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ABSTRACT
Over the years, neuroscientists and psychophysicists have been asking whether data
acquisition for facial analysis should be performed holistically or with local feature
analysis. This has led to various advanced methods of face recognition being proposed,
and especially techniques using facial landmarks. The current facial landmark methods
in 3D involve amathematically complex and time-consumingworkflow involving semi-
landmark sliding tasks. This paper proposes a homologous multi-point warping for
3D facial landmarking, which is verified experimentally on each of the target objects
in a given dataset using 500 landmarks (16 anatomical fixed points and 484 sliding
semi-landmarks). This is achieved by building a template mesh as a reference object
and applying this template to each of the targets in three datasets using an artificial
deformation approach. The semi-landmarks are subjected to sliding along tangents
to the curves or surfaces until the bending energy between a template and a target
form is minimal. The results indicate that our method can be used to investigate shape
variation for multiple datasets when implemented on three databases (Stirling, FRGC
and Bosphorus).

Subjects Human–Computer Interaction, Artificial Intelligence, Computer Vision, Graphics
Keywords 3D facial landmark, Landmark algorithm, Homologous facial points, TPS warping, 3D
morphology, Multiple datasets

INTRODUCTION
Human facial traits play an essential role in human identification. The face contains
the most important sensory organs and acts as the central interface for appearance,
communication, expression and mutual identification (Peng et al., 2013). Landmark-based
geometric morphometric methods for face recognition provide new insights into patterns
of biological shape variation that cannot be evaluated by traditional methods (Anies
et al., 2013).

Recently, many two-dimensional face recognition systems have been developed, with
good results for image acquisition under favorable conditions (Zhao et al., 2003). The
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major constraints include illumination and changes in pose. In addition to variation due
to pose and illumination, which affect 2D face data, 3D faces are more easily detected
due to a higher intensity modality compared with 2D faces (Savran, Sankur & Bilge, 2012).
Furthermore, when they are subjected to systematically increasing pitch and yaw rotation,
as shown by Wang et al. (2006), there is a drop in performance related to expression
recognition in 2D, while that in 3D remains constant. This is a result of occlusion effects
from substantial distortion in out-of-plane rotations. In addition, in regard to feature
transformation and classification, the 3Dmodality shows some improvement over 2D with
a high level of confidence. However, for depth features, both show the same performance.
The processing cost of 3D models is higher than that of 2D models (Savran, Sankur &
Bilge, 2012).

The term ‘morphometrics’ was coinedmore than 50 years ago by Robert E. Blackith, who
applied multivariate statistical methods to the basic carapace morphology of grasshoppers
(Elewa & Elewa, 2010). Morphometrics is the study of shape variation and its covariation
with other variables (Bookstein, 1997a;Dryden & Mardia, 1998). According toAdams, Rohlf
& Slice (2004), the term traditionally referred to the application of multivariate statistical
analyses to sets of quantitative variables such as length, width, height and angle. Advances
in morphometrics have shifted the focus to the Cartesian coordinates of anatomical points
that can be used to define more traditional measurements. Morphometrics considers
variation and group differences in shape, central tendency, and the association of shape
with extrinsic factors. This is directly based on the digitized (x,y,z)-coordinate positions of
landmarks, or points representing the spatial positions of putatively homologous structures
in 2D or 3D. In contrast, conventional morphometric studies utilize distances as variables
(Bookstein, 1997a; Dryden & Mardia, 1998; Rohlf, 1993).

The thin-plate spline (TPS) is simply a convenient function for capturing changes
in landmark configurations and displaying the differences on the smoothest possible
transformation grid (Rohlf, Loy & Corti, 1996). This ensures that the points of the starting
and target form appear precisely in their corresponding positions in relation to the
transformed and untransformed grids (Bookstein, 1989). With the application of the
iterative closest point (ICP), landmark correspondence can be iteratively registered in
the vicinity of a landmark with a re-weighted error function. In work by Wan et al.
(2010), a thin-plate spline (TPS) was used to align the points in each facial image. These
authors employed ICP to build a correspondence by taking the closest point on each
surface mesh, while the inverse of the TPS warp was used to map each surface back to
its reference location. The smoothness or point relaxed in TPS was approached based on
the minimization of bending energy. This approach computes the amount of deformation
between two shape configurations, as quantified by the TPS function through the integral
of the squared second derivatives of that deformation (Mitteroecker & Gunz, 2009). The
geometric morphometrics (GM) of the Procrustes superimposition method is a least-
squares oriented method involving translation, scaling and rotation (Mitteroecker & Gunz,
2009). Shape is the geometric information of an object after the removal of location,
orientation and scale (Kendall, 1977).
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The use of GM has revolutionized the sophistication of the collection and quantitative
analysis of biological shapes. It has been applied to solve various research questions relating
to plants, animals and humans. Examples include Neanderthal fossils (Rosas et al., 2015),
flower shapes (Van der Niet et al., 2010), dinosaurs (Fearon & Varricchio, 2015), butterfly
wings (Chazot et al., 2016), zebrafish skeletogenesis (Aceto et al., 2015) and humans (Solon,
Torres & Demayo, 2012; Lindner et al., 2016).

