W ×H

W∑
x=1

H∑
y=1

|P(x,y)−G(x,y)| (16)

where W and H represent the width and height of the image, respectively.

Performance comparison
To validate the effectiveness of our method, we compare the proposed BSEFNet with state-
of-the-art methods in this section. The comparison includes various leading techniques
such as AFNet (Feng, Lu & Ding, 2019), BASNet (Qin et al., 2019), MINet (Pang et al.,
2020), U2Net (Qin et al., 2020), ITSD (Zhou et al., 2020), DSRNet (Wang et al., 2020),
WSSA (Zhang et al., 2020), ICON-R (Zhuge et al., 2022), M3Net-R (Yuan, Gao & Tan,
2023), and GFINet (Zhu, Li & Guo, 2023). For a fair comparison, the saliency maps were
either provided by the authors of these methods or generated using officially released
pre-trained models.

As shown in Table 1, our model demonstrates strong performance compared to the
state-of-the-art methods across most academic evaluation metrics. Figure 5 presents some
visual comparison results with four other leadingmodels, highlighting the superior saliency
detection capabilities of our BSEFNet model.

In addition to the numerical comparisons presented in Table 1, we illustrate the PR
curves and F-measure curves for select compared methods across the four datasets in Fig. 6.
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Table 1 Quantitative comparison of the state-of-the-art significance models on the four benchmark datasets in terms of maximum F-measure,
average F-measure. Bold and underline text indicate the best and second best performance, respectively, and the symbols ‘‘↓ /↑’’ indicate that the
lower/higher the evaluation, the model is approximately better, and the indicator "-" indicates that the model is not available. Overall, the proposed
BSEFNet has superior performance.

Method DUTS-TE HKU-IS ECSSD PASCAL-S

MAE↓ MaxF↑ MeanF↑ MAE↓ MaxF↑ MeanF↑ MAE↓ MaxF↑ MeanF↑ MAE↓ MaxF↑ MeanF↑

AFNet19 0.045 – 0.785 0.036 – 0.905 0.042 – 0.886 0.070 – 0.797

BASNet19 0.048 0.859 0.796 0.032 0.928 0.896 0.037 0.916 0.855 0.077 0.862 0.779

MINet20 0.038 0.883 0.832 0.028 0.935 0.908 0.036 0.945 0.923 0.064 0.867 0.829

U2Net20 0.045 0.872 0.797 0.032 0.935 0.893 0.036 0.947 0.890 0.074 0.859 0.774

ITSD20 0.041 0.882 0.808 0.031 0.933 0.898 0.037 0.944 0.892 0.066 0.870 0.785

WSSA20 0.063 0.789 0.744 0.046 0.884 0.864 0.061 0.889 0.870 0.092 0.809 0.774

DSRNet21 0.043 0.883 0.796 0.035 0.933 0.893 0.042 0.908 0.941 0.067 0.874 0.819

ICON-R22 0.037 – 0.836 0.029 – 0.902 0.032 – 0.918 0.064 – 0.818

M3Net-R23 0.037 – 0.849 0.027 – 0.913 0.030 – 0.919 0.061 – 0.827

GFINet23 0.038 – 0.890 0.028 – 0.939 0.032 – 0.948 0.066 – 0.876

Our 0.035 0.888 0.876 0.029 0.936 0.918 0.034 0.951 0.935 0.063 0.888 0.877

Figure 5 Qualitative comparison with state-of-the-art techniques, the proposed algorithm can detect
more complete and significant targets with finer edges.

Full-size DOI: 10.7717/peerjcs.2494/fig-5
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Figure 6 Comparison with other algorithms on four popular SOD datasets. The first two rows and the
third four rows show the PR curve and the F-measure curve, respectively. It can be seen that the proposed
method performs better.

Full-size DOI: 10.7717/peerjcs.2494/fig-6

Notably, in both the PR curves and F-measure curves, the solid red line representing our
proposed method consistently outperforms all other methods across most thresholds. This
superiority can be attributed to the integration of our proposed SGPFMs, which facilitate
intra-convolutional layer self-optimization. This capability effectively mitigates issues
related to predicting saliency graphical target errors and incomplete saliency prediction.
Furthermore, our model leverages the BFF modules, which engender cross-optimization
between saliency target features and saliency edge features. Consequently, our model
is adept at producing sharp foreground target edges while suppressing background
interference in edge features.

We show the feature maps generated by the entire network during training. All feature
maps are obtained by dimensionality reduction of the corresponding features. The images
go through Resnet50 input to SGPFM for rough features, F5 output for edge features and
F5 output for saliency features. After being processed by the SGPFM module and the BFF
module, the background interference is effectively suppressed, and the edge features and
saliency features of the foreground targets (e.g., the car and the bird) are presented as clear
contours in the output of BFF1. For both edge features and saliency features, the predicted
salient target segmentation results are more accurate and the prediction results of salient
edges have more coherent contours due to the cross-optimization of these two kinds of
information in multiple BFF modules. The improved results presented in Fig. 7 show that
both segmentation performance and edge detection performance are gradually optimized
when BSEFNet is equipped with multiple BFF modules.

Ablation analysis
An exhaustive ablation study was conducted to ascertain the efficacy of the different
modules proposed in this paper. The results are tabulated in Table 2. We systematically
replaced the DASSPmodule, asymmetric convolution (AC) and self-attention mechanisms
within the SGPFMs, and the reverse convolution and feature fusion module (Fused Future
+ Deconv, FD) at the network’s output with simpler channel and reduction operations.

Gao et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2494 13/19

https://peerj.com
https://doi.org/10.7717/peerjcs.2494/fig-6
http://dx.doi.org/10.7717/peerj-cs.2494


Figure 7 Comparison of saliency feature map and saliency edge feature map, where (image output) is
the saliency feature of the output and (edge output) is the edge feature of the output.

Full-size DOI: 10.7717/peerjcs.2494/fig-7

Table 2 Using ResNet as a baseline, different components are added incrementally to validate their ef-
fectiveness.

ResNet DUTS-TE
DASSP AC Self-Attention FD MaxF ↑ MeanF ↑ MAE ↓

X 0.866 0.851 0.042
X X 0.872 0.86 0.04
X X X 0.875 0.858 0.036
X X X X 0.888 0.876 0.035

Notably, each module introduced notable performance enhancements over the benchmark
ResNet model, thus affirming their effectiveness. Moreover, the performance exhibited
a progressive improvement with the incremental addition of these components. The
consistent performance gains underscore the synergistic interplay among the proposed
modules and their collective effectiveness in maximizing saliency detection performance
(as indicated in the last row). Notably, the overall gain over the baseline model on the
DUTS-TE dataset escalated by 2.5%.
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CONCLUSION
In this paper, we propose a new saliency target detection model, BSEFNet, which effectively
combines saliency semantic features and edge features. We design SGPFM to improve the
feature extraction capability of the detected objects, effectively fusing saliency and edge
features, reducing the cases of missing objects and improving the boundaries of the objects.
We transfer the grouped features output from SGPFM to the BFFmodule for bi-directional
optimization, which enhances the representation of intra-layer features. Compared with
some state-of-the-art algorithms, our proposed BSEFNet achieves better performance on
the four underlying datasets.
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