
On the development of diagnostic support
algorithms based on CPET biosignals data
via machine learning and wavelets
Rafael F. Pinheiro and Rui Fonseca-Pinto

Center for Innovative Care and Health Technology (ciTechCare), School of Health Sciences
(ESSLei), Polytechnic University of Leiria, Leiria, Leiria, Portugal

ABSTRACT
For preventing health complications and reducing the strain on healthcare systems,
early identification of diseases is imperative. In this context, artificial intelligence has
become increasingly prominent in the field of medicine, offering essential support for
disease diagnosis. This article introduces an algorithm that builds upon an earlier
methodology to assess biosignals acquired through cardiopulmonary exercise testing
(CPET) for identifying metabolic syndrome (MS), heart failure (HF), and healthy
individuals (H). Leveraging support vector machine (SVM) technology, a well-
known machine learning classification method, in combination with wavelet
transforms for feature extraction, the algorithm takes an innovative approach. The
model was trained on CPET data from 45 participants, including 15 with MS, 15 with
HF, and 15 healthy controls. For binary classification tasks, the SVM with a
polynomial kernel and 5-level wavelet transform (SVM-POL-BW5) outperformed
similar methods described in the literature. Moreover, one of the main contributions
of this study is the development of a multi-class classification algorithm using the
SVM employing a linear kernel and 3-level wavelet transforms (SVM-LIN-MW3),
reaching an average accuracy of 95%. In conclusion, the application of SVM-based
algorithms combined with wavelet transforms to analyze CPET data shows promise
in diagnosing various diseases, highlighting their adaptability and broader potential
applications in healthcare.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, DataMining andMachine
Learning
Keywords CPET, Multi-class classification, Early diagnosis systems, Heart disease, Metabolic
diseases

How to cite this article Pinheiro RF, Fonseca-Pinto R. 2025. On the development of diagnostic support algorithms based on CPET
biosignals data via machine learning and wavelets. PeerJ Comput. Sci. 11:e2474 DOI 10.7717/peerj-cs.2474

Submitted 20 June 2024
Accepted 11 October 2024
Published 30 January 2025

Corresponding author
Rafael F. Pinheiro,
rafael.f.pinheiro@ipleiria.pt

Academic editor
Andrea Brunello

Additional Information and
Declarations can be found on
page 20

DOI 10.7717/peerj-cs.2474

Copyright
2025 Pinheiro and Fonseca-Pinto

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.2474
mailto:rafael.�f.�pinheiro@�ipleiria.�pt
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2474
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/


INTRODUCTION
Metabolic syndrome (MS) and heart failure (HF) both constitute significant global public
health issues. MS is a set1 of conditions that occur simultaneously and elevate the risk of
type 2 diabetes, cardiovascular diseases, and other health problems. According to Noubiap
et al. (2022), depending on the criteria applied, the global prevalence of MS can vary from
12.5% to 31.4%. Moreover, prevalence varies across different regions, for example, based
on the Adult Treatment Panel (ATP) III definition and the World Health Organization
(WHO) regions, the prevalence of MS is 32.9% in the Eastern Mediterranean Region,
26.0% in the Region of the Americas, 25.3% in the European Region, and 18.9% in the
African Region. These numbers establish it as one of the most prevalent chronic diseases
worldwide, being associated with higher mortality from various causes (Li et al., 2021).
Conversely, HF is a clinical condition that has a very significant impact on day-to-day life,
gradually becoming incapacitating and occurs when the heart is unable to adequately
pump blood to supply oxygen and nutrient needs. The prevalence of heart failure is on the
rise, affecting approximately 26 million individuals worldwide (Bowen et al., 2020). The
key to attenuating the societal impact of these conditions lies in prevention, early detection,
and appropriate treatment.

Beyond the prevalence issue mentioned above, HF and metabolic syndrome (MS) are
chosen for the classification algorithm in this study because of their well-established
clinical interconnection. MS is a recognized risk factor for the development of HF and
commonly occurs as a comorbidity in HF patients (Purwowiyoto & Prawara, 2021),
particularly in cases of HF with preserved ejection fraction (HFpEF), where an increased
risk of hospitalization is associated with MS (Zhou et al., 2021). Although MS can be
diagnosed through straightforward clinical measurements, such as waist circumference,
fasting glucose, triglycerides, HDL cholesterol, and blood pressure, cardiopulmonary
exercise testing (CPET) offers a non-invasive alternative, avoiding the need for invasive
blood tests. The use of CPET data in the algorithm aims to improve diagnostic accuracy
and inform early intervention strategies, justifying the selection of these two conditions.

CPET is a procedure evaluating the body’s reaction to exercise through integrated
analysis of cardiovascular, respiratory, and metabolic functions. It furnishes vital insights
for diagnosing, prognosticating, and devising treatment strategies for various medical
conditions, encompassing cardiac (Saito et al., 2023), metabolic (Rodriguez et al., 2022),
and pulmonary (Luo et al., 2021) ailments. Health professionals undertake data
interpretation, aiding in evaluating cardiorespiratory capacity, optimizing physical
training regimens and diagnosing diseases.

Conversely, comprehensive analysis underlies the interpretation of CPET data, focusing
on the variables documented throughout the examination. Presently, interpretation aligns
with guidelines and criteria established by medical and exercise physiology associations, as
well as by scientific research serving as benchmarks for result comprehension (primarily
utilizing the flowchart—refer to Kaminsky et al. (2017) and Hansen et al. (2019)). The
flowchart method uses binary decision trees to classify test results into categories like HF or
MS, based on key metrics and normative values (see Fig. 3 in Brown et al. (2022)). Along

1 According to the National Cholesterol
Education Program (NCEP), Adult
Treatment Panel (ATP) III, individuals
are classified as having MS if they meet
three or more of the following criteria
(Zhou et al., 2021): (1) high-density lipo-
protein (HDL) cholesterol less than
40 mg/dl (1.02 mmol/l) for men and less
than 50 mg/dl (1.29 mmol/l) for women;
(2) fasting glucose greater than 100 mg/dl
(5.6 mmol/l); (3) triglyceride levels greater
than 150 mg/dl (1.7 mmol/l); (4) diastolic
blood pressure greater than 85 mmHg or
systolic blood pressure greater than
130 mmHg; and (5) abdominal obesity,
indicated by a waist circumference greater
than 102 cm for men and greater than
88 cm for women.
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this vein, it is recognized that CPET data interpretation for diagnostic purposes remains an
ongoing discussion, and with advancements in artificial intelligence techniques, novel
methods and algorithms have surfaced to assist physicians in delivering more precise
diagnoses and treatment plans.

Within the domain of artificial intelligence, classification algorithms have been essential
in developing diagnostic tools, particularly using strategies of machine learning and
artificial neural networks. In the case of binary classification, the research by Brown et al.
(2022) in artificial neural networks is noteworthy, wherein hybrid models integrating
autoencoders (AE) and convolutional neural networks (CNN) alongside logistic regression
(LR) and principal component analysis (PCA) are devised for classifying HF and MS,
employing a dataset of 15 CPET files for each condition. Regarding machine learning, in
the context of multi-classification, Inbar et al. (2021) demonstrates the efficacy of the
support vector machine (SVM) technique in categorizing diseases such as heart failure,
chronic obstructive pulmonary disease, and healthy volunteers, achieving remarkable
accuracy rates of 100% with a training dataset comprising approximately 70 CPET files per
ailment. Although the methodologies of these studies differ considerably, both produce
highly effective results.

In line with the development of algorithms to support diagnosis using supervised binary
classification and multi-classification techniques for HF and MS diseases, this article
presents an extended version of Pinheiro & Fonseca-Pinto (2023) with significant
additional content. Pinheiro & Fonseca-Pinto (2023) presented a methodology using 3-
level Daubechies wavelet transforms for feature selection and compared the accuracy with
the Brown et al. (2022) methods, obtaining good results for SVM (HF/MS) binary
classification. Now, in this work, the theory advances with new results, for multi-
classification considering the HF, MS and health (H) patient labels. The contributions are
explained in more detail below:

. Based on the literature review performed by the authors, there are no prior studies that
address the creation of algorithms for disease diagnosis using CPET data that integrate
SVM with wavelets.

