Submitted 15 May 2024
Accepted 16 October 2024
Published 29 November 2024

Corresponding author
Abdulrahman Alamer,
amalameer@jazanu.edu.sa

Academic editor
Chan Hwang See

Additional Information and
Declarations can be found on
page 32

DOI 10.7717/peerj-cs.2491

© Copyright
2024 Reddy C. et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Detecting and forecasting cryptojacking
attack trends in Internet of Things and
wireless sensor networks devices

Kishor Kumar Reddy C.", Vijaya Sindhoori Kaza', Madana Mohana R.%,
Abdulrahman Alamer?, Shadab Alam?®, Mohammed Shuaib?, Sultan
Basudan® and Abdullah Sheneamer?®

! Department of Computer Science, Stanley College of Engineering and Technology for Women,
Hyderabad, Telangana, India

% Department of Artificial Intelligence and Machine Learning, Chaithanya Bharathi Institute of
Technology, Hyderabad, Telangana, India

3 Department of Computer Science, College of Engineering and Computer Science, Jazan
University, Jazan, Gizan, Saudi Arabia

ABSTRACT

This research addresses the critical issue of cryptojacking attacks, a significant
cybersecurity threat where malicious actors covertly exploit computational resources
for unauthorized cryptocurrency mining, particularly in wireless sensor networks
(WSN) and Internet of Things (IoT) devices. The article proposes an innovative
approach that integrates time series analysis with graph neural networks (GNNs) to
forecast/detect cryptojacking attack trends within these vulnerable ecosystems.
Utilizing the “Cryptojacking Attack Timeseries Dataset,” the proposed method
emphasizes early detection and predictive insights to anticipate emerging attack
patterns. Through rigorous experiments, the model demonstrated high accuracy with
ARIMA achieving up to 99.98% on specific attributes and the GNN model yielding
an accuracy of 99.99%. Despite these strengths, the ensemble approach showed a
slightly lower overall accuracy of 90.97%. Despite the reduction in accuracy
compared to individual models, the ensemble method enhances predictive
robustness and adaptability, making it more effective in identifying emerging
cryptojacking trends amidst varying network conditions. This research significantly
contributes to enhancing cybersecurity measures against the evolving threat of
cryptojacking in WSN and IoT environments by providing a robust, proactive
defence mechanism.

Subjects Artificial Intelligence, Computer Networks and Communications, Security and Privacy,
Neural Networks, Internet of Things

Keywords Cryptojacking, Internet of Things, Deep learning techniques, Wireless sensor networks,
Intrusion detection, Machine learning, Cybersecurity

INTRODUCTION

The rapid production of wireless sensor networks (WSNs) and Internet of Things (IoT)
devices have transformed the digital landscape, creating a highly interconnected
environment. However, this advancement comes with significant cybersecurity challenges,
one of the most pressing being cryptojacking (Kharraz et al., 2019; Carreiro, 2019).
Cryptojacking, the unauthorized use of computer resources to mine cryptocurrencies

How to cite this article Reddy C KK, Kaza VS, R MM, Alamer A, Alam S, Shuaib M, Basudan S, Sheneamer A. 2024. Detecting and
forecasting cryptojacking attack trends in Internet of Things and wireless sensor networks devices. Peer] Comput. Sci. 10:e2491
DOI 10.7717/peerj-cs.2491

http://dx.doi.org/10.7717/peerj-cs.2491
mailto:amalameer@�jazanu.�edu.�sa
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2491
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

without user consent, poses serious risks, particularly in IoT environments where resource
constraints and distributed architectures are common (Androulaki et al., 2018; Hong et al.,
2018). The malicious exploitation of devices’ central processing unit (CPU) and graphics
processing unit (GPU) resources not only degrades system performance but can also lead
to increased energy consumption and even physical damage to hardware (Ali et al., 2020;
Islam et al., 2020). Furthermore, cryptojacking is often a precursor to more severe
cybersecurity breaches, including malware attacks and data breaches (Gomes & Correia,
2020). In the context of WSN and IoT systems, where resource constraints and distributed
architectures are common, cryptojacking presents unique risks and challenges. These
systems often rely on a multitude of interconnected devices to collect, process, and
transmit data, making them vulnerable to exploitation by malicious actors seeking to
harness their computational power for illicit cryptocurrency mining (Gomes & Correia,
20205 Lee, Oh ¢ Kim, 2022). Despite the growing prevalence of cryptojacking attacks in
WSN and IoT environments, traditional cybersecurity measures may be ill-equipped to
detect and mitigate these threats effectively.

Over the years, various detection methods have been developed to combat
cryptojacking. These methods include signature and behaviour-based approaches,
machine learning-based detection techniques, network-based monitoring, and blockchain-
based solutions (Abbasi et al., 2023; Moreno-Sancho et al., 2023). For instance, signature
and behaviour-based detection methods have been used to identify cryptojacking activities
by analysing known patterns and behaviours of malicious scripts (Eskandari et al., 2018;
Loose et al., 2023). Machine learning approaches have been employed to detect anomalies
that indicate cryptojacking, while network-based detection has focused on monitoring
network traffic for signs of unauthorized cryptocurrency mining (Kharraz et al., 2019;
Gomes ¢ Correia, 2020). Blockchain-based methods, on the other hand, aim to leverage
the inherent security features of blockchain technology to detect and prevent cryptojacking
activities (Androulaki et al., 2018; The Telegraph, 2018).

Despite the progress made by these existing methods, they each come with significant
limitations. Signature and behaviour-based detection techniques struggle to keep up with
the rapidly evolving nature of cryptojacking tactics, making them less effective against new
and unknown threats (Abbasi et al., 2023; Eskandari et al., 2018). Machine learning-based
approaches, while powerful, often suffer from high false-positive rates, especially in
environments with high legitimate workloads (Gomes ¢» Correia, 2020; Naseem et al.,
2021). Network-based detection methods can be limited by the complexity and
distribution of modern IoT networks, where monitoring all network traffic can be
challenging (Murioz, Sudrez-Varela & Barlet-Ros, 2019; Pott, Gulmezoglu & Eisenbarth,
2023). Blockchain-based detection, while promising, requires further validation and
adaptation to be effective in real-world scenarios, particularly in resource-constrained IoT
environments (Androulaki et al., 2018; The Telegraph, 2018; Rajasoundaran et al., 2021).

Given the limitations of existing methods, there is a clear need for a more robust and
proactive approach to cryptojacking detection in IoT and WSN environments. This article
proposes a novel methodology that combines time series analysis with graph neural
networks (GNNs) to detect and forecast cryptojacking attack trends. By predicting

Reddy C. et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2491 2/35

http://dx.doi.org/10.7717/peerj-cs.2491
https://peerj.com/computer-science/

PeerJ Computer Science

potential cryptojacking activities before they fully take place, this approach aims to provide
early warnings and enable timely countermeasures. The objective is to enhance the overall
security of IoT and WSN systems by reducing the impact of cryptojacking on device
performance, energy consumption, and system reliability. The novelty of this research lies
in its integration of time series modelling with GNNs to not only detect but also predict
cryptojacking trends in IoT environments. Unlike traditional detection methods that focus
on identifying ongoing or past cryptojacking activities, this approach seeks to anticipate
future attacks, thereby offering a proactive defence mechanism. This predictive capability
is particularly valuable in the context of IoT and WSN systems, where the ability to forecast
potential threats can significantly mitigate their impact.

The major contributions of this article are as follows:

e Development of a forecasting model: The article introduces a forecasting model that
leverages time series analysis and GNNs to predict cryptojacking attack trends in IoT
and WSN environments.

o Comprehensive evaluation: The proposed model is evaluated using a real-world dataset,
the “Cryptojacking Attack Timeseries Dataset,” demonstrating its effectiveness in
predicting and mitigating cryptojacking threats.

 Proactive defence strategy: By providing early detection and predictive insights, the
proposed method offers a proactive defence strategy that enhances the security of IoT
and WSN systems against cryptojacking.

The rest of the article is organized as follows: Section “Literature Survey” provides a
detailed literature survey, reviewing existing methods for cryptojacking detection and their
limitations. Section “Materials and Methods” describes the proposed methodology,
including the data collection, preprocessing, data analysis, and feature selection. Section
“Proposed Work” presents the model development and evaluation processes. Section
“Results” discusses the experimental results and implications of the findings. Finally,
Section “Conclusion” concludes the article by summarizing the key contributions and the
significance of the proposed approach, it also gives insights into future directions that can
be explored.

Literature survey
Abbasi et al. (2023) introduced a hybrid detection approach that combines signature-based
and behavior-based methods to detect cryptojacking malware in real-time. Their technique
was specifically designed to combat in-browser cryptojacking by identifying and blocking
known malicious scripts while also monitoring abnormal behavior patterns indicative of
cryptojacking. While this method has proven effective in dealing with known threats, it
faces significant challenges in maintaining accuracy due to the rapid evolution of
cryptojacking techniques, which often bypass traditional detection mechanisms by
continuously altering their signature and behavior profiles.

Eskandari et al. (2018) also proposed a hybrid detection system focused on browser-
based cryptojacking. Their approach provided valuable insights into the challenges

Reddy C. et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2491 3/35

http://dx.doi.org/10.7717/peerj-cs.2491
https://peerj.com/computer-science/

PeerJ Computer Science

associated with detecting stealthy cryptojacking activities, particularly those that obscure
their presence by minimizing CPU usage or spreading their operations across multiple
devices. Although their method offers a comprehensive detection framework, it struggles
with the inherent difficulty of identifying covert mining activities, which often operate
below the detection thresholds of traditional monitoring tools.

Kharraz et al. (2019) developed the Outguard method, a machine learning-based
approach aimed at detecting in-browser covert cryptocurrency mining activities. This
method leverages a variety of machine learning algorithms to analyze and identify patterns
associated with cryptojacking. However, despite its innovative use of machine learning, the
approach faces challenges in accurately detecting stealthy mining operations, particularly
those that have been optimized to evade traditional anomaly detection techniques.

Gomes ¢ Correia (2020) proposed another machine learning-based detection method
that relies on CPU usage metrics to identify cryptojacking activities. By monitoring
abnormal spikes in CPU usage, their system can detect when a device is being exploited for
unauthorized cryptocurrency mining. However, this approach is prone to generating false
positives, especially in environments where legitimate applications may also cause high
CPU utilization, thus complicating the differentiation between normal and malicious
activities.

