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ABSTRACT
The Internet of Things (IoT) paradigm is a foundational and integral factor for
the development of smart applications in different sectors. These applications are
comprised over set of interconnected modules that exchange data and realize the
distributed data flow (DDF) model. The execution of these modules on distant
cloud data-center is prone to quality of service (QoS) degradation. This is where fog
computing philosophy comes in to bridge this gap and bring the computation closer
to the IoT devices. However, resource management in fog and optimal allocation of
fog devices to application modules is critical for better resource utilization and achieve
QoS. Significant challenge in this regard is to manage the fog network dynamically
to determine cost effective placement of application modules on resources. In this
study, we propose the optimal placement strategy for smart health-care application
modules on fog resources. The objective of this strategy is to ensure optimal execution
in terms of latency, bandwidth and earliest completion time as compared to few
baseline techniques. A honey bee inspired strategy has been proposed for allocation
and utilization of the resource for application module processing. In order to model
the application and measure the effectiveness of our strategy, iFogSim Java-based
simulation classes have been extended and conduct the experiments that demonstrate
the satisfactory results.

Subjects Computer Networks and Communications, Internet of Things
Keywords Smart healthcare applications, Fog computing, Resource allocation, Real-time data
processing, Honey bee-inspired strategy, iFogSim, Patient monitoring systems, Edge computing,
Bandwidth optimization

INTRODUCTION
Internet of Things (IoT) driven applications ingest data from devices connected to
the internet and perform processing over it through the inter-collaboration of various
modules (Zulfiqar & Younis, 2024). These modules compose the pipeline of data streams
while executing certain logic to meet the business use case of a particular environment.
In the medical field, automated monitoring process of patients locally or remotely
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supports the doctors in providing better healthcare services and facilitates deciding critical
conditions. IoT applications predominantly rely on fog-cloud computing infrastructure
for computational and storage resources. The fog-cloud model offers a rich set of high-end
resources and is considered the backbone for IoT applications, which get huge amounts of
data from interconnected devices e.g., sensors (Taneja & Davy, 2017a;Kumar et al., 2024a).
CISCO revealed in the annual report that the number of IoT devices is increased to 30 billion
by 2023 (Walia, Kumar & Gill, 2023). These huge numbers of devices generate enormous
data, so large computational resources of cloud data centers are indispensable for providing
long-term storage and computing. Fog computing functions as middleware between IoT
and cloud resources to extend the computational capability closer to the IoT devices, so fog
and edge computing can be used interchangeably in this context. Fog’s distributed nodes
fall in the local network of the systemwhile cloud resourcesmay exist in any remote location
and can be accessed through the internet (Latif et al., 2019; Latif et al., 2022; Latif et al.,
2020). The resource utilization model of the cloud is based on a pay-as-you-consume basis.
On-demand cloud services facilitate scalable storage and processing services for IoT-driven
applications (Samriya et al., 2023). To cope with the communication distance between the
application and remote cloud setup, the fog concept comes in to handle latency-sensitive
IoT applications (Kumar et al., 2024b; Vadde & Kompalli, 2022). Real-time data processing
cannot be realized without fog middleware and QoS can be degraded due to the long
distance of cloud setup. Fog-distributed nodes e.g., routers, gateways, and switches can
perform application modules placing and are supportive to mitigate the bandwidth and
latency. Figure 1 depicts the fog-cloud architecture tier-wise and demonstrates the placing
of various devices on tiers.
• IoT tier:This tier is comprised of data sources and sink devices e.g., sensors and actuators.
These instruments are built-in into devices, which are connected to the internet and
distribute the data to the next level tier in the fog-cloud computing hierarchy.
• Fog tier: This tier extends the computing and processing capability of the cloud
resources near IoT devices, so that gap could be bridged that happens due to the
long distance between data generating sources and cloud sources. Fog resources have
limited computational and storage capacity. Generally, the fog layer consists of gateways,
routers, and access points (APs) devices. Proximity of edge devices with end-users is
caused by a reduction in the latency and bandwidth etc.
• Cloud tier: High-end resources of cloud tiers provide the scalable service provisioning
and long-term data storage. User applications consume resources of this tier on a
pay-per-use model. Modules of IoT applications can be allocated to virtual resources
according to customized data placement algorithms. In the fog-cloud computing stack,
scheduling policies at each layer and the arrangement of resources have a significant
impact on overall energy consumption and QoS.