. This work addresses the use of wavelet transforms for preprocessing the data, presenting
a method for extracting features from CPET data as a highly efficient alternative for
reducing computational costs. An analysis is conducted to compare SVM models with
wavelets at three levels and five levels. This method facilitates a considerable reduction in
the feature dimensionality employed in classification algorithms for analyzing CPET
data. The authors assert that this approach constitutes the primary contribution of the
work, offering an efficient algorithm with minimal computational overhead compared to
Inbar et al. (2021) and Brown et al. (2022).

. This work provides a detailed explanation of the conceptualization of evaluation metrics
used (accuracy, precision, recall, F1-score), both for binary and multi-classification cases.
During the bibliographic research for this work, a scarcity of content addressing the clear
derivation of evaluation metrics for multi-classification was noted. Therefore, the
mathematical operationalization for clarification is formalized through Eqs. (1)–(4),
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contributing in a didactic context on how to obtain evaluation metrics for multi-
classification.

. For binary classification, the SVMmodel utilizing a polynomial kernel combined with 5-
level wavelets (SVM-POL-BW5) presents a new construction methodology and better
performance based on the evaluation metrics, in comparison to other algorithms
employing LR, CNN, PCA and flowcharts, proving to be able to compete with the AE
+LR technique of Brown et al. (2022). For multi-classification, this work with the
methodology and application presented (utilization of CPET data) is world-first, with
the highest ranked model being the SVMwith a linear kernel with wavelets for extracting
3-level features (SVM-LIN-MW3).

. Given that reducing feature dimensions is very important for biosignals originating from
the brain (e.g., electroencephalography data), due to the enormous amount of
information, it is understood that the methodological approach of SVM with wavelets
presented here can be effectively used to support the diagnosis of neurological and
psychiatric diseases.

Figure 1 illustrates the design encompassing all the stages of the process, from the
collection of CPET data to the post-processing of patient data using SVM with wavelet
algorithms. The right side of this figure could be expanded, in the future with new labels, as
the authors intend to advance this research by developing a more comprehensive
algorithm. This enhanced algorithm will use CPET data to assist in diagnosing a broader
range of diseases. The current success of the algorithm in differentiating between MS, HF,
and H demonstrates its potential for wider application. The goal is, in the future, to apply
this methodology to identify additional conditions, including pulmonary-vascular and
mechanical-ventilatory disorders. By incorporating more diverse training data, the
algorithm can be further refined to distinguish between a broader spectrum of pathologies
and identify patients with several overlapping conditions, thereby enhancing diagnostic
accuracy for a great range of diseases.

The rest of the article is structured as follows: the Methods section deals with the main
theoretical basis for the development of the algorithms and methodologies are presented;
in the Results section, the algorithms developed and their performance are presented with
comparisons; the Discussion section presents a brief discussion of some of the issues
addressed in this work; and ultimately, the article closes with the Conclusion section,
which provides a summary of the findings and future work is proposed.

METHODS
This section presents all the concepts and methods used to create and validate the
algorithms presented in this work.

Datasets
The dataset selected for this study comes from other datasets from relevant studies carried
out previously. Below are details of the original datasets for MS, HF and H, as well as
details of the dataset selected for training the algorithms presented in this study.
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Original metabolic syndrome and heart failure datasets
For MS and HF, the data used to develop the algorithms was obtained from rigorously
conducted studies supported by renowned institutions, such as the National Institute of
Health/National Heart Lung and Blood Institute (NIH/NHLBI) and the American Heart
Association. Data for MS was gathered from a research study funded by the (NIH/NHLBI),
“Exercise dose and metformin for vascular health in adults with metabolic syndrome”.
Data on HF originated from patient research funded by the American Heart Association,
“Personalized Approach to Cardiac Resynchronization Therapy Using High Dimensional
Immunophenotyping”, as well as the NIH/NHLBI, “MRI of Mechanical Activation and
Scar for Optimal Cardiac Resynchronization Therapy Implementation”. For easier access
to the data, the article of Brown et al. (2022) made the MS and HF dataset available on
GitHub (https://github.com/suchethassharma/CPET).

The study’s eligibility criteria for participants with MS and HF included specific age and
health parameters. For MS, adults aged 40 to 70 years with a BMI between 27 and 47 kg/m2

were included, provided they were not diagnosed with Type 2 diabetes and were not
engaging in more than 60 min of exercise per week. Participants needed to meet at least
three out of five Metabolic Syndrome criteria1. Exclusion criteria for MS included morbid
obesity, recent significant weight changes, and a history of chronic diseases that could
affect study outcomes. For HF, eligible participants were adults over 18 and 85 years old
with chronic systolic heart failure and a left ventricular ejection fraction (HFrEF) of 35% or
less. Some volunteers also had to meet Class I or IIa directives for the resynchronized
cardiac therapy (Epstein et al., 2008). HF patients with contraindications to cardiac
magnetic resonance imaging (CMR), such as those with implantable devices or certain
medical conditions, were excluded. Further details can be found in other articles that were
published from the projects mentioned or used their datasets, for example Gaitán et al.
(2019), Heiston et al. (2019), Malin et al. (2019), Bilchick et al. (2020), Gao et al. (2021),
Auger et al. (2022), Brown et al. (2022), and in the respective projects links provided for MS
(https://reporter.nih.gov/search/PoZvzQo230OWPUeVJHEr1g/projectdetails/9934226)
and HF (https://reporter.nih.gov/search/u0O4hSNlh0eH8Jj84y-Y0A/projectdetails/
9544361).

Figure 1 Illustration of the diagnostic support system from CPET data.
Full-size DOI: 10.7717/peerj-cs.2474/fig-1
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All patients underwent CPET on a treadmill, following a protocol divided into three
phases: rest, exercise, and recovery. During the exercise phase, the treadmill’s incline and
speed were progressively increased. The Exercise Physiology Laboratory (EPL) at the
General Clinical Research Center (GCRC) of the University of Virginia conducted the
CPET, ensuring accurate data collection, which includes respiratory measurements and
heart rates. All the variables provided by CPET captured from the volunteers with MS and
HF, according to GitHub (https://github.com/suchethassharma/CPET) are shown in
Table 1. Note that this table lists all the variables used in this work, from where they were
obtained and the classification application made.

Original healthy dataset

CPET data from healthy volunteers was obtained from the Exercise Physiology and
Human Performance Laboratory at the University of Malaga (UM). The data was found in
the Physionet database (Goldberger et al., 2000) published by the article (Mongin, Romero
& Cruz, 2021), as previously used in Mongin et al. (2021). This dataset includes
information from 992 exercise tests conducted between 2008 and 2018.

Inclusion criteria required participants to be athletes (amateur or professional), healthy,
and aged between 10 and 63 years. Participants had to voluntarily agree to the maximal
exercise test, with written informed consent obtained from all participants and legal
guardians for those under 18 years of age. There were no specific exclusion criteria
mentioned beyond standard safety guidelines for exercise testing. The research adhered to
the guidelines of the Declaration of Helsinki and received approval from the Ethics Review
Board of the UM, ensuring participant protection and well-being.

The procedure for gathering data required administering a maximal graded exercise test
(GET) on a treadmill from the PowerJog J series. Each test began with a warm-up phase,
where participants walked at 5 km/h, followed by a continuous or incremental effort, with
step increments ranging from 0.5 to 1 km/h. Measurements were recorded continuously,
capturing respiratory metrics on a breath-by-breath basis, while heart rate was tracked
with a 12-lead ECG apparatus. The test was deemed maximal when the participants’
oxygen consumption plateaued, indicating exhaustion. Upon finishing the task, the
treadmill’s pace was lowered to 5 km/h, and participants continued walking to prevent
vasovagal syncope. Measurements were taken using specialized equipment, Including the
MedGraphics CPX metabolic gas analysis system and the Mortara ECG machine with 12
leads, all overseen by sports science professionals. Table 1 presents all the variables
collected from the CPET of healthy volunteers provided by Mongin, Romero & Cruz
(2021).

Dataset for this work
The dataset for this work, in the treadmill test model, comprised 45 individuals, including
15 with a diagnosis of MS, 15 with HF, and 15 healthy (H) individuals. The dataset for MS
and HF originates from the information provided in the subsection “Original Metabolic
Syndrome and Heart Failure Datasets” and was obtained from the GitHub repository
(https://github.com/suchethassharma/CPET). Meanwhile, the dataset for Healthy (H)
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subjects is based on the details outlined in the subsection “Original Healthy Dataset” and
was sourced from the PhysioNet database (Mongin, Romero & Cruz, 2021). In the case of
H, the 15 oldest volunteers were taken from the original database, in order to have a sample
that was closer to MS and HF in terms of age. Thus, the volunteers selected from the
original database of healthy people (H) were of ID TEST: 245_3, 296_1, 377_1, 389_1,

Table 1 CPET variables considered for this work.

