
A novel IoT-device management platform
for on-the-fly generation of user interface
via manifest-file addressing heterogeneity
Nayancy Gupta1, Gourinath Banda1, Krishna Chaitanya Bommakanti2

and Venkata Srinivas Kothapalli3

1 Computer Science and Engineering, Indian Institute of Technology Indore, Indore,
Madhya Pradesh, India

2 Research, Adonmo, Hyderabad, Telangana, India
3 Research, Motorola Mobility, Chicago, IL, United States

ABSTRACT
The Internet of Things (IoT) is becoming indispensable across various application
domains. In the domain of the consumer IoT, many original device manufacturers
are coming up with a wide variety of IoT-based products and services catering with a
range of applications such as personal-fitness training devices, healthcare devices, to
smart-home things, etc. There is an accompanying smartphone application, called
the IoT control app (ICA) through which such IoT devices are controlled. As of now,
a user shall install a separate ICA app for each and every IoT device they own. This is
because of the diverse heterogeneity inherent in the IoT domain. The installation of
multiple ICAs leads to: memory congestion, steeper battery discharging and
increased vulnerability—in smartphones. The diversity in IoT devices can be
systematically abstracted away with text written in a manifest file. Based on this
manifest file, a user-interface for the IoT-device gets generated on the fly by the ICA.
In this article, we propose a manifest-based IoT-device platform including an
application-layer protocol, which makes it possible for a single ICA App to control
any compliant IoT-device after appropriate authentication. We developed a
manifest-grammar for specifying error-free manifest files for different IoT-devices
towards a seamless integration between ICA and IoT-devices.

Subjects Mobile and Ubiquitous Computing, Internet of Things
Keywords Internet of Things, IoT architecture, IoT device app, Smart phone interface, Manifest

INTRODUCTION
The Internet of Things (IoT) (Atzori, Iera & Morabito, 2010) as a technological paradigm
is enabling automation and digital transformation across a wide variety of applications
ranging over multiple domains. There are several IoT-application domains (Pekar et al.,
2020; Ibarra-Esquer et al., 2017), which could be classified under: Consumer, Commercial,
Industrial and Infrastructural categories. By 2030, the number of IoT devices worldwide is
projected (Aman et al., 2020) to cross several hundred billions.

This means most individuals would be accessing several IoT devices. For every
IoT-device, their respective device manufacturer provide a smartphone app (application),
which is called IoT-device control app (ICA). This ICA is made available on the
Google/iOS app-stores, mandating people to install them for each device they own. If one

How to cite this article Gupta N, Banda G, Bommakanti KC, Kothapalli VS. 2024. A novel IoT-device management platform for on-the-fly
generation of user interface via manifest-file addressing heterogeneity. PeerJ Comput. Sci. 10:e2480 DOI 10.7717/peerj-cs.2480

Submitted 26 June 2024
Accepted 14 October 2024
Published 29 November 2024

Corresponding author
Gourinath Banda,
gourinath@iiti.ac.in

Academic editor
Massimiliano Fasi

Additional Information and
Declarations can be found on
page 25

DOI 10.7717/peerj-cs.2480

Copyright
2024 Gupta et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.2480
mailto:gourinath@�iiti.�ac.�in
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2480
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

owns 50 IoT-devices, then s/he shall install a separate ICAs per device/OEM, thus their
phone will have more than 50 ICAs. The installation of multiple ICAs leads to memory
congestion and steeper battery discharging in phones. Furthermore, multiple ICA Apps on
a device would widen the vulnerability landscape of the phone (Cui et al., 2020).

If a single app can handle different IoT devices from diverse vendors then most of the
above issues get resolved. With a very generic framework and architecture that abstracts
away the diversity through a text-based specification of device capabilities, a single ICA
app is sufficient for all IoT-devices. Our solution also includes an ICA and is opensourced.

The contributions of this article is a IoT-device management platform, which includes:

. A manifest-file based approach that homogenises the heterogeneity inherent in the IoT-
paradigm as a text file;

. A grammar for the manifest-file that encodes the IoT device capabilities;

. A synergistic application layer protocol and

. One single IoT-device control smartphone app.

The proposed approach empowers an IoT-device to declare its own identity and the
functionality in the form of manifest-file. The basic assumption here is, as the device is
carrying its own capability and is able to connect with the user-interface, there is no
restriction on the type of the device/domain and the numerous capabilities that a device
can offer. This manifest file becomes an integral part of the proposed OneIoT protocol
which enables seamless management of IoT-devices by generating on-the-fly graphical
user-interface. This article builds on top of our earlier works (Banda, Chaitanya &Mohan,
2015; Banda et al., 2017), which presented primitive versions of the OneIoT protocol. The
most important improvement is the manifest-grammar definition. This grammar makes it
possible for OEMs and vendors to write error-free manifest-files for their respective IoT-
devices. Furthermore, the manifest-file idea is augmented with the concept of sub-manifest
file. The main manifest-file is read-only for the users; while the sub-manifest file can be
modified to save the user-preferences. These user-preferences may include meta
information such as: creation of new mode/s, adding the device-location, etc. We also
illustrate the manifest-grammar’s applicability with an example IoT-device.

The rest of the article is organised as follows: related work is summarised in the Related
Work section, the Open OneIoT Architecture section details the Open OneIoT
architecture, the Open OneIoT Implementation section gives the implementation of the
protocol including the manifest-file concept and the protocol’s architecture, the
Experimentation section presents the experimentation, in the Security section we discuss
about the security and “Discussion and Conclusion” gives the conclusion & discussion.

RELATED WORK
Several research efforts, both at individual and consortium levels, have resulted in various
IoT reference architectures (Weyrich & Ebert, 2016; Shin, 2014; Bayer et al., 2004; Fernánez,
Jaimunk & Thuraisingham, 2023; Domínguez-Bolaño et al., 2022) across different
application domains. Since IoT devices are made up of one or more of: System on Chips

Gupta et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2480 2/28

http://dx.doi.org/10.7717/peerj-cs.2480
https://peerj.com/computer-science/

(SoC/s), Microcontroller/s, Field Programmable Gate Arrays (FPGA/s), Sensors,
Actuators, Communication controllers and protocols from different vendors, they are
inherently heterogeneous. Atiquzzaman, Noura & Gaedke (2018), Li, Xu & Zhao (2015),
Luo et al. (2023) proposed new frameworks, protocols and standards to achieve seamless
interoperability and overcome heterogeneity related restrictions. In the following, we give
an overview of various solutions and protocols from different IoT application domains.

Apple provides a platform called HomeKit for connecting the IoT devices. This
platform is primarily for devices from Apple. However, it also provides limited support for
third-party devices developed using either HomeKit Accessory Protocol (HAP) or Matter
protocol (Apple, 2024). However, unlike our protocol, there are restrictions (Sciacco, 2022)
such as: (a) the user-interface can only be on an Apple devices; (b) The cloud entity is
specifically iCloud, which is an Apple cloud service and (c) it is only for smart-home
domain. The ICA in this approach hardcodes the UI of a specific device associated with
that App.

CoAP (Shelby, Hartke & Bormann, 2014) is a web transfer protocol suited for
communication between IoT-nodes with constrained hardware. It does not propose any
ICA application for interaction between the device and their users. Our solution provides a
complete IoT device management together with an application layer protocol and an ICA
app. On a collaborative front, we can employ CoAP in the place of TCP in our current
implementation.

The European Telecommunications Standards Institute (ETSI) has specified a open-
standard called oneM2M (Swetina et al., 2014), which is applicable for machine-to-
machine (M2M) type IoT systems. It is a specification (ETSI, 2011); and does not provide a
complete open-source software implementation. Furthermore, it does not provide any ICA
app as we do in OpenOneIoT; however it defines a possibility for semantic interoperability
(Alaya et al., 2015).

The “matter” protocol (Connectivity Standards Alliance, 2022; Gennari, 2020) is yet
another project proposed by a consortium that conists of Google, Amazon, Samsung,
Silicon labs, etc. Unlike our protocol, which is domain independent, the Matter protocol
focuses on the smart-home domain. Matter is compatible with Wi-Fi, BLE, Thread
(Unwala, Taqvi & Lu, 2018), Ethernet, Cellular and 802.15.4-based devices; but does not
provide direct compatibility with ZigBee protocol. It is believed to be accessible on a
royalty-free basis only by the consortium members. However, our proposed approach
works with ZigBee as well but with appropriate brokers in the OS of the IoT-device.