Therefore, optimal management of computing resources on various layers for latency-
sensitive IoT-applications processing is inevitable to get real-time statistics for the right
decision-making. In this study, we propose the honey bee inspired resource allocation policy
for distributed application modules. These modules get executed on fog devices until and
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Figure 1 Fog-cloudmodel.
Full-size DOI: 10.7717/peerjcs.2484/fig-1

unless the resource capacity of hosting goes beyond the requirement and subsequent
modules may allocate cloud high-end resources. After getting data streams from the
point of origin, modules perform certain processing and publish results to actuators for
information. QoS for IoT-applications gets enhanced by allocating its distributed modules
wisely to fog-cloud resources. Scheduling algorithms should be designed in such a way
that the optimization could be ensured in terms of response time, bandwidth and compute
utilization.

Motivational factors and contributions
Motivational factors behind this research study are the combined utilization of diverse
technologies e.g., IoT, cloud and fog computing in optimal manner. These computing
paradigms in modern applications are playing pivotal role particularly in the context of
IoT driven applications. To harness the salient features of these technology in cost effective
way for automation of smart applications in various sectors is challenging. The major
reason is that different parts (AppModules) of the application need to deploy on various
layers of this inter-collaborated setup in optimal manner and reliable flow of information
amongst them require intelligent decision-making. So, this is where intelligent and optimal
techniques come in. Some keymotivational factors with respect to this study are mentioned
below.
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• Latency optimization: Real-time smart applications require low latency of information
amongst modules so fog computing provide computation closer to the data sources
devices as compared to cloud resources.
• Bandwidth constraints: Sending all information of IoT devices to cloud resources for
processing consumes the high amount of bandwidth, by utilizing fog at edge filter the
long retention information for cloud and remaining process at fog devices.
• Scalability: The distributed nature of fog computing provides better scalability as
compared to its centralized cloud counterpart.
• Autonomy and reliability: As fog devices handle decision-making and data processing
locally, which ensure the reliability even in case of bottleneck exist with cloud resources.

The following are main contributions of this article.
1. System model design and simulation-based implementation of IoT-driven healthcare

applications by extending iFogSim simulation application programming interfaces
(APIs).

2. DesignedHoney bee inspired distributed applicationmodules (AppModules) allocation
technique to fog devices on the basis of objective function and problem formulation.

3. Presenting the comparison-based performance analysis with various baseline
techniques on QoS parameters, which surpass these baseline algorithms.
The rest of the paper is organized as follows: Relevant work is discussed in ‘Relevant

work’ while ‘Proposed Architectural Design’ presents the Proposed Architectural Design
and related Algorithms. Simulation Experiments are discussed in ‘Simulation Experiments’
and ‘Concluding remarks’ present the Concluding Remarks.

RELEVANT WORK
Designing and implementing smart applications in different fields e.g., agriculture,
medical and car parking, IoT and fog computing with cloud-centric resources are getting
great attention in industry and academia. Various researchers have made tremendous
contributions in this regard, which is highlighted as under.

InGupta et al. (2017) and Arshed & Ahmed (2021), the authors discussed the CloudSim-
based simulation environment iFogSim to simulate the resource management policies
for IoT applications. IFogSim is event driven libraries that utilize CloudSim as an event
execution engine, which is developed in Java object-oriented programming language. The
authors comprehensively discussed module mapping and placement strategies on edge
and cloud resources. Researchers can extend the particular classes to implement their own
customized algorithms to conduct various experiments in a controlled environment in
repeatable manners. Huge upfront capital may be consumed while establishing a real test-
bed so simulation is the most desirable choice for researchers. Different entities of IoT
applications and cloud-fog resources can be modeled hassle-free. Cloud and Edgeward
module placement techniques are also discussed to demonstrate the QoS impact along
with some case studies.

Dynamic resource allocation to application modules and rivals has been discussed in
Gao et al. (2019). Traffic prediction with this allocation scheme is defined as the stochastic
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problem of network optimization. Simulation results demonstrate the improvement in the
consumption of power during stable processing delay.

Li & Huang (2017) have introduced the Markov decision process (MDP) based
scheduling and resource management policies for IoT applications to reduce the energy
consumption and delay of task execution delay.