Variable description Abbreviation Data source Application

Breath-by-Breath TimeðminÞ GitHub (https://github.com/
suchethassharma/CPET)

Variable not used

Time since the measurement starts TimeðminÞ Mongin, Romero & Cruz (2021) Variable not used

Metabolic equivalents METS GitHub (https://github.com/
suchethassharma/CPET)

Binary classification

Heart rate HRðbeats=minÞ GitHub (https://github.com/
suchethassharma/CPET) and Mongin,
Romero & Cruz (2021)

Binary classification
and multi-
classification

Peak oxygen consumption _VO2ðL=minÞ GitHub (https://github.com/
suchethassharma/CPET) and Mongin,
Romero & Cruz (2021)

Binary classification
and multi-
classification

Peak oxygen consumption is measured in milliliters
of oxygen used in 1 min per kilogram of body
weight

_VO2=kgððml=minÞ=kgÞ GitHub (https://github.com/
suchethassharma/CPET)

Variable not used

Volume of carbon dioxide released _VCO2ðL=minÞ GitHub (https://github.com/
suchethassharma/CPET) and Mongin,
Romero & Cruz (2021)

Binary classification
and multi-
classification

Respiratory exchange ratio RER GitHub (https://github.com/
suchethassharma/CPET)

Binary classification

Ventilation VEðL=minÞ GitHub (https://github.com/
suchethassharma/CPET) and Mongin,
Romero & Cruz (2021)

Binary classification
and multi-
classification

Ratio of ventilation by peak oxygen VE= _VO2 GitHub (https://github.com/
suchethassharma/CPET)

Variable not used

Ratio of ventilation by volume of carbon dioxide
released

VE= _VCO2 GitHub (https://github.com/
suchethassharma/CPET)

Variable not used

Respiratory rate RRðbreaths=minÞ GitHub (https://github.com/
suchethassharma/CPET) and Mongin,
Romero & Cruz (2021)

Binary classification
and multi-
classification

Expiratory tidal volume (expiratory time) VtexðLÞ GitHub (https://github.com/
suchethassharma/CPET)

Binary classification

Inspiratory tidal volume (inhale time) VtinðLÞ GitHub (https://github.com/
suchethassharma/CPET)

Binary classification
and multi-
classification

Speed of the treadmill (inhale time) SpeedðmphÞ GitHub (https://github.com/
suchethassharma/CPET)

Variable not used

Elevation of the treadmill Elevation GitHub (https://github.com/
suchethassharma/CPET) and Mongin,
Romero & Cruz (2021)

Variable not used
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390_1, 486_1, 596_1, 597_1, 598_1, 609_1, 651_1, 653_1, 755_1, 756_1, 856_3. Table 2
displays the demographic information of the samples utilized in this research.

Binary classification was performed using HF and MS data, while multi-classification
included the dataset of healthy (H) volunteers. The CPET dataset offers a comprehensive
array of information garnered during the test. For the binary classification, variables from
the CPET were selected as per Table 1. The same table shows the variables used for multi-
classification. This selection was guided by the availability of data across both databases.
Note that in Table 1, the variables METS, RER, Vtex and Vtin were not included in the
multi-classification, as they were not provided in the dataset of healthy volunteers.

Wavelet transforms
Wavelet transforms, a potent mathematical tool extensively employed in signal and image
analysis, differ from conventional transforms by offering a multiresolution approach. This
approach efficiently captures both local and global signal information. They have emerged
as a promising technique in classification algorithms (Serhal et al., 2022; Iniyan, Singh &
Hazra, 2023). Utilizing wavelet technique in data analysis enables the extraction of relevant
features across various scales and frequencies, thereby providing a more comprehensive
representation of dataset patterns. This capacity to discern discriminative information
across multiple resolutions has spurred the creation of more precise and resilient
classification models in various domains, including pattern recognition, image processing,
and medical diagnostics.

In the application of a wavelet transform, the signal undergoes decomposition into
levels (d1, d2, d3,…), each representing details at distinct frequencies. The coefficients
within these decompositions elucidate the contributions of each level to the overall
portrayal of the original signal. These wavelet coefficients facilitate a detailed examination
of the signal across various resolutions. This study employed the Daubechies wavelet of
second order with three (d1, d2, d3) and five levels (d1, d2, d3, d4, d5) along with an
approximation for the CPET variables (ap).

Features and labels
Features represent the data components utilized in training classification algorithms, while
labels denote the classifications assigned to these features. For instance, consider the heart
rate (HR) and respiratory rate (RR) data of a patient. Features can encompass the raw

Table 2 Mean and standard deviation of the demographic variables of the volunteers in this study.

Condition HF MS H ALL

Sample size 15 15 15 45

Gender (Female) 26% 93% 26% 48%

Age 69.3 [58.6, 80.0] 56.9 [49.9, 63.8] 55.2 [49.5, 60.9] 60.5 [50.3, 70.6]

Height (cm) 169.9 [160.2, 179.6] 155.2 [112.1, 198.2] 167.3 [159.2, 175.4] 164.1 [138.0, 190.2]

Weight (kg) 101.8 [81.1, 122.5] 98.1 [83.2, 113.0] 67.0 [53.7, 80.3] 89.0 [66.3, 111.6]

BMI 35.4 [28.2, 42.6] 35.5 [30.7, 40.2] 23.7 [20.9, 26.6] 31.5 [24.0, 39.1]
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variables themselves (HR and RR), resulting in a sizable dataset. However, for
computational efficiency, parameters can be derived from these variables, such as the
mean. Consequently, the features for this patient would comprise the mean HR and RR.
Conversely, labels correspond to the classifications associated with the patient’s features;
for instance, a non-diabetic patient may be assigned label 0, whereas a diabetic patient
would receive label 1. Hence, a collection of data from multiple patients forms the basis for
algorithm training. The larger the patient cohort for training, the more adept the algorithm
becomes at disease detection. Further insights into feature extraction are available in
Subasi (2007), Xing et al. (2011).

For this work, the features were extracted from the CPET variables presented in Table 1.
In order to experiment and identify the best models, the features were organized into two
main categories: one set for binary classification tasks and another set for multi-class
classification tasks. Figure 2 lists all the types of features used in this work.

In binary classification, three types of features are adopted. The first type, called X
(Fig. 2A), is the simplest and consists of the mean and variance of each variable, with the
first 15 rows corresponding to the data of HF patients and the other 15 rows for data of MS
patients. The X characteristic was constructed using the means and variances of the
variables. Figure 2A shows how the data is presented to the algorithm, i.e., an X matrix
with a dimension of 30 rows and 16 columns. The second set of features (Fig. 2B), referred
to as BW3, it includes the average and variance of the wavelet transform coefficients across
three levels (d1, d2 and d3), so the matrix of features for this case has a dimension of 30
rows by 64 columns. The last type of feature for binary classification is shown in Fig. 2C,
which has five levels and a dimension of 30 rows by 96 columns. For the labels, the first 15
rows correspond to data from HF patients and the other 15 rows to data fromMS patients.

In multi-classification, two types of features are extracted. The first type (Fig. 2D),
includes the mean and variance of the wavelet transform coefficients of five levels, called
MW5. The MW5 matrix has 45 rows by 60 columns. The second type (Fig. 2E), contains
the variance and mean of the wavelet transform coefficients of three levels, called MW3.
This matrix has 45 rows by 40 columns. For the labels, the first 15 rows correspond to
data from patients with HF, from the 16th to the 30th rows correspond to volunteers
with MS, and from the 31st to the 45th correspond to healthy volunteers. To improve
understanding, the content of the features is summarized with the type of feature, the
number of levels and the number of rows in Table 3.

To extract all the features containing wavelets, specific code was used viaMatlab R2020a
that integrated the SVM models to create the diagnostic algorithms that will be presented
in the results section.

Support vector machine
Proposed by Boser, Guyon & Vapnik (1992), the support vector machine (SVM) is a
supervised machine learning technique used for both classification and regression, aiming
to identify the optimal hyperplane in multidimensional spaces to separate classes of data.
Stemming from its effectiveness is the process of enlarging the margin between the support
vectors, which represent the nearest points to the decision boundaries (see Fig. 3). This
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approach permits robust generalization even in complex, high-dimensional datasets,
rendering it a prominent choice in various data analysis and pattern recognition
applications.

