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ABSTRACT

Climate change has become a major source of concern to the global community. The
steady pollution of the environment including our waters is gradually increasing the
effects of climate change. The disposal of plastics in the seas alters aquatic life. Marine
plastic pollution poses a grave danger to the marine environment and the long-term
health of the ocean. Though technology is also seen as one of the contributors to climate
change many aspects of it are being applied to combat climate-related disasters and to
raise awareness about the need to protect the planet. This study investigated the amount
of pollution in marine and undersea leveraging the power of artificial intelligence
to identify and categorise marine and undersea plastic wastes. The classification was
done using two types of machine learning algorithms: two-step clustering and a fully
convolutional network (FCN). The models were trained using Kaggle’s plastic location
data, which was acquired in situ. An experimental test was conducted to validate the
accuracy and performance of the trained models and the results were promising when
compared to other conventional approaches and models. The model was used to create
and test an automated floating plastic detection system in the required timeframe. In
both cases, the trained model was able to correctly identify the floating plastic and
achieved an accuracy of 98.38%. The technique presented in this study can be a crucial
instrument for automatic detection of plastic garbage in the ocean thereby enhancing
the war against marine pollution.

Subjects Artificial Intelligence, Computer Vision

Keywords Maritime traffic, Marine pollution, Yolo model, 2-step clustering,
Fully convolutional network

INTRODUCTION

There is a growing concern about climate change and its devastating effects. In recent times,
the world has witnessed many disasters which can be traced to climate change. Waters are
not spared as they have become a disposal point for all kinds of waste, especially plastic

waste (Espeseth et al., 2020). This has resulted in serious water pollution (Bayrakdar, 2020).
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Ocean pollution has caused a range of environmental problems including organic matter
enrichment in confined waters, oil contamination, and sedimentation caused by land-based
operations like dredging (Nunes ¢ Leston, 2020). Dissolved oxygen (DO) and microbial
concentration levels are significant markers of the health of coastal water; however,
pollution from organic and inorganic sources has increased over time. Untreated home
and industrial waste contributes to Coast pollution by causing bacteria to consume large
amounts of oxygen from the saltwater, lowering the concentration of dissolved oxygen in
the water and negatively impacting aquatic life. Aquatic lives are now endangered more than
before (Minchew, Jones ¢ Holt, 2012). Technology offers some possibilities that can assist
environmentalists and relevant agencies in dealing with the surfacing problem of plastic
waste in water. For instance, artificial intelligence is being deployed for ocean observation
and proper monitoring of underwater things and spillage (Song et al., 2020). This study
is directed towards that regard to automate the process and approach to automatically
search and locate undersea plastic wastes. Leveraging the power of artificial intelligence as
suggested in the current would go a long way to support the long-term goal of achieving
sustainable ocean health both for animals and humans (Dalal et al., 2024).

Because of the above ocean pollution and marine debris problems, we raised the
following question: can we design a new machine-learning mechanism to predict marine
pollution for sustainable ocean health? If we can create such a model then it helps to
limit the consequences of microplastics and hazardous pollutants in seafood. There is
continuing study throughout the country concentrating on the possible damage to wildlife
and humans from trash exposure and ingestion (Dalal et al., 2023).

Our contributions can be summarized as follows:

e An optimized Two-step clustering model is proposed to classify the cluster of marine
debris correctly.

e The optimization mechanism is used to tune the cluster features (CF) Tree Tuning
Criteria for better coastal pollution assessment.

e A modified YOLO model is proposed to detect the underwater trash in the ocean.

e Thelearning rate hyperparameter tuning mechanism is used to tune the YOLO algorithm
to detect the underwater trash in the ocean.

e This proposed algorithm provides a new idea for reducing ocean pollution by properly
disposing of plastics and other recyclable materials.

This paper is designed with aiming of predicting marine pollution in two perspectives
i.e., coastal pollution and underwater trash. ‘Related works’ defines the various existing
works carried out in this problem domain. The section explains the datasets used for
experimental purposes. In this paper, two different types of datasets are being taken.
‘Coastal pollution dataset’” demonstrated coastal pollution assessment through modified
Two-step clustering algorithms and ‘Underwater trash dataset’ highlighted underwater
trash detection with the YOLO algorithm. ‘Discussion’ demonstrates the results, followed
by the conclusion of the paper in ‘Conclusion and Future scope’.
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RELATED WORKS

In the beginning, we discussed the promise of using machine learning techniques to address
marine debris and pollution. Predictions of underwater pollution and evaluations of coastal
pollution have been made using several machine learning algorithms, with positive results.

Deep learning models for environmental predictions

One of the challenges of machine learning is determining how polluted marine trash is
likely to be. Some other contexts are briefly explained below. Mirnchew, Jones ¢ Holt (2012)
examined that the dampening of the sea wave terrible portions by the oil and a compelling
fall in dielectric steady caused by the mix of 65-90 percent water with oil in the surface
layer are to blame for the difference in backscatter over the fundamental smooth. As
instrument noise rises over the instrument commotion floor, the anisotropy, A, border
exhibits substantial variation throughout the oil spill and a large-reach subordinate sign.

Gao et al. (2018) fostered a sea object float forecast model. “High goal surface flows,
Stokes float, and winds” were handled, and a progression of model examinations was built.
Predicted paths for the items on display were similar to observed directions for the floating
objects. Many of the items that were tracked ended up at Reunion Island, Mauritius, and
Tanzania with probabilities of 5 percent, 5 percent, and 19 percent, respectively, after
drifting north and then west. Eventually, most of the reenactment’s components were
located in the western Indian Ocean, about latitude 10°S. Possibly owing to the influence
of southeast trade winds, there were substantial differences in the results of several room
factor explorations.

Lietal. (2019) proposed a various levelled structure for coal and gangue recognition
because of profound learning models. First, the Gaussian pyramid guideline is utilised to
create staggered prepared information, resulting in a variety of scales of coal and gangue
image highlights. Next, convolutional neural network (CNNs) are created to recognise coal
and gangue objects in discrete up-and-comer regions. Three distinct datasets were used to
test our method. Coal and gangue object localization precision improved by 0.8 percent in
comparison to previous methods, reaching up to 98.33 percent with the suggested strategy.
We also present a methodology that makes it possible to see a large number of coal and
gangue items at once and addresses the problem of lining requirements in existing methods.

Stable water maps will soon be available thanks to a recurrence-based technique
presented by Meng et al. (2020) to distinguish between hydroponics water and conventional
water. Each year, Landsat Level-2 images from 1984 to 2018 were used to construct yearly
30 m target water items, which were then used to investigate the spatial-worldly changes in
the Taihu Lake area. Furthermore, each big graphical modification was linked to a specific
event in the actual world at the time. The outcomes propose that human exercises impact
surface water rather than environmental changes in the Taihu Lake locale, and affirm the
adequacy of biological security strategy in keeping up with the strength of the aggregate sum
of normal water in the beyond couple of years. The spatial-transient unsettling influence
of hydroponics likewise gave one more point of view and solid proof of past investigations
because of human exercises on the eutrophication interaction of Taihu Lake.
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Melody et al. (2020) proposed CNN is fit for mining spatial components from a huge
informational index. CNN’s deep multi-facet component extraction has inspired us to
develop an innovative oil slick-detection-proof technique in this research. The PolSAR
information is immediately converted into a 9-channel information block for CNN’s use.
A five-layer CNN is then used to extract two important levels of information from the
initial data set. Radial basis function support vector machine (RBF-SVM), a support vector
machine approach with an outspread premise work component, is utilised for order.
RADARSAT-2 polarimetric SAR data was used in this study to endorse the suggested
technique. Findings reveal that the suggested technique has significant effects on grouping
accuracy and the kappa coefficient generally. Other advantages include a reduction in
deception rates and the ability to distinguish an oil slick from a biogenic smooth.

Chen et al. (2021) expressed that diminishing ozone harming substance emanations
turns into a first concern on the planet with the development of an unnatural weather
change and natural issues. Different sustainable power sources show up during the last many
years. Sea catches and stores colossal measures of energy, which could fulfill multiple times
of world energy interest. Because of innovation constraints and monetary contemplations,
marine ebb and flow energy seems the most alluring decision contrasted and the other sea
energy structure. In this paper, it shows the interest and the rule of the marine current
energy, and furthermore talks about the benefits and weaknesses. The ecological effects
around the gadgets, the mechanical difficulties, and the fundamental help structures are
introduced also.