Dynamic policy for allocation of resources has been proposed in Ni et al. (2017). Petri
nets (PTPNs) and the completion of jobs by fog nodes are the major factors of this policy.
The job scheduling algorithm has been present for latency-sensitive applications in Gupta
et al. (2017), which demonstrates the application module (AppMondule) placement on
the edge devices effectively rather than placement on cloud devices. EEG tractor game is
simulated to compute various metrics e.g., bandwidth usage, consumption of energy, and
loop delay using the FCFS algorithm on the fog-cloud layer.

Bittencourt et al. (2017) used different strategies e.g., FCFS, Concurrent, and delay-
priority for module placement against applications like latency-sensitive and latency-
tolerant in the fog paradigm. Each scheduling strategy has its problems while allocating
application modules. When the ratio of scheduling modules creases in concurrent strategy,
it indicates a resource contention issuewhich is overcome by using FCFS through offloading
modules from fog devices to cloud resources. However, the remote location of the cloud
setup causes delays and increased bandwidth usage from latency-sensitive applications. To
resolve the issue, a delay priority policy has taken place to dispatch modules based on delay
sensitivity. Despite this, in the case of increasing modules of applications, this approach
does not meet the required QoS factors and causes the increment in overheads e.g., delay,
cost, and high bandwidth usage of cloud resources.

A prioritized job scheduling technique is proposed by Choudhari, Moh & Moh (2018) to
minimize the overall response time and cost. Priorities of jobs are calculated by the defined
deadlines of all jobs. These priorities play a critical role in assigning jobs in the fog layer.
This layer contains multiple fog nodes with heterogeneous computational and storage
resources. If these resources get saturated, jobs are allocated to the upper cloud layer. The
primary goal of this approach is to balance the allocation of memory and execution time
and other metrics e.g., utilization of network and consumption are not taken into account.

The authors investigated Infrastructure as a service (IaaS) provisioning at the commercial
level in Durillo & Prodan (2014). To make the trade-off amongst appropriate solutions, the
Pareto front method is used as the decision-making tool. By using this method, the cost of
scheduling has been halved; however, a 5 percent increase in make-span was observed. The
knapsack scheduling algorithm has been proposed in Lao, Zhang & Guo (2012) to achieve
theminimum completion time (MCT) objective for transferring parallel video in the cloud.
To map the tasks to the number of segments on powerful systems, the max–min algorithm
is executed and then scheduling of those segments is performed by MCT. Experiments
depicted that max–min outperformed the MCT in both cases.

The algorithm for placement of IoT application modules is proposed inNashaat, Ahmed
& Rizk (2020) to enhance the system performance. However, in case of a slight increment
in power consumption, it’s required to check its impact. In this technique, application
modules are placed on devices, which are suitable in terms of proximity, computational
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resources, and response time. Modules get prioritized to be placed concerning criteria e.g.,
application usage, QoS violation, and user expectations. Research in large-scale IoT and
context-aware applications with fog computational resources allocation to modules of this
application is still at the initial stage (Mach & Becvar, 2017; Brogi & Forti, 2017; Liu et al.,
2019).

Azizi, Khosroabadi & Shojafar (2019) proposed a QoS-aware modules placement
algorithm on edge devices for delay-sensitive applications to minimize the response
time and cost in the fog-cloud paradigm. Similarly, a module placement strategy has
been proposed inMahmud, Ramamohanarao & Buyya (2018) along with the optimization
of resources without suffering from QoS parameters. There are two algorithms used in
this system configuration to achieve QoS and module placement to cater to the optimal
response time for application requirements. Contextual information-based distributed
application strategy proposed in Tran et al. (2019) for fog paradigm. The algorithm utilizes
the contextual information to assign modules on fog resources. This information includes
the QoS deadline, proximity of resources, and service type to provision the resources for
IoT-driven applicationmodules. Experiments in this approach depict the reduced response
and optimal efficiency of the fog network. However, by increasing nodes in the fog network
in this setup, calculation time exponentially increases in this solution.

Taneja & Davy (2017b), proposed an applicationmodule placement policy for fog-cloud
resources based on the available capacity of network nodes. This strategy utilizes the network
resources effectively. The proposed algorithm functions for placing application services as
it iterates over entire available nodes to find the most eligible one unless it is exhausted.
To consume the network resources effectively in a way that application delay could be
minimized, a heuristic approach for heterogeneous resources has been proposed in Xavier
et al. (2020).