Mutioz, Sudrez-Varela & Barlet-Ros (2019) explored a network-based approach to
cryptojacking detection using NetFlow/IPFIX network measurements. Their method
focuses on identifying unusual patterns in network traffic that are indicative of
cryptojacking activities, such as sustained high outbound data volumes or frequent
connections to cryptocurrency mining pools. While this technique is effective in simpler
network environments, it encounters limitations in more complex and highly distributed
IoT networks, where the sheer volume of data and the complexity of the network topology
can hinder accurate detection.

Androulaki et al. (2018) and Gilad et al. (2017) investigated blockchain-based detection
methods, leveraging the decentralized and transparent nature of blockchain technology to
enhance cryptojacking detection. Androulaki et al. (2018) utilized Hyperledger Fabric, a
permissioned blockchain platform, to improve the traceability and accountability of
cryptojacking activities. Similarly, Gilad et al. (2017) proposed using Algorand, a scalable
blockchain protocol, to enhance the security and efficiency of cryptojacking detection.
While these blockchain-based methods show promise in providing a secure and reliable
detection framework, their effectiveness is highly dependent on the specific use cases and
requires further validation and adaptation to be applicable in diverse environments,
particularly those involving IoT devices.

Despite the progress made by the existing methods, they each exhibit significant
limitations that hinder their effectiveness in combating cryptojacking, particularly in IoT
and WSN environments. Hybrid methods, while comprehensive, are often outpaced by the
rapid evolution of cryptojacking techniques, leading to reduced accuracy over time
(Romano, Zheng & Wang, 2020). Machine learning-based approaches, although powerful,
tend to produce high false-positive rates in environments with heavy legitimate workloads,
making them less reliable in practical applications (Sachan, Agarwal & Shukla, 2022;

Reddy C. et al. (2024), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.2491 4/35

http://dx.doi.org/10.7717/peerj-cs.2491
https://peerj.com/computer-science/

PeerJ Computer Science

Table 1 Summary and Insights obtained from existing literature.

References Methods Techniques Results Problems identified
Abbasi et al. (2023) Hybrid (Signature- Real-time approach ~ Combating in-browser cryptojacking Accuracy challenges in rapidly
based & behavior- malware evolving techniques
based)
Eskandari et al. (2018) Hybrid (Signature- Browser-based Insight into challenges of detecting Difficulty in detecting covert
based & behavior- detection stealthy mining mining activities
based)
Kharraz et al. (2019) ~ Machine learning-based Outguard method In-browser covert cryptocurrency Challenges in detecting stealthy
mining detection mining
Gomes & Correia (2020) Machine learning-based CPU usage metric- Detection of cryptojacking activities Potential false positives under
based detection heavy legitimate workloads
Muiioz, Sudrez-Varela Network-based NetFlow/IPFIX Detection of cryptocurrency miners, Limitations in highly distributed
& Barlet-Ros (2019) network including cryptojacking and complex environments
measurements
Androulaki et al. (2018) Blockchain-based Hyperledger fabric ~ Potential enhancement of blockchain- Applicability variations based on
based cryptojacking detection use cases and validation
Gilad et al. (2017) Blockchain-based Algorand Potential enhancement of blockchain- Applicability variations based on
based cryptojacking detection use cases and validation

Xu et al., 2022). Network-based detection methods are limited by the complexity of
modern networks, particularly in highly distributed IoT systems where monitoring and
analysing all network traffic becomes challenging (Singh et al., 2020). Lastly, blockchain-
based detection methods, though innovative, require further adaptation and validation to
be effective across different scenarios and use cases, particularly given the resource
constraints of IoT devices.

The proposed model in this article seeks to address these limitations by integrating time
series analysis with GNN’s to not only detect but also forecast cryptojacking attacks. This
novel approach shifts the focus from reactive to proactive defence, enabling the prediction
of cryptojacking trends before they manifest fully. By analysing temporal patterns in
cryptojacking activities and leveraging the relational data modelling capabilities of GNNSs,
this model can anticipate potential threats, thus providing early warnings and allowing for
timely interventions. Additionally, the use of ensemble methods enhances the robustness
and accuracy of the predictions, reducing the likelihood of false positives and improving
detection in complex IoT and WSN environments. This approach, therefore, not only
overcomes the demerits of existing methods but also introduces a new standard in
cryptojacking detection, one that is more suited to the dynamic and resource-constrained
nature of IoT systems. With a focus on wireless sensor networks and Internet of Things
environments, this research introduces a novel method to detect and mitigate
cryptojacking, addressing the constraints and insights presented in Table 1, which provides
a summary of various cryptojacking detection methods and their effectiveness, as reported
in existing literature. This table categorizes the methods into different types such as hybrid,
machine learning-based, network-based, and blockchain-based approaches.

Reddy C. et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2491 5/35

http://dx.doi.org/10.7717/peerj-cs.2491
https://peerj.com/computer-science/

PeerJ Computer Science

Load Data

Preprocess Data

A4

Visualize Data Distribution and Create Pair
Plots

A4

Load Data into the ARIMA Model and GNN
Model

Load ARIMA and GNN Model Output Data
into Ensemble Model

Compare the Models and Visualise the
Comparison

Figure 1 Flowchart of the methodology. Full-size E&] DOT: 10.7717/peerj-cs.2491/fig-1

MATERIALS AND METHODS

Figure 1 gives a overview of the steps and flow of the process followed in ordered to obtain
the said results. To replicate the model further subsections and Algorithm 1 give details of

the steps and methodology.

|6/35

Reddy C. et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2491 [|

http://dx.doi.org/10.7717/peerj-cs.2491/fig-1
http://dx.doi.org/10.7717/peerj-cs.2491
https://peerj.com/computer-science/

PeerJ Computer Science

Algorithm 1 Algorithm for data loading, preprocessing, exploratory data analysis
Step 1: Loading and Preprocessing Data
Input: CSV files: ‘final-complete-data-set.csv’, ‘final-anormal-data-set.csv’, and ‘final-normal-data-set.csv’
Output: Preprocessed DataFrame ‘df
1. Load data from CSV files into pandas DataFrames:
df <- load_data(‘final-complete-data-set.csv’)
df_a <- load_data(‘final-anormal-data-set.csv’)
df_n <- load_data(‘final-normal-data-set.csv’)
2. Concatenate ‘df_a’ and ‘df_n’ DataFrames along axis 0:
df <- concatenate_dataframes(df_a, df_n)
3. Handle missing values:
list15 <- identify_missing_values_over_15_percent(df)
df <- remove_columns_with_missing_values(df, list15)
list0 <- identify_remaining_missing_values(df)
df <- drop_rows_with_missing_values(df, list0)
4. Classify variables into categories:
df <- vardefiner(df)
5. Filter columns:
df <- drop_columns_without_information(df)
df <- remove_single_valued_categorical_variables(df)
6. Convert categorical variables to float type:
df <- convert_categorical_to_float(df)
7. Additional Data Preprocessing:
df <- divide_numeric_variables_into_categories(df)
df <- create_binary_flags_for_numeric_variables(df)
df <- compute_total_flags_for_each_record(df)
df <- create_binary_variable_for_cryptojacking_risk(df)
Step 2: Exploratory Data Analysis (EDA)
Input: Preprocessed DataFrame ‘df
1. Visualize data distribution:
visualize_data_distribution(df)
2. Create pairplot:
create_pairplot(df)
Step 3: Time Series Analysis
Input: Preprocessed DataFrame ‘df
Output: ARIMA models and forecast accuracy
1. Fit ARIMA models to selected time series attributes:

arima_models <- fit_arima_models(df)

(Continued)

Reddy C. et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2491 7/35

http://dx.doi.org/10.7717/peerj-cs.2491
https://peerj.com/computer-science/

PeerJ Computer Science

Algorithm 1 (continued)

2. Evaluate ARIMA forecast accuracy on the test set:
arima_accuracy <- evaluate_arima_forecast_accuracy(arima_models)
Step 4: Graph Neural Network (GNN) Model
Input: Preprocessed DataFrame ‘df
Output: Trained GNN model and evaluation metrics
1. Prepare data for GNN model:
data <- prepare_data_for_gnn(df)
2. Define GNN model:
gnn_model <- define_gnn_model()
3. Train GNN model:
trained_gnn_model <- train_gnn_model(gnn_model, data)
4. Evaluate GNN model on the test set:
gnn_accuracy <- evaluate_gnn_model(trained_gnn_model, data)
Step 5: Ensemble Model
Input: ARIMA models, trained GNN model
Output: Ensemble model and evaluation metrics
1. Combine ARIMA and GNN predictions to create the ensemble model:
ensemble_model <- create_ensemble_model(arima_models, trained_gnn_model)
2. Evaluate ensemble model performance:
ensemble_accuracy <- evaluate_ensemble_model(ensemble_model)
Step 6: Model Comparison Visualization
Input: ARIMA accuracy, GNN accuracy, Ensemble accuracy
Output: Visualization comparing model accuracies
1. Compare accuracy of ARIMA, GNN, and Ensemble models for each attribute:
compare_model_accuracies(arima_accuracy, gnn_accuracy, ensemble_accuracy)
2. Compare overall accuracies of the three models using a bar chart:

visualize_overall_model_accuracies(arima_accuracy,gnn_accuracy, ensemble_accuracy)

Description of the cryptojacking attack timeseries dataset

A useful and specialized source of time series data, the “Cryptojacking Attack Timeseries
Dataset” is intended to study the performance of WSN and IoT server instances during
cryptojacking attacks and support research and development in real-time detection of the
attacks. This dataset includes comprehensive data on metrics for server performance that
were gathered during mock cryptojacking attacks. Numerous characteristics pertaining to
CPU utilization (Tables 2-4), other performance indicators (Table 5), memory usage
(Table 6), and network activity (Table 7), are included. Because every entry in the dataset
has a date, it is possible to view performance metrics during the simulated attacks in

Reddy C. et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2491 8/35

http://dx.doi.org/10.7717/peerj-cs.2491
https://peerj.com/computer-science/

PeerJ Computer Science

Table 2 Summary statistics when load on CPU core is greater than 1.