Xue et al. (2021a) and Xue et al. (2021b) examined whether convolutional neural
network can recognize the distinctions of flotsam and jetsam and normal remote ocean
climate, to really accomplish remote ocean garbage distinguishing proof. Initial, a genuine
remote ocean flotsam and jetsam pictures dataset is developed for additional grouping
research in view of a web-based remote ocean trash data set. Moreover, five normal CNN)
structures are likewise utilized to execute the order cycle. At long last, the distinguishing
proof examinations are done to approve the presentation of the proposed strategy. The
outcomes exhibit that the proposed strategy is better than the cutting edge CNN technique
and has the potential for remote ocean trash recognizable proof.

Shi et al. (2021) developed Wheatstone span circuits to improve the reaction to garbage
and lessen the impedance of oil temperature and thickness. The complete examination
of the identification brings about two modes can further develop sensor versatility and
conquer the lack of low dependability in light of a solitary discovery technique. This sensor
can give more precise garbage data to the shortcoming analysis of water driven hardware
and is of incredible importance for smart upkeep.

Marine pollution monitoring and prediction

Espeseth et al. (2020) introduced two strategies that are correlative as far as recognizing
transient replacements inside an oil spill. In contrasting ways, the two approaches show
how various people view oil spills. As an intermediate for increasing oil thickness, the
primary technique detects regions within the smooth that demonstrate a determinedly
high damping percentage (the distinction between clean ocean and oil power). With each
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new photo that is included in the computation, this approach updates the scene’s age in
addition to the original age. To see this development and its persistence in both broad
settings, one must examine the outcomes of these two approaches.

Walden e Mehrubeoglu (2020) featured that waterway flotsam and jetsam can affect
numerous parts of marine conditions remembering marine routes and sports looking for
waterways. Stream plastic flotsam and jetsam contamination are happening at such a huge
scope universally that it is grave to follow and measure the sheer amount of lost plastics.
Advanced picture handling is one compelling method for observing stream flotsam and
jetsam, vet the related complex cycles have intrinsic difficulties. This study examines the
effects of evaluating the weight and volume of plastic jug flotsam and jetsam from various
waste scenarios.

Akanmu & Onyema (2020) gives valuable open doors to individuals to foster the abilities
to take part in the discourse about marine flotsam and jetsam and ways of handling this
issue. The Marine Debris Virtual Community Centre (MD-VCC) is made to further
develop correspondence and support connected with marine garbage.

Lyu et al. (2024) suggest combining numerical models and deep learning to improve
monitoring efficiency. A diffusion long short-term memory (LSTM) network is proposed
based on the diffusion model’s ability to make images and the LSTM network’s ability to
extract temporal information. The proposed network learns picture evolution from distant
sensing data to predict future occurrences. In MODSD dataset experiments, our model
beat the convolutional LSTM (ConvLSTM) and generative adversarial network LSTM
(GAN-LSTM) time-series image prediction methods. Second, utilise OpenQil to develop
a numerical simulation trajectory model. We accommodate for maritime environment
differences by calibrating wind drift factors to properly reconstruct oil spill paths. The
Sanchi oil leak has a 2500-m error margin. Finally, diffusion LSTM photographs and
OpenOil’s projected oil spill trajectories were fused to provide short-time interval oil spill
scene images, improving monitoring efficiency.

Sustainable ocean management frameworks

Han et al. (2020) present a meta-heuristic whale optimization algorithm (WOA), which
assists ships with tracking down a low-energy-utilization and safe course in an enormous
scope complex marine climate. A few strategies have been proposed to tackle this issue,
however, there are a few weaknesses, for example, no thought of the impact of wind bearing,
wind speed and wave. The consequences of our recreation tests show that WOA is more
cutthroat than other best-in-class calculations for course arranging.

Di Luccio et al. (2020) show that coordinating publicly supported bathymetry
information in the work process mathematical model arrangement works on the exactness
of the end-product, considering a more itemized spatial circulation example of the ocean
ebb and flow driving the Lagrangian tracers.

Plag, Jones & Garello (2021) represent the information on the wide open concerning the
danger marine flotsam and jetsam to the marine biosphere and humankind stays at low
levels. Because of the lack of suitable local area-focused virtual entertainment, it is difficult
to work with the framework of an open cross-sectoral local area that may foster greater
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collaboration and correspondence among all parties involved in marine rubbish. There is
a prototype Marine Debris Virtual Community Centre (MD-VCC) where partners may
learn about the numerous sources of marine flotsam and jetsam and the paths waste enters
the marine ecosystem.

Seydi et al. (2021) grew new oil spill detection (OSD) system in view of a profound
learning calculation for optical remove sensing (RS) symbolism. The proposed strategy
depended on a multiscale multi-layered leftover part convolutional neural network. The
proposed technique explored the profound elements by the two-layered multiscale leftover
blocks and, then, at that point, used them at one-layered multiscale remaining blocks.
Overall, the suggested technique has an accuracy rate of over 95% and a miss location and
deception rate of less than 5%, suggesting its significant potential for OSD. In addition, it
was found that the proposed method would be wise to implement compared to other OSD
estimates that were examined in this research.

Xue et al. (2021a) and Xue et al. (2021b) lay out an effective remote ocean flotsam and
jetsam identification technique with fast utilizing profound learning strategies. Initial, a
genuine remote ocean garbage location dataset (three dimensional dataset) is laid out for
additional exploration. Material, fishing net and rope, glass, metal, normal rubbish, elastic,
and plastic are all included in the dataset. Another option is the ResNet50-YOLOV3 remote
ocean flotsam and jetsam location system. The recognition cycle of distant ocean debris
also includes eight high-level identification models. Finally, testing are performed to verify
the exhibit of ResNet50-YOLOV3. These trials also show the relevance and feasibility of
ResNet50-YOLOV3 in detecting ocean flotsam and jetsam from a distance.

Ju, Niu & Zhang (2023) propose a five-parameter polar coordinate dense regression
detector (FPDDet) that uses just a centroid, a mapped polar diameter, and two polar
angles to solve the overlap and border discontinuity problems with horizontal bounding
box (HBB) and oriented bounding box (OBB). We also propose a more suitable dense
regression heatmap loss function and a dense regression strategy that dynamically assigns
ship target samples in response to ship targets’ large-scale variation in SAR images using
a covariance-adaptive rotated Gaussian heatmap. A feature enhancement (FE) module
that improves target features and reduces background interference will also handle SAR
pictures’ severe noise pollution. Experimental results show that our FPDDet outperforms
the state-of-the-art on the rotating SAR ship detection dataset (RSSDD) and rotated ship
detection dataset (RSDD). Following these modifications, mAP is 1.2% and 1.71 percent
higher than before.

Duarte ¢ Azevedo (2023 ) use Sentinel-2 data to distinguish plastic litter from driftwood,
seaweed, marine snot, sea foam, and pumice. We use manual satellite image interpretation
and aggressive gradient boosting learnt on published data. Two Sentinel-2 spectral bands
and seven spectral indices are used to teach the technique. We used the project-specific
database initially. We realise that ground-truth validation is needed despite the 98%
accuracy in categorising possibly dangerous plastic waste. Second, a Wasserstein generative
adversarial network generates synthetic data to augment the training dataset. A synthetic-
data-only supervised model identified plastic pixels with 83% accuracy. The third is an
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ensemble model that assesses classifier prediction uncertainty. We correctly identified 75%
of plastic pixels.

Zhu et al. (2023) used SVM to model nitrate computation. Orthogonal projection to
latent structures support vector machine (OPLS-SVM) model was used to analyse seawater
samples from the Western Pacific, Aoshan Bay in Qingdao, China, the South China Sea,
and the Yellow Sea. Variable nitrate and turbidity spikes were used. The results showed
that the SVM calculation model with the OPLS correction technique improved nitrate
measurement precision. An RMSE of 0.22 pmol/L and an R2 of 0.999 were observed in a
prediction performance with a temperature range of 5-25 °C and turbidity range of 0-50
NTU. It accurately measures turbidity seawater nitrate concentration, making the presented
approach ideal for in situ nitrate measurements in challenging seawater conditions.