Gupta et al. (2021) and Atlam, Walters & Wills (2018) shed light on fog computing
paradigm characteristics and applications that use fog resources with IoT data flow
amongst components of these applications. There is much literature available, which
shows that direct interaction with cloud-based resources from IoT-driven applications is
much higher as compared to resources of fog layer. Due to the proximity of IoT devices, the
fog layer minimizes the bandwidth and supports the scalability factor. In the fog computing
paradigm, utilization of the network is a vital metric for real-time time-critical applications
and it must be minimized.

To maintain the security protocols of citizens and to meet privacy requirements,
geo-distribution of fog resources is used by researchers. Fog based monitoring system in
the proposed setup minimizes the general conflict of the public. An artificial intelligence
(AI) based fog system has been proposed byMunir et al. (2021). This study was conducted
to provide feedback to emergencies rapidly with awareness of the situation state using
urban surveillance through the air medium. Thirty-seven percent latency improvement is
shown over the cloud paradigm.

Similarly in the education sector, a cyber-physical system (CPS) is proposed for
monitoring purposes in the educational sector intelligently in the article (Singh & Sood,
2020). The objective of this study was to reduce the consumption of energy and delay.
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The Optical Fog node as middleware is deployed between cloud setup and data generating
sources. A comparison between fog computing and the cloud is also discovered in another
study byMondal et al. (2022). Vehicle detection-basedmodel for smart city planning (Chen
et al., 2017).

Walia, Kumar & Gill (2023) presented resource management issues and challenges
regarding fog/edge comprehensively. They have categorized issues into various domains e.g.,
scheduling of resources, placement of services and load-balancing etc. Authors emphasized
on machine learning (ML) and traditional approach to solve issues related to different
domains and discussed the state-of-the-art literature review with different QoS parameters.
Research directions towards latest technologies like software defined network (SDN), 5G
and serverless computing has also been discussed. Research students can get directions
from this detailed study in fog computing.

This research study (Kumar et al., 2024a) present the optimization of QoS by discussing
MEC architecture that depict the bi-objective optimization problem that include also
cost minimizing, energy and deadline constraints. GA-PSO meta-heuristic optimization
technique is embedded in MEC architecture. In Samriya et al. (2023), adversarial machine
learning (AML) has been proposed to implement the IoT devices security from modern
threats. This study focuses to utilize AML techniques in smart applications for health-care
domain.

Kumar et al. (2024b) proposed autonomic edge-assisted cloud-IoT framework for smart
application in health-care sector, which uses Random Forest and logistic regression grid
(RF-LGR) technique at edge network for heart disease analysis and for the improvement of
various parameters and compared with K-nearest network (KNN), LR and Random Forest
(RF) algorithms.

In above presented literature, we have explored those researchers has not used nature-
inspired technique except few for distributed fog setup to achieve optimization in terms
of compute and data transferring rate. Most of the works presented classical algorithms
for allocation of resources, which are not as scalable as our proposed methodology. The
summary of traditional techniques is shown in Table 1. Our goal in this study is to target
the distributed fog devices where least mean utilization is observed dynamically with two
parameters e.g., compute and bandwidth. Application modules in proposed scheme are
light weighted so we did not take memory as parameter in mean utilization. Applications
like traffic signaling and health-care services demand the prompt response amongst inter-
modules communication so delay can be critical for decision-making. Hence, proposed
allocation technique is more optimal than classical algorithms. The proposed design and
algorithms are discussed in next sections.

PROPOSED ARCHITECTURAL DESIGN
The combination of both fog-cloud paradigms empowers IoT-driven applications by
enabling low latency due to the close vicinity between data sources (IoT sensors) and
processing modules on fog devices. Cloud resources in this schema provide centralized
storage services for distributed end data source devices. This distributed architecture
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Table 1 Strength & limitations of traditional techniques.