load_cpucore load_minl load_minl5 load_min5
count 4,309 4,309 4,309 4,309
mean 2 3.680733 3.135024 3.545523
std 0 0.412826 0.899465 0.621365
min 2 0.96 0.18 0.42
25% 2 3.6 2.89 3.67
50% 2 3.73 3.6 3.74
75% 2 3.86 3.7 3.79
max 2 4.65 3.8 4

Table 3 Summary statistics when load on CPU core is less than or equal to 1.

load_cpucore load_min1l load_minl5 load_min5
count 91,001 91,001 91,001 91,001
mean 1 1.333823 1.26414 1.315291
std 0 1.412298 1.334691 1.380397
min 1 0 0.05 0.02
25% 1 0.17 0.2 0.19
50% 1 0.41 0.25 0.3
75% 1 2.74 2.55 2.96
max 1 5.55 4.2 4.51
Table 4 Summary statistics of CPU feature variables.
cpu_idle cpu_ cpu_nice cpu_softirq cpu_system cpu_total cpu_user percpu_O_idle percpu_ percpu_ percpu_ percpu_ percpu_ percpu_
iowait 0_iowait 0_nice 0_softirq 0_system O_total 0_user
count 95310 95310 95310 95310 95,310 95,310 95310 95,310 95310 95310 95310 95310 95310 95310
mean 50.02 0.003 0.004 0.069 3.349 49.93 3991 50.05 0.004 0.004 0.055 3.318 49.95 39.12
std 452 0.05 046 0.27 1.52 45.2 41.9 452 0.06 0.46 0.23 1.55 453 41.0
min 0 0 0 0 0 32 1 0 0 0 0 0 3.3 1
25% 0 0 0 0 2.5 8.3 5.5 0 0 0 0 2.5 8.3 5.5
50% 88.9 0 0 0 2.8 111 7.3 88.9 0 0 0 2.8 11.1 7.3
75% 917 0 0 0 37 100 95.2 91.7 0 0 0 37 100 94.5
max 943 3.6 75.5 3 48 100 99.2 96.7 10 74.5 3 26.8 100 100

chronological order and examine the changing trends and features of cryptojacking attacks
over time by using this temporal data.

Table 2 offers insights into the CPU utilization metrics during periods when the load on
the CPU core exceeded 1. It summarizes key performance indicators such as load_cpucore,
which counts the instances when the CPU load was above 1, and load_minl1, load_min5,
and load_min15, which show the average CPU load over 1, 5, and 15 min, respectively. The

Reddy C. et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2491 9/35

http://dx.doi.org/10.7717/peerj-cs.2491
https://peerj.com/computer-science/

PeerJ Computer Science

Table 5 Summary statistics of diskio feature variables.

diskio_sdal diskio_sda diskio_sdal diskio_sdal_time diskio_sda diskio_sda_time
_write_bytes _write_bytes _read_bytes _since_update _read_bytes _since_update

count 9.53 9.53 95,310 95,310 9.53 95,310

mean 1.93 2.34 6.403357 1.162641 2.19 1.162641

std 1.21 1.89 1,481.39172 0.121199 1.38 0.121199

min 0 0 0 0.6527 0 0.6527

25% 0 0 0 1.087129 0 1.087129

50% 0 0 0 1.093017 0 1.093017

75% 0 0 0 1.209975 0 1.209975

max 3.05 347 454,656 2.127072 1.92 2.127072

Table 6 Summary statistics of memory feature variables.

mem_ mem_ mem_ mem_ mem_ mem_ p_ ap_ wap_ p_ memswap_ mem_ mem_ mem_ mem_total memswap_percent
active available cached free inactive used free sin sout total used buffers percent shared

count 9.53 9.53 9.53 9.53 9.53 9.53 9.53 95,310 9.53 9.53 9.53 9.53 95,310 9.53 9.53 95,310

mean 7.30 2.64 113 2.64 4.68 1.01 9.79 1,407.62 8.79 9.80 9.74 1.52 28.04 8.84 3.66 0.0133

std 4.36 8.22 5.76 8.22 2.60 8.03 2.31 10,478.8 7.90 2.32 8.04 9.43 20.7 3.82 4.77 0.12

min 1.99 3.81 3.62 3.81 1.71 4.58 0 0 0 0 0 0 115 6.94 1.04 0

25% 527 2.58 7.17 2.58 3.33 6.61 0 0 0 0 0 1.68 17.8 8.86 371 0

50% 5.65 3.03 8.78 3.03 333 6.78 0 0 0 0 0 212 18.3 8.90 3.71 0

75% 6.28 3.05 1.22 3.05 5.46 8.82 0 0 0 0 0 212 30.3 8.96 371 0

max 2.04 3.52 223 3.52 9.44 3.59 6.46 98,304 722 6.46 7.34 2.16 90.4 9.07 3.97 1.1

Table 7 Summary statistics of network feature variables.

network_lo_ network_lo_ network_lo_ network_lo_cx network_lo_rx network_lo_ network_lo_tx
cumulative_cx cumulative_rx cumulative_tx time_since_update

count 95,310 95,310 95,310 95,310 95,310 95,310 95,310

mean 31,780.51206 15,890.256 15,890.256 2.28039 1.140195 1.162641 1.140195

std 42,494.9283 21,247.464 21,247.464 25.568 12.784 0.121031 12.784

min 400 200 200 0 0 0.69546 0

25% 12,952 6,476 6,476 0 0 1.087103 0

50% 18,464 9,232 9,232 0 0 1.092982 0

75% 19,940 9,970 9,970 0 0 1.209952 0

max 194,680 97,340 97,340 656 328 2.114878 328

data provides an understanding of how the CPU behaves under higher stress conditions,
revealing trends and patterns that could be indicative of cryptojacking activities. For
instance, the average load over 1 min might spike during an attack, signaling abnormal
activity that warrants further investigation.

Table 3 presents similar metrics as Table 2 but focuses on periods when the CPU load
was less than or equal to 1. This table is crucial for comparing CPU performance under

Reddy C. et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2491 10/35

http://dx.doi.org/10.7717/peerj-cs.2491
https://peerj.com/computer-science/

PeerJ Computer Science

normal conditions versus high-load conditions (as in Table 2). The statistics include
averages, standard deviations, and ranges for the CPU load metrics. For example, the
average CPU load (load_min1) is lower, with a smaller standard deviation, indicating more
stable performance during these periods. Analyzing these statistics helps in understanding
the baseline CPU behavior, which can be contrasted against high-load periods to detect
anomalies associated with cryptojacking.

Table 4, displays a range of statistics pertaining to different CPU attributes that were
obtained from the “Cryptojacking Attack Timeseries Dataset.” This table includes several
CPU-related parameters that provide insights into the distribution of these performance
metrics, including:

» Counts for every measure, showing how many occurrences of each CPU feature have
been seen.

* The central tendency and data distribution for each feature are provided by the means
and standard deviations.

e The range of numbers that indicate the minimum and maximum operating parameters
of various CPU functions.

e Quartile values reflect the median (50th percentile), as well as the lower and upper
quartiles of the data distribution.

Table 4 details various CPU feature statistics, offering a comprehensive look at the
CPU’s performance characteristics over time. This table is crucial for identifying normal
operating ranges and detecting deviations that might suggest a cryptojacking attack.

Table 5 provides statistical insights into disk I/O operations, similar to how Table 4
addresses CPU features. This table helps to understand how disk activity is impacted
during cryptojacking attacks, as abnormal I/O patterns can be a sign of such malicious
activity. This table includes:

 Counts for every measure, which show how many instances of each disc I/O feature have
been recorded.

e Means and standard deviations, which show each feature’s central tendency and data
distribution.

e Minimum and maximum values that indicate the bounds on which certain disc I/O
functions can be used.

 Quartile numbers showing the median (50th percentile) and the lower and upper
quartiles of the data distribution.

Table 6 focuses on memory-related metrics, summarizing the distribution and central
tendencies of memory usage during the dataset's period. By analyzing counts, means,
standard deviations, and range values, this table helps in understanding how memory
usage fluctuates during normal operation and potential cryptojacking attacks. High
memory usage or unusual memory patterns could indicate the presence of such attacks.
This table provides the following statistics:

Reddy C. et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2491 11/35

http://dx.doi.org/10.7717/peerj-cs.2491
https://peerj.com/computer-science/

PeerJ Computer Science

cpu_total

100

80 A

60 A

Value

40 -

20 A

0 10000 20000 30000 40000 50000 60000 70000 80000
Date

Figure 2 Plot of values of CPU_total attribute in the dataset. Full-size K&l DOT: 10.7717/peerj-cs.2491/fig-2

¢ Counts for each metric, which indicate how many occurrences of each memory-related
trait have been recorded.

» Means and standard deviations, which shed light on each feature’s data distribution and
central tendency.

¢ The lowest and maximum values that indicate the range in which these memory-related
functions function.

¢ Quartile numbers illustrating the data distribution; these include the median (50th
percentile) and the lower and upper quartiles.

Table 7 offers a statistical analysis of network-related metrics, providing counts,
averages, standard deviations, minimum and maximum values, and quartile values for
various network performance indicators. This table is particularly important for
understanding how network activity changes during cryptojacking attacks. Abnormal
increases in network traffic, unusual patterns, or spikes in specific metrics could be
indicative of unauthorized cryptocurrency mining activities, which rely on network
resources to communicate with command-and-control servers or mining pools.

By providing detailed statistical summaries of CPU, memory, disk I/O, and network
features, these tables collectively help in identifying patterns and anomalies that may
indicate cryptojacking attacks, offering a comprehensive view of the system’s performance
during such incidents.

The term “CPU_total” refers to a column that holds information on the overall CPU
load or usage, which shows how much of the CPU is used overall in a system or computer.
As shown in Fig. 2, CPU use is a fundamental indicator used to track the workload and
performance of a computer’s CPU. Keeping an eye on this is crucial for a number of
reasons, including spotting possible performance bottlenecks, figuring out whether the
CPU is being overworked or underutilized, and discovering problems with the
responsiveness of the system.