Chen et al. (2024) designed an IoT-based mobile spectral sensing device to collect soil
data from several places. A collaborative training model was constructed by merging a
fuzzy partial least square (fPLS) model with a large learning network to handle dynamic
sensing data. The scalable pseudo input layer with configurable training linking weights
generates BLN output feature variables as the number of fuzzy rules is changed. Using a
decentralised sensing system and fusion modelling framework, the experiment optimises a
model for heavy metals in soil samples detected by portable NIR spectroscopy. The system
outperformed the typical PLS model in training and evaluating dynamic sensing data for
predictions, according to two components.

Wang et al. (2024) present a neurodynamics-driven prediction model for coastal water
quality evolution (NDPM-CWQ) after considering tough problems. First, spatiotemporal
data is used to train an event-driven deep belief network. Second, we use EDBN model
input variable sensitivity analysis to rate triggering factor inversion and traceability and
determine spatiotemporal variable effects on water quality. Third, we use Markov chain
decision stability and stationary distribution to assess the training EDBN’s convergence.
Finally, real-world data show that the NDPM-CWQ enhances prediction performance and
quantifies triggering component inversion and traceability.

Table 1 show the summary of existing works as below.

DATASETS

The following is the list of the datasets being considered.

Coastal pollution dataset

This data represents some of the data gathered in a year of research, on three coastal areas
which represent a pollution gradient. The training data consists of only numeric columns.
The summary of the columns is shown below:

Table 2 depicts all column of the prescribed dataset. For every feature or predicator, it
shows its logical type, storage type, minimum value, mean of these values, maximum value,
standard deviation (std), unique values and frequency of mode. The target variable for this
research work is being set as the pollution level (three levels, when 0 is clean, 1 is polluted
and 2 is the most polluted) and the analysis should divide the data into test and train data
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Table 1 Related works summary.
S. No. Author Model Dataset Performance remarks
1 Mercier & Girard-Ardhuin (2005) Support Vector Spaceborne Synthetic Efficient in an operational
Machines Aperture Radar (SAR) context
images
Li & Wang (2011) Random Forest Sea Water in Tianjin 50% Accuracy
Hong, Fulton & Sattar (2020) Variational Au- J-EDI (JAMSTEC E- 0.92 Precision & 0.92 Recall
toencoder Library of Deep-sea value
Images) dataset
Wu et al. (2020) SVM DJI (DJI GO 4) dataset 85.71% Accuracy
Ronci et al. (2020) CNN SAR images over Mediter- 97.3% Accuracy
ranean Sea
6 Hipolito et al. (2021) COCO Data Repository for the 98.89% Accuracy
University of Minnesota
(DRUM)
7 Kankane & Kang (2021) Mask R-CNN KaKaXi Camera on beach 87.6% Accuracy
site both
8 Rostam et al. (2021) Long Short- Tolo harbour dataset 0.026 MAE
term Memory
9 Kruk, Paturej & Obolewski (2021) Support Vector Polish Baltic Sea coast 83.5% Accuracy
Machines
10 Sasaki et al. (2022) Gaussian Naive WolrdView-2 and 3 satel- 88% Accuracy

Bayes

lite images

manually. Figure 1 show the relative feature importance for applying the machine learning
model in coastal pollution assessment as below:

Underwater trash dataset

From the J-EDI marine debris dataset, we obtained this information. That dataset has a
wide range of video quality, depth, objects in the scene, and camera settings. They show a
wide range of maritime detritus in various levels of decay, opacity, and overgrowth as they
were photographed in real-world locations. The water’s purity and light’s quality might
vary greatly from one video to the next. This dataset consists of 5,700 photos which were
extracted from the processed movies.

The ultimate objective is to build onboard garbage detecting technologies that are
both efficient and accurate. This information is being made public in the hopes that it
will help the marine robotics community work toward a solution to the pressing issue of
autonomous garbage identification and removal.

METHODS

There are two major goals of our research: developing a system that can identify Underwater
Trash on the coastal and underwater. Research tools were used to gather and evaluate data
from diverse sources (Han ¢» Hong, 2023; Ilias et al., 2023; Lilhore et al., 2024). FCN and
two-step clustering algorithms are employed as our study framework. Clustering is a highly
effective method for detecting similarities across various groups or clusters. According to
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Table2 Coast pollution dataset.

Name Logical_type Storage  Min Mean Max Std Unique  Freq
_type of
mode
Month Numeric, int 1.000 6.598 18.000 4.994 7 42

categorical, catlabel,
ohe_categorical
Season Numeric, int 1.000 2.260 4.000 1.023 4 84
categorical, catlabel,
ohe_categorical
Shore Numeric, int 1.000 2.005 3.000 0.816 3 74
categorical, catlabel,
ohe_categorical
Pollution Level N/A int 0.000 1.009 2.000 0.818 3 74
Sample number Numeric, int 1.000 6.347 14.000 3.796 14 21
categorical, catlabel,
ohe_categorical
Organic matter% Numeric Real 0.121 0.453 1.868 0.228 202 1
Mean Number of Numeric Real 0.000 6.367 25.052 6.078 214 3
Nematode species
1 per gram soil

Mean Number Numeric Real 0.000 0.173 3.114 0.294 120 93
of Turbillaria per

gram soil

Mean Number of Numeric Real 0.000 15.071 73.600 14.411 55 24
foraminefera per

gram soil

Mean Number of Numeric, Real 0.000 6.912 38.978 8.126 39 35
Nematode species categorical, catlabel,

2 per gram soil ohe_categorical

Water pH Numeric, Real 7.801 8.184 8.340 0.106 20 24

categorical, catlabel,
ohe_categorical

Soil pH Numeric, Real 7.800 8.237 8.599 0.201 16 28
categorical, catlabel,
ohe_categorical

oC Numeric, Real 6.450 7.996 9.300 0.898 20 14
categorical, catlabel,
ohe_categorical

Water Salinity Numeric, Real 25.400 37.355 39.600 3.146 14 50
categorical, catlabel,
ohe_categorical

Soil Salinity Numeric, Real 5.000 9.830 14.000 2.483 12 34
categorical, catlabel,
ohe_categorical

P Numeric, Real 21.064 28.523 35.122 3.400 22 14
categorical, catlabel,
ohe_categorical

(continued on next page)
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Table 2 (continued)

Name

Logical_type

Storage
_type

Min

Mean

Max

Std

Unique

Freq
of
mode

Total dissolved
solids

PP

Conduction

ORP

Specific resistance

Temp

Conductivity

C-A

C-B

C-C

Numeric,
categorical, catlabel,
ohe_categorical
Numeric,
categorical, catlabel,
ohe_categorical

Numeric,
categorical, catlabel,
ohe_categorical

Numeric,
categorical, catlabel,
ohe_categorical

Numeric,
categorical, catlabel,
ohe_categorical

Numeric,
categorical, catlabel,
ohe_categorical

Numeric,
categorical, catlabel,
ohe_categorical

Numeric,
categorical, catlabel,
ohe_categorical

Numeric,
categorical, catlabel,
ohe_categorical

Numeric,
categorical, catlabel,
ohe_categorical
Numeric,
categorical, catlabel,
ohe_categorical

Real

Real

Real

Real

Real

Real

Real

Real

Real

Real

Real

37,800.000

196.300

39,500.000

—90.200

16.940

14.700

1.840

0.058

0.143

0.000

0.000

56,036.098

238.344

56,280.822

—79.268

17.976

23.879

3.020

0.149

3.872

4.110

5.291

59,000.000

307.000

59,000.000

—61.400

25.700

31.180

5.235

0.260

12.950

16.184

20.296

4,622.289

27.825

4,353.022

9.451

1.817

5.427

0.942

0.069

4.115

5.229

6.498

17

19

19

21

20

21

15

15

10

24

14

21

14

14

14

14

14

14

42

28

the features of plastic pollution (space, shape, etc.), these algorithms examine the hidden
information in our research.

Two-step clustering

To accommodate both categorical and continuous data, the two-step cluster analysis
method employs a probability distance metric, predicated on the assumption that cluster
model variables are unrelated to one another. In addition, we assume that the distribution
of each continuous variable is Gaussian, and that of each categorical variable is multinomial.
In-house empirical testing suggests the process holds up well in the face of departures from
the independence and distributional assumptions; however, it’s important to keep an eye
on how well those assumptions are being satisfied (Menion et al., 2024; Radulescu et al.,
2024).
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Conductivity (Original)

Total dissolved solids (Original)
Soil pH (Original)

H (Original)

Water Salinity (Original)

Soil Salinity (Original) -
PP (Original) .