Sr. no Reference & Year Parameter Strength Limitations

1 2019 (Atlam, Walters & Wills, 2018) Stochastic problem Overcome network issue Static scheduling
2 2017 (Azizi, Khosroabadi & Shojafar, 2019) Energy Reduce consumption Less scalability
3 2019 (Bittencourt et al., 2017) Latency Dynamic nature Less throughput
4 2019 (Gao et al., 2019) Delay factor Robust mapping heuristic Slow convergence
5 2020 (Gupta et al., 2021) Completion time Minimize completion time Less optimal mapping

comprises different tiers with different natures of computing devices, which compose
the fog-based IoT ecosystem. Apart from physical computing and storage devices, logical
components e.g., application modules and application edges are also in-text ingredients of
this distributed schema. Amongst all devices of different tiers, gateway devices interconnect
the different tiers for the exchange of data and enable the conversion of protocols across
network segments. The node capacity in the proposed schema is defined through attributes
e.g., CPU, RAM, and Bandwidth. It is pertinent to mention that the algorithm that will
map the resources should be able to scale additional attributes e.g., storage if required by
the application module for long retention over the cloud.

Figure 2 depicts the proposed design of implementation with various layers. The
capacity of the any computational fog device F_i in network can be defined with different
attributes as Cap(F_i)=< CPU_i,RAM_i,BW _i> and the total computing capacity
of the fog network is represented by sum of the capacity of all devices. Application
modules harness the available capacity of resources on tiers. The deployed application is
based on the Distributed Data Flow Model (DDF) in this model. As components of the
application are distributed modules interaction amongst them through DDF produces
better results. These modules are modeled as directed acyclic graph (DAG) in which
vertices represent the different processing modules and edges represent the flow or data
dependency. These modules process ingested data and produce output as input data for
another module in DAG. As application DAG A consists of vertices and edges so can be
defined mathematically as A=<V ,E >. Each component (module) requires resources
in terms of computing (CPU), memory (RAM), and bandwidth (BW) for execution
and data transfer. The algorithm for placement of these modules is evenly scalable even
when adding more attributes to meet the requirements of the application. If vertica V _i
denote appModule_i the resource requirement of this particular module can be defined
as Resource_Req(Vi)=< Compute_CPUi, Memory_RAMi, Bandwidth_BWi>. Figure 3
represents the flow of information amongst different modules of application.
In our proposed model various modules inter-collaborate with each other and perform

different functions for processing the data collected from devices. The data flow of
Application modules in the proposed configuration is unidirectional. Each component
(module) receives the data stream from its previous component performs certain operations
and dispatches the result to the next connected module in a directed graph. The following
modules compose the IoT-driven healthcare application in our model, which utilizes the
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Figure 2 Proposed application model in cloud-fog paradigm.
Full-size DOI: 10.7717/peerjcs.2484/fig-2

Figure 3 Information flow amongst modules.
Full-size DOI: 10.7717/peerjcs.2484/fig-3

fog-cloud paradigms for storage and computational requirements. Fog resources extend
the capabilities of the cloud close to the data sources to bridge the long distance of clouds.

• Information collector: This module of the application receives the data stream from
IoT devices e.g., sensors and applies the data compression standard before dispatching

Akram et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2484 9/21

https://peerj.com
https://doi.org/10.7717/peerjcs.2484/fig-2
https://doi.org/10.7717/peerjcs.2484/fig-3
http://dx.doi.org/10.7717/peerj-cs.2484


to the destination module in a directed acyclic graph for processing. The information
collector module also maintains the buffer for received data for a certain time to avoid
the packets discarding from the queue.
• Stream de-multiplexer: De-multiplexing of the received stream is performed by this
component to segregate the various statistics e.g., pulse rate and heart-beat rate of
patients and forward to next for automated analysis.
• Analyzer: Some sub-modules perform functions in the analyzer module to make the
analysis of different sorts of collected data through the automation process and send the
result-end to the next connected modules.
• Information retainer: To retain the information for a long time and keep the historical
data of patients, this module performs the tasks and sends the information to cloud
storage.
• User interface: To perform the monitoring by medical staff this module plays an
important function in displaying the data on devices e.g., actuators.
• Broker: The brokering component performs the inter-communication between Cloud
and Fog tiers through the gateway device.

Communication mode
All modules of application inter-collaborate with each other through exchange of messages
(events) and implement the transport layer security (TLS) protocol at transport layer. This
protocol ensures the secure communication amongst application modules (AppModules)
through encryption from end to end. Moreover, required resources for the processing of
these modules in fog network and cloud site are non-preemptive, which never interrupt
the processing till completion.