Table 3 Summary of the features with their applications and dimensions.

Feature type Application Wavelet levels Rows Columns

X Binary Not applicable 30 16

BW3 Binary 3 30 64

BW5 Binary 5 30 96

MW3 Multi-class 3 45 64

MW5 Multi-class 5 45 96

Figure 2 Features used to build the algorithms: (A) features for binary classification extracted from the means and variances of the CPET
variables; (B) and (C) features for binary classification extracted from the means and variances of the coefficients of the wavelet
transforms of 3 and 5 levels respectively; (D) and (E) features for binary classification extracted from the means and variances of the
coefficients of the wavelet transforms of 5 and 3 levels respectively. Full-size DOI: 10.7717/peerj-cs.2474/fig-2
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Some of the SVM variants are determined by their kernels. In this work, constructions
using linear, polynomial and radial basis function (RBF) kernels are made. The linear SVM
is used to separate linearly separable classes, while polynomial SVMs are used for non-
linearly separable datasets through transformations. The RBF SVM, on the other hand, is
highly powerful, mapping the data into a high-dimensional space to separate complex
classes.

For multi-classification, several methods have been proposed to combine multiple
SVMs from two classes in order to build a multi-class classifier. In this work, using
Matlab’s fitcecoc function, the “one-vs-one” with error-correcting output codes (ECOC)
model approach is used, which was developed by Dietterich & Bakiri (1994) and applied to
support vector machines by Allwein, Schapire & Singer (2000).

Validation process
To validate the algorithm, the cross-validation k-fold was the validation procedure used
(see more in Wong & Yeh (2019)). The k-fold cross-validation method is a valuable
technique in machine learning, especially when working with limited datasets, as is the
case in this study. As made by Pinheiro & Fonseca-Pinto (2023), the k-fold cross-validation
method splits the dataset into k equal parts. The model is trained k times, using one subset
for testing and the remaining k� 1 for training. After k iterations, the results are averaged
to provide a single performance metric. This ensures efficient data usage and unbiased
model evaluation. In this work, a 5-fold cross-validation is applied, where the dataset is
divided into five parts. Each model is trained on 4/5 of the data and tested on the
remaining 1/5, repeating this process five times. The results are the mean performance of
the five rounds of 5-fold cross-validation. For cross-validation, the crossval function in

Figure 3 Illustration of binary classification and multi-classification with different kernels. Full-size DOI: 10.7717/peerj-cs.2474/fig-3
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Matlab is used, which does not implement stratification and shuffling automatically (more
on this issue is covered in the Discussion section).

The evaluation metrics were gathered following the 5-fold cross-validation process. The
metrics used in this work include precision, accuracy, F1-score and recall. These metrics
have also been defined and employed in various studies, such as Brown et al. (2022) and
Chen et al. (2023). The metrics are defined as follows.

. Accuracy indicates the model’s performance as a whole by calculating the ratio of correct
classifications (positive and negative) to the total number of predictions. Although it
provides a good general overview, it may be misleading, for example, in cases of class
imbalance, descriptors overlapped or outliers (Morales et al., 2020; Michelucci et al.,
2021).

. Precision calculates the ratio of true positives to all positive predictions made by the
model, indicating the number of predicted positives that are truly positives.

. Recall, also known as revocation or sensitivity, measures the percentage of true positive
cases correctly detected by the model. This is crucial in scenarios where failing to identify
positive cases is critical (False Negatives).

. F1-score is the harmonic mean of precision and recall, and offers a single metric that
balances the trade-off that exists between them. A low F1-score indicates that either
precision or recall is low, making it a useful measure when both metrics are important.

Each formula for these metrics is derived from the confusion matrix (see Fig. 4).
For a binary classification, the confusion matrix generated has a dimension of 2� 2,

where the values of the evaluation metrics (A, R, P and F1) are obtained directly according
to Fig. 4. In the case of multi-classification, the confusion matrix will be dimensioned
according to the number of classes (labels). In order to extract the evaluation metrics in
multi-classification, it is necessary to reduce the confusion matrix for each classification
label, obtaining the shape of Fig. 4. In this work, to calculate the evaluation metrics in
multi-classification (Am, Pm, Rm and F1m), one considers obtaining a real overall confusion
matrix C3�3, where the values TPm, FPm, FNm and TNm are obtained according to Eqs.
(1)–(4), respectively, where, if m ¼ 1, one has label HF; if m ¼ 2, the label is MS; and if
m ¼ 3, the label is H. For a number of n labels, take m ¼ 1; 2; 3;…; n.

TPm ¼ Cm;m; (1)

FPm ¼
Xn

j¼1

Cm;j � TPm; (2)

FNm ¼
Xn

i¼1

Ci;m � TPm; (3)

TNm ¼
Xn

i¼1

Xn

j¼1

Ci;j � TPm � FPm � FNm: (4)
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RESULTS
Figure 5 presents the algorithms developed in this work (double circles in the figure).
Moreover, it shows the process of construction and validation, including the main Matlab
functions used. The diagram covers the entire structure that encompasses the phases of
reading the raw data, creating the features, creating the SVM model and validation. The
remainder of this results section is divided into two parts. The first part covers the
performance of the algorithms in binary classification, including comparisons with other
results in the literature. The second part presents the performance of the algorithms in
multi-classification.

Results for binary classification
Table 4 shows the evaluation metrics of the binary classification algorithms (HF or MS)
created in this study. For the model with feature X, the SVM algorithm with a linear kernel
(SVM-LIN-X) gave the best result compared to the polynomial kernel and RBF algorithms.
Looking at this table, it can be seen that the SVM model with a polynomial kernel for
binary classification with 5-level wavelets (SVM-POL-BW5) is the best performer
(highlighted in bold). Also note that the confusion matrix generated in this case has
dimension 2� 2, so the metrics were calculated by directly applying the formulae in Fig. 4.

Table 5 shows comparisons of the metrics of the SVM-POL-BW5 algorithm (the best
performer according to Table 4) with other algorithms developed in other articles. The
algorithms being compared are the Flowchart method, convolutional neural networks
(CNN), and hybrids: principal component analysis with logistic regression (PCA+LR); and
autoencoder with logistic regression (AE+LR). It should be noted that this comparison was
conducted honestly, i.e., the same databases were used for all the algorithms, which also
carried out the binary classification of HF and MS diseases. It can be seen from this table

Figure 4 Confusion matrix and formulas of the evaluation metrics. Full-size DOI: 10.7717/peerj-cs.2474/fig-4
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that the algorithm developed in this study performed better than the other three types of
algorithms compared, coming second only to the AE+LR algorithm.

Results for multi-classification
Table 6 shows the evaluation metrics obtained for the multi-classification algorithms.
These metrics were obtained using the Eqs. (1)–(4), and then the equations in Fig. 4 for
each label. Next, Table 7 shows the ranking of the algorithms according to their
performance. The values for Table 7 were obtained by calculating the simple mean of the
results in Table 6, for example, the accuracy of the SVM-LIN-MW3 algorithm was

Figure 5 Algorithm development and validation process.
Full-size DOI: 10.7717/peerj-cs.2474/fig-5
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obtained by calculating the mean of the accuracy of HF, MS and H, i.e., ð95þ 93þ 97Þ=3.
Finally, Fig. 6 shows a multicriteria analysis chart built from the results of Table 7. In this
way, it is possible to see graphically the performance of each algorithm based on its domain
region, i.e., the larger the region of coverage, the better the algorithm’s performance.

DISCUSSION
Firstly, this work clarifies some issues that arise in Pinheiro & Fonseca-Pinto (2023). The
first concerns the inclusion of data from healthy volunteers; the second is the verification of

Table 4 Comparisons between the algorithms in this study and the number of wavelet levels for
binary classification. Bold indicates the method with the best performance.

Method Accuracy (%) Precision (%) Recall (%) F1-score (%)

SVM-POL-BW(3/5) 89/94 87/90 93/100 90/94

SVM-LIN-BW(3/5) 92/93 88/88 98/100 93/93

SVM-RBF-BW(3/5) 87/90 85/87 89/94 87/90

SVM-LIN-X 83 91 73 81

SVM-POL-X 74 74 73 73

SVM-RBF-X 71 74 68 70

Table 5 Comparisons with other methods in the literature for binary classification. Bold indicates the
method with the best performance.