As shown in Fig. 3, the CPU load average over a brief time window—typically one
minute—is represented by the load minl’ column. CPU load is a measurement of the

Reddy C. et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2491 12/35

http://dx.doi.org/10.7717/peerj-cs.2491/fig-2
http://dx.doi.org/10.7717/peerj-cs.2491
https://peerj.com/computer-science/

PeerJ Computer Science

load_min15
4 -
3 WV
@
3
g 27
1 —
0 1 T T T T T T T T T
0 10000 20000 30000 40000 50000 60000 70000 80000
Date
Figure 3 Plot of values of load_min] attribute in the dataset. Full-size K&l DOT: 10.7717/peerj-cs.2491/fig-3
load_min5
4
3
[
=2
22
1 -
0 -
0 10000 20000 30000 40000 50000 60000 70000 80000
Date
Figure 4 Plot of values of load_min5 attribute in the dataset. Full-size K&l DOT: 10.7717/peerj-cs.2491/fig-4
processcount_total
120 -
100 -
80
S
§ 60
20
20 1
o L T T T T T T T T T
0 10000 20000 30000 40000 50000 60000 70000 80000
Date
Figure 5 Plot of values of load_minl15 attribute in the dataset. Full-size K&l DOT: 10.7717/peerj-cs.2491/fig-5

amount of processing work the CPU is doing at any one time. It displays the quantity of
processes that are awaiting execution in the system’s queue.

The load_min5’ column represents the CPU load average over a medium time window,
typically five minutes as depicted in Fig. 4. As with the other load columns, it shows the
average number of processes waiting to be executed over a 5-min period.

Reddy C. et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2491 [I k7K1

http://dx.doi.org/10.7717/peerj-cs.2491/fig-3
http://dx.doi.org/10.7717/peerj-cs.2491/fig-4
http://dx.doi.org/10.7717/peerj-cs.2491/fig-5
http://dx.doi.org/10.7717/peerj-cs.2491
https://peerj.com/computer-science/

PeerJ Computer Science

load_minl

5 -

4 -
231
S

2 -

14

o B

0 10000 20000 30000 40000 50000 60000 70000 80000
Date
Figure 6 Plot of values of processcount_running attribute in the dataset. Full-size K&l DOT: 10.7717/peerj-cs.2491/fig-6
processcount_running

80 -

60 -
v
=
£ 40 -

20 A

[
o L T T T T T T T T T
0 10000 20000 30000 40000 50000 60000 70000 80000
Date
Figure 7 Plot of values of processcount_total attribute in the dataset. Full-size K&l DOT: 10.7717/peerj-cs.2491/fig-7

The ‘load_min15’ column represents the CPU load average over a longer time window,
typically fifteen minutes as depicted in Fig. 5. Like load_minl, it measures the average
number of processes waiting for execution over a 15-min period. These load averages are
crucial metrics for system administrators and performance monitoring because they help
in assessing the system’s load and performance. A low load value usually indicates that the
system is handling its tasks well and not overloaded, while a high load value may indicate
resource contention and possible performance issues.

The ‘Processcount_running’ column likely represents the count of processes that are
currently running on the system at a specific moment as depicted in Fig. 6. A running
process is a program or task that is currently executing and actively using system resources,
such as CPU and memory.

Monitoring the number of running processes is useful for understanding the current
workload on the system and assessing its real-time activity. Based on Fig. 7, the
“Processcount_total” column most likely indicates the total count of processes on the
system, including both operating and non-running (such as sleeping or waiting) processes.
It shows the total number of applications or tasks that have been launched or started on the
system since its initial boot.

Reddy C. et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2491 14/35

http://dx.doi.org/10.7717/peerj-cs.2491/fig-6
http://dx.doi.org/10.7717/peerj-cs.2491/fig-7
http://dx.doi.org/10.7717/peerj-cs.2491
https://peerj.com/computer-science/

PeerJ Computer Science

The availability of a well-designed dataset of this kind is essential for testing and
comparing novel detection methods and algorithms. By utilizing the performance metrics
recorded in this dataset, researchers can develop real-time detection methods with low
computational overhead, addressing one of the primary concerns in cryptojacking defense.

Data collection and preprocessing

The dataset utilized in this research comprises three main subsets: final-complete-data-set.
csv, final-anormal-data-set.csv, and final-normal-data-set.csv. These datasets were
collected from WSN and IoT systems and contain various system attributes relevant to
detecting cryptojacking activity. To prepare the data for analysis, several preprocessing
steps were performed. Initially, missing values were addressed by removing rows with null
values exceeding 15% of the total observations. Subsequently, columns with any remaining
missing values were dropped to ensure data integrity.

Furthermore, categorical variables were converted to numeric format to facilitate
analysis. Variables were categorized as binary, categorical, float, or integer based on their
data types, and irrelevant or redundant features were removed to streamline the dataset.
Notably, certain variables related to system resources such as CPU, memory, disk I/O,
network activity, file system usage, and process counts were identified and grouped for
further analysis. Additionally, flagging mechanisms were implemented to identify
anomalous behavior within these resource-related variables, aiding in the detection of
potential cryptojacking activity. The flagged records were then analyzed to determine the
total number of flags associated with each observation, with a higher flag count indicating a
greater likelihood of cryptojacking. Subsequently, a predictive model was developed using
the KMeans clustering algorithm based on selected features (fs_/_free, mem_cached, and
memswap_free) to further classify potential cryptojacking instances. The steps are
described in Algorithm 1.

Exploratory data analysis

Following data preprocessing, exploratory data analysis (EDA) was conducted to gain
insights into the distribution and relationships among the selected features. Histograms
and pair plots were utilized to visualize the distribution of each feature and explore
potential correlations between them. Moreover, the SARIMAX model was employed to
analyze the time series data, with the negative log likelihood value indicating the model's
suitability for capturing temporal patterns and trends within the dataset. The steps are
described in Algorithm 1.

Feature selection process

Feature selection is a critical step in the development of any machine learning model,
particularly in the context of cryptojacking detection in IoT and WSN environments. The
selection of appropriate features not only improves the model’s performance but also
reduces computational complexity, which is essential in resource-constrained
environments like IoT networks (Carlin et al., 2019).

Reddy C. et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2491 15/35

http://dx.doi.org/10.7717/peerj-cs.2491
https://peerj.com/computer-science/

PeerJ Computer Science

Distribution of fs_/ free

40000
35000 A

30000 -

25000 4 /\

20000 A j
15000
10000 -
5000 N
0 1 2 3 4 5 6 7 8

fs_/_free 1e9

Count

Figure 8 Distribution of fs_/_free (available space in this filesystem).
Full-size K&l DOT: 10.7717/peerj-cs.2491/fig-8

First, the potential features were identified by reviewing existing research on
cryptojacking detection, cybersecurity, and IoT networks. These features were then
categorized into groups like network traffic, device resource usage, and patterns associated
with cryptojacking. They were then pre-processed and engineered, missing values were
handled, data was normalized, and new features were created to capture more complex
patterns. To avoid redundancy, a correlation analysis was conducted and the less
important features were discarded.

These features were then ranked using algorithms like Random Forest. Features that
consistently ranked high were retained, while those with little predictive power were
excluded. To further improve efficiency, dimensionality reduction techniques like
principal component analysis (PCA) were applied. Finally, the selected features were
validated using cross-validation to ensure their effectiveness in real-world scenarios.
Through this rigorous process, the key indicators of cryptojacking, such as sudden spikes
in CPU usage, abnormal network traffic patterns, and specific temporal behaviours, were
identified. These features were then used as inputs to the proposed model, enabling
effective cryptojacking detection in IoT and WSN environments. By carefully selecting and
refining the features, the proposed model was able to achieve a balance between accuracy
and computational efficiency, making it well-suited for deployment in real-world IoT
systems where resources are often constrained. This rigorous feature selection process was
instrumental in enhancing the overall performance of the cryptojacking detection model,
ensuring that it could operate effectively in diverse and dynamic environments.

Overview regarding selected attributes

The three attributes fs_/_free, mem_cached, and memswap_free themselves do not
directly indicate cryptojacking in WSN and IoT (Al et al., 2020). However, they can be
relevant in the context of detecting cryptojacking or any suspicious activities related to it

Reddy C. et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2491 16/35

http://dx.doi.org/10.7717/peerj-cs.2491/fig-8
http://dx.doi.org/10.7717/peerj-cs.2491
https://peerj.com/computer-science/

PeerJ Computer Science

Distribution of mem_cached

25000 +

20000

| /W .

10000 A /‘

5000 +

Count

__J

0.50 0.75 1.00 1.25 1.50 175 2.00 2.25
mem_cached 1le9

Figure 9 Distribution of mem_cached (amount of memory used for caching).
Full-size K&l DOT: 10.7717/peerj-cs.2491/fig-9

Distribution of memswap_free

800001 [

70000 A

60000

50000 +

40000 4

Count

30000 A

20000

- \ /H
0 T T T T T T

0 1 2 3 4 5 6
memswap_free le8

Figure 10 Distribution of memswap_free (swap space is currently unused and available).
Full-size K&l DOT: 10.7717/peerj-cs.2491/fig-10

when used in combination with other attributes and behavioral patterns (Androulaki et al.,
2018). The meaning of these three attributes is:

i) fs_/_free: This variable represents the amount of free space available in the root
filesystem (“/”) of the system (Eskandari et al., 2018). The value of fs_/_free would
indicate the available space in this filesystem, which is crucial for proper system
functioning (Kharraz et al., 2019) as depicted in Fig. 8.

i) mem_cached: This variable represents the amount of memory that is used for caching
purposes (Eskandari et al., 2018). In modern computer systems, the operating system
often uses a portion of the available RAM to cache frequently accessed data (Hasan,
Alani & Saad, 2021). This cached data can be quickly retrieved when needed, which

Reddy C. et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2491 17/35

http://dx.doi.org/10.7717/peerj-cs.2491/fig-9
http://dx.doi.org/10.7717/peerj-cs.2491/fig-10
http://dx.doi.org/10.7717/peerj-cs.2491
https://peerj.com/computer-science/

PeerJ Computer Science

mem_cached

memswap_free o - - N fs_/_free
o N £y [&)] w o w o o N £ ()] [o2]
1 1 1 1 1 1 1 1 1 1 1 1 1
O A @ h leem B T B
o) (o) O
N - .
[s) L] |
o o ° -
l
1 o 4 4
-
=
o
o
L] []
(e - .
= * L] f———
o ®qe 1 o ® T
1 1 1 1 1 1 1 1 1 1 1 1 1
- °
o i {e .
o - °
L] L]
g !—'q.] °
o
IB
a e o
j1]
S o 1 1
) w
[oN
N
o
o ® —— ®
1 1 1 1 I 1 1 L 1 1 1 1 1
© — ee © ®] e e
2~] |
3
1]
=
(Y
°
- - 4
E
o
o
= O 1 1
A F fone e oo

Figure 11 Scatter plot of all three attributes that have been taken into consideration.
Full-size K&l DOT: 10.7717/peerj-cs.2491/fig-11

can significantly improve system performance. The value of mem_cached would
indicate the amount of memory used for caching (Novoa et al., 2022) as depicted in
Fig. 9.

iii) memswap_free: This variable represents the amount of free swap space available in
the system (Eskandari et al., 2018). Swap space is a portion of the hard drive that is
used as virtual memory when the physical RAM is fully utilized (Carlin et al., 2019).
When the RAM is full, the operating system moves less frequently used data from
RAM to the swap space. The value of memswap_free would indicate how much of
the swap space is currently unused and available (Kharraz et al., 2019) as depicted
in Fig. 10.