A landmark was defined by Marcus et al. (1993) as a point in a 2D or 3D space
that corresponds to the position of a particular trait in an object. Dryden & Mardia
(1998) also described landmarks as points of correspondence on each object that match
within and between populations. This set of points, one on each form, are operationally
defined for an individual based on local anatomical features, and must be consistent
with some hypothesis of biological homology. Bookstein (1997a) and Dryden & Mardia
(1998) categorized landmarks into three types: Types I, II and III. Type I landmarks are
defined as discrete juxtapositions of tissues such as at the intersection of three sutures,
for example the dacryon and asterion (Lynch, Wood & Luboga, 1996; Slice, 2006) or the
bregma and lambda (Bookstein, 1997b). Type II landmarks are curvature maxima or other
local morphogenetic processes, usually with a biomechanical implication such as a muscle
attachment site (Ross & Williams, 2008), for example the prosthion, ectoconchion (Lynch,
Wood & Luboga, 1996; Slice, 2006), subnasale, meatus or nasion (Bookstein, 1997b). Type
III landmarks are extremal points such as the endpoints of maximum cranial length and
breadth (Lynch, Wood & Luboga, 1996; Slice, 2006) and the orbitale, gonion, glabella and
gnathion (Bookstein, 1997b).

Facial landmarking is a crucial step in facial analysis for biometrics and numerous other
applications. Since 3D data contain more information and are less sensitive to illumination
and occlusion than 2D data, the use of 3D data to improve facial analysis is increasing
in computer vision (Chen et al., 2015). Many studies of population variation have been
performed in morphometric research using facial landmarks. Some investigations have
covered certain regions of the face, while some have examined the entire facial region. For
instance, significant differences in the symmetric shape component in the nasal region
between German and Chinese populations were identified by Schlager & Rüdell (2015),
using a dense set of semi-landmarks. An investigation of nose profilemorphology in Scottish
and Indonesian populations was also carried out by Sarilita et al. (2018), with the aim of
improving the accuracy of forensic craniofacial reconstruction. The soft-tissue facial form
of high-resolution 3D images of Han Chinese, Tibetan, Uyghur and European people was
analyzed by Guo et al. (2014). Facial diversity was examined by establishing a high-density
alignment across all faces, and the analyses revealed that the browarea, cheekbones, andnose
exhibited strong signals of differentiation between populations. Statistically significant face
shape differences between the Dutch and UK population were investigated by Hopman et
al. (2014). Mean face shape was visualized using signature heatmap and dynamic morphs,
showing that genetic variants influence normal facial variation. Although these studies
examined variation in diverse populations, these populations were drawn from the same
datasets. In contrast, the current study analyzes variation using different datasets.

Agbolade et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.249 3/23

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.249


Figure 1 Schematic conceptual diagram of the proposed homologous multi-point warping algorithm.
Full-size DOI: 10.7717/peerjcs.249/fig-1

Since wide biological variability cannot be assessed using only anatomical landmarks
(Botton-Divet et al., 2015), in order to quantify complex shapes, sliding semi-landmarks
have been developed which can be placed on surfaces (Gunz, Mitteroecker & Bookstein,
2005) or curves (Bookstein, 1997a; Gunz, Mitteroecker & Bookstein, 2005). This approach
generates landmarks that are spatially homologous after sliding (Parr et al., 2012) and can
be optimized by minimizing the bending energy (Cornette et al., 2013; Fabre et al., 2014)
or Procrustes distance (Perez, Bernal & Gonzalez, 2006; Mitteroecker et al., 2013). Several
software packages are currently available to perform the sliding of landmarks in 3D, for
example Edgewarp (Bookstein & Green, 1994), the EVAN toolbox ( http://evan-society.org),
Viewbox (Halazonetis, 2014), Mathematica (Mitteroecker et al., 2013), and the geomorph
(Adams & Otárola-Castillo, 2013) and Morpho (Schlager, 2013) R packages.