Method Accuracy (%) Precision (%) Recall (%) F1-score (%)

1. AE+LR (Brown et al., 2022) 97 94 100 97

2. SVM-POL-BW5 94 90 100 94

3. CNN (Brown et al., 2022) 90 100 80 86

4. PCA+LR (Brown et al., 2022) 90 93 87 90

5. Flowchart (Kaminsky et al., 2017) 77 78 93 85

6. Flowchart (Hansen et al., 2019) 70 100 53 70

Table 6 Comparisons between the SVM (multi-classification) algorithms in this study and the
number of wavelet levels. Bold indicates the method with the best performance.

Method Label Accuracy (%) Precision (%) Recall (%) F1-score (%)

HF 95/91 95/93 91/83 93/87

SVM-LIN-MW(3/5) MS 93/88 90/81 90/84 90/83

H 97/97 93/92 100/100 96/95

HF 87/87 73/67 86/93 79/78

SVM-POL-MW(3/5) MS 80/78 86/94 65/61 74/74

H 93/90 81/72 98/100 88/83

HF 46/44 81/69 36/33 49/45

SVM-RBF-MW(3/5) MS 64/56 24/33 34/35 28/33

H 68/61 13/17 68/7 20/10
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the SVM model with different numbers of wavelet levels; and, finally, the use of more
evaluation metrics. In relation to the inclusion of data from healthy volunteers, this work
responds by creating a multi-classification algorithm, which is innovative in relation to
Pinheiro & Fonseca-Pinto (2023) and Brown et al. (2022). With regard to the number of
wavelet levels, this work shows that a greater number of wavelet levels does not necessarily
improve algorithm performance. For example, in the case of multi-classification,
algorithms with three levels of wavelets performed better than algorithms with five levels.
Finally, this work provides results with the calculation of more evaluation metrics, in order
to confirm the partial results already obtained in Pinheiro & Fonseca-Pinto (2023), and also
adds the main metrics for multi-classification.

The results obtained in this research indicate that the proposed methodology, using
SVM with wavelet transformations, performed competitively compared to existing
solutions in the literature, even on a smaller scale dataset. However, it is important to note

Table 7 The ranking of the multi-classification algorithms for diagnostic support developed in this
study. Bold indicates the method with the best performance.

Method Accuracy (%) Precision (%) Recall (%) F1-score (%)

1. SVM-LIN-MW3 95 93 93 93

2. SVM-LIN-MW5 92 88 89 88

3. SVM-POL-MW3 86 80 83 80

4. SVM-POL-MW5 85 78 84 78

5. SVM-RBF-MW3 59 39 46 32

6. SVM-RBF-MW5 54 40 25 29

Figure 6 Multicriteria analysis chart. Full-size DOI: 10.7717/peerj-cs.2474/fig-6
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that generalizing this performance for larger datasets requires additional validation.
Previous studies, which have applied SVM and wavelets to larger datasets from different
domains (Asgari, Mehrnia & Moussavi, 2015; Xin & Zhao, 2017; Dhivya & Vasuki, 2018;
Kehri & Awale, 2018), suggest that the approach is promising and scalable.

In this study, older volunteers were intentionally selected for the Healthy (H) dataset to
obtain a more comparable age range compared to the MS and HF dataset provided by
Brown et al. (2022). This strategy was employed to minimize possible age-related bias in
the classification results. However, the decision to exclude demographic variables from the
feature set is in line with the methodology of Brown et al. (2022) and is supported by
existing literature, such as the findings of Inbar et al. (2021), which demonstrate that
machine learning models can effectively differentiate health states without relying on
demographic factors.

In the preparation of data for use in classification algorithms, normalization plays an
essential role in ensuring that all variables contribute equally to the decision function of the
SVM. This procedure is particularly important when the data exhibit different units of
measurement or scales. In this work, normalization was applied using the ‘Standardize’
option in the fictsvm function in Matlab. However, medical standard normalization (such
as the 80–100% range of the predicted normal value), as performed by Inbar et al. (2021),
was not implemented. This specific type of normalization may further enhance the
algorithm’s effectiveness and is recommended for future work.

In Table 1, it can be seen that the variables METS, RER, Vtex, and Vtin were not
included for multi-classification, as they were not provided in the dataset of healthy
volunteers (Mongin, Romero & Cruz, 2021). However, specifically regarding the RER
variable, it can be derived from the ratio of VCO2 to VO2. To better understand how the
inclusion of RER might affect the algorithm’s performance, it was incorporated into the
model, and simulations for multi-classification with three levels of wavelets were
conducted. The results showed that the algorithm’s performance was slightly worse.
Indeed, the literature supports the notion that variable redundancy, especially through
combinations, can degrade algorithm performance and increase the computational cost
(Haq et al., 2019).

Although this study does not present a detailed analysis of the physiological variables of
CPET that are most relevant for a good differentiation between cohorts, the literature
reveals some important indications in this regard. Analyzing some studies (Inbar et al.,
2021; Portella et al., 2022; Zignoli, 2023), there is an intersection in variables such as VO2,
VCO2, V E and HR, which are, therefore, of greater importance for classification.
According to Table 1, these main variables are considered in the algorithms to extract
features for binary classification and multi-class classification.

The algorithm proves useful in real-world scenarios, particularly for patients with HF
with preserved ejection fraction who often experience exercise intolerance, a common
reason for undergoing CPET. It aids in distinguishing between cardiac and metabolic
causes of these symptoms. For MS, the algorithm is a non-invasive approach to early
warning of a MS condition, since the standard determination of a MS condition requires
clinical analyses with blood sampling focusing on some variables. As various conditions
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can influence CPET variables, the algorithm will be further trained to classify additional
and overlapping conditions. Future research will focus on expanding the dataset and
incorporating data from the CPET of ciTechCare (the authors’ institution) installed at
Centro Hospitalar de Leiria (Portugal).

When it comes to choosing the best metric for medical diagnosis, sensitivity or recall (R)
is highly relevant. False negatives can have serious consequences, for example in the
detection of tumors, delaying necessary treatments (Thölke et al., 2023; Spolaôr et al.,
2024). High sensitivity minimizes these errors, allowing for early detection and timely
medical intervention, vital for favorable disease outcomes. Although in this study, the task
is to identify syndromes early on, whose progression depends on several variables and their
stage at the time, it is also essential to analyze them from the point of view of minimizing
the number of false negatives.

In this work, the models performed poorly with the RBF kernel, which can be attributed
to the linear separability characteristic of the data. The RBF kernel is effective for complex,
non-linear patterns, but can be excessively complex and less efficient for data that is (quasi)
linearly separable or can be separated with a low-degree polynomial. Furthermore, if the
data is dispersed or lacks a clear structure, RBF can generate complicated and inefficient
decision boundaries. Under these conditions, simpler kernels, such as linear or polynomial,
can offer superior performance in identifying and separating the data (Gopinath, Kumar &
Ramachandran, 2018; Kumar, Shukla & Wadhwani, 2024).

Another interesting issue to discuss is that multi-classification algorithms were
developed based on the SVM methodology, despite the fact that, in binary classification,
the best SVM model ranked second to the model proposed by Brown et al. (2022), which
combines autoencoders with logistic regression. In response to this, it can be argued that
the SVM approach was preferred due to its widespread use (already with many paths in
Matlab or Python) being an important factor in achieving the main objective of this work,
which focuses on multi-classification. AE+LR, on the other hand, leverages artificial neural
networks, which come with greater complexity and higher computational costs compared
to SVM. Nevertheless, although the SVM approach with wavelets was adopted in this
work, future studies could explore the performance of AE+LR as multi-classifiers on CPET
data and compare those results with the findings of this study.

Cross-validation in this study was conducted without data shuffling or stratification,
which introduces certain limitations. Without shuffling, inherent patterns or ordering
within the dataset can skew the results, leading to subsets that may not accurately represent
the overall problem, potentially resulting in misleading model evaluations, for example,
different accuracies for shuffled and unshuffled (Chakraborty & Sorwar, 2022). Additionally,
the absence of stratification can lead to imbalanced class distributions across the splits,
especially in datasets with class imbalance, making it more challenging for the model to
accurately detect minority classes (Sadaiyandi et al., 2023). In this work, the data are
balanced, which can reduce the inefficiency that may be caused by the lack of stratification.
However, for future work, a more rigorous stratification process could be used, for example,
using Matlab’s cvpartition function, which can be used in conjunction with the crossval
function.
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Although there are limitations, the research tackles these issues by replicating the
validation process and averaging the results over five rounds of 5-fold cross-validation, so
that some random shuffling can take place. In addition, the application of measurements
like recall, precision and F1-score provides a more nuanced and extensive evaluation of the
model’s performance (Niaz, Shahariar & Patwary, 2022). This approach offers clearer
insights into how effectively the model handles positive cases, false positives, false
negatives, and overall class balance, even in the face of data distribution challenges.