Conduction (Original) I

Organic matter% (Original) I

Mean Number of Nematode species 1 per
gram soil (Original)

Season (Original) i

Sample number (Original)

Month (Original) !

Mean Number of Turbillaria per gram soil
(Original)

C-A (Original) l

Mean Number of foraminefera per gram
soil (Original)

0.0 0.2 0.4 0.6 0.8 1.0
Relative Feature Importance

Figure 1 Relative feature importance.
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The two-step cluster analysis procedure’s algorithm may be summed up as follows,
covering its two steps:

Step 1. The first stage of the process involves building a cluster features (CF) tree.
The first case is stored in a leaf node at the tree’s root that has variable
information about that case. Each new example is compared to the preceding
cases using the distance measure to determine whether it should be added to
an existing node or should form a new node. An aggregate of case-specific
variables is stored in a node that contains many cases. Because of this, the CF
tree may be seen as a condensed version of the entire data set.

Step 2. Following this, an agglomerative clustering technique is used to classify
the CF tree’s leaf nodes. It is possible to get various answers by employing
agglomerative clustering. Each of these cluster solutions is evaluated using
either Schwarz’s Bayesian Criterion (BIC) or the Akaike Information
Criterion (AIC) to identify the “optimal” number of clusters.
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In the second stage, TwoStep can employ hierarchical clustering to analyze the data and
identify the best possible number of clusters to use. The results of a hierarchical clustering
process may be seen immediately, with a series of divisions such as 1, 2, 3, ..., clusters. On
the other hand, the sequence could only be generated by running the k-means algorithm an
arbitrary number of times (one for each cluster) (Schubel, 1994; Silhadi, Refes ¢» Mazouzi,
2020; Thiel et al., 2018).

Finding plastic trash in the water can be difficult, but a two-step clustering strategy can
help. The usefulness of two-stage clustering in this scenario is discussed below.

Data collection and preprocessing

In order to get the dataset ready for clustering, preprocessing is performed. Images may
need to be resized or normalized, noise or unwanted parts removed, and useful attributes
extracted before they can be put to use.

Extracting features
Features representative of plastic trash should be collected from the photos in the first
step of the two-stage clustering method. Color histograms, texture descriptors like Gabor
filters or local binary patterns, shape descriptors like contours or geometric features, or
any combination thereof, are all examples of such features.

The traits selected are those most able to differentiate marine trash made of plastic from
other things in the water. Choose these attributes to accurately capture the appearance of
plastic trash in the provided images.

Initial clustering

Clustering algorithms like k-means and hierarchical clustering are used to produce an

initial grouping on the dataset in the first part of the two-step clustering process. The goal

of this process is to use the collected characteristics to create first clusters within the dataset.
When sorting plastic trash for the first time, like items are gathered together. This

process aids in locating groupings of pictures that may include plastic trash.

Clarification and categorization
The second phase, following the first clustering, is to refine the clusters and classify the
pictures more precisely. Density-based clustering and model-based clustering are two
common alternatives used for this stage.

Images are properly categorized into groups by the enhanced clustering algorithm,
which takes into account criteria like proximity, density, and similarity metrics. This aids
in the identification of plastic trash amongst other ocean debris.

Analyses and verifications

Finally, the effectiveness of the two-stage clustering method is assessed in terms of finding
plastic trash. Precision, recall, F1-score, and clustering validity indices are some examples
of quantitative measurements that may be used for this purpose. Clusters of plastic trash
can also be evaluated for quality and accuracy through visual inspection and human
confirmation (Vikas ¢ Dwarakish, 2015).
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The method employs a two-step clustering process, which allows it to accurately
recognize and categorize plastic trash based on visual similarities. This aids in the detection
and categorization of ocean plastic debris, which is crucial for further research and
mitigation efforts. Two-step clustering can be an effective approach for detecting plastic
garbage in the ocean environment. By employing two-step clustering, the approach can
effectively identify and group similar instances of plastic garbage based on their visual
features. This helps in detecting and categorizing plastic waste in the ocean environment,
providing valuable insights for further analysis and mitigation efforts. It’s important to note
that the success of this approach relies on the quality and representativeness of the dataset,
as well as the selection and extraction of relevant features. Continuous improvement
and refinement of the clustering algorithm and feature selection process can enhance the
accuracy and reliability of plastic garbage detection in the ocean environment. It’s worth
noting that the success of FCN-based plastic garbage detection depends on factors such
as the size and quality of the training dataset, the choice of FCN architecture, and the
effectiveness of data augmentation techniques. Continuous refinement and improvement
of the FCN model can enhance its performance in accurately identifying and delineating
plastic garbage in the ocean environment.

By leveraging the capabilities of FCN, this approach enables pixel-level segmentation of
plastic garbage, providing valuable insights for monitoring and addressing plastic pollution
in oceans. The effectiveness of this method is dependent on the dataset’s quality and
representativeness, as well as the characteristics chosen and extracted. The effectiveness
and dependability of plastic rubbish identification in the water may be improved by
enhancing the clustering algorithm and the feature selection process on an ongoing basis.

YOLO model

A real-time object identification technique known as YOLO stands for “You Only Look
Once”. All of YOLO’s layers are convolutional, creating a neural network (FCN). Using skip
connections and upsampling layers, there are 75 convolutionary levels in this algorithm.
A convolution layer with a stride of 2 is utilized to down sample the feature maps without
the usage of pooling. It learns from entire photos and improves detection performance by
doing so directly. In comparison to other object-detection algorithms, this model offers a
few advantages.

e YOLO is very quick.

e YOLO takes the whole image while training and test time so it completely encodes
related data about classes and their appearance.

e YOLO learns generalized representations of objects and thus outperforms other
detection methods.

The object detection includes seeing certain things in digital photos or movies. Humans,
automobiles, chairs, stones, structures, and even animals have all been spotted. One
effective deep learning architecture that may be used to find trash in the ocean is the FCN.

YOLO treats real-time object detection as a regression issue. Unlike Faster R-CNN,
YOLO proposes and classifies regions in one network pass. YOLO’s first equation grids
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input picture S * S. Each cell predicts B bounding boxes, confidence scores, and C item
class probabilities. The biggest benefit is speed: Designed for real-time applications, YOLO
processes photos in one forward pass. Grid division may be too coarse to capture minor
item details, making it hard to handle.

Predictions per grid cell =B*54-C. (1)

Bisboundingboxes, 5is x, y, w, h coordinates and confidence score, and C is classes. This
approach lets YOLO forecast numerous items per grid cell but suffers with overlapping
objects. With four parameters—box center coordinates (x, y), width w, and height
h—YOLO predicts bounding boxes. Normalized by image size:

x =0 (t) + ¢ (2)
y =0 () +e (3)
w=pye™ (4)
h = ppe" (5)

where t, t,, t,,, t, are the network’s raw predictions, c, ¢, are the coordinates of the
op-left corner of the grid cell, and p,,, py are predefined anchor box dimensions. These
equations ensure that the predicted bounding boxes are within a reasonable range relative
to the anchors.

YOLO employs anchor boxes to predict bounding boxes relative to predefined shapes,
which helps the model generalize across various object scales and aspect ratios. A significant
part of YOLO’s object detection mechanism involves computing the Intersection over
Union (IoU) between predicted and ground truth boxes to determine the quality of
predictions:

Area of Overla
P (6)

JoU=———.
Area of Union

Area of Overlap/Area of Union (IoU) compares the expected and actual bounding
boxes. IoU boosts alignment, while YOLO increases it during localization training. The
key benefit of IoU is measuring localization quality well. IoU optimization may not help
categorization, especially when object sizes fluctuate substantially between pictures.

A potential strength of YOLO is its image digestion speed. Grid-based object localization
and direct bounding box regression simplify real-time predictions. The IoU metric and
anchor boxes make the model adaptable to different item sizes and shapes, boosting
localization accuracy. The single-stage YOLO pipeline localizes and classifies objects for
efficiency. However, this strategy has limitations. YOLO anticipates several objects per grid
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cell, therefore it may overlook minor things in busy surroundings. The grid may also limit
the model’s ability to recognize objects across cells, decreasing large object performance.
YOLO’s grid-based prediction algorithm is rapid but may underestimate small or dense
objects in grid cells. The architecture implies each grid cell can recognize one object, which
can limit small object scenarios. Anchor boxes help YOLO, but high item density persists.
Localization, confidence, and classification losses in YOLO’s loss function can also generate
an imbalance, especially when object size varies greatly across the dataset. Smaller items
may struggle because larger ones dominate localization loss. Compared to Faster R-CNN,
YOLO is efficient but not precise enough to distinguish small and overlapping objects.