Medical IoT (MIoT) devices (Alsubaei et al., 2019; Dimitrov, 2016) are at the
intersection of Consumer IoT and Industrial IoT, because they include both simple
personal devices and sophisticated critical healthcare systems used by medical
professionals in hospitals. Again due to the inherent heterogeneity with MIoT devices, they
have dedicated ICA apps. However, with our textual manifest file approach, we can have
the single ICA to access such MIoT devices as well.

Message Queue Telemetry Transport (MQTT) was released by IBM for lightweight
M2M communications. It is an asynchronous publish/subscribe messaging protocol that
runs on top of the TCP stack. There is broker containing topics, to which clients can

Gupta et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2480 3/28

http://dx.doi.org/10.7717/peerj-cs.2480
https://peerj.com/computer-science/

publish/subscribe (Karagiannis et al., 2015; Yassein, Shatnawi & Al-zoubi, 2016). There are
drawbacks here such as a single point of failure (Donta et al., 2022) in broker. While our
solution gives a full unified IoT device management; MQTT is just a communication
protocol. In MQTT, there is no device management capability. In our protocol, there is a
direct communication between client and an IoT device (see Fig. 1). Further, MQTT does
not provide any ICA and the new on the fly graphical user generation method.

The Open Connectivity Foundation (OCF) (Park, 2017) is a consortium with Samsung,
Intel, Cisco, MediaTek, etc. Others not in the consortium can access their specification
from the GitHub repository (OCF, 2024), develop their devices based on it and then getting
such devices approved by the consortium. This means a vendor has to present their device
specs for approval by consortium, which might not be comfortable due to concerns of
loosing competitive advantage. Both the new devices and any upgraded-devices have to get
approval. Contrarily, in our solution, any OEM can develop their device specific interface
details following the manifest language. The given grammar results in error free manifest
files leading to a seamless integration between single ICA and any IoT-device. As the
OneIoT ICA app is open-sourced, there is no risk of vendor-lockin as well, because of the
standard data exchange format is of JSON-type and the underlying communication is
based on the standard TCP protocol.

The Open Mobile Appliance (OMA) (Brenner & Unmehopa, 2008) is a consortium
including several renowned network companies and mobile communication device
manufacturers. It includes names such as: AT&T, Verizon, Samsung, etc. OMA’s work is
targeted for network-operators (Open Mobile Alliance, 2016), where it emphasises more on
network issues. Our Open OneIoT gives an end-to-end solution through our protocol with

Figure 1 Open OneIoT architecture. Full-size DOI: 10.7717/peerj-cs.2480/fig-1

Gupta et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2480 4/28

http://dx.doi.org/10.7717/peerj-cs.2480/fig-1
http://dx.doi.org/10.7717/peerj-cs.2480
https://peerj.com/computer-science/

an included ICA Android app. On the contrary OMA includes a complex architecture,
which relies on multiple layers of protocols such as: (a) Generic Bootstrapping
Architecture (GBA) for authentication and (b) DM protocols for management.

Philips has developed a connected LED lighting-system called Philips Hue. The lights
are controlled with an associated Hue app. Though Philips provides various APIs for
developers; there are restrictions on remote API (Hilbolling et al., 2021) and reportedly has
several security issues (Morgner, Mattejat & Benenson, 2016). In Zigbee, as resolution of
device IDs to IP addresses is differed, some Zigbee-based bulbs are not compatible. With
our OneIoT approach, as we are at the application layer, there remains no restrictions on
the type of protocol used for connecting the IoT devices. As our text-based manifest is
domain independent, our work is applicable to lighting solutions as well.

SmartThings (Samsung, 2024) is a commercial IoT solution from Samsung. Here, there
are four types of entities: a hub of IoT-devices, a smartphone app, cloud and the IoT-
device/s. The associated SmartThings app is not the app to control the device, rather it lets
to install third-party apps, which are the designated ICAs for the respective IoT-devices
(Samsung, 2024). Not only the users’ smartphones get overwhelmed with such additional
ICAs, but it also becomes susceptible to cyber-vulnerabilities (Fernandes et al., 2017).
Samsung has provided multiple ways to integrate third-party devices. For mobile-
connected devices, the third-party cloud can only interact with the devices via their
SmartThings-cloud, which constrains the access to the device.

Table 1 summarises the IoT protocols listed in this section by comparing them along the
features of:

. Opensource-ness;

. Compatibility between different devices with a single ICAs;

. Connectivity between the ICA and the device;

Table 1 Comparison between different IoT protocols.

IoT Platform Opensource Compatibility Connectivity UI MobileOS

Apple
Homekit

No Partial (only Apple
complaint devices)

Internet, bluetooth, matter Hardcoded into ICA Apple/iOS

COAP Yes Not applicable (NA) UDP NA Android, iOS

Matter Yes Partial (only consortium) Thread, bluetooth Hardcoded into ICA Android, iOS

MIoT No No No Hardcoded into ICA Android, iOS

MQTT Yes NA TCP NA Android, iOS

OCF Yes Partial (restricted to the pre
populated list)

Internet, zigbee, z-wave Hardcoded into ICA Android, iOS

Philips Hue No Partial (only partners) Zigbee, bluetooth, Hue bridge Hardcoded into ICA Android, iOS

Samsung
SmartThings

No Partial (only associated
vendors)

Internet, zigbee, bluetooth,
matter, z-wave, LAN

Hardcoded into ICA Android, iOS

Open OneIoT Yes Yes Independent of the
communication media used

Dynamic (generated by the script
carried in the IoT device)

Android, iOS

Gupta et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2480 5/28

http://dx.doi.org/10.7717/peerj-cs.2480
https://peerj.com/computer-science/

. UI, whether it is hardcoded into the ICA or it gets generated on the fly by the ICA and

. mobile/OS supported by the host.

OPEN ONEIOT (O2IOT) ARCHITECTURE
A very generic IoT reference architecture could let a single ICA to access, control and
monitor any IoT device from any vendor across any application domain. Such an ICA does
not need to hard-code the user-interface (UI) for a specific IoT-device; rather can weave
the UI on the fly by downloading the manifest-file from the IoT-device. The ICA, once
launched for the first time, post device-ownership authentication, downloads a manifest-
file from the IoT-device.

Open OneIoT architecture
We propose a very abstract yet very expressive IoT reference architecture as shown in
Fig. 1. Our IoT reference architecture is named Open OneIoT Architecture. The
architecture’s building blocks, standard protocol and implementation considerations are
explained below.

Definition: Open OneIoT Reference Architecture. The Open OneIoT Architecture
includes four types of building blocks:

1) IoT-node/s;

2) Remote-host/s (on Cloud) and

3) User Agent/s.

It has an associated application layer protocol (see Fig. 2) which enables user to interact
with the IoT device by using a single smartphone App. This protocol also supports
dynamic IP address of the device. The remote host always listens on a domain-name (or a
static IP-address); IoT device sends a heartbeat packet periodically which helps in getting
the IP address of the device.

Definition: IoT node. IoT node is any IP-enabled embedded device that is uniquely
addressable through its IP-address.

This IoT device can be connected and controlled by the smartphone App. The
connectivity medium could be internet or other means. The dotted line depicts non-
internet based connectivity. An IoT-node shares its IP-address with the Cloud node, which
forms the basis for the app to connect with it. Each IoT-device is preloaded by its
manufacturer with a small manifest-file in its flash memory. This file is utilised for
advertising the device’s functionalities.

As the proposed solution is in the application layer, it is independent from the network
stack, which is implemented in the operating system on the device. So it natively works on
HTTP; if there are brokers installed on the OS then it would work for CoAP, MQTT, etc.
This confirms to the OS implemented TCP/IP stack. Hence our protocol has conforms to
the stack as shown in Fig. 2.

Definition: Remote-host. Remote-host is the server belonging to the OEM that provides
the service of user-device ownership information. This runs in the cloud. Cloud always

Gupta et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2480 6/28

http://dx.doi.org/10.7717/peerj-cs.2480
https://peerj.com/computer-science/

listens at a hostname (or a fixed IP address). This server is the point of communication to
get the the IP address of the device in case of IP changes. It also manages the user-device
mapping which holds the information about IoT devices affiliated to the user.

Definition: User agents. User agent is simply a client interface through which an IoT-
device is accessed by user. Basically it is a device on which ICA runs. For example, a
smartphone, tablet, laptop, etc. With the help of user-agent, one can control the IoT
devices.

The interaction between these entities in the architecture are defined in the protocol’s
phases as explained later under “Open OneIoT Protocol”.