Modules allocation strategy
Allocation methodology of application modules assignment is inspired from the foraging
behavior of honey bees, which mimics the food searching patterns of bees in Algorithm
1. Scout bees search randomly and forager bees harness the best source of food as our
aim is also target that device, which has less mean utilization (compute and bandwidth).
So that earliest response time and completion time could be observed. Pro and cons of
this technique is discussed below. Algorithm 2 is used as procedure of calculating the
utilization of fog nodes. The algorithm iterates over the available fog nodes and calculates
the utilization of load and bandwidth then computes the least mean value of both to place
the application module. This process continues until all modules of the application get
placed over nodes.

Pros
• Decentralized nature: Algorithm function in a decentralized manner as module assign
across multiple devices without any centralized controller entity. This factor causes of
scalability and fault-tolerance.
• Efficient utilization of resources: Allocation of resources is performed on the basis of
fitness level e.g., earliest completion time,minimumutilization and energy consumption,
which leads to optimal level of utilization of resources.
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Algorithm 1 Application Modules Mapping
1: functionModuleMapping (appModulesList ,fDeviceList )
2: numScouts← 15 F Number of Scout Bees
3: maxIterations← 70
4: numForagers← 50 F Forager Bees
5: Random rand← createObject (Random.Class) F Random Class Object
6: for Itr = 1 tomaxIterations do
7: for Sct = 1 to numScout do
8: for AppModule ∈ appModuleList do
9: FogDevice fd← fDeviceList .get (rand.nextInt (fDeviceList .size))
10: AppModule.setFogDeviceId(fd.getId())
11: end for
12: end for
13: bestFitness← calculateFitness(appModuleList ,fDeviceList ) F Calculating fitness

of resources
14: for frgBee = 1 to numForager do F Foragers Bees Harness the best solutions
15: for AppModule ∈ appModuleList do
16: if rand.nextDouble()< 0.1 then
17: FogDevice fd← fDeviceList .get (rand.nextInt (fDeviceList .size))
18: AppModule.setFogDeviceId(fd.getId())
19: end if
20: end for
21: newFitness← calculateFitness(appModuleList ,fDeviceList )
22: if newFitness< bestFitness then
23: bestFitness← newFitness
24: else F Revert changes if fitness is worse
25: for AppModule ∈ appModuleList do
26: FogDevice fd← fDeviceList .get (rand.nextInt (fDeviceList .size))
27: AppModule.setFogDeviceId(fd.getId())
28: end for
29: end if
30: end for
31: end for
32: end function

• Scalability factor: The technique enhances scalability factor easily with increasing
numbers of tasks and resources and is suitable for distributed environment.
• Adaptive: It constantly evaluates the dynamism of the environment and adapts to
changes in load at runtime before assigning modules.
• Self organizing behavior: It manages resources autonomously without external
intervention as it mimic self-organizing behavior of bees.
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Algorithm 2 Calculating Fitness of Resources
1: function calculateFitness(appModulesList ,FDeviceList ) F Find the fitness of Resources
2: totalMeanUtilization← 0
3: for FDevice ∈ FDeviceList do
4: meanUtilization← 0
5: for AppModule ∈ appModuleList do
6: if AppModule.getFdID()= FDevice.getID() then
7:

8: CpuUtilization← FDevice.getTotalUtilizationOfCpuMips(AppModule)
9: BWUtilization← FDevice.getTotalUtilizationOfBW (AppModule)
10: meanUtilization ← meanUtilization + (CpuUtilization +

BWUtilization)/2
11: end if
12: end for
13: totalMeanUtilization←Math.min(totalMeanUtilization,meanUtilization)
14: end for
15: return totalMeanUtilization
16: end function

Cons
• Communication overhead: Bees communicate the information of distributed amongst
resources frequently, which creates the overhead in large scale fog devices network.
• Complexity: The honey bee inspired algorithm creates complexity due to its bees like
behaviors of searching food. In order to implement this behavior multiple agents (bees)
have to manage and initialize in the system.
• Dependency: Certain parameters are inevitable in these types of techniques like number
of forager agents, scout bees etc. and setting of these parameters can be challenging.
• Slow convergence: In order to find optimal solution in some cases algorithm may take
long time while competing for resources by many tasks.