The aim of this study is to apply the computational deformation process reported by
Bookstein (1989). When projecting a surface semi-landmark from the template object to
the target object and iteratively sliding the semi-landmark to a point relaxed, the simpler
workflow allows us to perform this task in Viewbox 4.0, unlike the complex workflow
presented by Botton-Divet et al. (2015). Secondly, this method is not new in terms of
analyzing shape variation in morphometric geometry, but its application to the analysis of
shape variation for soft-tissue faces in 3D for multiple human datasets is novel. Figure 1
shows a schematic conceptual diagram of the homologous multi-point warping algorithm.

MATERIALS & METHODS
The use of 3D face images in morphometrics not only gives us scope to cover a wider area
of the human facial region, but also retains all the geometric information of the object
descriptors (Bookstein, 1997b; Dean, 1996). Here, our method uses 3D facial images from

Agbolade et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.249 4/23

https://peerj.com
https://doi.org/10.7717/peerjcs.249/fig-1
http://evan-society.org
http://dx.doi.org/10.7717/peerj-cs.249


three different datasets, and uses amorphometric approach to propose a lessmathematically
complex yet robust algorithm for facial landmarks in 3D.

Dataset & description
We used three datasets to validate the robustness of our method. The first was acquired
from the Stirling/ESRC 3D face database, which was captured by a Di3D camera system
(Stirling-ESRC, 2018). These images are in the format of wavefront obj files containing
101 subjects with 3D facial scans in a neutral position. The database was intended to
facilitate research into face recognition, expression and perception, and we randomly
selected 58 subjects for this study. The dataset was used as a test set for a competition
involving 3D face reconstruction from 2D images, with the 3D scans acting as the ’ground
truth’, at an IEEE conference. The second dataset was the Bosphorus database, which
was intended for research on 3D and 2D human face processing tasks and contains 105
subjects. We randomly selected 57 subjects for this study. The dataset was acquired using
structured-light-based 3D system, with the subjects being instructed to sit at a 1.5 m
distance from the camera; the sensor resolution in the x, y and z directions was 0.3, 0.3, and
0.4 mm, respectively, and high-resolution color texture was used (Savran et al., 2008). The
third dataset was the Face Recognition Grand Challenge Version 2.0 (FRGC v2) database,
consisting of 466 facial images, of which we randomly selected 120 subjects for this study.
Each subject image was captured under uniform illumination, with high resolution and
fairly uncontrolled conditions (Phillips et al., 2005).

Template mesh
A template mesh of 92,995 vertices and 183,996 triangles was created by manually locating
16 anatomical points on the 3D face (Fig. 2) called fixed points, according to facial landmark
standards (Caple & Stephan, 2016) (for more detail, see Table 1). The fixed landmarks were
not subjected to sliding, but were used to establish the warping fields for minimizing
the bending energy. Due to its ease of detection and pose correction (Creusot, Pears &
Austin, 2010) and its invariance to facial expression (Colombo, Cusano & Schettini, 2006),
the nose tip (pronasale) was selected as the most robust and prominent landmark point.
The nose tip area can be approximated as a hemisphere on the human face, although
any other facial anatomical point could be used. This is where the sliding points begin to
spread across the facial surface. Using this fixed point (the pronasale), 484 semi-landmarks
were automatically generated, with the overlapping on the pronasale shown in blue.
These were first randomly placed on the facial mesh before being uniformly distributed
on the selected facial surface (Fig. 3). This was done using the locational positions of
the fixed anatomical points with 1.5 mm radius to accommodate all 500 points. To
quantify the morphological data for the complex 3D traits of both reference and target
shapes, we used geometric morphometric tools based on previously reported landmark-
based methodologies (Halazonetis, 2014; Klingenberg & Zaklan, 2000; Kouli et al., 2018;
Yong et al., 2018; Zelditch, Swiderski & Sheets, 2012), and the automatic point placement,
semi-landmark sliding, and landmark acquisition were implemented in ViewBox 4.0
(Halazonetis, 2014).
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Figure 2 A 3Dmesh template with the location of the prominent point at the center of the face for
pose-invariant correction. The 16 fixed anatomical landmarks are shown in red, while the blue area on
the pronasale indicates the point at which the semi-landmarks begin the sliding process.

Full-size DOI: 10.7717/peerjcs.249/fig-2

Homologous multi-point warping
The geometry of curves and surfaces is easy in 2D or 3D, but it is less easy to define
semi-landmarks for non-planar surfaces in 3D (Huanca Ghislanzoni et al., 2017) as they
are not guaranteed to be homologous after the first placement. However, this could be
achieved by subjecting the semi-landmarks to sliding in the direction that reduces shape
variance, thus closely positioning the points at the same locations in the 3D space. The
sliding step is important, as it places the landmarks in positions where they correspond
better to each other between individuals (Mitteroecker et al., 2013). These semi-landmarks
were allowed to slide on the curves and the surfacemesh of each target using TPS warping of
the template, which positioned the reference points on the target facial mesh byminimizing
the bending energy.