Open OneIoT protocol
In the IoT paradigm, the key feature is that an IoT-device can be uniquely accessed by its
IP address. Once an IoT-device gets an IP-address, an IoT protocol defines a standard
sequence of steps or phases that brings the device’s capabilities delivered to its user. There
are several IoT protocols applicable at different layers. Our Open OneIoT protocol is at the
application layer. There are several steps in the protocol which are systematically anchored
through a small manifest file. The Open OneIoT protocol includes the following phases in
that sequence:

1) Discovery;

2) Registration;

3) Probe/Advertisement;

Network Access

Internet

Transport

Application

Open OneIoT

Figure 2 Protocol stack. Full-size DOI: 10.7717/peerj-cs.2480/fig-2

Gupta et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2480 7/28

http://dx.doi.org/10.7717/peerj-cs.2480/fig-2
http://dx.doi.org/10.7717/peerj-cs.2480
https://peerj.com/computer-science/

4) Invocation;

5) Configuration.

The protocol message format includes header and payload. Message structure is
described in Fig. 3. Every phase in the protocol includes a well defined payload structure.
The payload structures transmitted during the Request and Response-phases is given in
Figs. 4 and 5, respectively. For example, in the case of a PROBE-request, the protocol name
entry will be PROBE; while the operation name and arguments entries will be empty. In
Fig. 6, Point 4 corresponds to the protocol’s request payload; while Point 5 in corresponds
to the protocol Response-payload.

The security concerns can be addressed via techniques such as: encryption,
authentication, firewalls on the terminal points, rate limiting, and other techniques as

Figure 4 Protocol request payload. Full-size DOI: 10.7717/peerj-cs.2480/fig-4

Figure 5 Protocol response payload. Full-size DOI: 10.7717/peerj-cs.2480/fig-5

Figure 6 Manifest concept explanation. Full-size DOI: 10.7717/peerj-cs.2480/fig-6

Figure 3 Request/response message structure. Full-size DOI: 10.7717/peerj-cs.2480/fig-3

Gupta et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2480 8/28

http://dx.doi.org/10.7717/peerj-cs.2480/fig-4
http://dx.doi.org/10.7717/peerj-cs.2480/fig-5
http://dx.doi.org/10.7717/peerj-cs.2480/fig-6
http://dx.doi.org/10.7717/peerj-cs.2480/fig-3
http://dx.doi.org/10.7717/peerj-cs.2480
https://peerj.com/computer-science/

surveyed in Lee (2020). We employ the encryption technique in our protocol (Banda,
Chaitanya & Mohan, 2015). In all phases, the messages are encrypted. There are several
advanced techniques for mitigating different kinds of attacks as reported in Tripathi &
Hubballi (2022). Since IoT-device hardware is resource constrained, by using state-of-the-
art D/DoS filter services available on cloud these attacks can be averted. The idea is that all
the inbound traffic to the IoT-device would always be routed via this cloud-filter.

The Discovery-phase makes it possible for discovering the IoT-device by performing a
local scan via WiFi, Ethernet over LAN, Bluetooth and other short ranged protocols.

The Registration-phase involves the discovery of the IoT device via IP-based
communication. User-agent shares the IoT device credentials with the remote host on the
cloud. After verification, the remote host shares the IP address of the IoT device with the
ICA hence IoT device gets connected with ICA.

In the Probe/Advertisement-phase, the IoT device sends the manifest file to the ICA,
which by interpreting the manifest file generates the graphical user interface on the fly. The
manifest-file pronounces the functionalities for the associate IoT-device in a standard
manner compliant with the manifest grammar that is presented later.

There are two scenarios for the joining of new nodes, it could be that the new node is: (i)
an IoT-device node and (ii) a new user-agent node. The OneIoT protocol includes
solutions for both these scenarios through its: (a) Discovery and Advertisement phase,
where new IoT-device nodes gets onboarded and (b) Registration phase, which lets a new
user-agent paired with the IoT-device.

Now, in the Invocation phase, the user invokes/requests any operation on the IoT device
by using the GUI generated in the probe phase.

The generic configurations of a device is addressed in the Configuration-phase of the
protocol. For example tick rates, security parameters and other protocol variables. These
changes can be helpful in improving the performance of the system.

The Sequence diagram corresponding to protocol’s Registration, Probe and Invoke
phases are shown in an integrated fashion in Fig. 7. An elaborate explanation on these
phases can be found in Banda, Chaitanya & Mohan (2015) and Banda et al. (2017), where
OneIoT protocol was reported. Open OneIoT suite retains the OneIoT protocol’s phases.

Steps and illustration
The IoT-device manufacturer will generate the manifest-file (steps for generation is
defined in “Illustration of MMF Generation”) and place it in the IoT-device. It is in the
non-volatile flash memory of the microcontroller. When a user purchases the IoT device, it
is already equipped with the manifest file provided by its OEM. Additionally, manufacturer
also provides the first time device registration credentials.

Once the device starts up, it will automatically connect to the cloud (see point 1 in
Fig. 6). The user will download and install the IoT-device Control App (ICA) on their
smartphone (client node). This ICA when launched for the first time lets choose
appropriate options and pair an IoT-device. After pairing has been done, next step is
registration.

Gupta et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2480 9/28

http://dx.doi.org/10.7717/peerj-cs.2480
https://peerj.com/computer-science/

For registration purpose, a user will fetch the device’s and OEM’s details (see
“Experimentation” in Screenshot 3 & 4) which the device’s OEM has already shipped to
the user along with the IoT-device. These credentials after keyed-in on the client-node and
will get authenticated by the cloud-node. Once authenticated, the cloud-node will share the
IP-address of the device (see point 2 in Fig. 6). Once Registration succeeds, manifest-file
gets transferred (see point 3 in Fig. 6) to the ICA and the ICA generates the UI (see
“Experimentation” in Screenshot 5). Now, user can invoke any operation on the device by
selecting the associated options in the GUI (see point 4 in Fig. 6). Once the operations are
invoked on the ICA App, the corresponding IoT-device will receive a message, which is
checked for its validity and the requested-operation is carried out and accordingly the
status is updated to the ICA (see point 5 in Fig. 6). The “Experimentation” section details
more on these steps.

OPEN ONEIOT IMPLEMENTATION
In this section, we elaborate on the realisation of Open OneIoT protocol with a focus on
the implementation of the manifest file concept. Since this manifest-file is transferred
between devices post appropriate authorisation, we chose to specify it in a JSON file. JSON
(Zhang et al., 2017) is a popular Data-interchange-format that has gain popularity in IoT
paradigm (Hou et al., 2017). We defined a grammar for specifying the manifest in this
format. Though JSON and XML are popular format, we chose JSON over XML, for three
reasons of (Wehner, Piberger & Göhringer, 2014; Rasool et al., 2019): (i) JSON is
lightweight as it has no markup overhead as that of XML; (ii) for the same data
JSON-encoding is much more compact in size as compared to that of XML-encoding and
(iii) that XML-file need more processing power than that with JSON-file.

Figure 7 Protocol sequence diagram: registration, probe and invoke phases.
Full-size DOI: 10.7717/peerj-cs.2480/fig-7

Gupta et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2480 10/28

http://dx.doi.org/10.7717/peerj-cs.2480/fig-7
http://dx.doi.org/10.7717/peerj-cs.2480
https://peerj.com/computer-science/

IoT-device manifest file
In our Open OneIoT architecture, the most important concept is the ability to declare the
capabilities of the IoT-device in the Main Manifest File (MMF). It includes details about
the device’s functionality, particularly, the controllability related details. There are two
kinds of manifest files:Main-manifest-file (MMF) and Sub-manifest-file (SMF). The MMF
is mandatory; while the SMF is optional.

A manifest-file consists of two types of sections: (i) Required section/s: These sections
are essential and are interpreted by the associated ICA to reveal the minimum required/
basic behaviour of that IoT-device. Of these sections, it is mandatory that the main
manifest file shall include either a sensor (see “Main Manifest File”) or actuator (see “Main
Manifest File”) and (ii)Optional section/s: These are sections such as device, oem, location
and mode, which are optional sections, for these might not be the essential functionalities
offered by a device.

Main manifest file

Themain manifest-file (MMF) captures the list of all predefined-set of functionalities of an
IoT-device. This file is must for a device and it can not be modified by a user. It consists of
sections, such as:

– Device;

– OEM;

– Sensor;

– Actuator and

– Mode.

Device This section provides information about the device such as: device-name,
domain of the device (smart-home, medical, etc.), installation-type, etc.

OEM The OEM-section provides information about the manufacturer of the device.
This will be helpful in identifying the OEM-server. It includes the URL of the server, with a
Hostname/IP-address along with a port-number.