Mathematical model
The least mean utilization in the proposed technique also helps to balance the load on
devices of the fog network, which reduces themakespan and response time. The completion
time of AppModulei on device FDj as CTij , so Makespan is the overall module completion
time and can be calculated through the following Eq. (1).

makespan=max{CT_ij |i∈AppModule,i= 1,2,....nand j ∈ FDj = 1,2,....m} (1)

and response time is the amount of time taken in application module submission and the
first response is obtained. Let AppModules= {AppModule1,AppModule2....AppModulen}
and these modules will be executed on set of fog devices FD= {FD1,FD2....FDn}. All
AppModules processing on these devices is based on a non-preemptive pattern, which
means that the execution of the module will not be interrupted. The processing time of
AppModule in FDj can be denoted as Pij . Processing time of AppModulei on FDj is denoted
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as Pij and processing time of all AppModules in FDj can be defined by Eq. (2).

Pj =
n∑

i=1

Pij j = 1,....,m. (2)

Equation (3) is obtained by reducing the value of CTmax and Eq. (4) is implied through
Eq. (2) and Eq. (3).
n∑

i=1

PijCTmax ≤ j = 1,....,m (3)

⇒ Pij ≤CTmax j = 1,....,m. (4)

The processing time of application modules (AppModules) reflects the variation from
one fog device to another based on capacity. The load of fog device FD− j can be calculated
based on executing millions of instructions of application module (AppModule) and the
capacity of fog device is calculated through Eq. (5).

FDj = PEnumjxPEmipsj+FDbwj . (5)

PEnumj denotes quantity of processors and PEmipsj has been used to indicate the
processing power of each processing element (PE) and FDbwj is the bandwidth capacity of
communication channel amongst other fog devices in the network. The capacity of all fog
devices participating in the network can be also, calculate to know the total utilization of
computational resources.

Totalcap=
m∑
i=1

FDj . (6)

The total computational capacity of fog network can also be derived through Eq. (6) and
measurement of load on fog device FDj is calculated through Eq. (7). Application modules
(AppModules) length in terms of Millions Instruction (MIs) allocated to fog device FDj in
any given time is called workload.

LoadFDi,t =N (AppModuleMI ,t )/S(FDj,t ). (7)

Equation (7) states the execution of the application module’s millions of instruction
(MI) by service rate S of fog device FDj in time t is called load on single fog device. The
total load of all devices is derived by Eq. (8).

TotalLoad =
m∑
i=1

LoadFDi. (8)

Similarly, processing time of fog device FD is computed through Eq. (9).

PTi= LoadFDi/Ci. (9)

The overall processing time of all fog devices FDs is PT = L/C and utilization of
bandwidth by application module on fog device is calculated as in Eq. (10)

BWUtilFDi,t = EventBytesAppModulei/UPLinkCapacityFDj . (10)
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Event bytes indicate the length of message, which particular application module will
send to next module as output on network link at given time t . Mean utilization of fog
device FDj resource will be obtained through Eq. (11).

MeanUtilizatiion= LoadFDi,t +BWUtilFDj,t/2. (11)

Simulation experiments
To conduct the experiments of the proposed design, the application programming interface
(API)/Libraries of iFogSim have been harnessed, which are object-oriented and are written
in Java programming language. Due to their object-oriented nature, these libraries
are easily extensible. Researchers can extend these classes according to their desired
parameters and algorithms. Simulation experiments can be performed in a repeatable
manner in a controlled environment and are consider cost-effective as compared to real
test beds. Mainstream classes, which researchers extend to model their proposed entities
are the following. iFogSim utilizes the CloudSim simulation engine for inter-entities
communication and events passing.

• SimEntity: This class is the mainstream class of CloudSim and several classes of iFogSim
implement this one to send the various types of events to each other.
• FogDevice: This class is use to model the computing resources of fog network and
perform the computation of application modules.
• Sensor: To simulate the hardware devices cameras and sensors, researchers use this class
that originates the data in the form of tuples.
• Actuator: This class is used for any hardware that displays statistics after processing
tuples received from sensors.
• ModuleMapping: It is an abstract class used for providing customized implementation
of mapping of modules on fog nodes.
• AppModule: IoT application comprised of various modules, AppModule class is used
to model the different modules of application.
• FogBroker: Basically, this class simulates the brokering resources of the fog network and
perform the computation of application modules.

Figure 4 depicts the network topology of cloud and fog nodes in our model and both
networks are connected through a proxy server/brokering component.