According to Bookstein (1989), physical steel takes a bending form with a small
displacement. This is because the function (x,y,z) is the configuration of lowest physical
bending energy, which is consistent with the given constraints. In this 3D face deformation,
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Table 1 Fixed anatomical landmarks and descriptions.

No Fixed Landmarks 3DNotation Description

1 Endocanthion left enl Left most medial point of the palpebral fissure, at the inner
commissure of the eye

2 Exocanthion left exl Left most lateral point of the palpebral fissure, at the outer
commissure of the eye

3 Exocanthion right exr Right most lateral point of the palpebral fissure, at the outer
commissure of the eye

4 Endocanthion right enr Right most medial point of the palpebral fissure, at the
inner commissure of the eye

5 Sellion se Deepest midline point of the nasofronal angle
6 Pronasale pr The most anteriorly protruded point of the apex nasi
7 subnasale su Median point at the junction between the lower border of

the nasal septum and the philtrum area
8 Alare left all Left most lateral point on the nasal ala
9 Alare right alr Right most lateral point on the nasal ala
10 Cheilion left chl Left outer corners of the mouth where the outer edges of

the upper and lower vermilions meet
11 Cheilion right chr Right outer corners of the mouth where the outer edges of

the upper and lower vermilions meet
12 Labiale superius ls Midpoint of the vermilion border of the upper lip
13 Labiale inferius li Midpoint of the vermilion border of the lower lip
14 Gnathion gn Median point halfway between pogonion and menton
15 Obelion left obl Left median point where the sagittal suture intersects with a

transverse line connecting parietal foramina
16 Obelion right obr Right median point where the sagittal suture intersects with

a transverse line connecting parietal foramina

the transformation of TPS is done mathematically via the interpolation of a smooth
mapping of h from R3

→R3. This is a selected set of corresponding points PRi,PTi,
i= 1,...,N on the faces of the reference object (template) and target (subject) that
minimizes the bending energy function E(h)using the following interpolation conditions
(Bookstein, 1989; Bookstein, 1997a; Corner, Lele & Richtsmeier, 1992):

E(h)=
∫∫∫

R3

((
∂2h
∂x2

)2

+

(
∂2h
∂y2

)2

+

(
∂2h
∂z2

)2

+2
(
∂2h
∂xy

)2

+2
(
∂2h
∂xz

)2

+2
(
∂2h
∂yz

)2)
dxdydz,s.t . h(PTi)=PRi,i= 1,...,M (1)

where PTi is the target object, PRi is the reference object for the sets of corresponding
points, and h is the bending energy function that minimizes the non-negative quantity of
the interpolation of the integral bending norm or the integral quadratic variation E(h). The
TPS method now decomposes each component into affine and non-affine components,
such that

h(Ph)=9(Ph)K+Ph0 (2)
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Figure 3 A 3Dmesh template of the reference model with 500 landmarks. Showing 16 fixed anatomical
points and 484 semi-landmarks with 1.5 mm radius: (A) frontal skewed view; (B) profile view.

Full-size DOI: 10.7717/peerjcs.249/fig-3

where Ph are the homogeneous coordinate points on the target 3D face, and 9(Ph)=
91(Ph),92(Ph),...,9M (Ph) is a 1×M kernel vector of TPS of the form:

9w(Ph)=‖Ph−PTw ‖ (3)

K is a M ×4 non-affine warping coefficient matrix, and 0 is a homogeneous affine
transformation of a 4×4 matrix. The energy function is minimized to find the optimum
solution to Eq. (4) if the interpolation condition in Eq. (1) is not met.

E(β,K ,9)=
1
M

M∑
J=1

‖ h(PTj)−PRj ‖+βE(h). (4)

The interpolation conditions in Eq. (1) are satisfied if the smoothing regularization term
β is zero, where 0 and K are TPS parameters obtained by solving the linear equation:(
9 PR
PTR 0

)(
K
0

)
=

(
PT
0

)
(5)