Cryptojacking is the unauthorized use of a victim’s computing resources, such as CPU
and memory, to mine cryptocurrencies (e.g., Bitcoin) without the victim’s knowledge or

Reddy C. et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2491 18/35

http://dx.doi.org/10.7717/peerj-cs.2491/fig-11
http://dx.doi.org/10.7717/peerj-cs.2491
https://peerj.com/computer-science/

PeerJ Computer Science

Algorithm 2 High-level algorithm of the proposed model
Step 1: ARIMA Model Implementation
1. Parameter Selection: Choose the ARIMA model parameters (p, d, q) based on the characteristics of the time series data.
O p: Number of lag observations (autoregessive terms).
O d: Number of differencing steps to make the data stationary.
O g: Size of the moving average window (moving average terms).
2. Training:
O Split the dataset into a training set (80%) and a test set (20%).
O Fit the ARIMA model to the training data for each selected attribute.
3. Prediction:
O Use the fitted ARIMA model to forecast the values of each attribute on the test data.
4. Performance Evaluation:
O Calculate performance metrics such as Mean Absolute Error (MAE) to assess the accuracy of the ARIMA model.
Step 2: GNN Model Implementation
1. Graph Construction:
O Represent the selected attributes and their interrelationships as a graph.
O Define nodes (attributes) and edges (relationships) to create an adjacency matrix.
2. Model Architecture:
O Design a GNN with two Graph Convolutional Layers (GCN).
O Use ReLU as the activation function after each GCN layer.
3. Training:
O Feed the node attributes and adjacency matrix to the GNN.
O Train the GNN to learn the underlying patterns and interactions between the attributes.
4. Prediction:
O Use the trained GNN to predict the target variable for each attribute.
5. Performance Evaluation:
O Evaluate the performance of the GNN using metrics like accuracy, MAE, MSE, and RMSE.
Step 3: Ensemble Model Implementation
1. Combine Predictions:
O Average the predictions from both the ARIMA and GNN models to create the ensemble forecast.
O Ensure the predictions are scaled to match the length of the test data.
2. Performance Evaluation:
O Calculate overall accuracy, MSE, MAE, and RMSE for the ensemble model.
O Compare the performance of the ensemble model with the individual ARIMA and GNN models.
Step 4: Result Analysis
1. Interpret Results:
O Analyze the performance of each model (ARIMA, GNN, Ensemble) in predicting the target attributes.

O Identify which model or combination of models provides the most reliable and accurate predictions.

(Continued)

Reddy C. et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2491 19/35

http://dx.doi.org/10.7717/peerj-cs.2491
https://peerj.com/computer-science/

PeerJ Computer Science

Algorithm 2 (continued)

2. Impact Assessment:

O Discuss how these models can improve monitoring, anomaly detection, and resource management in cryptocurrency systems, especially in WSN
and IoT environments.

3. Conclusion:

© Summarize the findings, emphasizing the strengths of the ensemble model and its relevance to the research objectives in forecasting and detecting
cryptojacking attacks.

consent (Ali et al., 2020). Here are how these attributes could be related to detecting
cryptojacking:

i) High CPU and memory usage: Cryptojacking activities typically consume a significant
amount of CPU and memory resources to perform the complex computations
involved in cryptocurrency mining (Ali et al., 2020). In the case of cryptojacking, you
might observe unusually high values for fs_/_free, mem_cached, and memswap_free
attributes as the attacker's mining script utilizes available resources intensively (Ali
et al., 2020; Eskandari et al., 2018) as depicted in Fig. 11.

ii) Unusual patterns: Cryptojacking is often stealthy, and attackers may try to mask their
activities by mining only during certain periods or when system usage is low (Ali et al,
2020; Kharraz et al., 2019). Therefore, monitoring the variations in these attributes
over time might reveal patterns that are inconsistent with normal system usage (Ali
et al., 2020; Kharraz et al., 2019). Sudden spikes in CPU and memory usage or
unexpected changes in free space might indicate malicious activities (Ali ef al., 2020) as
depicted in Fig. 11.

iii) Abnormal persistence: Cryptojacking malware often runs persistently in the
background to continuously mine cryptocurrencies (Al et al., 2020; Eskandari
et al., 2018). As a result, the CPU and memory usage may remain high for prolonged
periods, even when the system is otherwise idle (Ali et al., 2020; Eskandari et al., 2018).
This abnormal persistence could be another indication of cryptojacking (Ali et al,
2020) as depicted in Fig. 11.

iv) Anomalous network traffic: Although the provided attributes are related to system
resources, monitoring network traffic patterns can also be crucial in detecting
cryptojacking (Ali et al., 2020; Hasan, Alani ¢ Saad, 2021). Cryptojacking malware
communicates with external mining pools or command-and-control servers, resulting
in anomalous network traffic (Ali et al., 2020; Hasan, Alani & Saad, 2021). Correlating
resource usage with network traffic patterns can strengthen the detection of
cryptojacking (Ali et al., 2020; Hasan, Alani ¢ Saad, 2021) as depicted in Fig. 11.

Proposed work
The proposed research aims to develop an effective model for attribute prediction in
cryptocurrency systems, especially in WSN and IoT devices to enable better monitoring

Reddy C. et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2491 20/35

http://dx.doi.org/10.7717/peerj-cs.2491
https://peerj.com/computer-science/

PeerJ Computer Science

and management of these systems (Ali et al., 2020). Algorithm 2 provides a high-level
overview to help in replacting and developing the proposed model. The focus will be on
predicting various performance metrics, such as CPU usage, memory utilization, disk I/O,
and network activity (Kharraz et al., 2019; Eskandari et al., 2018). To guarantee the
accuracy and dependability of the predictive models, it is crucial to assure the quality of the
data and to prepare it in the right format (Kharraz et al., 2019).

Two distinct models were investigated for attribute prediction:

a. Autoregressive Integrated Moving Average (ARIMA): A popular time-series forecasting
model that reflects the temporal interdependence in the data is the Autoregressive
Integrated Moving Average (ARIMA) (Kharraz et al., 2019). It will be used to model
past bitcoin characteristic patterns and forecast future developments based on trends
seen thus far (Ali et al., 2020).

b. Graph Neural Network (GNN): GNN is an effective model for representing intricate
relationships seen in data that resembles a graph (Kharraz et al., 2019). The
cryptocurrency system’s attributes and their linkages can be represented as a graph in
this context, and a GNN will be trained to identify underlying patterns and interactions
between these attributes (Ali et al., 2020).

To learn from past patterns and attribute connections, pre-processed bitcoin data will
be used to train both ARIMA and GNN (Apostolaki, Zohar ¢ Vanbever, 2017). The
predictions from ARIMA and GNN will be combined using an average method to build an
ensemble model following the training of the individual models (Kharraz et al., 2019). The
goal is to use the advantages of both models to provide an attribute prediction that is more
reliable and accurate (Kharraz et al., 2019). Several measures, including accuracy, MSE,
MAE, and RMSE, will be used to assess the performance of the individual models and the
ensemble model (Kharraz et al., 2019). The results of this research may also have a big
impact on cryptocurrency systems in the real world by facilitating effective resource
management, anomaly detection, and attribute-based decision-making (Ali et al., 2020).

Overview and architecture of the models
ARIMA model

The ARIMA model combines moving averages, differencing, and autoregression to
produce precise forecasts, which makes it perfect for trend and seasonality-driven data
analysis. As seen in Fig. 12, the model is specified by three parameters: p, d, and q (Novoa
et al., 2022).

i) The number of lag observations in the model that captures the relationship between
the target variable and its historical values is indicated by the p parameter (AR-
Autoregressive). ‘order = (1, 1, 1) in the above code indicates that there is one
autoregressive term (Novoa et al., 2022).

ii) The number of differencing steps required to remove trends and seasonality from the
data and make it steady is represented by the d parameter (I-Integrated). According to
the code, there is only one differencing step (‘order = (1, 1, 1)’ (Novoa et al., 2022).

Reddy C. et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2491 21/35

http://dx.doi.org/10.7717/peerj-cs.2491
https://peerj.com/computer-science/

PeerJ Computer Science

Time Series Data
!

ARIMA Model Training

AR(p) Autoregressive Component

MA(q) Moving Average Component

I(d) Integrated Component

+
ARIMA Model Forecast
+
ARIMA Model Predicted Values

Figure 12 ARIMA model architecture. Full-size 4] DOI: 10.7717/peerj-cs.2491/fig-12

iii) The size of the moving average window, which captures the relationship between the
target variable and its historical forecast mistakes, is determined by the q parameter
(MA = Moving Average). Once more, the code’s ‘order = (1, 1, 1)’ indicates that the
ARIMA model contains a single moving average term (Novoa et al., 2022).

The model focuses on attributes like ‘cpu_total’, load_min1’, load_minl15’,
‘load_min5’, ‘processcount_running’, and ‘processcount_total’ when choosing pertinent
columns from the dataset for analysis and forecasting before implementing the ARIMA
model (Novoa et al., 2022). To appropriately assess the model’s performance, the data is
then split into two sets: a test set (20% of the data) and a training set (80% of the data). The
ARIMA model is fitted to the training data for each attribute, with the order set to (1, 1, 1).
Next, using the ‘forecast’ method, predictions are made on the test data using the fitted
ARIMA model. Lastly, the performance of the ARIMA model for each attribute is
determined by calculating the MAE. The average absolute difference (AED) between the
actual and anticipated values is a measure of the forecasting accuracy of the model.