Sensor A device can have various sensors attached to it. All the sensors of the device will
be listed under this section. The Sensor’s value is read-only value and a client can not make
any changes to the value. For example, smart-wearables might have sensors (for example:
Accelerometer, Pulse-oximeter, Temperature-sensor, Proximity-sensor, Pulse-sensor,
etc.), which collect the data about a person’s vitals and send this data to the ICA running on
the smartphone (client node). However, if it is on the actuator version, then the SET
operation with actuator name is invoked. This is explained under the Actuator section
next.

To get a sensor’s current reading value, the ‘invoke’ operation can be utilised (see Fig. 8).
Here, the get method of Invoke type on the wire will instruct the device to send the sensor’s
value as an Invocation response.

Actuator: Actuator is a component in the IoT-device that can be controlled by a user.
All such actuators are defined under this section of main manifest file. Here, we have the

Gupta et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2480 11/28

http://dx.doi.org/10.7717/peerj-cs.2480
https://peerj.com/computer-science/

definition of the actuators like its description and data-type. This information is helpful in
generating the GUI for the actuators available in the IoT-device. Later, this GUI is accessed
by user for invoking any operation on the IoT device.

For example, in an RGB LED we have colour and brightness as actuators. For
controlling, we can have set and get both types of invoke methods as illustrated in Fig. 8. To
get the current value of the actuator, GET method will be utilised and for changing the
value, Invoke type will be SET and device will set the actuator’s value given in the payload
and send an Invocation response to the user-interface.

Mode: Mode is the group of actuators having some fixed predefined or user-defined
values. Predefined-modes are saved in main manifest file and user-defined modes are saved
in sub manifest file. OEM provides the predefined-modes of a device. A user can invoke the
mode by selecting it. Sometimes, having pre-defined values for a group of actuator is
beneficial as this will save time for the user and any chance of assigning wrong value to
actuator can be avoided completely. For example, in LED bulb, the “night” mode can be
helpful in dimming the light, this will simultaneously set the value of brightness actuator to
low and colour actuator to yellow. This “Mode” is an optional section.

Sub manifest file
Sub manifest file (SMF) will be created by user when s/he adds any new functionality or
information of the device and assign a chosen value. When user resets the device (either via
app or hardware button), this SMF gets deleted. Even when reset, the MMF will remain in
the device. There can only be one SMF on a device. The contents of the sub manifest file are
as follows:

– Mode and

– Location.

Mode: Mode is the group of actuators. It becomes easier when the device has multiple
actuators. These modes are saved in SMF. A user can create the mode by selecting the
desired actuators and choosing their setting-values.

Location: A device can be mounted in a fixed location (for example: AC, fan, lightbulb)
or can be carried anywhere (for example: speaker, wearables, blood glucose meter etc.). The
location information is fetched by the user. In the ICA, devices can be grouped on the basis
of their location and this information helps in taking the decision based on the location of

Figure 8 Invoke operation. Full-size DOI: 10.7717/peerj-cs.2480/fig-8

Gupta et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2480 12/28

http://dx.doi.org/10.7717/peerj-cs.2480/fig-8
http://dx.doi.org/10.7717/peerj-cs.2480
https://peerj.com/computer-science/

the device. This can be helpful in managing the device smartly. For example, in a kitchen,
there can be one fan, one water heater and two LED bulbs installed; one can simply switch
off all the devices by selecting switch off all the appliances in the kitchen location.

Manifest grammar
The manifest-file shall be error-free, because it is shipped with the IoT-device by the
manufacturer and gets processed by the ICA on the user’s smartphone. The ICA generates
the UI on the fly by processing this file. We have defined this Manifest grammar that
makes possible for error free manifest file generation by the device manufacturers. The
grammar explains each section of the given manifest file. We can construct the manifest of
the device with this grammar.

We define the manifest grammar as a 4-tuple G = (V,T,P,S), where:
V \ T = {�};
V: Finite non-empty set of non-terminal symbols;

T: Finite set of terminal symbols;

P: Finite non-empty set of production rules andand

S: Start symbol set.

V->{S, START, OPTIONAL, SENSOR, ACTUATOR, DEVICE, OEM, MODE, LOCATION,

D, NAME, DOMAIN, WARRANTY, INSTALLATION, SW_VERSION, HW_VERSION, O,

SOCKET, M, NAME_VAL, Z, DATA, ACTUATOR_INFO, VALUE, UNIT_VAL, AREA, X,

DESC, SENSOR_TYPE, STRUCT_X, BATTERY, GRAPH, DATA_TYPE, PIE, BAR,

GRAPH_TYPE, CORD1, CORD2, BOOLEAN, NUMERIC, STRING, IMAGE, AUDIO, VIDEO,

MAP, COLOR, DATE, TIME, RANGE, TUPLE, UNIT, R, RVAL, MIN, MAX, STEP,

UNIT_VAL, OPERATION, EXCEPT, TVAL, OPTION, OVAL, SIZE, IMAGE_ATTRIB,

LENGTH, WIDTH, SRC, IMAGE_TYPE, PLAYER_TYPE, PLAYER_ATTRIB, LOOP, MUTE,

ACTUATOR, Y, ACTUATOR_TYPE, STRUCT_Y }

T->{num, pos_num, str, bool, array, jpeg, png, gif, raw, time, [,],

{, },:, ′,′}

S->{S}

P is defined as below:

S ->{START}

START -> OPTIONAL,START |SENSOR | ACTUATOR | SENSOR,ACTUATOR

OPTIONAL -> DEVICE | OEM | MODE | LOCATION

DEVICE ->:{D}

D -> NAME | DOMAIN | INSTALLATION | WARRANTY | SW_VERSION | HW_VERSION | |

D,D NAME, DOMAIN, INSTALLATION, WARRANTY, SW_VERSION, HW_VERSION ->:str

OEM ->:{O}

O -> NAME | SOCKET | NAME,SOCKET

SOCKET ->:str:num

Gupta et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2480 13/28

http://dx.doi.org/10.7717/peerj-cs.2480
https://peerj.com/computer-science/

MODE ->:{M}

M -> M,M | NAME_VAL:{Z}

NAME_VAL -> str

Z -> ACTUATOR_INFO | ACTUATOR_INFO,Z

ACTUATOR_INFO -> NAME_VAL: DATA

DATA -> [VALUE] | [VALUE,UNIT_VAL]

VALUE -> str | num | array

UNIT_VAL -> str

LOCATION ->:[AREA]

AREA -> str | AREA,AREA

SENSOR ->:{X}

X -> X,X | NAME_VAL:{DESC, SENSOR_TYPE} | NAME_VAL:{SENSOR_TYPE}

DESC ->:str

SENSOR_TYPE -> STRUCT_X | BATTERY | GRAPH | DATA_TYPE | {}

STRUCT_X ->:{X, X}

BATTERY ->:{}

GRAPH ->:{GRAPH_TYPE}

GRAPH_TYPE -> PIE | BAR

PIE, BAR ->:[CORD1,CORD2]

CORD1, CORD2 -> num | str | bool | time

DATA_TYPE -> BOOLEAN | NUMERIC | STRING | IMAGE | AUDIO | VIDEO | MAP |

COLOR | DATE | TIME

BOOLEAN ->:[str, str]

NUMERIC ->:{RANGE} |:{TUPLE, UNIT}

RANGE ->:[R,R] |:RVAL

R -> RVAL | R,R

RVAL -> [MIN,MAX,STEP,OPERATION] |[MIN,MAX,STEP,OPERATION,UNIT_VAL]

|[MIN,MAX,STEP,OPERATION,UNIT_VAL,EXCEPT]

MIN,MAX -> num

STEP -> pos_num

UNIT_VAL -> str

OPERATION -> + | * | -1

EXCEPT -> [TUPLE] | [MIN,MAX,STEP,OPERATION]

TUPLE ->:[TVAL]

TVAL -> TVAL,TVAL | num

UNIT ->:str

STRING ->:{OPTION}

OPTION ->:[OVAL]

OVAL -> str | OVAL,OVAL

Gupta et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2480 14/28

http://dx.doi.org/10.7717/peerj-cs.2480
https://peerj.com/computer-science/

IMAGE ->:{SIZE, IMAGE_ATTRIB} |:{SIZE} |:{IMAGE_ATTRIB} |:{}

SIZE ->:[LENGTH, WIDTH, UNIT_VAL]

LENGTH, WIDTH -> pos_num

IMAGE_ATTRIB ->:[SRC, IMAGE_TYPE]

SRC -> str

IMAGE_TYPE -> jpeg | png | gif | raw

AUDIO ->:{SIZE, PLAYER_ATTRIB} |:{SIZE} |:{PLAYER_ATTRIB} |:{}

PLAYER_ATTRIB ->:[SRC, PLAYER_TYPE, LOOP, MUTE, ACTUATOR, AUTOPLAY]

PLAYER_TYPE -> mp4, mp3, ogg, mov, wmv, avi, mpeg, webm

LOOP, MUTE, ACTUATOR, AUTOPLAY -> bool

VIDEO ->:{SIZE, PLAYER_ATTRIB} |:{SIZE} |:{PLAYER_ATTRIB} |:{}

MAP ->:{SIZE} |:{}

COLOR ->:{}

DATE ->:{}

TIME ->:{}

ACTUATOR ->:{Y}

Y -> Y,Y | NAME_VAL:{DESC, ACTUATOR_TYPE} | NAME_VAL:{ACTUATOR_TYPE}

ACTUATOR_TYPE -> DATA_TYPE | STRUCT_Y

STRUCT_Y ->:{Y, Y}

Algorithm
The grammar defined earlier in “Manifest Grammar” forms the basis for the MMF-
generation-tool. The algorithm for traversing the parse tree generated by applying this
grammar is given in Algorithm 1. Here, the ‘isleftmostchild’ is the outer left child of a node.
We have explained the generation of the JSON-code by applying this algorithm in
“Illustration of MMF Generation”.