Figure 5 indicates the processing time with various numbers of applications through
applying different applicationmodulemapping strategies. Since the proposedmethodology
calculates the least mean utilization of device resources and allocates the module to the
least utilized resource processing time remains low comparatively to other mapping
techniques. Figure 6 depicts the bandwidth utilization of devices, which application
modules (AppModules) utilize while exchanging information in a fog network. Since
these modules function as distributed data flow (DDF) so output of some modules is
the mandatory input of other modules and persists in the inter-dependency. Figure 7
illustrates the latency variations, representing application response times for varying
numbers of applications in our proposed design, compared to both the mapping (Default)
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Figure 4 Cloud-fog topology setup.
Full-size DOI: 10.7717/peerjcs.2484/fig-4

and cloud-only designs. Our design outperformed both baseline designs. In our simulation
setup, hierarchical topology has been configured, which is depicted in Fig. 4. In this
topology configuration root indicates the cloud setup and leaves are considered edge
devices like gateway and these devices are configured with different compute, bandwidth,
and storage capacities. Various modules of IoT applications get executed on these devices
and consume their resources. We have configured simulation parameters for the cloud
data center, fog devices are shown in Table 2 and Table 3, respectively. These parameters
can vary as desired requirements. The distance of a cloud data center is long compared to
fog devices from data-producing sources. Fog computational devices are not as high-end
as cloud resources and can keep the retention of data for a long time.

Table 4 shows gateway device parameters, and used for inter-communication between
cloud and fog network. Gateway devices are configured and deployed at second level in
proposed model.

Devices in the model interact through the communication of application modules
deployed on them. These modules generate workload in the form of tuples (Millions
of Instructions) and traverse these instructions with each other to perform certain task
executions. In the upward direction (cloud & fog) these instructions are called Tuples-Up
and Tuples-Down are those instructions, that traverse amongst application modules.

CONCLUDING REMARKS
In this study, we propose the honey bee inspiredmodules placement strategy for health-care
latency-sensitive IoT applications. This application requires an optimal response resource
utilization, so that, efficient data flow amongst distributed modules could be ensured and
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Figure 5 Applications processing time.
Full-size DOI: 10.7717/peerjcs.2484/fig-5

Figure 6 Bandwidth consumption.
Full-size DOI: 10.7717/peerjcs.2484/fig-6

exact decisions could be taken because of the patient’s criticality. The proposed algorithm
places the module on fog computational resources based on an existing load of resources
and the capacity of the earliest execution time. To evaluate this algorithm, resources with
different capacities were taken in a simulation environment and performed the tests along
with other placement techniques. We have performed various tests with a varied number
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Figure 7 Latency variations.
Full-size DOI: 10.7717/peerjcs.2484/fig-7

Table 2 Cloud data center parameters.

Parameters Value

Name of device Cloud
Millions instruction per second 56,320
RAM 60 GB
Uploading bandwidth 110 Mbits/sec
Downloading bandwidth 12 Gbits/sec
Parent level 0 (Cloud is Top)
Rate per processing usage 0.02
Busy power 1,532 W
Idle power 1,225 W

of applications. The proposed strategy has been examined against other techniques e.g.,
round-robin, mapping algorithm, and cloud-only placement. Simulated results show the
improvement in latency, processing time, and consumption of bandwidth by placing
modules through a proposed algorithm. This algorithm maps the module after computing
themean utilization of participating devices in the fog network and targets the device, which
has the least mean utilization on the principle of honey-bee behavior. The testing scenario
of this study to examine results has been simulated in an iFogSim simulation environment
that produced satisfactory results. In the future, we intend to apply the proposed approach
to other smart applications, including car parking systems and traffic signaling systems, to
assess its overall impact and implications.
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Table 3 Fog devices parameters.

Parameters Value

Name of device Broker
MI per second 3,100 mips
RAM 6 GB
Uploading bandwidth 11 Gbits/sec
Downloading bandwidth 11 Gbits/sec
Parent level 1 (Cloud)
Rate per processing usage 0.02
Busy power 107 W
Idle power 75 W
Latency (Cloud & Broker) 110 ms

Table 4 Gateway devices parameters.

Parameters Value

Name of device Broker
MI per second 3,100 mips
RAM 6 GB
Uploading bandwidth 11 Gbits/sec
Downloading bandwidth 11 Gbits/sec
Parent level 1 (Cloud)
Rate per processing usage 0.02
Busy power 107 W
Idle power 75 W
Latency (Cloud & Broker) 110 ms
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