GNN model

A deep learning architecture created especially for processing and learning from graph-
structured data is the GNN model. As shown in Fig. 13, this architecture is particularly
useful for handling data that shows complex interactions between items represented as

Reddy C. et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2491 22/35

http://dx.doi.org/10.7717/peerj-cs.2491/fig-12
http://dx.doi.org/10.7717/peerj-cs.2491
https://peerj.com/computer-science/

PeerJ Computer Science

Feature Matrix (X) for GNN

!

Graph Convolutional Layers (GCN)

¥
Final Graph Convolution Output
+
Sigmoid Activation
k3
GNN Model Predicted Probabilities

Figure 13 GNN model architecture. Full-size K&l DOI: 10.7717/peerj-cs.2491/fig-13

Time Series Data
1 Feature Matrix (X) for GNN

ARIMA Model Training l

Graph Convolutional Layers (GCN)

+
Final Graph Convolution Output
+
+
ARIMA Model Forecast Sigmoid tctlvation
+
ARIMA Model Predicted Values GNN Model Predicted Probabilities
|]
l
Figure 14 Ensemble model architecture. Full-size K&l DOT: 10.7717/peerj-cs.2491/fig-14

Reddy C. et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2491 I]23/35

http://dx.doi.org/10.7717/peerj-cs.2491/fig-13
http://dx.doi.org/10.7717/peerj-cs.2491/fig-14
http://dx.doi.org/10.7717/peerj-cs.2491
https://peerj.com/computer-science/

PeerJ Computer Science

nodes and edges in a graph (Abbasi et al., 2023). The GNN architecture employed in the
provided code consists of two graph convolutional layers (GCN layers). These GCN layers
are the core components of GNNs, responsible for aggregating information from
neighboring nodes in the graph to update the feature representations of each node. The
first GCN layer takes the input features (node attributes) and edge connections (adjacency
matrix) as input and outputs updated feature representations for each node. The second
GCN layer further refines these node representations. To introduce non-linearity and
enhance the expressive power of the model, ReLU is used as the activation function after
each GCN layer (Ali et al., 2020; Abbasi et al., 2023).

Ensemble model

As shown in Fig. 14, the ensemble model is a potent method that improves prediction
performance by integrating the advantages of two models: the GNN model (Ali et al., 2020)
and the ARIMA model (Novoa et al., 2022). The algorithm uses a simple averaging
technique to accomplish this, scaling the ARIMA and GNN forecasts to correspond with
the test data’s length (Ali et al., 2020; Novoa et al., 2022). Metrics like MSE, MAE, RMSE,
and accuracy—which calculates the proportion of accurate predictions over actual labels—
are then used by the ensemble model to evaluate its performance (Ali et al., 2020; Novoa
et al., 2022).

Using both graph-based deep learning (GNN) (Ali et al., 2020) and time series
modelling (ARIMA) (Novoa et al., 2022), the ensemble approach seeks to increase
forecasting accuracy and robustness for the target variable (flag) in the dataset. This
combination approach's success may be evaluated by comparing the ensemble model’s
performance with that of the separate ARIMA and GNN models (Ali et al., 2020; Novoa
et al., 2022). In general, the ensemble model leverages the complimentary characteristics of
each component model to produce predictions that are more accurate (Ali et al., 2020;
Novoa et al., 2022).

RESULTS

Time series model

The application of the ARIMA-based time series model has exhibited impressive predictive
capabilities across the targeted attributes. Demonstrating robust accuracy, the model
performed exceptionally well, achieving high accuracy scores ranging from approximately
98.73% t0 99.98%, illustrated in Figs. 10 and 11. The model's performance merits attention,
particularly in its predictions for specific attributes:

e ‘cpu_total’: Displayed in Fig. 15
 ‘load_minl1’: Presented in Fig. 16

e ‘load_min5’: Depicted in Fig. 17

e ‘load_minl5’: Shown in Fig. 18

e ‘processcount_running’: Visualized in Fig. 19

* ‘processcount_total’: Elucidated in Fig. 20

Reddy C. et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2491 24/35

http://dx.doi.org/10.7717/peerj-cs.2491
https://peerj.com/computer-science/

PeerJ Computer Science

cpu total - Forecast - A
- — Forecast
801
% 60
0
%
3
v
201
62500 65000 67500 70000 12500 75000 77500 80000
Date
Figure 15 Forecast plot for cpu_total attribute using time series model. Full-size K&] DOT: 10.7717/peerj-cs.2491/fig-15
load_min1 - Forecast
< 1.0+
£
B os
o
0.0
Figure 16 Forecast plot for load_minl attribute using time series model. Full-size K&] DOT: 10.7717/peerj-cs.2491/fig-16
load_min15 - Forecast
0.35
0 0301
E' 0.25 ”)
& 0201 "
0.15
62500 65000 67500 70000 72500 75000 77500 80000
Date
Figure 17 Forecast plot for load_min5 attribute using time series model. Full-size K&] DOT: 10.7717/peerj-cs.2491/fig-17

load_min5 - Forecast

0 0.4
E
'UI
So02
62500 65000 67500 70000 72500 75000 77500 80000
Date
Figure 18 Forecast plot for load_min15 attribute using time series model. Full-size K&] DOT: 10.7717/peerj-cs.2491/fig-18

Reddy C. et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2491 I 25/35

http://dx.doi.org/10.7717/peerj-cs.2491/fig-15
http://dx.doi.org/10.7717/peerj-cs.2491/fig-16
http://dx.doi.org/10.7717/peerj-cs.2491/fig-17
http://dx.doi.org/10.7717/peerj-cs.2491/fig-18
http://dx.doi.org/10.7717/peerj-cs.2491
https://peerj.com/computer-science/

PeerJ Computer Science

processcount_running - Forecast

[=)]
£
£75
‘gl 50
S
@25
[
]
& 01 ; : . : : . : :
62500 65000 67500 70000 72500 75000 77500 80000
Date
Figure 19 Forecast plot for process_running attribute using time series model. Full-size K&] DOT: 10.7717/peerj-cs.2491/fig-19
processcount_total - Forecast
g 100 e e . o P I i, . e " - S
El
3
S 504
4
e
= 0 h T T T T T T T T
62500 65000 67500 70000 72500 75000 77500 80000
Date
Figure 20 Forecast plot for process_total attribute using time series model. Full-size K&] DOT: 10.7717/peerj-cs.2491/fig-20

Receiver Operating Characteristic

True Positive Rate

—— ROC curve (area = 0.87)

0.0 : : : :
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
Figure 21 Residual plot for ARIMA model. Full-size K4l DOT: 10.7717/peerj-cs.2491/fig-21

The model’s exceptional accuracy underscores its proficiency in discerning underlying
patterns and temporal trends within the time series data. Its precision in forecasting future
data points showcases its adeptness in capturing intricate system behaviors.

A residual plot in the context of time series analysis, as shown here for the ARIMA
model, visualizes the differences between the actual observed values and the predicted
values produced by the model. In this plot:

o X-axis (Date): Represents the timeline or sequence of time points for which predictions
were made.

Reddy C. et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2491 26/35

http://dx.doi.org/10.7717/peerj-cs.2491/fig-19
http://dx.doi.org/10.7717/peerj-cs.2491/fig-20
http://dx.doi.org/10.7717/peerj-cs.2491/fig-21
http://dx.doi.org/10.7717/peerj-cs.2491
https://peerj.com/computer-science/

PeerJ Computer Science

Precision-Recall Curve

1.0 A
0.8
c 0.6
S
o
o
-
0.4
0.2
—— Precision-Recall curve (area = 0.60)
0.0 T T . T
0.0 0.2 0.4 0.6 0.8 1.0
Recall
Figure 22 ROC curve of GNN model. Full-size K&] DOT: 10.7717/peerj-cs.2491/fig-22
Residual Plot - ARIMA Model
100
75 1
50 -
25
S
£
w
T 0
3
g
_25 4
_50 <
-75 4
-100
62500 65000 67500 70000 72500 75000 77500 80000
Date
Figure 23 Precision-recall curve of GNN model. Full-size K&l DOT: 10.7717/peerj-cs.2491/fig-23

¢ Y-axis (Residual Error): Indicates the discrepancy between the actual value and the
predicted value at each corresponding time point. The residual error is calculated as the
actual value minus the predicted value.

Interpreting the residual plot involves assessing whether the residuals exhibit any
patterns or trends over time. The plot illustrated in Fig. 21 exhibits that the residuals are
randomly scattered around the zero line without any discernible pattern, it indicates that
the model captures the underlying data patterns well, and there are no systematic errors
left unaccounted for.

Reddy C. et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2491 27/35

http://dx.doi.org/10.7717/peerj-cs.2491/fig-22
http://dx.doi.org/10.7717/peerj-cs.2491/fig-23
http://dx.doi.org/10.7717/peerj-cs.2491
https://peerj.com/computer-science/

PeerJ Computer Science

Table 8 Comparison of accuracies of various algorithms.

Algorithm Accuracy (%)
Neural networks 87.25
ARIMA 99.98
GNN 99.99
Ensemble 90.97
Accuracy for Each Attribute
100 = m = m e e e = s e e e — — — —]
80
> 60
g
3
2
40 1
20 -
—-—= GNN
== Ensemble
e ARIMA
0
& & & « & &
&’ Qﬁb, D7 @ob’ ‘9’ ooé"
© s &
’-?b &
7 &£

Attribute

Figure 24 Accuracy of each attribute for all models. Full-size Kl DOI: 10.7717/peerj-cs.2491/fig-24

GNN model

The GNN model has undergone rigorous evaluation, primarily focusing on MAE
assessment across multiple attributes. Across attributes such as ‘cpu_total’, load_minl’,
‘load_min15’, load_min5’, ‘processcount_running’, and ‘processcount_total’, the GNN
model exhibited comparatively low MAE values. This suggests a noteworthy accuracy in
predictions, as depicted in Figs. 22 and 23. The model achieved an accuracy of
approximately 87.25%, indicating its proficient predictive abilities. While the achieved
accuracy is commendable, it is noteworthy that the GNN model’s performance heavily
relies on data representation, graph structure, and hyperparameter tuning. Figures 22 and
23 illustrate the ROC curve and precision-recall curve, respectively, portraying the model’s
predictive capabilities and emphasizing the need for ongoing refinements to maximize its
potential. The model’s implementation offers a novel approach in identifying intricate
interdependencies and correlations between diverse variables, enhancing the
understanding of system behavior (Al et al., 2020).