Algorithm 1 Algorithm for traversing the tree and generating the JSON code

1: Start

2: Go to the start symbol and start traversing the tree from left

3: For each terminal node repeat steps from 4 to 7

4: if (terminal == “:” and isleftmostchild)

5: print(“parent node”)

6: end if

7: print(terminal)

8: Stop

Gupta et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2480 15/28

http://dx.doi.org/10.7717/peerj-cs.2480
https://peerj.com/computer-science/

Figure 9 Tree. Full-size DOI: 10.7717/peerj-cs.2480/fig-9

Figure 10 Mode subtree. Full-size DOI: 10.7717/peerj-cs.2480/fig-10

Gupta et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2480 16/28

http://dx.doi.org/10.7717/peerj-cs.2480/fig-9
http://dx.doi.org/10.7717/peerj-cs.2480/fig-10
http://dx.doi.org/10.7717/peerj-cs.2480
https://peerj.com/computer-science/

Illustration of MMF generation
This section explains the steps involved in generating the manifest file for a device. This is
illustrated by taking an air conditioner (AC) as the running example. The considered AC
unit has features such as: temperature, fan-speed, swing, etc. We have taken the reference
of Havells, LG, Samsung and Whirlpool AC models and their associated mobile-
applications.1 A manifest file for this air conditioner has been written as per the grammar
defined earlier. Below are the steps given for generating the MMF.

Choice of sections and attributes: Firstly, the OEM needs to choose what sections to be
included in the main manifest file Section. The sections were detailed under “IoT-Device
Manifest File”. Next, chosen are the applicable attributes for each section. These attributes
are defined in the “Manifest Grammar”. For example, say required sections are, namely:
device, actuator andmode. Furthermore, under the device-section, the attributes are: name,
domain and installation. Under the actuator section, we can append the hardware
(actuator) which can be controlled by a user. For the AC, actuators: temperature, fan,
swing, power-on/off, etc. can be controlled by the user. We have defined predefined modes
such as: Cool and Dry. As stated earlier in “Main Manifest File (MMF)”, modes are the
combination of actuators. The Predefined modes are already populated with appropriate
fixed-values. For example, here cool-mode is pre-populated with temperature as 16 °C and

Figure 11 Actuator subtree. Full-size DOI: 10.7717/peerj-cs.2480/fig-11

1 These apps are downloadable via app-
stores corresponding to Android and
iOS.

Gupta et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2480 17/28

http://dx.doi.org/10.7717/peerj-cs.2480/fig-11
http://dx.doi.org/10.7717/peerj-cs.2480
https://peerj.com/computer-science/

fan-speed as medium. These attributes are essential details that will be shown on the user-
interface i.e., in the ICA.

Usage of the appropriate production rules for generating the parse tree: By using the
appropriate production rules defined in the “Manifest Grammar”, parse-tree gets created.
In this AC example, as per the defined production rules, ‘S’ is the start symbol i.e., the root
of the tree, it will be reduced to ‘{START}’ by using the production rule ′S -> {START}′ .
Here, ‘{’ and ‘}’ are the terminals and ‘START’ is the non-terminal. So, further ‘START’ will
be reduced by using the appropriate production rule and it will continue until all the leaf
nodes reduce to terminals. Thus, it will create a parse tree as shown in Fig. 9. Figures 10
and 11 are the sub-trees of the tree generated in Fig. 9.

Applying Algorithm 1 to traverse the parse tree: After the parse tree has been created,
the tree can be traversed as per the steps given in the Algorithm 1. First, start from the root-
node (i.e., start symbol) and then consider traversing from left, a for-loop will start in Step

Figure 12 Main manifest file (MMF) example. Full-size DOI: 10.7717/peerj-cs.2480/fig-12

Gupta et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2480 18/28

http://dx.doi.org/10.7717/peerj-cs.2480/fig-12
http://dx.doi.org/10.7717/peerj-cs.2480
https://peerj.com/computer-science/

3. As per the Step 4, the leftmost node is ‘{’ (i.e., terminal) and not equals to ‘:’, hence Step 7
will be executed and it will print the ‘{’. Now, again go to Step 4 and check for the next
terminal, the next terminal node is ‘:’ and ‘isleftmostchild’ is also true, hence Step 5 will be
executed and ‘DEVICE’ (i.e., parent node of ‘:’) will be printed and then as per Step 7 ‘:’ will
be printed. Again the Step 4 will be executed and this will continue until all the terminals
have been evaluated. This will output the JSON-code as shown below:

{“DEVICE”:{“NAME”:“Air conditioner”,“DOMAIN”:“Smart home”,

“INSTALLATION”:“Fixed”},“MODE”

:{“COOL”:{“Temperature”:[16,“C”],“Fan”:[“medium”]},“DRY”:

{“Temperature”:[25,“C”],“Fan”:[“high”]}},“ACTUATOR”

:{“Temperature”:{“NUMERIC”:{“RANGE”:[14,30,0.5,“+”,“C”]}},“Fan”:

{“STRING”:{“OPTION”:[“low”,“medium”,“high”]

}},“Swing”:{“BOOLEAN”:[“up”,“down”]},“Power”:{“BOOLEAN”:

[“on”,“off”]}}}.

Saving the generated code as a JSON-file: After parsing the tree through the algorithm
we get the output produced, which is a JSON-code. Figure 12 shows it in readable format.
Typically, for every controllable feature of an IoT-device, there would be an entry in the
JSON-file. Each of such entries would be of length ranging from 30 to 50 characters (i.e.,
max 50 bytes). For the AC-example, the manifest-file is of 375 bytes size. This can be easily
stored in the flash-memory of microcontroller corresponding to the IoT device. The
transfer of this small manifest file would be almost instantaneous on a high bandwidth
connection. On a 1 Mbps line, this file would take less than 0.4 ms for its transmission.
Once a manifest-file (in JSON-format) is received, the ICA parses to generate the user-
interface on the fly. On user’s smartphones, this parsing and UI-generation would
complete in a fraction of a second. Other competing formats for encoding manifest
could be XML. In the case of manifest being in XML-format, then a server is hosted on
the IoT-device and browser is used to access the device, then it would have resulted in a
very heavy memory-footprint scenario. Our Open OneIoT’s IoT-device side Python
script is less than 2 KB; while a smallest server would be in the order of several MBs. On
the client-side, our Open OneIoT ICA is of 34.5 MB size; while most browsers are
larger than 100 MBs at least. However, reading (resp. writing) the sensors (resp. actuators)
on the IoT-device through server would be difficult and highly resource intensive, as
server runs as a separate process on the IoT-device. To overcome all these drawbacks
associated with XML-formal, in our implementation we chose JSON-format for our
manifest file.

EXPERIMENTATION
In the experimentation, we first did simulation and then we implemented them on
corresponding hardware.