Collecting and formatting data sets

Gathering photos of the ocean’s surroundings is the first step in training an FCN to
recognize plastic trash. Images like this should show examples of plastic trash in addition
to other parts of the ocean ecosystem. It is crucial that the dataset contains enough samples
of plastic rubbish of varying shapes and sizes, and that it covers a wide variety of maritime
areas. Images of plastic trash should have their respective areas or pixels appropriately
identified in the dataset. The FCN is trained using these annotations as the gold standard.

Design and instruction

Since the FCN architecture was developed for picture segmentation, it may be used to
spot trash floating in the ocean. The FCN is made up of an encoder and a decoder; the
former takes an input picture and extracts high-level features, while the latter creates a
segmentation map at the pixel level. Supervised learning methods are frequently used
to train the FCN. The network is trained using the labeled dataset, with the parameters
optimized such that it can successfully segment and recognize patches of plastic waste
within the photos. This is achieved by reducing the amount of variation between the FCN’s
projected segmentation maps and the actual annotations. To improve the FCN’s capacity
to generalize, data augmentation techniques can be used during training to increase the
variety of the training samples.

Detection and inference

Once the FCN has been trained, it may be used to identify pieces of plastic debris hidden
inside photographs of the ocean’s surface. The FCN uses forward propagation to create
a segmentation map at the pixel level from an input picture. Each pixel is classified as
either plastic waste or other things based on the label or probability assigned to it by the
segmentation map. To improve the precision of the plastic rubbish zones, the segmentation
map might be post-processed using thresholding or morphological treatments.

Analyses and verifications

Metrics such as Intersection over Union (IoU), accuracy, recall, and F1-score may be used
to assess the FCN’s effectiveness in the detection of plastic trash. Predicted segmentation
maps are compared to the annotated ground truth in order to determine how closely they
match. The quality of the plastic rubbish detection zones may also be evaluated by visual

examination and professional evaluation. It is important to remember that the performance
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of FCN-based plastic waste identification is influenced by a number of variables, including
the amount and quality of the training dataset, the selected FCN architecture, and the
efficiency of data augmentation methods. The FCN model can do a better job of precisely
detecting and delimiting plastic rubbish in the ocean if it is continuously refined and
improved.

This method, which makes use of FCN’s capabilities, allows for pixel-level segmentation
of plastic rubbish, yielding useful information for tracking and preventing marine debris.

PROPOSED METHODOLOGY

Two fundamental concerns are being addressed by this phenomenon:

e What is the item? This question asks the users to name the thing the users see in a
particular picture.

e Where did the users find it? With this question, they are trying to pin down exactly
where in the image the object is located.

The working of YOLO is explained with the help of flowchart in Fig. 2.
The pseudocode for YOLO is given underneath.

YOLO Algorithm

Step 1: Choose the box with the maximum objective function.

Step 2: Next, compare the overlap (Intersection Over Union, IOU) of the
chosen box with other boxes. IOU is calculated as:

- : Area of overl
Intersection of union = S22 =P (7)
rea ol union

Step 3: Eliminate the bounding boxes with overlap > 50%.
Step 4: Shift to the next highest objectiveness score.
Step 5: Lastly, repeat steps 2—4.

Detection methods include R-CNN, Retina-Net, and Single-Shot MultiBox Detector.
Object detection (SSD). A single algorithm run is unable to find things, even though
these techniques have overcome the limitations of limited data and model-based object
recognition. The YOLO algorithm has become popular because it outperforms the other
object detection methods.

Tuning the learning rate hyper-parameter of YOLO algorithm with
Bayesian optimization

However, depending on the optimizer’s tuning choices, an improvement over YOLO
models is more noticeable. Image of input size, number of epochs, batch size, learning
rate, momentum, and activation function are all factors that may be tweaked to enhance
YOLQO’s performance. To further cut down on training time and boost model performance,
tweaking hyper-parameters like learning rate and momentum inside the training algorithm
is highly recommended. Poor hyper-parameter tuning would lead to under- or over-fitting
of the model. Increase regularization, quicken the rate of training, and introduce instability.
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Figure 2 Flowchart of YOLO model.
Full-size Gl DOI: 10.7717/peerjcs.2482/fig-2

Consequently, the purpose of this research was to fine-tune the optimizer, learning rate,
and momentum of the YOLO model so that it could be used effectively for detection in
the deep sea. YOLOV5 was chosen for the model optimization in this investigation for a

number of reasons.

e The state-of-the-art target detection technique using two content security policy
(CSP) structures (CSP1 X and CSP2 X) to extract generic characteristics specifically in
underwater picture.

e This model is capable of dynamically adjusting the network’s depth and breadth in
response to the volume of data being processed (self-adaptation to small underwater
objects).

e This model can provide the best possible training results and detection accuracy, as
demonstrated in this research.

In contrast to random and grid search, Bayesian techniques remember previous
evaluations and utilize them to build a probabilistic model that maps hyperparameters to

the likelihood of a score on the objective function.
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As p(y|x), this model is a “surrogate” for the objective function in the relevant literature.
Choosing the hyperparameters that perform best on the surrogate function allows Bayesian
approaches to determine the next set of hyperparameters to assess on the real objective
function, which is significantly more difficult to optimize than the surrogate function.
What this means, in words:

e Construct a probabilistic stand-in for the goal function.

e Determine the optimal values for the surrogate’s hyperparameters.

e Use these settings as hyperparameters for the actual goal function.

e Revise the proxy to account for the latest findings.

e Continue iterating through steps 2—4 until the time limit or maximum iterations are
reached.

These methods implement the Bayesian tenet of “less incorrect with more data” by
iteratively refining the surrogate probability model in response to each new assessment of
the objective function.

Bayesian optimization (BO) and transfer learning (TL) for hyperparameter change in
YOLO models improve object detection accuracy and efficiency. The fast and accurate deep
learning system YOLO is popular for real-time object detection. Optimizing performance
requires fine-tuning its hyperparameters, which greatly impact detection accuracy and
processing efficiency. BO optimizes complex functions with few evaluations, ideal for
this. TL uses pre-trained models to adapt YOLO to a similar task, speeding training and
improving performance with less labeled data. BO uses a Gaussian probabilistic model to
approximate the goal function that links hyperparameter settings to model performance.
By exploring intriguing search space regions, BO intelligently selects hyperparameters,
unlike brute-force grid search or random search. BO optimises YOLO hyperparameters
including learning rate, batch size, and momentum while minimizing model assessment
computing cost per iteration. This method works for YOLO models, which have many
hyperparameters and require a lot of computing power to train.

TL allows YOLO models use knowledge from a COCO or ImageNet-trained network.
By fine-tuning a pre-trained YOLO model on a smaller dataset, TL reduces initial training
time and resources. TL provides a stable baseline model with optimal weights, reducing
hyperparameter tweaking evaluations. TL and BO interact to make training more efficient
by fine-tuning only a few hyperparameters to increase target dataset performance. Staged
YOLO hyperparameter optimization combines BO and TL. Select and transfer a pre-trained
YOLO model to the new task using TL. Bayesian Optimization adjusts transferred model
hyperparameters for the target domain. Because the pre-trained model has a strong starting
point and BO can quickly determine the optimal hyperparameter settings, this dual method
speeds convergence. TL reduces the model’s reliance on new data, while BO maximizes
generalization with carefully adjusted hyperparameters to prevent overfitting, a common
deep learning problem with smaller datasets. Hyperparameter adjustment by BO for TL
reduces training runs. BO optimises important parameters for better results with fewer
assessments. YOLO, a computationally expensive model, benefits from this because each
training iteration requires time and resources. TL initializes the model well, so BO can
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adjust learning rate and regularization parameters for the new dataset. Combining them
optimizes models efficiently and robustly.

YOLO hyperparameter adjustment with BO and TL improves object detection. BO

intelligently navigates the hyperparameter space to find the best settings, whereas TL uses a
pre-trained model to speed up training and improve accuracy. This hybrid method works
effectively in domains with few training resources or fine-tuning datasets. Merging BO and
TL in YOLO models achieves state-of-the-art object detection in real-world applications
in a realistic, efficient manner.