9 is a M ×M matrix with components 9wl = ‖ PTw−PTl ‖ and PR is a M ×4 matrix
in which each row is the homogeneous coordinate of the point PRi,i = 1 ,...,M . Using
Eq. (2), the target facial mesh PTi was deformed to the reference mesh PRi. The bending
energy was applied, and the process was iterated for six cycles to achieve optimum sliding
of the points on the facial surface which gives points relaxed. This changed the bending
energy from the initial value Ei to the final value Ef after six complete iterations. This
means that the semi-landmarks can be treated in the same way as homologous landmarks
in downstream analyses. Since warping may result in points that do not lie directly on the
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facial surface on the target mesh, the transferred points were projected onto the closest
point on the mesh surface using the ICP method (Creusot, Pears & Austin, 2010). The aim
of using ICP is to iteratively minimize the mean square error between two point sets. If
the distance between the two points is within an acceptable threshold, then the closest
point is determined as the corresponding point (Mian, Bennamoun & Owens, 2008). The
homologous landmark warping HK0 after six complete iterations is therefore:

HK0 = Ef−i

(
K
0

)
(6)

where(
K
0

)
=

(
9 PR
PTR 0

)−1(
PT
0

)
(7)

is the linear TPS equation obtained during deformation of the surface of the target mesh
to the reference mesh, before convergence was finally reached, and Ef−i = Ef −Ei after
six complete iterations. The first iteration showed a partial distribution of sliding points
on the target surface mesh (Fig. 4A). This was automatically repeated until the optimum
homologous result was achieved, using an exponential decay sliding step of hundred to five
percent. During relaxation of the spline, the semi-landmarks were slid along the surface
and the curve tangent structures, rather than on the surfaces or the curves. This reduced the
computational effort, as the minimization problem became linear since sliding along the
tangents lets the semi-landmarks slip off the data (Gunz, Mitteroecker & Bookstein, 2005).
The target surface mesh was then treated as a set of homologous points (Fig. 4B). Note that
we did not construct a new deformable mathematical equation from scratch, but simply
extended the standard deformable method established by Bookstein (1989). We added a
minor extension to the computational process of projecting the surface semi-landmark
from the template object to the target object and iteratively sliding the semi-landmark to a
point relaxed.

After applying the step-by-step methods of digitization of the facial points and sliding
of the semi-landmarks using ViewBox 4.0, we then applied Procrustes superimposition,
error assessment with Procrustes ANOVA, canonical variate analysis, regression analysis,
and shape visualization and variation with PCA, using MorphoJ 1.06d (Klingenberg, 2011).
Boxplots for the size distribution and a MANOVA were performed in PAST 3.0 (Hammer,
Harper & Ryan, 2001).

Sliding task comparison
Inmany studies dealingwith sliding semi-landmarks,many iterations and tasks are required
before optimum smoothness is reached, even with a small set of landmarks. Botton-Divet
et al. (2015) compared Edgewarp (Bookstein & Green, 1994) and Morpho (Schlager, 2013)
in terms of the time, workflow complexity, and computational efficiency required to slide
semi-landmarks on long bones in different mustelids. The study used 27 manually placed
3D anatomical landmarks and 790 sliding semi-landmarks on curves and surfaces. Our
study does not consider the time factor, due to the challenges arising from the different
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Figure 4 Sliding point warped on the surface of the target face. (A) partial sliding on target mesh; (B)
complete and homologous warping on target mesh.

Full-size DOI: 10.7717/peerjcs.249/fig-4

datasets and samples used. Furthermore, many studies that have implemented sliding
semi-landmarks have not reported information on the sliding times, giving no scope for
comparison. In our study, both the digitization of fixed landmarks and the sliding of semi-
landmarks were performed in Viewbox. Unlike in Edgewarp, where digitization was first
performed using a Breuckmann 3D white light fringe surface scanner (Botton-Divet et al.,
2015), the remaining holes were filled and edges and spikes were removed using Geomagic.
It should be noted that the task of surface pre-processing is not required in Viewbox, unlike
in Edgewarp, where surface pre-processing, initial projection, and iterations against the
Procrustes consensus must be accounted for (Botton-Divet et al., 2015).