We have simulated the behaviour of these three nodes by writing three different
processes on the same machine in Python language. We have implemented a client-node,
device-node and cloud-node. Here client node (see Fig. 13) is a user-interface for the end-

Gupta et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2480 19/28

http://dx.doi.org/10.7717/peerj-cs.2480
https://peerj.com/computer-science/

Figure 13 Client simulation screen sequence. Full-size DOI: 10.7717/peerj-cs.2480/fig-13

Gupta et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2480 20/28

http://dx.doi.org/10.7717/peerj-cs.2480/fig-13
http://dx.doi.org/10.7717/peerj-cs.2480
https://peerj.com/computer-science/

consumer; whereas IoT-node (see Fig. 14) is the IoT-device and the Cloud-node is for the
OEM’s server, where remote-host is running. We used Twisted framework (Kinder, 2005)
for network programming and by using Kivy framework (Phillips, 2014) for developing

Figure 15 Raspberry IoT node. Full-size DOI: 10.7717/peerj-cs.2480/fig-15

Figure 14 Air conditioner simulation. Full-size DOI: 10.7717/peerj-cs.2480/fig-14

Gupta et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2480 21/28

http://dx.doi.org/10.7717/peerj-cs.2480/fig-15
http://dx.doi.org/10.7717/peerj-cs.2480/fig-14
http://dx.doi.org/10.7717/peerj-cs.2480
https://peerj.com/computer-science/

graphical user interface (GUI). The Cloud-node is also written in Python using Twisted-
framework. All the three processes were run on a single computer having an i7 Processor
with 16 GB RAM running an Ubuntu Linux Operating System.

After a successful simulation setup, we proceeded for a real setup. Towards this, we have
developed an Android-application, called OOneIoT-App, which is the ICA. This App (apk)
was installed on a Samsung Galaxy Android smartphone. The IoT-device node was
implemented with a Raspberry Pi 400 board (McManus & Cook, 2021) (see Fig. 15). For
the Cloud-node (i.e., OEM-server), we installed a server (a process in Python) on an Intel
i7 processor based Ubuntu system. Thus, the three nodes, i.e., thing-node, user-agent-node
and the Remote-host were made to run on three different-machines, which were
connected via internet. The different phases of the protocol in action are explained in the
following together with their corresponding ICA-screenshots.

User login: Firstly, Screenshot 1 shown at the leftmost corner in Fig. 13 corresponds to
the login step. Here you are seeing the landing screen after the ICA App has been installed
on the smartphone. The user has to login into the ICA by providing a Unique user-id. The
user-credentials can be the Email-ID and/or mobile-number with an associated password.
Once these credentials are keyed in on the ICA, the Remote-host on cloud will uniquely
identify and authenticate the client. After a successful Log-in, a list of associated devices
will be displayed (which is saved in user-interface). For the first-time login, this list will be
empty, for no devices have been added by the client. This can be seen in Screenshot 2 of
Fig. 13.

Registration-phase: Here, we illustrate the Registration-phase in the protocol. The
Client via ICA can add any device using Discovery or Registration phase of the protocol.
The Client provides the IoT-node information (such as device-id and password), which are
authenticated by the remote-host. This can be seen in Screenshot 3 & 4 of Fig. 13. In
Screenshot 3, the Client has fetched the details of OEM, this lets the ICA (client) to connect
with the OEM-server. The authentication can be seen in Screenshot 4. The Device-id and
passwords are given to user by the OEM along with the purchase of the device. After
successful-authentication, client will request the IP-address of the device and as a response,
remote-host on cloud will share the IP-address of the device. Remember that, the device
has a heart-beat, which reports the device IP-address to the remote-host.

Probe phase: Once the client has received the IP address of the device, it can directly
connect and communicate with device. Now, there is no need to stay connected with the
server, so client can close the connection with the OEM-server. After connecting with the
device, client will send a PROBE-request packet and as a response, device will send the
probe-response (as defined in the “Open OneIoT Protocol”), which will be the manifest-
file (JSON-file), as shown in Fig. 12. The Client interprets the JSON-file as per the
manifest-grammar and a graphical-user-interface is generated as shown in Screenshot 5 of
Fig. 13. By using this GUI, Client can operate the air conditioner.

Invoke phase: Once probing is done, the client can invoke operations on the device.
Once an operation is invoked, that operation is performed on the device and it will reply
with the response of that invoke (as defined in “Open OneIoT Protocol”). For example, in

Gupta et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2480 22/28

http://dx.doi.org/10.7717/peerj-cs.2480
https://peerj.com/computer-science/

the AC example, if previously the temperature was 16 °C as in Screenshot 5 of Fig. 13, then
the user can now choose to click the increase temperature button (see Screenshot 6) and
this will send an invoke-packet to the device raising the temperature to 16.5 °C. This can be
seen in Screenshot 8 of Fig. 14. Thus, temperature increase has been effected by 0.5 °C in a
single click, because in the main manifest file, the step-size specified is ’0.5’ (see Fig. 12).

In this section, we took the example of an Air-conditioner, because it has complete
characteristics of an IoT device i.e., both sensors and actuators. Thus, the proposed
protocol and grammar is completely capable of handling diverse IoT-devices across
domains. Hence, this Air-conditioner example demonstrates all interactions between
functional entities in the architecture. The entire code-base for this project is made
available as an open-source project via the repository accessible via this hyperlink https://
doi.org/10.5281/zenodo.13836351. We intend to benefit from the cybersecurity related
advantages associated with open-source project as reported in Clarke, Dorwin & Nash
(2009) and Fischer (2005).

SECURITY
In our protocol, the IoT-device, on gaining Internet-access, periodically ‘pings’ the remote-
host (of the OEM). This ensures a constant visibility of the IoT-device from the very
instant it comes live online. This is done by our solution’s ‘tick rate’ parameter, which is
configurable. The remote-host is hardwired to listen to such ‘heartbeats’ from Things,
because of which the local cache always has the last known address. This address is used as
a fallback in the event of an IP-address change. If in case the things IP-address changes, the
next heartbeat logs the new address with the host. Sine the client is not yet aware of this
address change, it might still reach to the outdated address. In that case, any attempts to
invoke a service results in: either (i) a timeout, because no device on that address, or (ii) a
protocol failure or an authorisation failure on the event that another IoT-device takes up
the old-IP. In the second case, the device fails to understand the protocol or understands
the protocol; but cannot authenticate the request due to a key mismatch. These two cases
require a call for a cache update on the client side, and the cloud uses the protocol’s specific
method to update its cache, and retry the request. As we employ salt in the encryption, the
key cannot be broken as explained below.

As IoT-devices’ microcontroller hardware are very constrained, we need to incorporate
security that is affordable by the microcontroller. Since our protocol essentially provide
web-based interfaces for physical devices, any exploitation would lead to compromising
the associated physical systems. The most affordable security is by encrypting ‘raw’ data on
an end-to-end basis, with accepted encryption standards that provide sufficient
encryption entropy. The only fields worth exposing in plain-text would include a header
describing the protocol name and version, along with the encryption type used. As
mentioned in the “Open OneIoT Architecture”, communication would only be possible
post successful registration that would distribute an authorization key, post registration for
communication. The authorization-key itself could be the device-key, or an OAuth2 like
key, which can be revoked as and when needed, to better support multi-client ecosystems

Gupta et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2480 23/28

https://doi.org/10.5281/zenodo.13836351
https://doi.org/10.5281/zenodo.13836351
http://dx.doi.org/10.7717/peerj-cs.2480
https://peerj.com/computer-science/

and is recommended. Our protocol can support both these options. In either cases, because
of salting, the encryption remains robust against correlation-based attacks. Thus, in
designing a secure packet, the presence of a salt (Morris & Thompson, 1979) is very
important. Consider the scenario where an attacker taps into a private network and sniffs
encrypted-packets, which when not salted would lack sufficient entropy allowing the
attacker to correlate the encrypted packets (Chanal & Kakkasageri, 2020; Tewari & Gupta,
2020). For example, salting with a random number generated at the instance of encryption
would increase the entropy of the cipher-text by multiple orders of magnitude.

DISCUSSION AND CONCLUSION
The Open OneIoT platform presented included an application layer IoT protocol that
runs on top of an Operating system, which implements the networking stack. The
experimentation setup, as illustrated in the previous section, consisted of Raspberry
Pi400 board (McManus & Cook, 2021) as the device side node, which runs on Raspberry
PI OS. The illustrated ICA, called Open OneIoT (O2IoT) app, is implemented for the
Android-based smartphones. The manifest is generated by the OEMs of IoT-devices as
per the device capabilities adhering to the manifest-grammar as defined in “Manifest
Grammar”. This grammar makes it possible for automatic generation of the manifest file,
which post successful authentication, gets transferred to the O2IoT ICA on the user’s
mobile phone, as per the defined Open OneIoT protocol phases. The O2IoT app generates
the UI on the fly that lets user access the functionalities of the IoT device.