Reddy C. et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2491

I 128/35

http://dx.doi.org/10.7717/peerj-cs.2491/fig-24
http://dx.doi.org/10.7717/peerj-cs.2491
https://peerj.com/computer-science/

PeerJ Computer Science

Comparison of Model Accuracies
100

80

60

Accuracy (%)

20 1

T
ARIMA GNN Ensemble
Model

Figure 25 Comparison of model accuracies. Full-size k4] DOT: 10.7717/peerj-cs.2491/fig-25

Ensemble model

The ensemble model’s primary purpose is to combine the predictions from different
models to improve overall performance. The ensemble model’s predictions are in close
agreement with the actual values, as evidenced by the comparatively low MSE, MAE, and
RMSE values. As presented in Table 8 as well as Figs. 24 and 25, the ensemble accuracy, at
roughly 90.97%, is marginally lower than the time series model but higher than the GNN
model. This shows that to produce reliable and accurate predictions for the chosen
qualities, the ensemble model has effectively taken advantage of the advantages of the
individual models.

The time series model can effectively capture patterns and trends in system behavior,
assisting in the identification of abnormal spikes or sudden fluctuations that may indicate
cryptojacking activity, as demonstrated by the high accuracy it as shown in Fig. 24.
Additionally, the Ensemble model’s GNN component offers a novel method for identifying
minute dependencies and correlations between various variables, giving a comprehensive
understanding of the behavior of the system (Ali ef al., 2020). With an overall accuracy of
about 91% (Ali et al., 2020), as shown in Fig. 25, the Ensemble model is a good choice for
early detection applications due to its robustness and generalization over a range of system
parameters.

Additionally, the suggested method's adaptability to various system architectures and
contexts makes it simple to use in a wide range of sectors (Ali et al., 2020). The integration
of GNNs with time series modelling in an Ensemble model provides a potent and proactive
defense against cryptojacking attempts, particularly while the cyber threat landscape is
constantly changing (Carlin et al., 2019; Hasan, Alani ¢ Saad, 2021).

Table 9 is a comparison table that shows the accuracy of each attribute for the different
models used (ARIMA, GNN, and the Ensemble model). This table provides a side-by-side
comparison of how each model performed across various attributes. It is crucial for
understanding how each model contributes to the overall performance of the proposed

Reddy C. et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2491 29/35

http://dx.doi.org/10.7717/peerj-cs.2491/fig-25
http://dx.doi.org/10.7717/peerj-cs.2491
https://peerj.com/computer-science/

PeerJ Computer Science

Table 9 Summary of accuracy of each attribute for the different models.

Attribute ARIMA accuracy (%) GNN accuracy (%) Ensemble accuracy (%)
cpu_total 100 98.5 95
load_minl 100 100 95
load_min5 100 100 95
load_min15 100 100 95
processcount_running 100 100 95
processcount_total 100 98.5 95

cryptojacking detection method. The GNN model consistently achieved 100% accuracy
across all attributes, including cpu_total and processcount_total, indicating that it
effectively captured the relevant patterns in the time series data without any loss in
accuracy. This shows the GNN model’s robustness and strong capability in handling the
dataset. While the ARIMA model generally performed very well, achieving 100% accuracy
for most attributes. However, its accuracy slightly reduced to approximately 98.5% for the
cpu_total and processcount_total attributes. This slight drop suggests that while ARIMA is
highly effective, it may have a minor limitation in predicting these specific attributes
compared to the GNN model. The ensemble model, which combines the predictions from
both GNN and ARIMA, shows slightly lower accuracy (~95%) across all attributes.
However, the ensemble model remains a valuable component of the cryptojacking
forecasting methodology despite its slightly lower accuracy compared to the GNN model
alone. Ensemble methods are designed to combine the strengths of multiple models, in this
case, leveraging the GNN’s ability to capture complex patterns and ARIMA’s strength in
handling temporal dependencies. This combination enhances the model’s robustness and
generalizability, making it more reliable in diverse and evolving real-world scenarios. The
slight reduction in accuracy can be viewed as a trade-off for increased stability and reduced
variance, ensuring that the ensemble model remains effective across a broader range of
situations, especially where data patterns may vary or evolve over time. Therefore, the
ensemble model provides a balanced and robust approach, reinforcing the overall
resilience and reliability of the cryptojacking detection system.

Discussion on findings and their impact
The findings from the analysis are highly relevant to the broader goal of forecasting
cryptojacking attacks, which is a critical challenge in cybersecurity. The research set out to
develop a robust, real-time detection method capable of forecasting cryptojacking activities
with high accuracy, even as these attacks evolve in complexity. The results demonstrate
that the proposed models, particularly the GNN and the ensemble approach, are effective
in achieving this objective.

The GNN model’s consistent 100% accuracy across all performance metrics, such as
‘cpu_total” and ‘processcount_total’, highlights its capability to accurately capture and

Reddy C. et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2491 30/35

http://dx.doi.org/10.7717/peerj-cs.2491
https://peerj.com/computer-science/

PeerJ Computer Science

predict the patterns associated with cryptojacking activities. This is crucial in a real-world
scenario where timely and precise forecasting can prevent significant resource

misuse and potential financial losses. The high accuracy of the GNN model indicates that it
can reliably forecast cryptojacking attacks by identifying the subtle and complex
patterns that precede such activities, thus providing early warnings and allowing for
prompt defensive actions. On the other hand, the ensemble model, while showing slightly
lower accuracy, remains relevant as it combines the strengths of both GNN and ARIMA
models. This combination is particularly important for generalizability and stability
across varied datasets, which is a key research objective. The ensemble model’s slightly
reduced accuracy can be seen as a minor trade-off for the broader applicability and
resilience it offers, especially in forecasting scenarios where data might exhibit unexpected
patterns or where different types of cryptojacking attacks might emerge. The models’
ability to forecast cryptojacking attacks effectively reinforces the practical applicability of
the proposed methodology in real-time cybersecurity frameworks, making a significant
contribution to the ongoing efforts in enhancing the security of web systems and IoT
environments.

CONCLUSION

The proposed system demonstrated strong predictive capabilities, with the GNN model
leading in accuracy. The ARIMA model, despite minor limitations, performed robustly.
The ensemble model, while slightly less accurate, provides a more balanced and reliable
prediction approach, making it a valuable tool for practical applications in cryptocurrency
system monitoring. The system’s ability to predict performance metrics accurately will be
instrumental in detecting and forecasting cryptojacking attacks and ensuring the security
and efficiency of WSN and IoT devices in cryptocurrency networks. The key findings of
this research work are as follows:

1) GNN model performance: The GNN model demonstrated outstanding accuracy,
consistently achieving 100% across all selected attributes. This highlights its robustness
and suitability for capturing intricate patterns and dependencies in time-series data
from cryptocurrency systems.

2) ARIMA model performance: The ARIMA model also performed exceptionally well,
with 100% accuracy on most attributes. However, its accuracy slightly dropped to
approximately 98.5% for the cpu_total and processcount_total attributes, indicating
minor limitations in forecasting these specific metrics.

3) Ensemble model analysis: The ensemble model, which combined predictions from the
GNN and ARIMA models, achieved a consistent accuracy of approximately 95% across
all attributes. While this is slightly lower than the individual GNN performance, the
ensemble approach provided a balanced and generalizable prediction by leveraging the
strengths of both models.

The findings are particularly relevant for forecasting cryptojacking attacks in
cryptocurrency systems, as they demonstrate that using advanced models like GNN and

Reddy C. et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2491 31/35

http://dx.doi.org/10.7717/peerj-cs.2491
https://peerj.com/computer-science/

PeerJ Computer Science

ARIMA can effectively predict performance metrics. The ensemble model, though slightly
less accurate, offers a more reliable and generalized solution, which is crucial for real-world
applications in WSN and IoT environments.

Future works can focus on optimizing the ensemble model to enhance its accuracy,
potentially by exploring different combination strategies beyond simple averaging, such as
weighted averaging or stacking techniques. Expanding the scope of the analysis to include
a broader range of attributes, particularly those related to security and network anomalies,
could further enhance the system’s ability to detect and prevent cryptojacking attacks. The
next step can also involve implementing the proposed system in a real-time monitoring
framework to evaluate its performance under live conditions, particularly in diverse and
complex IoT and WSN environments. Integrating the predictive models with advanced
anomaly detection algorithms could further improve the system’s ability to detect
cryptojacking attacks early and accurately. By integrating federated learning into this
research, the privacy, scalability, and adaptability of this approach can be enhanced,
making it more robust and applicable to real-world IoT and WSN environments.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The authors received funding from the Deanship of Graduate Studies and Scientific
Research, Jazan University, Saudi Arabia, through Project Number: GSSRD-24. The
funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

Deanship of Graduate Studies and Scientific Research, Jazan University, Saudi Arabia:
GSSRD-24.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

e Kishor Kumar Reddy C. conceived and designed the experiments, analyzed the data,
performed the computation work, prepared figures and/or tables, and approved the final
draft.

* Vijaya Sindhoori Kaza performed the experiments, analyzed the data, performed the
computation work, prepared figures and/or tables, and approved the final draft.

» Madana Mohana R. conceived and designed the experiments, authored or reviewed
drafts of the article, and approved the final draft.

¢ Abdulrahman Alamer conceived and designed the experiments, analyzed the data,
prepared figures and/or tables, and approved the final draft.

 Shadab Alam conceived and designed the experiments, authored or reviewed drafts of
the article, and approved the final draft.

Reddy C. et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2491 32/35

http://dx.doi.org/10.7717/peerj-cs.2491
https://peerj.com/computer-science/

PeerJ Computer Science

e Mohammed Shuaib performed the experiments, prepared figures and/or tables, and
approved the final draft.

e Sultan Basudan performed the experiments, authored or reviewed drafts of the article,
and approved the final draft.

e Abdullah Sheneamer performed the experiments, authored or reviewed drafts of the
article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available at GitHub and Zenodo:

- https://github.com/VsinK14/Cryptojacking

- Reddy C, K. K., Kaza, V. S., R, M. M, Alamer, A., Alam, S., Mohammed, S., Basudan,
S., & Sheneamer, A. (2024). Detecting and Forecasting Cryptojacking Attack Trends in
Internet of Things and Wireless Sensor Networks Devices. In Peer] Computer Science.
Zenodo. https://doi.org/10.5281/zenodo.14020962.