Measurement error
The process of landmark coordinate extraction is always associated with some degree
of measurement error, and this may be as a result of the non-coplanarity of landmarks,
inconsistency of specimens relative to the plane of digitization, or difficulties in pinpointing
the landmark locus (Webster & Sheets, 2010). Landmark digitization error can beminimized
by careful landmark selection, but can never be totally eliminated. In assessingmeasurement
error, three templates were designed for each population. The same individuals (five per
dataset) were acquired three times each, using the three templates (Klingenberg, Barluenga
& Meyer, 2002; O’Higgins & Jones, 1998; Robinson & Terhune, 2017). These were digitized
for bothmanual and sliding semi-landmarks on the different reference objects, and this was
followed by Procrustes superimposition on the landmark data using three partitions: fixed
anatomical landmarks (FAL), sliding semi-landmarks (SSL), and combined landmarks
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(CL). Although several other error measurement methods were suggested by Fruciano
(2016), the measurement error for this study was assessed using a Procrustes ANOVA.
This technique (Klingenberg, Barluenga & Meyer, 2002; Klingenberg & McIntyre, 1998)
was implemented in morphometrics to analyze measurement errors (Klingenberg et al.,
2010; Leamy et al., 2015; Singh et al., 2012) using MorphoJ, which was achieved through
the minimization of the squared sum of the distances of all objects and the consensus
configuration (Fruciano, 2016). This approach uses a partition based on the sum of squares
of the deviations from the average configuration of each coordinate in a two-factor ANOVA,
which can then be summed across all the coordinates. Using a relevant number of degrees
of freedom, computation of the mean squares is done by dividing the total sum of squares
for an effect (Klingenberg & McIntyre, 1998). The Procrustes approach is most useful in
computing mean shapes and in deciding whether two shapes [Ri] and [Ti] are random
realizations of the same shape (Goodall, 1991).

The steps in this algorithm can be summarized as follows:
1. Anatomical fixed points (16)were digitized on the template facialmesh and a prominent

point (the pronasale) was identified.
2. Semi-landmarks (484) were automatically generated and placed along the curves,

located at a uniform distance along each curve for sliding in Step 5.
3. These semi-landmarks were first randomly placed and then uniformly distributed on

the selected reference surface mesh, starting from the selected prominent point.
4. The reference facial model was warped to each target mesh configuration using a TPS

transformation, and the surface semi-landmark was projected from the reference facial
mesh to the target facial mesh.

5. The surface and curve semi-landmarks were then slid together in the direction that
minimized the bending energy between each target configuration and the reference
object. This was done iteratively in six complete cycles, in order to ensure convergence
and optimum smoothness. This gave a homologous representation of the reference
mesh.

6. A Procrustes superimposition of the landmark data was performed, and an error
assessment was computed using a Procrustes ANOVA.

Shape and size variation
Since there may be an interaction between the size and shape in facial morphology due
to changes in the shape associated with size differences (Klingenberg & McIntyre, 1998),
we assessed the allometry by testing the statistical significant proportion of morphological
variation in the shape components, using a multivariate regression of shape onto size.
Canonical variate analysis (CVA) was also performed to test the group differences and an
ordination plot was produced (plot not shown).

Differences in the effects and size were then examined by computing a non-parametric
analysis of variance (MANOVA) in terms of Wilks’ lambda. Using the population as the
group and the size as the covariate, the population by size interaction term was calculated.
The MANOVA was recomputed after removing the interaction term (population by size)
and the population effect tested for the difference in the regression intercept.
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RESULTS
Sliding task
The tasks required for the initial projection and the relaxations against the Procrustes mean
shape for the iterations are minimal in Viewbox, which requires a much simpler workflow
compared to Edgewarp. Moreover, since a general Procrustes analysis was required in
order to perform the sliding task, which is not implemented internally in Edgewarp, new
input files were generated prior to performing the next iteration (Botton-Divet et al., 2015),
creating greater complexity in the workflow.

PCA
After calculating the mean shape using Procrustes superimposition, we studied the
variability in the shape using PCA. This was not only to reduce the number of dimensions
but also to balance the fit of the model with the ease of analysis and potential loss of
information (Cangelosi & Goriely, 2007). The PCA of the total sample yielded 168 principal
components. When they were separately computed, the Stirling population yielded only 57
PCs, FRGC yielded 59 PCs, and Bosphorus 51 PCs, all with non-zero variability. In order
to retain any component that accounted for a specific proportion or percentage, we used
a broken stick approach to PCA selection (Cangelosi & Goriely, 2007; Klingenberg, 2013;
Peres-Neto, Jackson & Somers, 2005). The first five PCs accounted for 98.05% of the total
variation in the Stirling population, while the first four PCS accounted for 93.44% of the
total variation in the FRGC population, the first three PCs accounted for 85.65% of the
total variation in the Bosphorus population, and the first two PCs accounted for 97.17% of
the total variation in the combined population (Cangelosi & Goriely, 2007). The first and
second PCs (PC1 and PC2) of the Stirling population accounted for 65.40% and 20.03%
of the variation, respectively; in the FRGC population, these accounted for 76.88% and
7.97%, respectively; for the Bosphorus population, these figures were 68.29% and 10.84%,
respectively; and for the total population, they were 93.96% and 3.21%, respectively.