In the experimentation section, the overall manifest file contents and its exchange
together with UI generation has been explained. This manifest file is in plain text based
JSON-file. If OEMs, due to confidentiality reasons, require that the manifest file to be
encrypted, depending on the need, we can go for appropriate encryption supporting
hardware, with an appropriate OS, this shall be straight forward. In such a case, the Open
OneIoT protocol phases would be pre-fixed with a matching encryption/decryption as
necessary. When the internet connectivity fails, then the ICA would act as an external
peripheral for the IoT-device. The very generic Open OneIoT reference architecture
presented in “Open OneIoT Architecture” resulted in a minimum functionality criteria
definition, which makes a device to go online as an IoT-device. This would form as
guideline for new vendors to develop IoT devices as per the common minimum criteria.

This article introduced an innovative approach for addressing the challenge of
heterogeneity within IoT ecosystems through the implementation of a manifest-file-based
device capability-publishing system. This approach enables IoT-devices to publish their
capabilities in a standard-format thus leading to a seamless integration with our proposed
unified ICA. With the defined manifest-grammar, manifest-files can be validated
automatically and an ICA can generate device-specific user interfaces on the fly, providing
users with a tailored experience for each connected device.

Moreover, our approach significantly simplifies the user experience by eliminating
the need for manual configuration of device interfaces. This is further supported via
preset-modes saved in sub-manifest-file. Furthermore, the developed ICA as a single app
significantly reduces the cognitive load on users.

Gupta et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2480 24/28

http://dx.doi.org/10.7717/peerj-cs.2480
https://peerj.com/computer-science/

In conclusion, the integration of manifest file-based device capability publishing via our
application layer protocol represents a significant step forward in addressing the challenges
of heterogeneity within IoT ecosystems. By providing a standardized mechanism for
describing device capabilities and dynamically generating device-specific user interfaces,
our work would pave the way for a more streamlined, interoperable, and non-
overwhelming user-friendly IoT.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work has been supported by a grant awarded by the TiH-IoT, which is established
under the aegis of the National Mission on Interdisciplinary Cyber Physical Systems
(NMICPS) of the Department of Science and Technology (DST), Government of India.
The corresponding document number is TIH-IoT/2023-12/TDP6/Core/SL-005 with
Project Code TDP06-A-09. There was no additional external funding received for this
study. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
TIH-IoT/2023-12/TDP6/Core/SL-005: TDP06-A-09.

Competing Interests
The authors declare that they have no competing interests. Krishna Chaitanya
Bommakanti is employed by Adonmo. Srinivas K. V. is employed by Motorola Mobility.

Author Contributions
. Nayancy Gupta conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

. Gourinath Banda conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.

. Krishna Chaitanya Bommakanti performed the computation work, prepared figures
and/or tables, and approved the final draft.

. Venkata Srinivas Kothapalli analyzed the data, authored or reviewed drafts of the article,
and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available at GitHub: https://github.com/nayancyiiti/IoT.

Gupta et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2480 25/28

https://github.com/nayancyiiti/IoT
http://dx.doi.org/10.7717/peerj-cs.2480
https://peerj.com/computer-science/

REFERENCES
Alaya MB, Medjiah S, Monteil T, Drira K. 2015. Toward semantic interoperability in oneM2M

architecture. IEEE Communications Magazine 53(12):35–41
DOI 10.1109/MCOM.2015.7355582.

Alsubaei F, Abuhussein A, Shandilya V, Shiva S. 2019. IoMT-SAF: internet of medical things
security assessment framework. Internet of Things 8(3&4):100123
DOI 10.1016/j.iot.2019.100123.

Aman AHM, Yadegaridehkordi E, Attarbashi ZS, Hassan R, Park Y-J. 2020. A survey on trend
and classification of Internet of Things reviews. IEEE Access 8:111763–111782
DOI 10.1109/ACCESS.2020.3002932.

Apple. 2024. Apple Developer. Available at https://developer.apple.com/apple-home/ (accessed 5
February 2024).

Atiquzzaman M, Noura M, Gaedke M. 2018. Interoperability in Internet of Things: taxonomies
and open challenges. Mobile Networks and Applications 24:796–809
DOI 10.1007/s11036-018-1089-9.

Atzori L, Iera A, Morabito G. 2010. The Internet of Things: a survey. Computer Networks
54(15):2787–2805 DOI 10.1016/j.comnet.2010.05.010.

Banda G, Bommakanti KC, Mohan H, Saini MS, Chandra A. 2017. A forward compatible IoT
protocol and framework addressing concerns due to internet-outage. International Journal of
Internet Technology and Secured Transactions 7(3):193–217 DOI 10.1504/IJITST.2017.089773.

Banda G, Chaitanya K, Mohan H. 2015. An IoT protocol and framework for OEMS to make IoT-
enabled devices forward compatible. In: 2015 11th International Conference on Signal-Image
Technology & Internet-Based Systems (SITIS). 824–832.

Bayer J, Forster T, Ganesan D, Girard J-F, John I, Knodel J, Kolb R, Muthig D. 2004. Definition
of reference architectures based on existing systems. Kaiserslautern: Fraunhofer-Gesellschaft.

Brenner M, Unmehopa M. 2008. The open mobile alliance: delivering service enablers for next-
generation applications. Hoboken, NJ: John Wiley & Sons.

Chanal PM, Kakkasageri MS. 2020. Security and privacy in IoT: a survey. Wireless Personal
Communications 115:1667–1693 DOI 10.1007/s11277-020-07649-9.

Clarke R, Dorwin D, Nash R. 2009. Is open source software more secure?. Washington D.C.:
Homeland Security/Cyber Security.

Connectivity Standards Alliance. 2022.Matter protocol specifications. Available at https://csa-iot.
org/wp-content/uploads/2022/11/22-27349-001_Matter-1.0-Core-Specification.pdf. (accessed 10
January 2024).

Cui J, Wang L, Zhao X, Zhang H. 2020. Towards predictive analysis of android vulnerability using
statistical codes and machine learning for IoT applications. Computer Communications
155(1):125–131 DOI 10.1016/j.comcom.2020.02.078.

Dimitrov D. 2016. Medical Internet of Things and big data in healthcare. Healthcare Informatics
Research 22(3):156 DOI 10.4258/hir.2016.22.3.156.

Domínguez-Bolaño T, Campos O, Barral V, Escudero CJ, García-Naya JA. 2022. An overview of
IoT architectures, technologies, and existing open-source projects. Internet of Things
20(4):100626 DOI 10.1016/j.iot.2022.100626.

Donta PK, Srirama SN, Amgoth T, Annavarapu CSR. 2022. Survey on recent advances in IoT
application layer protocols and machine learning scope for research directions. Digital
Communications and Networks 8(5):727–744 DOI 10.1016/j.dcan.2021.10.004.

Gupta et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2480 26/28

http://dx.doi.org/10.1109/MCOM.2015.7355582
http://dx.doi.org/10.1016/j.iot.2019.100123
http://dx.doi.org/10.1109/ACCESS.2020.3002932
https://developer.apple.com/apple-home/
http://dx.doi.org/10.1007/s11036-018-1089-9
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1504/IJITST.2017.089773
http://dx.doi.org/10.1007/s11277-020-07649-9
https://csa-iot.org/wp-content/uploads/2022/11/22-27349-001_Matter-1.0-Core-Specification.pdf
https://csa-iot.org/wp-content/uploads/2022/11/22-27349-001_Matter-1.0-Core-Specification.pdf
http://dx.doi.org/10.1016/j.comcom.2020.02.078
http://dx.doi.org/10.4258/hir.2016.22.3.156
http://dx.doi.org/10.1016/j.iot.2022.100626
http://dx.doi.org/10.1016/j.dcan.2021.10.004
http://dx.doi.org/10.7717/peerj-cs.2480
https://peerj.com/computer-science/

ETSI. 2011. Machine-to-machine communications (m2m); functional architecture. Available at
https://www.etsi.org/deliver/etsi_ts/102600_102699/102690/01.01.01_60/ts_102690v010101p.pdf.

Fernandes E, Rahmati A, Jung J, Prakash A. 2017. Security implications of permission models in
smart-home application frameworks. IEEE Security & Privacy 15(2):24–30
DOI 10.1109/MSP.2017.43.

Fernánez M, Jaimunk J, Thuraisingham B. 2023. A privacy-preserving architecture and data-
sharing model for cloud-IoT applications. IEEE Transactions on Dependable and Secure
Computing 20(4):3495–3507 DOI 10.1109/TDSC.2022.3204720.

Fischer EA. 2005. Creating a national framework for cybersecurity: an analysis of issues
and options. Washington, D.C.: Congressional Research Service. Available at https://sgp.fas.org/
crs/natsec/RL32777.pdf.

Gennari F. 2020. Internet protocol standards for IoT interoperability in the house: open issues in
EU competition law. Intelligent Environments 28:95–104 DOI 10.3233/AISE200029.