# Step 1: Import necessary libraries

import numpy as np

import bayes_opt # Bayesian Optimization library

import torch

import torchvision.transforms as transforms

from bayes_opt import BayesianOptimization

from yolo_model import YOLO # Assume a YOLO model class is defined elsewhere
# Step 2: Define the data loading and preprocessing steps for marine pollution dataset
def load_marine_pollution_data():

# Load the dataset (train, validation, and test splits)

train_data = # Load training data

val_data = # Load validation data

test_data = # Load test data

# Define any necessary transformations for images

transform = transforms.Compose(|

transforms.Resize((416, 416)), # Resize to YOLO input size
transforms.ToTensor(),

# Add more transformations if necessary

1

# Apply transformations to the dataset

train_data = transform(train_data)

val_data = transform(val_data)

test_data = transform(test_data)

return train_data, val_data, test_data

# Step 3: Define the function to train and evaluate the YOLO model

def train_yolo_model(train_data, val_data, hyperparams):

# Unpack the hyperparameters to be optimized (learning rate, batch size, etc.)
Ir = hyperparams[’learning rate’]

batch_size = int(hyperparams[’batch_size’])

momentum = hyperparams[ ' momentum’]

# Initialize YOLO model with Transfer Learning (load pre-trained weights)
model = YOLO(pretrained =True)

# Modify last layers for the new marine pollution task
model.modify_output_layers(num_classes =2) # Example: 2 classes (pollution vs no

pollution)
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# Define optimizer (e.g., SGD or Adam)

optimizer = torch.optim.SGD(model.parameters(), Ir =lr, momentum =momentum)

# Define loss function (e.g., Binary Cross Entropy or Focal Loss)

criterion = torch.nn.BCELoss()

# Training loop

for epoch in range(num_epochs):

model.train()

for batch in train_data:

images, labels = batch

optimizer.zero_grad()

outputs = model(images)

loss = criterion(outputs, labels)

loss.backward()

optimizer.step()

# Evaluate the model on the validation set

val_loss, val_accuracy = evaluate_model(model, val_data)

# Return negative validation loss (BO tries to maximize, so minimize loss by negating
it)

return -val_loss

# Step 4: Define the evaluation function

def evaluate_model(model, val_data):

model.eval() # Set model to evaluation mode

val_loss =0

correct =0

total =0

with torch.no_grad():

for batch in val_data:

images, labels = batch

outputs = model(images)

val_loss + = criterion(outputs, labels).item()

predicted = torch.argmax(outputs, dim =1)

total + = labels.size(0)

correct + = (predicted = = labels).sumitem()

val_loss / = len(val_data)

val_accuracy = correct/total

return val_loss, val_accuracy

# Step 5: Define the objective function for Bayesian Optimization

def bo_objective(learning_rate, batch_size, momentum):

# Define the hyperparameter dictionary to pass into the training function

hyperparams = {

’learning_rate’: learning_rate,

’batch_size’: batch_size,

’momentum’: momentum
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}
# Load the data

train_data, val_data, test_data = load_marine_pollution_data()

# Train the model and return the evaluation metric (negative validation loss)
val_loss = train_yolo_model(train_data, val_data, hyperparams)

return val_loss

# Step 6: Initialize the Bayesian Optimizer with the hyperparameter search space
bo = BayesianOptimization(

f =bo_objective,

pbounds ={

’learning_rate’: (1e—5, 1le—2), # Search space for learning rate

“batch_size’: (8, 32), # Search space for batch size

‘momentum’: (0.5, 0.99) # Search space for momentum

b

random_state =42,

verbose =2 )

# Step 7: Run Bayesian Optimization to find the best hyperparameters
bo.maximize(

init_points =10, # Number of random initial points

n_iter =25 # Number of optimization iterations )

# Step 8: Retrieve the best hyperparameters found by BO

best_hyperparams = bo.max[ params’]

# Step 9: Train the YOLO model using the best hyperparameters on the full training

data

train_data, val_data, test_data = load_marine_pollution_data()
final_model = train_yolo_model(train_data, val_data, best_hyperparams)
# Step 10: Evaluate the final model on the test set

test_loss, test_accuracy = evaluate_model(final_model, test_data)

# Step 11: Output the final results

print(f’Test Loss: {test_loss}”)

print(f’Test Accuracy: {test_accuracy}”)
BO and TL for YOLO hyperparameter tuning offer a novel technique to maximize

model performance while reducing computational costs. Grid and random search are
computationally expensive and inefficient for complex models like YOLO with enormous
hyperparameter space. However, BO is more efficient since it models the objective function
as a probabilistic process (typically a Gaussian process) and consciously selects the next
hyperparameters to assess using an acquisition function. This reduces model evaluations
to find appropriate hyperparameters for computationally demanding models like YOLO.
TL reduces training time and data for new tasks by using pre-trained YOLO models

on massive datasets like COCO or ImageNet. It employs low-level features learned by
YOLO on previous jobs, which are often applicable across datasets. Pre-trained YOLO
layers capture broad object detection qualities, but BO-guided hyperparameter tuning
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personalized them to the target dataset. Hyperparameters are carefully regulated to retain
generalizable knowledge and optimize task-specific performance.

TL directed BO’s inclusion in YOLO’s hyperparameter fine-tuning, a big advance. To
balance speed, accuracy, and generalization, manually tuning YOLO’s hyperparameters—
learning rate, batch size, and momentum—takes effort and expertise. BO automatically
balances exploration (trying new hyperparameter values) with exploitation (perfecting
existing good setups). This simplifies and data-efficiently performs well in medical imaging
and autonomous driving, where datasets are tiny or domains are specific. Applying YOLO
to real-world situations involves model generalization to new data. BO and TL reduce
overfitting by optimizing YOLO model hyperparameters. BO’s probabilistic approach,
which creates a posterior distribution over the objective function, increases generalization
by considering hyperparameter uncertainty and performance. Random search ignores
uncertainty and may choose poor hyperparameters for complex models. This unique
method is generally applicable. YOLO models fine-tuned with BO and TL can be employed
in industrial defect identification, wildlife monitoring, and traffic analysis where labeled
data is scarce and computational resources are limited. BO optimizes hyperparameters
with fewer iterations, decreasing processing overhead, while TL lets the YOLO model
swiftly adapt to the new task. This enables YOLO implementation in resource-constrained
or specialty domains efficient and scalable, aiding computer vision and deep learning.
Finally, BO and TL improve model interpretability and prediction confidence in YOLO
hyperparameter tuning. BO calculates uncertainty for each hyperparameter configuration,
showing the model’s confidence in the parameters. Safety-critical applications like
medical diagnosis and driverless vehicles require understanding forecast uncertainty. BO’s
systematic nature makes tuning replicable and justifiable using probabilistic reasoning,
making the YOLO model more precise, clear, and dependable.

RESULTS

Experiment 1 Coastal pollution assessment through two-step clustering

The pre-clustering, parsing of typical data kinds, and clustering steps are all performed
using the two-step clustering method. It is chosen whether or not to begin a new cluster
during pre-clustering after each set of data has been analysed and evaluated. Table 3
highlights the model specifications of two-steps clustering as given below:

This choice is made based on how far apart the data are. The Euclidean distance and the
log-probability distance are two distance metrics. Feature importance for this algorithm is
being displayed in Fig. 3.

It is common for data that cannot be clustered to be assessed during the data analysis
step. The data is segregated as external if the inclusion cannot be achieved despite all
attempts to incorporate it. Table 4 highlighted the model quality in the help of Goodness
and Importance factor.

In the cluster stage, a tree structure is created. All data starts to be distributed from root to
leaves. Table 5 shows the Cluster-1 Profilein term of Within-Cluster Feature Importance.

Each piece of information is connected to a nearby branch. When the ideal number of
groups has been obtained, the cluster is linked to another cluster in another branch that
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Table 3 Model specifications.

Number of Regular Clusters 2

Number of Outlier Clusters 0
Month
Season
Shore

Pollution Level
Organic matter%
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Water Salinity
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Total dissolved solids
PP

Conduction
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Specific resistance
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Figure 3 Across-cluster feature importance.
Full-size G DOLI: 10.7717/peerjcs.2482/fig-3

meets the distance criterion’s requirements. Table 6 show the Cluster-2 Profile in term of
Within-Cluster Feature Importance.