Shape variations for each population and the combined population are shown in Fig. 5.
In the visualization of 3D dataset object, the number of landmarks is shown in red and
the mean symmetry configuration is shown in light blue. A lollipop graph is shown of
the first principal component of each population and the combined population, which
indicates the difference in the face shape. Note that we only visualized the first PC of each
population, since this accounted for the highest variation in the total shape.

Procrustes ANOVA and shape variation
A Procrustes superimposition of each set configuration produced a symmetric consensus
configuration.When the variationwas partitioned around this consensus using a Procrustes
ANOVA (Table 2), the results showed that the variation in symmetric shape among
individuals in each set accounted for the largest portion of the total variation, although this
was not statistically significant for themanually placed landmarks. To assess the digitization
errors of themanually placed landmarks, the sliding semi-landmarks and overall landmarks,
the deviations for each were obtained by simply calculating the amount of displacement
from the average position calculated from all digitization and the variation accounts for the
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Figure 5 Visualization using 3D dataset objects and lollipop graphs. (A–D) represent a 3D dataset ob-
ject on three axes, showing only axis 1 vs axis 3: (A) Stirling; (B) FRGC; (C) Bosphorus; (D) combined
population, with variance contributed by each PC. (E–H) show lollipop visualizations of the first princi-
pal component of each population and combined population: (E) Stirling; (F) FRGC; (G) Bosphorus; (H)
combined population.

Full-size DOI: 10.7717/peerjcs.249/fig-5

smallest portion of the total variation. For manually placed (fixed anatomical) landmarks,
the variation accounted for 4.31%, while for sliding semi-landmarks, this accounted for
3.71%, and for the overall landmarks, this was 3.67%.

The CVA indicated that each population studied was clearly distinct from the others.
The Procrustes distances between populations (FRGC vs. Bosphorus = 0.040; Stirling vs.
Bosphorus= 0.580; Stirling vs. FRGC= 0.061) were all statistically significant (p< 0.0001).
All 10,000 pairwise permutation tests indicated that the mean shapes differed significantly
in the population.

Figure 6A shows the first two principal components of the total shape in the three
populations, accounting for the total variance. The scatterplots of the scores along the
first two principal components for all the datasets (Fig. 6A) showed an apparent pattern
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Table 2 Procrustes ANOVA for facial shape with digitization errors. Top: fixed anatomical landmarks
(FAL) only; centre: sliding semi-landmarks (SSL); bottom: combined landmarks (CL).

Effect Var
explained (%)

SS MS DF F P

Population 25.82 0.376064 0.004586 82 42.86 <.0001
Individuals 69.87 1.017737 0.000107 9512 1.05 0.2239
Error (FAL) 4.31 0.062844 0.000102 615
Total 100 1.456644 0.004795 10209

Population 30.41 0.215282 0.0000744922 2890 53.56 <.0001
Individuals 65.88 0.466278 0.0000013909 335240 1.15 <.0001
Error (SSL) 3.71 0.026243 0.0000012108 21675
Total 100 0.707804 0.0000770939 359805

Population 29.48 0.218988 0.0000733384 2986 51.15 <.0001
Individuals 66.85 0.496599 0.0000014337 346376 1.18 <.0001
Error (CL) 3.67 0.027269 0.0000012176 22395
Total 100 0.742857 0.0000759897 371757

Notes.
SS, sum of squares; %Var, percentage of variance; MS, mean square; DF, degrees of freedom; F, Fstatistic; P, P-value
(parametric).

of association between the manual anatomical landmarks and the sliding semi-landmarks
for the same specimen. This pattern disappeared when the sliding semi-landmarks were
removed, as the data for Bosphorus and FRGC were clustered more tightly.

Changes in the shape of the face as a function of size (allometry) were evaluated
using multivariate regression of the effect of shape variables on the centroid size for all
populations (Fig. 6B). This is usually of primary interest within a homogeneous population.
Inter-population allometry explained only 13.28% of the shape differences according to
size, and was significant (p< 0.0001). The box-plots in Fig. 6C showed that the Bosphorus
dataset contained the largest sizes, followed by FRGC, while the Stirling dataset contained
the smallest sizes.

The characteristics of the allometric trajectories of the population were then tested using
a MANOVA (Table 3), which explained a significant proportion of the overall variation.
The interaction term (test for slopes) was statistically significant. When the size effect
was removed and the MANOVA was repeated, the result was still statistically significant,
suggesting that the effect of size on shape for both the slope and intercept was strong, and
that this was not the case in the population group.