Hilbolling S, Berends H, Deken F, Tuertscher P. 2021. Sustaining complement quality for digital
product platforms: a case study of the Philips Hue ecosystem. Journal of Product Innovation
Management 38(1):21–48 DOI 10.1111/jpim.12555.

Hou L, Zhao S, Li X, Chatzimisios P, Zheng K. 2017. Design and implementation of application
programming interface for Internet of Things cloud. International Journal of Network
Management 27(3):247 DOI 10.1002/nem.1936.

Ibarra-Esquer JE, González-Navarro FF, Flores-Rios BL, Burtseva L, Astorga-Vargas MA. 2017.
Tracking the evolution of the Internet of Things concept across different application domains.
Sensors 17(6):1379 DOI 10.3390/s17061379.

Karagiannis V, Chatzimisios P, Vázquez-Gallego F, Alonso-Zarate J. 2015. A survey on
application layer protocols for the Internet of Things. Transaction IoT Cloud Computing 3:11–17
DOI 10.5281/ZENODO.51613.

Kinder K. 2005. Event-driven programming with twisted and python. Linux Journal 2005:6
DOI 10.5555/1053490.1053496.

Lee I. 2020. Internet of Things (IoT) cybersecurity: literature review and IoT cyber risk
management. Future Internet 12(9):157 DOI 10.3390/fi12090157.

Li S, Xu LD, Zhao S. 2015. The Internet of Things: a survey. Information Systems Frontiers
17(2):243–259 DOI 10.1007/s10796-014-9492-7.

Luo Y, Chen X, Ge N, Feng W, Lu J. 2023. Transformer-based device-type identification in
heterogeneous IoT traffic. IEEE Internet of Things Journal 10(6):5050–5062
DOI 10.1109/JIOT.2022.3221967.

McManus S, Cook M. 2021. Raspberry Pi for dummies. Fourth Edition. Hoboken, NJ: John Wiley
& Sons.

Morgner P, Mattejat S, Benenson Z. 2016. All your bulbs are belong to us: investigating the
current state of security in connected lighting systems. ArXiv DOI 10.48550/arXiv.1608.03732.

Morris R, Thompson K. 1979. Password security: a case history. Communications of the ACM
22(11):594–597 DOI 10.1145/359168.359172.

OCF. 2024. GitHub Open Connectivity Foundation. Available at https://github.com/
openconnectivityfoundation (accessed 22 January 2024).

Open Mobile Alliance. 2016. OMA device management protocol. Available at https://www.
openmobilealliance.org/release/DM/V1_3-20160524-A/OMA-TS-DM_Protocol-V1_3-20160524-
A.pdf.

Gupta et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2480 27/28

https://www.etsi.org/deliver/etsi_ts/102600_102699/102690/01.01.01_60/ts_102690v010101p.pdf
http://dx.doi.org/10.1109/MSP.2017.43
http://dx.doi.org/10.1109/TDSC.2022.3204720
https://sgp.fas.org/crs/natsec/RL32777.pdf
https://sgp.fas.org/crs/natsec/RL32777.pdf
http://dx.doi.org/10.3233/AISE200029
http://dx.doi.org/10.1111/jpim.12555
http://dx.doi.org/10.1002/nem.1936
http://dx.doi.org/10.3390/s17061379
http://dx.doi.org/10.5281/ZENODO.51613
http://dx.doi.org/10.5555/1053490.1053496
http://dx.doi.org/10.3390/fi12090157
http://dx.doi.org/10.1007/s10796-014-9492-7
http://dx.doi.org/10.1109/JIOT.2022.3221967
http://dx.doi.org/10.48550/arXiv.1608.03732
http://dx.doi.org/10.1145/359168.359172
https://github.com/openconnectivityfoundation
https://github.com/openconnectivityfoundation
https://www.openmobilealliance.org/release/DM/V1_3-20160524-A/OMA-TS-DM_Protocol-V1_3-20160524-A.pdf
https://www.openmobilealliance.org/release/DM/V1_3-20160524-A/OMA-TS-DM_Protocol-V1_3-20160524-A.pdf
https://www.openmobilealliance.org/release/DM/V1_3-20160524-A/OMA-TS-DM_Protocol-V1_3-20160524-A.pdf
http://dx.doi.org/10.7717/peerj-cs.2480
https://peerj.com/computer-science/

Park S. 2017. OCF: a new open IoT consortium. In: 2017 31st International Conference on
Advanced Information Networking and Applications Workshops (WAINA). 356–359.

Pekar A, Mocnej J, Seah WKG, Zolotova I. 2020. Application domain-based overview of IoT
network traffic characteristics. ACM Computing Surveys 53(4):1–33 DOI 10.1145/3399669.

Phillips D. 2014. Creating apps in Kivy: mobile with Python. Sebastopol, CA: O’Reilly Media, Inc.

Rasool RU, Najam M, Ahmad HF, Wang H, Anwar Z. 2019. A novel JSON based regular
expression language for pattern matching in the Internet of Things. Journal of Ambient
Intelligence and Humanized Computing 10(4):1463–1481 DOI 10.1007/s12652-018-0869-1.

Samsung. 2024. The architecture of smartthings. Available at https://developer.smartthings.com/
docs/getting-started/architecture-of-smartthings/ (accessed 5 February 2024).

Sciacco M. 2022. Integrating IoT devices in 3rd-party smart-home ecosystems: local vs remote
middleware solutions. PhD thesis. University of Padua, Padua, Italy.

Shelby Z, Hartke K, Bormann C. 2014. The constrained application protocol (CoAP). RFC
7252. Available at https://datatracker.ietf.org/doc/html/rfc7252.

Shin D. 2014. A socio-technical framework for Internet-of-Things design: a human-centered
design for the Internet of Things. Telematics and Informatics 31(4):519–531
DOI 10.1016/j.tele.2014.02.003.

Swetina J, Lu G, Jacobs P, Ennesser F, Song J. 2014. Toward a standardized common M2M
service layer platform: introduction to oneM2M. IEEE Wireless Communications 21(3):20–26
DOI 10.1109/MWC.2014.6845045.

Tewari A, Gupta B. 2020. Security, privacy and trust of different layers in internet-of-things (IoTs)
framework. Future Generation Computer Systems 108(4):909–920
DOI 10.1016/j.future.2018.04.027.

Tripathi N, Hubballi N. 2022. Application layer denial-of-service attacks and defense
mechanisms: a survey. ACM Computing Surveys 54(4):86:1–86:33 DOI 10.1145/3448291.

Unwala I, Taqvi Z, Lu J. 2018. Thread: an IoT protocol. In: 2018 IEEE Green Technologies
Conference (GreenTech). 161–167.

Wehner P, Piberger C, Göhringer D. 2014. Using JSON to manage communication between
services in the Internet of Things. In: 2014 9th International Symposium on Reconfigurable and
Communication-Centric Systems-on-Chip (ReCoSoC). 1–4.

Weyrich M, Ebert C. 2016. Reference architectures for the Internet of Things. IEEE Software
33(1):112–116 DOI 10.1109/MS.2016.20.

Yassein MB, Shatnawi MQ, Al-zoubi D. 2016. Application layer protocols for the Internet of
Things: a survey. In: 2016 International Conference on Engineering & MIS (ICEMIS). 1–4.

Zhang Y, Ren J, Liu J, Xu C, Guo H, Liu Y. 2017. A survey on emerging computing paradigms for
Big Data. Chinese Journal of Electronics 26(1):1–12 DOI 10.1049/cje.2016.11.016.

Gupta et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2480 28/28

http://dx.doi.org/10.1145/3399669
http://dx.doi.org/10.1007/s12652-018-0869-1
https://developer.smartthings.com/docs/getting-started/architecture-of-smartthings/
https://developer.smartthings.com/docs/getting-started/architecture-of-smartthings/
https://datatracker.ietf.org/doc/html/rfc7252
http://dx.doi.org/10.1016/j.tele.2014.02.003
http://dx.doi.org/10.1109/MWC.2014.6845045
http://dx.doi.org/10.1016/j.future.2018.04.027
http://dx.doi.org/10.1145/3448291
http://dx.doi.org/10.1109/MS.2016.20
http://dx.doi.org/10.1049/cje.2016.11.016
http://dx.doi.org/10.7717/peerj-cs.2480
https://peerj.com/computer-science/

	A novel IoT-device management platform for on-the-fly generation of user interface via manifest-file addressing heterogeneity
	Introduction
	Related work
	Open OneIoT (O2IOT) Architecture
	Open OneIoT Implementation
	Experimentation
	Security
	Discussion and conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