A final point to be addressed in this article concerns the limitations of the dataset. The
databases used in this study differ, suggesting that a uniform data collection protocol was
likely not followed, and the CPET equipment varied across sources. This discrepancy could
raise concerns if the method were to be applied directly to real-world scenarios without
further validation on larger, more diverse datasets. However, at this stage, it is important to
note that this work is best viewed as a pilot study. The investigation is still ongoing, and
future efforts should focus on gathering more comprehensive datasets to refine the
algorithms and enhance their reliability.

Models trained on small datasets often suffer performance drops due to overfitting and
lack of sufficient samples for generalization (Sordo & Zeng, 2005; Prusa, Khoshgoftaar &
Seliya, 2015; Rahman & Sultana, 2017). Also, as noted by Althnian et al. (2021), while SVM
is relatively robust in such scenarios, relying on support vectors for hyperplane definition,
its effectiveness also decreases with reduced data. Fewer samples may result in missing
decisive support vectors, impacting the model’s performance. Thus, despite being less
sensitive than other models, SVM still experiences a decline in smaller datasets. To address
this, validating on larger datasets is essential, as limited data may constrain the model’s
effectiveness. Enhancing generalization and reliability by utilizing larger datasets should be
a focus of future research.

CONCLUSION
This work presented algorithms to support the diagnosis of HF and MS with the option of
classifying healthy people. The technique used, SVM with wavelets, proved to be effective
for various models, with the SVM-POL-BW5 model excelling for the binary case and the
SVM-LIN-MW3 model for the multi-class case. The results presented in this study are
promising and motivating to continue this research with the aim of building a more
comprehensive model to support the diagnosis of various diseases using CPET data
according to Fig. 1.

In this sense, as suggestion for future research, it is proposed to search for more CPET
databases with patients diagnosed with HF, MS and other diseases, in order to improve and
expand the model proposed in this work. The aim in the future is to create a system capable
of integrating existing CPET equipment in health centres, helping doctors to make faster
diagnoses and thus improving people’s quality of life.

Additionally, a promising direction for future research would be to investigate which
CPET parameters aid in creating ideal feature sets to improve model performance. For
example, Schwendinger et al. (2024) noted the importance of derived variables like oxygen
pulse and ventilatory efficiency slopes in machine learning. However, these variables are
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derived from other measures, such as oxygen pulse being the ratio of VO2 and HR.
Therefore, an additional study focused on identifying an optimal set of CPET variables
(similarly to what is done directly for features by Haq et al. (2019) and Bezerra et al.
(2024)), combined with the wavelet-based feature extraction technique presented in this
work, could lead to an innovative and efficient approach.

Going even further beyond the data provided by CPET, today there is data generated by
patients themselves (smartphones, wearables, wristbands, sensor-equipped clothing,
among others) that can be shared with healthcare professionals to feed these types of
models. In this direction, a new line of research and development can be pursued for the
establishment of increasingly personalized and rapid diagnostic support systems.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was funded by Portuguese national funds provided by the Portuguese
Foundation for Science and Technology (FCT) (FCT-UIDB/05704/2020) and in the scope
of the research project 2 ARTs (PTDC/EMD-EMD/6588/2020). Rafael F. Pinheiro was
supported by FCT through the Institutional Scientific Employment Stimulus CEECINST/
00060/2021. The funders had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Portuguese Foundation for Science and Technology (FCT): FCT-UIDB/05704/2020.
Acessing Autonomic Control in Cardiac Rehabilitation (2 ARTS): PTDC/EMD-EMD/
6588/2020.
FCT through the Institutional Scientific Employment Stimulus: CEECINST/00060/2021.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
. Rafael F. Pinheiro conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

. Rui Fonseca-Pinto conceived and designed the experiments, analyzed the data, authored
or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The CPET raw data are available at GitHub: https://github.com/suchethassharma/
CPET.

The CPET data for Healthy (H) volunteers is available at Physionet: https://physionet.
org/content/treadmill-exercise-cardioresp/1.0.1.

Pinheiro and Fonseca-Pinto (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2474 20/25

https://github.com/suchethassharma/CPET
https://github.com/suchethassharma/CPET
https://physionet.org/content/treadmill-exercise-cardioresp/1.0.1
https://physionet.org/content/treadmill-exercise-cardioresp/1.0.1
http://dx.doi.org/10.7717/peerj-cs.2474
https://peerj.com/computer-science/


The algorithm codes are available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2474#supplemental-information.

REFERENCES
Allwein EL, Schapire RE, Singer Y. 2000. Reducing multiclass to binary: a unifying approach for

margin classifiers. Journal of Machine Learning Research 1(Dec):113–141
DOI 10.1162/15324430152733133.

Althnian A, AlSaeed D, Al-Baity H, Samha A, Dris AB, Alzakari N, Abou Elwafa A, Kurdi H.
2021. Impact of dataset size on classification performance: an empirical evaluation in the
medical domain. Applied Sciences 11(2):796 DOI 10.3390/app11020796.

Asgari S, Mehrnia A, Moussavi M. 2015. Automatic detection of atrial fibrillation using stationary
wavelet transform and support vector machine. Computers in Biology and Medicine 60:132–142
DOI 10.1016/j.compbiomed.2015.03.005.

Auger DA, Ghadimi S, Cai X, Reagan CE, Sun C, Abdi M, Cao JJ, Cheng JY, Ngai N, Scott AD,
Ferreira PF, Oshinski JN, Emamifar N, Ennis DB, Loecher M, Liu Z-Q, Croisille P, Viallon
M, Bilchick KC, Epstein FH. 2022. Reproducibility of global and segmental myocardial strain
using cine DENSE at 3 t: a multicenter cardiovascular magnetic resonance study in healthy
subjects and patients with heart disease. Journal of Cardiovascular Magnetic Resonance 24(1):1–
12 DOI 10.1186/s12968-022-00851-7.

Bezerra FE, Oliveira Neto GCD, Cervi GM, Francesconi Mazetto R, Faria AMD, Vido M, Lima
GA, Araújo SAD, Sampaio M, Amorim M. 2024. Impacts of feature selection on predicting
machine failures by machine learning algorithms. Applied Sciences 14(8):3337
DOI 10.3390/app14083337.

Bilchick KC, Auger DA, Abdishektaei M, Mathew R, Sohn M-W, Cai X, Sun C, Narayan A,
Malhotra R, Darby A, Mangrum JM, Mehta N, Ferguson J, Mazimba S, Mason PK, Kramer
CM, Levy WC, Epstein FH. 2020. CMR DENSE and the seattle heart failure model inform
survival and arrhythmia risk after crt. Cardiovascular Imaging 13(4):924–936
DOI 10.1016/j.jcmg.2019.10.017.

Boser BE, Guyon IM, Vapnik VN. 1992. A training algorithm for optimal margin classifiers. In:
Proceedings of the Fifth Annual Workshop on Computational Learning Theory, 144–152.

Bowen RE, Graetz TJ, Emmert DA, Avidan MS. 2020. Statistics of heart failure and mechanical
circulatory support in 2020. Annals of Translational Medicine 8(13):827
DOI 10.21037/atm-20-1127.

Brown DE, Sharma S, Jablonski JA, Weltman A. 2022. Neural network methods for diagnosing
patient conditions from cardiopulmonary exercise testing data. BioData Mining 15(1):16
DOI 10.1186/s13040-022-00299-6.

Chakraborty PR, Sorwar G. 2022. A machine learning approach to identify fall risk for older
adults. Smart Health 26(10):100303 DOI 10.1016/j.smhl.2022.100303.

Chen H, Wang N, Du X, Mei K, Zhou Y, Cai G. 2023. Classification prediction of breast cancer
based on machine learning. Computational Intelligence and Neuroscience 2023(1):6530719
DOI 10.1155/2023/6530719.

Dhivya P, Vasuki S. 2018.Wavelet based MRI brain image classification using radial basis function
in svm. In: 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI).
Piscataway: IEEE, 1–9.