DISCUSSION
The use of landmarks has evolved in terms of locating biological or anatomical features on
human faces. However, its validity is based on a morphometric analysis, which depends
upon the biological justification for the designation of the landmarks, as stated by Bookstein
(1997b). In performing the sliding task, Edgewarp appears to be more task-complex than
Viewbox. The iterative relaxation in Edgewarp requires several manual operations per
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Figure 6 Principal components, multivariate regression and boxplots for the population groups.
(A–C) Scatterplots of PC1 vs. PC2, which together explain more than 50% of the variance. (A) Manual
anatomical landmarks. (B) Sliding semi-landmarks. (C) All landmarks. (D) Allometric regression of
population mean shape. (E) Boxplot for centroid size for all populations, showing the size variation after
averaging faces within populations.

Full-size DOI: 10.7717/peerjcs.249/fig-6

Table 3 MANOVA results in terms ofWilks’ Lambda.

Effect Wilki df1 df2 F P

Population x CS 0.0291 40 456 55.43 <0.000
Population 0.0139 42 454 80.69 <0.000

iteration, including data saving after sliding (Botton-Divet et al., 2015). This means that the
workflow complexity is reduced, and the computational efficiency is higher in Viewbox
than in Edgewarp. Although Morpho has been proven to be more efficient, since its
functions can often be run on several cores many times, difficult coding is required to
perform a single task.

Our analyses demonstrated significant differences in the average shape of the symmetric
components across groups and the symmetric components of shape between individuals
using the proposed method. The results of the Procrustes ANOVA suggested a modest but
nevertheless appreciable variation in shape and size. Shape differences were statistically
significant even after averaging faces within populations, and the small measurement errors
(MAL = 0.063, SSL = 0.026, and CL = 0.027) show that the landmarks can be annotated
with precision using the proposed method. Sliding semi-landmarks produced a more
accurate error result, while manually placed landmarks gave a less accurate error value.
This could be a result of difficulty in pinpointing the locus of the landmark (Webster &
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Sheets, 2010). However, many approaches are available for addressing the measurement
error when combining samples from multiple sources. A full discussion of this topic is
beyond the scope of this study, but extended details can be found in (Fruciano, 2016).
Our approach simply allows us to say that when the template used is changed, the shape
does not change significantly (compared to other biological and non-biological sources of
variation). To investigate allometry, a scatterplot of the regression score was plotted to show
the regression of shape onto size pooling within populations (the projection of shapes in
the direction of the vector of regression coefficients) vs. centroid size (Drake & Klingenberg,
2007). Box plots of centroid size differ significantly within each group. The centroid size
was not log-transformed, as this transformation made no appreciable difference in the
results. Despite their significance, the sizes of the effects being tested are small or similar in
relative terms, and we must, therefore, interpret these effects with caution (Daboul et al.,
2018). The MANOVA test based on Wilks’ Lambda showed a significant result for both
slope and intercept (p< 0.000). The visualization of face shape was done using PCA after
the Procrustes fit of the dataset object; however, we present only axis 1 vs. axis 3, as the
other two axes do not represent a normal facial shape. The results of visualization showed
that Bosphorus faces have less prognathic faces and dropped chins, the FRCG faces have
wide noses and long foreheads, and the Stirling faces have wide noses and wide foreheads.

In general, the face shapes in the Stirling and FRGC dataset are smaller than those in
the Bosphorus dataset, and were characterized by geographical locations. This matches our
expectations, as we were comparing samples from two neighboring regions and a different
region. Both the Stirling and FRGC populations were based on the Western hemisphere
(the UK and US, respectively) while the Bosphorus population was based on the Eastern
hemisphere (Western Asia). Although an investigation of the variation among different
data sources could be much more complex and complicated than that presented here, our
goal in this study was to make the analysis as simple as possible, and this could be extended
in future work. Readers should therefore be aware that the differences found between
datasets are at least in part due to differences in the way these datasets were acquired
(although it is hard to say how far this applies).

CONCLUSIONS
This method combines pragmatic solutions for configuring an optimized pipeline for a
high-throughput homologous multi-point deformable 3D facial signature. We warped
only the reference surfaces and curves to each sample face, using an automatic homologous
warping approach. The results of a Procrustes ANOVA show that the measurement error
may be a source of substantial variation when combining different morphometric datasets,
and may sometimes have an unexpected effect on parameter estimates (Fruciano et al.,
2017). High-throughput phenotypic facial data such as these may be valuable in forensic
studies of human facial morphology, anthropology, disease diagnosis and prediction,
statistical shape or image analysis, face recognition, age estimation, facial-based sex
dimorphism, and facial expression recognition. A limitation of the Viewbox is that it only
runs on Windows OS, while Edgewarp runs on both Linux and Windows OS.
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