To repeatedly decide the appropriate number of clusters, BIC (Schwarz’s Bayesian
Information Criterion) or AIC (Akaike’s Information Criterion) procedures are used.
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Table4 Model quality.

Cluster Number of Goodness Importance
records

Cluster-1 186 0.34 1.00

Cluster-2 33 0.32 1.00

Table5 Cluster-1 profile.

Input Center Within-cluster
feature
importance®

Conduction 0.37 1.00

Specific resistance —0.37 0.97

Water Salinity 0.38 0.96

Total dissolved solids 0.38 0.90

Pollution Level —0.21 0.31

ORP —0.28 0.29

Shore 0.00 0.21

PP 0.19 0.18

oC 0.18 0.17

Organic matter% 0.11 0.12

p 0.05 0.11

Month 0.07 0.07

Season —0.08 0.01

Table 6 Cluster-2 profile.

Input Center Within-cluster
feature
importance®

Conduction —2.09 1.00

Specific resistance 1.92 0.97

Water Salinity —2.11 0.96

Total dissolved solids —1.98 0.90

Pollution Level 1.21 0.31

ORP 1.60 0.29

Shore —0.01 0.21

PP —0.98 0.18

OoC —0.95 0.17

Organic matter% —0.68 0.12

P —0.27 0.11

Month —0.40 0.07

Season 0.46 0.01

Notes.

Cluster centers show modes for categorical inputs, and means for continuous inputs.
2This is the importance of an input to a particular cluster.
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Experiment 2 Underwater Trash Detection with YOLO algorithm

Using test-time augmentations (TTA), we may increase the accuracy of our predictions
even further: each picture is enhanced (horizontal flip and 3 different resolutions) and the
final prediction is an ensemble of these augmentations.

YOLO is a sophisticated CNN for real-time object identification called a convolution
neural network (CNN). YOLO’s popularity is due to its ability to operate in real-time and
its high level of accuracy.

The following parameters help in achieving better understanding and analysis of model
and its performance.

a. Accuracy is given by the formula:

TP+ TN Correct predictions
Accuracy = = — . (8)
TP+ TN+ FP +FP Totalpredictions
b. Precision is calculated as:
. TP Predictions actually positive
Precision = = - — . (9)
TP+ FP Total predicted positive
c. Recall (TPR, Sensitivity)is calculated as:
Recall — TP Predictions actually positive (10)

TP+EN _ Total actual positive and actual negative

d. AP (Average precision) is a popular metric in measuring the accuracy of object
detectors. It is measured as finding the area under the precision—recall curve above.
It is calculated using the formula:

1
AP:/ p(r)dr. (11)
0

The following Fig. 4 shows the feature extraction.

In order to fine-tune the model, we may unfreeze it completely and retrain it on our data
with an extremely low learning rate. By progressively modifying the pre-trained features to
the fresh data, this may be able to produce considerable gains. The following Fig. 5 shows
the results of training.

The hyperparameters-configurations file may be used to change the learning rate
parameter. Hyperparameters specified in the built-in ’hyp.finetune.yaml’ file will be used
for the instructional example because they have a considerably lower learning rate than the
default. The stored weights from the previous step will be used to re-initialize the weights.

As a convenience for this lesson, we’ll utilise the YOLOv5s6 model, which has a relatively
modest number of parameters. In this section, we’ll discuss some of the most often utilised
training methods, as well as a few others. Here, in this section, we’ll discuss some of the
most often utilised training methods in Fig. 6.

The backbone layers of a model function as a feature extractor, whereas the head layers
are responsible for calculating the output predictions. We’ll utilise the same backbone as
the pre-trained COCO model and simply train the model’s head in order to compensate
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Figure 4 Inference results.
Full-size &l DOI: 10.7717/peerjcs.2482/fig-4

for a short dataset size. Backbone YOLOvV5s6 has 12 layers, and the ’freeze’ parameter fixes
them all. The confusion matrix created is shown in Fig. 7.

The validation script will be used to test our model. The ’task’ option can be used
to adjust the divides between the training, validation, and test datasets for evaluating
performance. The following Fig. 8 is an evaluation of the test dataset split. The following is
an evaluation of the test dataset split:

Multi-class probabilities and bounding boxes may be predicted concurrently using
YOLO Precision-confidence curve is shown in Fig. 9.

Recall measures how much of the true bbox was successfully predicted (Real
positives/(True positives + True Negatives)). Precision measures how much of the true
bbox was accurately predicted. MAP 0.5 is the average precision (mAP) for an intersection
over union threshold of 0.5-0.6-0.5. An IoU threshold range of 0.5 to 0.95 is used to
calculate the average mAP. Figure 10 shows confidence curve.

It was trained on synthetic data to examine the performance of object detectors and
estimate the need for more real data for two-step clustering and FCN, which are the
methods discussed in this work. Aside from that, the suggested sensor system’s computing
needs were studied using FCN. Figure 11 demonstrates the relationship between recall and
confidence gained by proposed model.
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Ablation studies

To further substantiate the contributions of our model, we have conducted comprehensive

ablation studies in Table 7. These studies aim to assess the impact of various components

and design choices on the overall performance of our model. The ablation studies include:
For the purpose of forecasting marine pollution for long-term ocean health, there are

a number of criteria that may be used to evaluate the CNN vs the modified YOLO model.

Key considerations are discussed below.

Precision in object detection

Object detection tasks, such as the detection and localisation of marine pollution in
photos, are amenable to both the modified YOLO model and CNN. For real-time object
identification, the YOLO model has been tweaked into YOLOv3 or YOLOv4, both of which
have shown to be highly effective. However, convolutional neural networks (CNNs) are a
type of deep learning architecture that may be utilized for both image categorization and
object recognition.

The modified YOLO model is well-known for its rapid picture processing and precise
predictions in the field of object recognition. It can identify marine pollution of varying sizes
and shapes because of its multi-scale and multi-granular detection capabilities. Similarly
to the modified YOLO model, CNN can attain high accuracy, although it may take longer
to process.
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Table 7 Ablation study. Hyperparameter sensitivity analysis.

S. No. Experiments Result Impact

1 Base Model without optimized hyper-parameters tuning 85.21% -

2 Base Model with optimized Learning Rate 88.16% +2.95%

3 Base Model with optimized Batch Size 89.79% +1.63%

4 Base Model with optimized Momentum 93.48% +3.69%

5 Base Model with optimized IoU Threshold 93.99% +0.51%

6 Base Model with optimized Learning Rate & Batch Size 94.87% +0.88%

7 Base Model with optimized Learning Rate & Momentum 95.01% +0.14%

8 Base Model with optimized Learning Rate, Batch Size & 95.85% +0.84%
Momentum

9 Base Model with optimized Learning Rate, Momentum & 97.05% +1.20%
IoU Threshold

10 Optimized Model with optimized hyper-parameters tuning 98.38% +4.90%

Training and dataset requirements

Both the modified YOLO model and CNN require training, although for different datasets.
A sizable labeled dataset including annotated bounding boxes of marine pollution items
is required for the improved YOLO model. The algorithm is trained using this dataset in
order to effectively detect and categorize pollution. During training, the YOLO model’s
object recognition and classification parameters are fine-tuned.

CNNis are often trained to classify images, rather than identify objects, during the training
phase. For this, the users need a tagged set of marine pollution photographs, ideally with
bounding box annotations. While CNN’s ability to divide the world into various categories
may be enough for some uses, it can’t replace the pinpoint localisation information offered
by object detection.

Speed and efficiency

Faster and more accurate picture processing is a major benefit of the updated YOLO model.
For applications where fast detection is critical, including real-time marine pollution
monitoring, YOLO models are well-suited due to their ability to analyse photos in real-
time or near real-time. On the other hand, when employed at a high resolution or with
complicated designs, CNN may necessitate more computing and can be slower in analyzing
pictures.

Adaptability and generalization
The CNN is a flexible deep learning architecture that may be used for more than only
object recognition in the realm of image analysis. It may be modified for use in evaluating
marine contamination by segmenting images and extracting features. CNN models are
well-suited for identifying subtle fluctuations and trends in marine pollution due to their
capacity to learn complicated properties from photos.