Pinheiro and Fonseca-Pinto (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2474 21/25

http://dx.doi.org/10.7717/peerj-cs.2474#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2474#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2474#supplemental-information
http://dx.doi.org/10.1162/15324430152733133
http://dx.doi.org/10.3390/app11020796
http://dx.doi.org/10.1016/j.compbiomed.2015.03.005
http://dx.doi.org/10.1186/s12968-022-00851-7
http://dx.doi.org/10.3390/app14083337
http://dx.doi.org/10.1016/j.jcmg.2019.10.017
http://dx.doi.org/10.21037/atm-20-1127
http://dx.doi.org/10.1186/s13040-022-00299-6
http://dx.doi.org/10.1016/j.smhl.2022.100303
http://dx.doi.org/10.1155/2023/6530719
http://dx.doi.org/10.7717/peerj-cs.2474
https://peerj.com/computer-science/


Dietterich TG, Bakiri G. 1994. Solving multiclass learning problems via error-correcting output
codes. Journal of Artificial Intelligence Research 2:263–286 DOI 10.1613/jair.105.

Epstein A, DiMarco J, Ellenbogen K, Estes N, Freedman R, Gettes L, Gillinov A, Gregoratos G,
Hammill S, Hayes D, Hlatky M, Newby L, Page R, Schoenfeld M, Silka M, Stevenson L,
Sweeney M, Tracy C, Darbar D, Dunbar S, Ferguson T, Karasik P, Link M, Marine J, Shanker
A, Stevenson W, Varosy P. 2008. ACC/AHA/HRS, 2008 guidelines for device-based therapy of
cardiac rhythm abnormalities: a report of the American College of Cardiology/American Heart
Association task force on practice guidelines (writing committee to revise the ACC/AHA/
NASPE, 2002 guideline update for implantation of cardiac pacemakers and antiarrhythmia
devices) developed in collaboration with the american association for thoracic surgery and
society of thoracic surgeons. Journal of the American College of Cardiology 51(21):e1–e62
DOI 10.1016/j.jacc.2008.02.032.

Gaitán JM, Eichner NZM, Gilbertson NM, Heiston EM, Weltman A, Malin SK. 2019. Two
weeks of interval training enhances fat oxidation during exercise in obese adults with
prediabetes. Journal of Sports Science & Medicine 18(4):636–644.

Gao X, Abdi M, Auger DA, Sun C, Hanson CA, Robinson AA, Schumann C, Oomen PJ,
Ratcliffe S, Malhotra R, Darby A, Monfredi OJ, Mangrum JM, Mason P, Mazimba S, Holmes
JW, Kramer CM, Epstein FH, Salerno M, Bilchick KC. 2021. Cardiac magnetic resonance
assessment of response to cardiac resynchronization therapy and programming strategies.
Cardiovascular Imaging 14(12):2369–2383 DOI 10.1016/j.jcmg.2021.06.015.

Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody
GB, Peng C-K, Stanley HE. 2000. Physiobank, physiotoolkit, and physionet: components of a
new research resource for complex physiologic signals. Circulation 101(23):e215–e220
DOI 10.1161/01.CIR.101.23.e215.

Gopinath R, Kumar CS, Ramachandran R. 2018. Scalable fault models for diagnosis in a
synchronous generator using feature mapping and transformation techniques. International
Journal of Prognostics and Health Management 9(2) DOI 10.36001/ijphm.2018.v9i2.2737.

Hansen D, Bonne K, Alders T, Hermans A, Copermans K, Swinnen H, Maris V, Jansegers T,
Mathijs W, Haenen L, Vaes J, Govaerts E, Reenaers V, Frederix I, Dendale P. 2019. Exercise
training intensity determination in cardiovascular rehabilitation: should the guidelines be
reconsidered? European Journal of Preventive Cardiology 26(18):1921–1928
DOI 10.1177/2047487319859450.

Haq AU, Zhang D, Peng H, Rahman SU. 2019. Combining multiple feature-ranking techniques
and clustering of variables for feature selection. IEEE Access 7:151482–151492
DOI 10.1109/ACCESS.2019.2947701.

Heiston EM, Eichner NZ, Gilbertson NM, Gaitán JM, Kranz S, Weltman A, Malin SK. 2019.
Two weeks of exercise training intensity on appetite regulation in obese adults with prediabetes.
Journal of Applied Physiology 126(3):746–754 DOI 10.1152/japplphysiol.00655.2018.

Inbar O, Inbar O, Reuveny R, Segel MJ, Greenspan H, Scheinowitz M. 2021. Amachine learning
approach to the interpretation of cardiopulmonary exercise tests: development and validation.
Pulmonary Medicine 2021(2):1–9 DOI 10.1155/2021/5516248.

Iniyan S, Singh A, Hazra B. 2023. Wavelet transformation and vertical stacking based image
classification applying machine learning. Biomedical Signal Processing and Control 79:104103
DOI 10.1016/j.bspc.2022.104103.

Kaminsky LA, Imboden MT, Arena R, Myers J. 2017. Reference standards for cardiorespiratory
fitness measured with cardiopulmonary exercise testing using cycle ergometry: data from the

Pinheiro and Fonseca-Pinto (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2474 22/25

http://dx.doi.org/10.1613/jair.105
http://dx.doi.org/10.1016/j.jacc.2008.02.032
http://dx.doi.org/10.1016/j.jcmg.2021.06.015
http://dx.doi.org/10.1161/01.CIR.101.23.e215
http://dx.doi.org/10.36001/ijphm.2018.v9i2.2737
http://dx.doi.org/10.1177/2047487319859450
http://dx.doi.org/10.1109/ACCESS.2019.2947701
http://dx.doi.org/10.1152/japplphysiol.00655.2018
http://dx.doi.org/10.1155/2021/5516248
http://dx.doi.org/10.1016/j.bspc.2022.104103
http://dx.doi.org/10.7717/peerj-cs.2474
https://peerj.com/computer-science/


fitness registry and the importance of exercise national database (friend) registry. Mayo Clinic
Proceedings 92:228–233 Elsevier DOI 10.1016/j.mayocp.2016.10.003.

Kehri V, Awale R. 2018. Emg signal analysis for diagnosis of muscular dystrophy using wavelet
transform, SVM and ANN. Biomedical and Pharmacology Journal 11(3):1583–1591
DOI 10.13005/bpj/1525.

Kumar L, Shukla S, Wadhwani R. 2024. Analysis of feature noise on standard svm with linear
kernel. In: 2024 IEEE International Students’ Conference on Electrical, Electronics and Computer
Science (SCEECS). Piscataway: IEEE, 1–6.

Li X, Zhai Y, Zhao J, He H, Li Y, Liu Y, Feng A, Li L, Huang T, Xu A, Lyu J. 2021. Impact of
metabolic syndrome and it’s components on prognosis in patients with cardiovascular diseases:
a meta-analysis. Frontiers in Cardiovascular Medicine 8:704145 DOI 10.3389/fcvm.2021.704145.

Luo Q, Yu X, Zhao Z, Zhao Q, Ma X, Jin Q, Yan L, Zhang Y, Liu Z. 2021. The value of
cardiopulmonary exercise testing in the diagnosis of pulmonary hypertension. Journal of
Thoracic Disease 13(1):178–188 DOI 10.21037/jtd-20-1061b.

Malin SK, Gilbertson NM, Eichner NZ, Heiston E, Miller S, Weltman A. 2019. Impact of short-
term continuous and interval exercise training on endothelial function and glucose metabolism
in prediabetes. Journal of Diabetes Research 2019(9179):1–8 DOI 10.1155/2019/4912174.

Michelucci U, Sperti M, Piga D, Venturini F, Deriu MA. 2021. A model-agnostic algorithm for
bayes error determination in binary classification. Algorithms 14(11):301
DOI 10.3390/a14110301.

Mongin D, Chabert C, Courvoisier DS, García-Romero J, Alvero-Cruz JR. 2021. Heart rate
recovery to assess fitness: comparison of different calculation methods in a large cross-sectional
study. Research in Sports Medicine 31(2):157–170 DOI 10.1080/15438627.2021.1954513.

Mongin D, Romero JG, Cruz JRA. 2021. Treadmill maximal exercise tests from the exercise
physiology and human performance lab of the university of malaga. Physionet, version 1.0.1.
DOI 10.13026/7ezk-j442.

Morales L, Aguilar J, Chávez D, Isaza C. 2020. Lamda-had, an extension to the lamda classifier in
the context of supervised learning. International Journal of Information Technology & Decision
Making 19(01):283–316 DOI 10.1142/S0219622019500457.