The Cryptojacking Attack Timeseries Dataset is available at Kaggle: https://doi.org/10.
34740/kaggle/dsv/1079823.

REFERENCES

Abbasi K, Haris M, Ullah S, Ahmad T, Buriro A. 2023. A real-time hybrid approach to combat
in-browser cryptojacking malware. Applied Sciences 13(4):2039 DOI 10.3390/app13042039.

Ali S, Humaria A, Ramzan M, Khan I, Saqlain S, Ghani A, Zakia J, Alzahrani B. 2020. An
efficient cryptographic technique using modified Diffie-Hellman in wireless sensor networks.
International Journal of Distributed Sensor Networks 16(6):155014772092577
DOI 10.1177/1550147720925772.

Androulaki E, Barger A, Bortnikov V, Cachin C, Christidis K, De Caro A, Enyeart D, Ferris C,
Laventman G, Manevich Y, Muralidharan S, Murthy C, Nguyen B, Sethi M, Singh G, Smith
K, Sorniotti A, Stathakopoulou C, Vukoli¢ M, Cocco SW, Yellick J. 2018. Hyperledger fabric:
a distributed operating system for permissioned blockchains. In: Proceedings of the Thirteenth
EuroSys Conference (EuroSys '18). New York, NY, USA: Association for Computing
Machinery, Article 30, 1-15 DOI 10.1145/3190508.3190538S.

Apostolaki M, Zohar A, Vanbever L. 2017. Hijacking bitcoin: routing attacks on cryptocurrencies.
In: Proceedings of the 2017 IEEE Symposium on Security and Privacy. 375-392
DOI 10.1109/SP.2017.29.

Carlin D, Burgess J, O’Kane P, Sezer S. 2019. You could be mine (d): the rise of cryptojacking.
IEEE Security & Privacy 18(2):16-22 DOI 10.1109/MSEC.2019.2920585.

Carreiro J. 2019. Identification and analysis of cryptojacking: performance effects. Master’s thesis.
Instituto Superior Tecnico, Universidade de Lisboa.

Eskandari S, Leoutsarakos A, Mursch T, Clark J. 2018. A first look at browser-based
cryptojacking. In: Proceedings of the 3rd IEEE European Symposium on Security and Privacy
Workshops. London, UK, 58-66 DOI 10.1109/EuroSPW.2018.00014.

Gilad Y, Hemo R, Micali S, Vlachos G, Zeldovich N. 2017. Algorand: scaling byzantine
agreements for cryptocurrencies. In: Proceedings of the 26th ACM Symposium on Operating
Systems Principles. 51-68 DOI 10.1145/3132747.3132757.

Reddy C. et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2491 33/35

https://github.com/VsinK14/Cryptojacking
https://doi.org/10.5281/zenodo.14020962
https://doi.org/10.34740/kaggle/dsv/1079823
https://doi.org/10.34740/kaggle/dsv/1079823
http://dx.doi.org/10.3390/app13042039
http://dx.doi.org/10.1177/1550147720925772
http://dx.doi.org/10.1145/3190508.3190538S
http://dx.doi.org/10.1109/SP.2017.29
http://dx.doi.org/10.1109/MSEC.2019.2920585
http://dx.doi.org/10.1109/EuroSPW.2018.00014
http://dx.doi.org/10.1145/3132747.3132757
http://dx.doi.org/10.7717/peerj-cs.2491
https://peerj.com/computer-science/

PeerJ Computer Science

Gomes F, Correia M. 2020. Cryptojacking Detection with CPU Usage Metrics. In: 2020 IEEE 19th
International Symposium on Network Computing and Applications (NCA). Cambridge, MA,
USA, 1-10 DOI 10.1109/NCA51143.2020.9306696.

Hasan B, Alani S, Saad M. 2021. Secured node detection technique based on artificial neural
network for wireless sensor network. International Journal of Electrical and Computer
Engineering 11(1):536-544 DOI 10.11591/ijece.v11il.pp536-544.

Hong G, Yang Z, Yang S, Zhang L, Nan Y, Zhang Z, Yang M, Zhang Y, Qian Z, Duan H. 2018.
How you get shot in the back: a systematical research about cryptojacking in the real world. In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
ACM. 1701-1713 DOI 10.1109/NCA51143.2020.9306696.

Islam M, Fahmin A, Hossain M, Atiquzzaman M. 2020. Denial-of-service attacks on wireless
sensor network and defense techniques. Wireless Personal Communications 116(3):1993-2021
DOI 10.1007/s11277-020-07776-3.

Kharraz A, Ma Z, Murley P, Lever C, Mason J, Miller A, Borisov N, Antonakakis M, Bailey M.
2019. Outguard: detecting in-browser covert cryptocurrency mining in the wild. In: Proceedings
of the 2019 World Wide Web Conference (WWW’ 19). San Francisco, CA, USA: ACM, 840-852
DOI 10.1145/3308558.3313665.

Lee K, Oh S, Kim H. 2022. Poster: adversarial perturbation attacks on the state-of-the-art
cryptojacking detection system in IoT networks. In: Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security. 3387-3389
DOI 10.1145/3548606.3563530.

Loose N, Michtle F, Pott C, Bezsmertnyi V, Eisenbarth T. 2023. Madvex: instrumentation-based
adversarial attacks on machine learning malware detection. In: International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment. Switzerland: Springer
Nature, 69-88 DOI 10.1007/978-3-031-35504-2_4.

Moreno-Sancho AA, Pastor A, Martinez-Casanueva ID, Gonzalez-Sanchez D, Triana LB. 2023.
A data infrastructure for heterogeneous telemetry adaptation: application to Netflow-based
cryptojacking detection. In: 2023 26th Conference on Innovation in Clouds, Internet and
Networks and Workshops (ICIN). 105-112 DOI 10.1109/SP.2017.29.

Muiioz JZi, Suarez-Varela J, Barlet-Ros P. 2019. Detecting cryptocurrency miners with NetFlow/
IPFIX network measurements. In: 2019 IEEE International Symposium on Measurements &
Networking (Me»N). Catania, Italy, 1-6 DOI 10.1109/TWMN.2019.8804995.

Naseem FN, Aris A, Babun L, Tekiner E, Uluagac AS. 2021. MINOS: a lightweight real-time
cryptojacking detection system. In: Network and Distributed Systems Security (NDSS)
Symposium 2021. 1-15 DOI 10.14722/ndss.2021.24444.

Novoa A, Andrés F, Alvarez DP, Villanueva-Polanco R, Sandoval Orozco AL, Garcia Villalba
LJ. 2022. On detecting cryptojacking on websites: revisiting the use of classifiers. Sensors
22(23):9219 DOI 10.3390/s22239219.

Pott C, Gulmezoglu B, Eisenbarth T. 2023. Overcoming the Pitfalls of HPC-based cryptojacking
detection in presence of GPUs. In: Proceedings of the Thirteenth ACM Conference on Data and
Application Security and Privacy. 177-188 DOI 10.1145/3577923.3583655.

Rajasoundaran S, Prabu A, Kumar G, Malla P, Routray S. 2021. Secure opportunistic watchdog
production in wireless sensor networks: a review. Wireless Personal Communications
120(2):1895-1919 DOI 10.1007/s11277-021-08542-9.

Romano A, Zheng Y, Wang W. 2020. Minerray: semantics-aware analysis for ever-evolving
cryptojacking detection. In: Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering. 1129-1140 DOI 10.1145/3324884.3416580.

Reddy C. et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2491 34/35

http://dx.doi.org/10.1109/NCA51143.2020.9306696
http://dx.doi.org/10.11591/ijece.v11i1.pp536-544
http://dx.doi.org/10.1109/NCA51143.2020.9306696
http://dx.doi.org/10.1007/s11277-020-07776-3
http://dx.doi.org/10.1145/3308558.3313665
http://dx.doi.org/10.1145/3548606.3563530
http://dx.doi.org/10.1007/978-3-031-35504-2_4
http://dx.doi.org/10.1109/SP.2017.29
http://dx.doi.org/10.1109/IWMN.2019.8804995
http://dx.doi.org/10.14722/ndss.2021.24444
http://dx.doi.org/10.3390/s22239219
http://dx.doi.org/10.1145/3577923.3583655
http://dx.doi.org/10.1007/s11277-021-08542-9
http://dx.doi.org/10.1145/3324884.3416580
http://dx.doi.org/10.7717/peerj-cs.2491
https://peerj.com/computer-science/

PeerJ Computer Science

Sachan RK, Agarwal R, Shukla SK. 2022. DNS based in-browser cryptojacking detection. In: 2022
Fourth International Conference on Blockchain Computing and Applications (BCCA). 259-266
DOI 10.1109/BCCA55292.2022.9922245.

Singh M, Dutta N, Singh T, Nandi U. 2020. A technique to detect wormhole attack in wireless
sensor network using artificial neural network. In: Suma V, Bouhmala N, Wang H, eds.
Evolutionary Computing and Mobile Sustainable Networks. Lecture Notes on Data Engineering
and Communications Technologies. Vol. 53. Singapore: Springer, 297-307.

The Telegraph. 2018. YouTube shuts down hidden cryptojacking adverts. Available at https://
www.telegraph.co.uk/technology/2018/01/29/youtube-shuts-hidden-crypto-jacking-adverts/
(accessed 4 October 2024).

Xu G, Dong W, Xing J, Lei W, Liu J, Gong L, Feng M, Zheng X, Liu S. 2022. Delay-CJ: a novel
cryptojacking covert attack method based on delayed strategy and its detection. Digital
Communications and Networks 9(5):1169-1179 DOI 10.1016/j.dcan.2022.04.030.

Reddy C. et al. (2024), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2491 35/35

http://dx.doi.org/10.1109/BCCA55292.2022.9922245
https://www.telegraph.co.uk/technology/2018/01/29/youtube-shuts-hidden-crypto-jacking-adverts/
https://www.telegraph.co.uk/technology/2018/01/29/youtube-shuts-hidden-crypto-jacking-adverts/
http://dx.doi.org/10.1016/j.dcan.2022.04.030
http://dx.doi.org/10.7717/peerj-cs.2491
https://peerj.com/computer-science/

	Detecting and forecasting cryptojacking attack trends in Internet of Things and wireless sensor networks devices
	Introduction
	Materials and methods
	Results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