The updated YOLO model may be limited in its ability to perform tasks other
than localization and classification because of its focus on object identification. Image
segmentation and in-depth study of pollution patterns are two examples of jobs for which
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it might not be optimal. However, YOLO models have been employed well in a number of
real-world applications, including the detection of marine pollution and other items.

Depending on the parameters of the marine pollution prediction job, either the modified
YOLO model or CNN may be selected. While CNN is flexible and may be used for a variety
of image processing applications, the modified YOLO model is capable of fast and accurate
real-time object recognition. In order to make a well-informed decision, it is important to
think about the specifics of the dataset, the accuracy required, the necessity for real-time
processing, and the goals of the application.

The authors constructed a new model architecture by adapting and merging deep
learning approaches for marine pollution data. A hybrid network architecture using CNNs
and RNNs helps interpret marine pollution data temporal and spatial trends. This strategy
uses advanced feature engineering to improve model prediction. We employ satellite photos
and oceanographic data to introduce new concepts to this subject. Ensemble learning was
utilised to make more accurate predictions. Aggregating predictions from numerous
models improves system performance and reduces variation. Because marine pollution
data is scarce and imbalanced, we created synthetic data samples using cutting-edge data
augmentation technologies. By doing so, we can improve model generalisability and address
small dataset issues. Our real-time marine pollution prediction system uses deep learning
models and a stakeholder-friendly interface. The system is presented in our study. This
technology enables proactive ocean management and faster decision-making. Through
case studies in several maritime ecosystems, we have shown our model accurate. These case
studies demonstrate our technique in real-world situations, helping us understand marine
pollution dynamics.

DISCUSSION

The suggested sensor system for training FCN is now being used to acquire additional
real-time, actual data. An ocean basin containing exclusively floating plastic samples will
be used for data collection in the near future, as will data collected from a pending research
vessel excursion in southern North Sea waters. The study would add to the growing works
(Chen et al., 2021) on powers of artificial intelligence in prediction of ocean polution
and related events. With this model, it seems more helpful in tourist places. Such places
are ruined by plastic trash see a drop in revenue as a result. There are also substantial
financial expenditures associated with cleaning and maintaining the facilities. Plastic trash
on beaches have a detrimental effect on the economy, wildlife, and human health.
Assuring the long-term viability and good health of our oceans hinges on our capacity
to accurately anticipate marine pollution utilizing a proposed model. Our goal here
is to go more deeply into the salient features and ramifications of this strategy. The
flexibility of a hybrid artificial intelligence (AI) approach to marine pollution prediction
to combine several Al methods is one of its main benefits. Historical data may be analyzed
using machine learning methods like decision trees, random forests, and support vector
machines to reveal trends that lead to pollution incidents. Convolutional neural networks,
a type of deep learning model, can process large amounts of unstructured data, making
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it possible to spot tiny pollution symptoms. The prediction models are improved by the
incorporation of expert systems because they are more interpretable and transparent due
to the incorporation of domain knowledge and expert input. The hybrid method makes it
possible to analyze and understand data from a wide variety of sources by employing these
Al methods. Satellite images, ocean sensors, weather patterns, data from pollution stations,
and findings from citizen science projects are all examples. The accuracy and reliability
of the prediction models can be improved by combining several data streams for a more
comprehensive knowledge of maritime pollution.

The proposed model’s real-time monitoring and prediction skills are essential for making
smart decisions and reducing marine pollution in a timely manner. Stakeholders will be
better able to respond quickly to pollution incidents, deploy resources for containment
and cleaning, and implement preventative measures to lessen the impact on marine
ecosystems if early warnings and alarms are provided. This preventative measure is critical
for long-term ocean health because it lessens the impact of pollution and helps maintain
marine biodiversity. The hybrid Al method may be used to forecast marine pollution in a
variety of contexts. For instance, it may be put to use foreseeing oil spills and facilitating
quick responses to mitigate the resulting ecological harm. Harmful algal blooms are a
serious problem for marine life and ecosystems, but this method can help forecast when
they will occur, allowing us more time to prepare. In addition, Al prediction models may
help pinpoint plastic pollution hotspots, which can guide cleaning initiatives and policy
changes aimed at reducing plastic waste’s entry into the ocean.

While there is much to be gained by adopting a this proposed model, there are also
obstacles that must be overcome. As it is sometimes difficult to gather accurate and complete
data on marine pollution, availability and quality of data remain significant obstacles. There
needs to be an increase in the quality and consistency of collected data, as well as an increase
in the ease with which stakeholders may share and use that data. The public’s trust and
confidence in Al-driven prediction models may be enhanced by taking into account ethical
factors like data privacy and security. Concerns about the interpretability and explainability
of Al models also need to be addressed. In order to win over skeptical stakeholders and
policymakers, it is essential to explain the logic behind AI’s predictions, especially when
using deep learning models. New strategies for improving the explainability of models,
such as those for attributing features and extracting rules, can be used to deal with this
problem. For the hybrid Al strategy to be widely adopted, researchers, policymakers, and
industry stakeholders must work together. Sharing knowledge, information, and tools
within a team helps everyone create more reliable forecasting models. The predictions
made by the hybrid AI technique may also be used by politicians to make evidence-based
decisions and shape rules targeted at lowering marine pollution.

The use of a proposed model for marine pollution prediction might make a substantial
impact on long-term ocean health. This method integrates machine learning algorithms,
deep learning models, and expert systems to analyze many data streams in real time
and accurately anticipate when and where pollution will occur. The full promise of this
strategy, however, cannot be realized unless issues of data availability, interpretability,
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and cooperation are resolved. Protecting and conserving our seas for future generations
requires ongoing study, technological improvements, and collaborative actions.

CONCLUSION AND FUTURE SCOPE

The study presented a technique that could help reduce water pollution and indeed
detection and removal of pollutants. The study proves the power of Artificial intelligence in
marine garbage detection. The YOLOVS5 is a successful method even with a small number of
datasets, particularly underwater. The existing system can be scaled up because it improved
testing accuracy. A hybrid Al approach to marine pollution prediction could maintain
ocean health over time. Marine contamination is dynamic and complex, making typical
data collection and analysis methods insufficient. By mixing machine learning techniques,
deep learning models, and expert systems, hybrid Al may investigate several data sources
and provide more accurate and reliable prediction models. Using hybrid Al to anticipate
marine pollution has many benefits. It enhances real-time pollution monitoring and
prediction, speeding response and mitigation. Identifying pollution data patterns and
trends with machine learning algorithms allows early identification and prevention. Deep
learning techniques illuminate pollution processes by analysing huge and complex data.
Expert systems with subject knowledge and competence can help explain Al models that
improve decision-making. Hybrid Al has showed promise in case studies and real-world
applications. Real-time oil spill monitoring, harmful algal bloom predictions, and plastic
pollution hotspot identification are successful uses. If pollution episodes can be accurately
forecast, stakeholders can prevent pollution, protect marine ecosystems, and ensure the
ocean’s long-term health.

This proposed model has overcome challenges before it can be extensively adopted.
Large, high-quality data sets are scarce, but accurate forecasts require them. Making data
collection and exchange more efficient is crucial. Stakeholders and policymakers trust and
accept this model based on interpretability and explainability. The hybrid model must
be combined with decision support systems to make better, more informed decisions in
the future. Researchers, governments, and industry stakeholders must collaborate to solve
marine pollution’s many issues. Policy repercussions can drive Al technology integration
into environmental management systems. Predicting marine pollution with mixed Al
is a huge step towards long-term ocean protection. Al can improve marine pollution
awareness, enable quick responses, and protect marine ecosystems’ fragile balance. To fully
realise the hybrid Al strategy’s promise, we need continued research, technical advances,
and collaboration to protect our seas and future generations.Hundreds of marine species
have been directly impacted by plastic trash due to ingestion, asphyxia, and entanglement.
Seabirds, whales, fish, and turtles, among others, often choke to death after ingesting plastic
trash that they mistook for food. Aside from being unable to swim and having internal
injuries, they also receive lacerations and infections. Because of their buoyancy, floating
plastics can also serve as a vector for the spread of invasive marine species, which poses a
direct danger to marine ecosystems and biodiversity. In the future, we intend to collaborate
with relevant authorities to adopt this solution to complement efforts geared towards
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water protection and indeed preservation of our waters. In future, we will also develop an
Al-driven app for promotion of ocean health awareness.
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