Niaz NU, Shahariar KN, Patwary MJ. 2022. Class imbalance problems in machine learning:
a review of methods and future challenges. In: Proceedings of the 2nd International Conference
on Computing Advancements, 485–490.

Noubiap JJ, Nansseu JR, Lontchi-Yimagou E, Nkeck JR, Nyaga UF, Ngouo AT, Tounouga DN,
Tianyi F-L, Foka AJ, Ndoadoumgue AL, Bigna JJ. 2022. Geographic distribution of metabolic
syndrome and its components in the general adult population: a meta-analysis of global data
from 28 million individuals. Diabetes Research and Clinical Practice 188(4):109924
DOI 10.1016/j.diabres.2022.109924.

Pinheiro RF, Fonseca-Pinto R. 2023. Algorithm for diagnosis of metabolic syndrome and heart
failure using cpet biosignals via svm and wavelet transforms. In: International Conference on
Smart Objects and Technologies for Social Good. Cham: Springer, 159–171.

Portella JJ, Andonian BJ, Brown DE, Mansur J, Wales D, West VL, Kraus WE, Hammond WE.
2022. Using machine learning to identify organ system specific limitations to exercise via
cardiopulmonary exercise testing. IEEE Journal of Biomedical and Health Informatics
26(8):4228–4237 DOI 10.1109/JBHI.2022.3163402.

Prusa J, Khoshgoftaar TM, Seliya N. 2015. The effect of dataset size on training tweet sentiment
classifiers. In: 2015 IEEE 14th International Conference on Machine Learning and Applications
(ICMLA). Piscataway: IEEE, 96–102.

Pinheiro and Fonseca-Pinto (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2474 23/25

http://dx.doi.org/10.1016/j.mayocp.2016.10.003
http://dx.doi.org/10.13005/bpj/1525
http://dx.doi.org/10.3389/fcvm.2021.704145
http://dx.doi.org/10.21037/jtd-20-1061b
http://dx.doi.org/10.1155/2019/4912174
http://dx.doi.org/10.3390/a14110301
http://dx.doi.org/10.1080/15438627.2021.1954513
http://dx.doi.org/10.13026/7ezk-j442
http://dx.doi.org/10.1142/S0219622019500457
http://dx.doi.org/10.1016/j.diabres.2022.109924
http://dx.doi.org/10.1109/JBHI.2022.3163402
http://dx.doi.org/10.7717/peerj-cs.2474
https://peerj.com/computer-science/


Purwowiyoto SL, Prawara AS. 2021. Metabolic syndrome and heart failure: mechanism and
management. Medicine and Pharmacy Reports 94(1):15 DOI 10.15386/mpr-1884.

Rahman MS, Sultana M. 2017. Performance of firth-and logf-type penalized methods in risk
prediction for small or sparse binary data. BMC Medical Research Methodology 17(1):1–15
DOI 10.1186/s12874-017-0313-9.

Rodriguez JC, Peterman JE, Fleenor BS, Whaley MH, Kaminsky LA, Harber MP. 2022.
Cardiopulmonary exercise responses in individuals with metabolic syndrome: the ball state adult
fitness longitudinal lifestyle study. Metabolic Syndrome and Related Disorders 20(7):414–420
DOI 10.1089/met.2021.0130.

Sadaiyandi J, Arumugam P, Sangaiah AK, Zhang C. 2023. Stratified sampling-based deep
learning approach to increase prediction accuracy of unbalanced dataset. Electronics 12(21):4423
DOI 10.3390/electronics12214423.

Saito Y, Obokata M, Harada T, Kagami K, Murata M, Sorimachi H, Kato T, Wada N, Okumura
Y, Ishii H. 2023. Diagnostic value of expired gas analysis in heart failure with preserved ejection
fraction. Scientific Reports 13(1):4355 DOI 10.1038/s41598-023-31381-6.

Schwendinger F, Biehler A-K, Nagy-Huber M, Knaier R, Roth V, Dumitrescu D, Meyer FJ,
Hager A, Schmidt-Trucksäss A. 2024. Using machine learning–based algorithms to identify
and quantify exercise limitations in clinical practice: are we there yet? Medicine & Science in
Sports & Exercise 56(2):159–169 DOI 10.1249/MSS.0000000000003293.

Serhal H, Abdallah N, Marion J-M, Chauvet P, Oueidat M, Humeau-Heurtier A. 2022.
Overview on prediction, detection, and classification of atrial fibrillation using wavelets and AI
on ECG. Computers in Biology and Medicine 142(3):105168
DOI 10.1016/j.compbiomed.2021.105168.

Sordo M, Zeng Q. 2005.On sample size and classification accuracy: a performance comparison. In:
International Symposium on Biological and Medical Data Analysis. Cham: Springer, 193–201.

Spolaôr N, Lee HD, Mendes AI, Nogueira CV, Parmezan ARS, Takaki WSR, Coy CSR, Wu FC,
Fonseca-Pinto R. 2024. Fine-tuning pre-trained neural networks for medical image
classification in small clinical datasets. Multimedia Tools and Applications 83(9):27305–27329
DOI 10.1007/s11042-023-16529-w.

Subasi A. 2007. Eeg signal classification using wavelet feature extraction and a mixture of expert
model. Expert Systems with Applications 32(4):1084–1093 DOI 10.1016/j.eswa.2006.02.005.

Thölke P, Mantilla-Ramos Y-J, Abdelhedi H, Maschke C, Dehgan A, Harel Y, Kemtur A,
Berrada LM, Sahraoui M, Young T, Pépin AB, Khantour CE, Landry M, Pascarella A, Hadid
V, Combrisson E, O’Byrne J, Jerbi K. 2023. Class imbalance should not throw you off balance:
choosing the right classifiers and performance metrics for brain decoding with imbalanced data.
NeuroImage 277:120253 DOI 10.1016/j.neuroimage.2023.120253.

Wong T-T, Yeh P-Y. 2019. Reliable accuracy estimates from k-fold cross validation. IEEE
Transactions on Knowledge and Data Engineering 32(8):1586–1594
DOI 10.1109/TKDE.2019.2912815.

Xin Y, Zhao Y. 2017. Paroxysmal atrial fibrillation recognition based on multi-scale wavelet
a-entropy. Biomedical Engineering Online 16:1–12 DOI 10.1186/s12938-017-0406-z.

Xing Z, Pei J, Yu PS, Wang K. 2011. Extracting interpretable features for early classification on
time series. In: Proceedings of the 2011 SIAM International Conference on Data Mining. SIAM,
247–258.

Pinheiro and Fonseca-Pinto (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2474 24/25

http://dx.doi.org/10.15386/mpr-1884
http://dx.doi.org/10.1186/s12874-017-0313-9
http://dx.doi.org/10.1089/met.2021.0130
http://dx.doi.org/10.3390/electronics12214423
http://dx.doi.org/10.1038/s41598-023-31381-6
http://dx.doi.org/10.1249/MSS.0000000000003293
http://dx.doi.org/10.1016/j.compbiomed.2021.105168
http://dx.doi.org/10.1007/s11042-023-16529-w
http://dx.doi.org/10.1016/j.eswa.2006.02.005
http://dx.doi.org/10.1016/j.neuroimage.2023.120253
http://dx.doi.org/10.1109/TKDE.2019.2912815
http://dx.doi.org/10.1186/s12938-017-0406-z
http://dx.doi.org/10.7717/peerj-cs.2474
https://peerj.com/computer-science/


Zhou Y, Fu L, Sun J, Zhu Z, Xing Z, Zhou S, Tai S, Wang Y. 2021. Association between metabolic
syndrome and an increased risk of hospitalization for heart failure in population of HFpEF.
Frontiers in Cardiovascular Medicine 8:698117 DOI 10.3389/fcvm.2021.698117.

Zignoli A. 2023. Machine learning models for the automatic detection of exercise thresholds in
cardiopulmonary exercising tests: from regression to generation to explanation. Sensors
23(2):826 DOI 10.3390/s23020826.

Pinheiro and Fonseca-Pinto (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2474 25/25

http://dx.doi.org/10.3389/fcvm.2021.698117
http://dx.doi.org/10.3390/s23020826
http://dx.doi.org/10.7717/peerj-cs.2474
https://peerj.com/computer-science/

	On the development of diagnostic support algorithms based on CPET biosignals data via machine learning and wavelets
	Introduction
	Methods
	Results
	Discussion
	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


