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ABSTRACT

These days, location-based services, or LBS, are used for various consumer
applications, including indoor localization. Due to the ease with which Wi-Fi can be
accessed in various interior settings, there has been increasing interest in Wi-Fi-based
indoor localisation. Deep learning in indoor localisation systems that use channel
state information (CSI) fingerprinting has seen widespread adoption. Usually, these
systems comprise two primary components: a positioning network and a tracking
system. The positioning network is responsible for learning the planning from high-
dimensional CSI to physical positions, and the following system uses historical CSI to
decrease positioning error. This work presents a novel localization method that
combines high accuracy and generalizability. However, existing convolutional neural
network (CNN) fingerprinting placement algorithms have a limited receptive area,
limiting their effectiveness since important data in CSI has not been thoroughly
explored. We offer a unique attention-augmented residual CNN to remedy this issue
so that the data acquired and the global context in CSI may be utilized to their full
potential. On the other hand, while considering the generalizability of a monitoring
device, we uncouple the scheme from the CSI environments to make it feasible to use
a single tracking system across all contexts. To be more specific, we recast the
tracking issue as a denoising task and then used a deep route before solving it. The
findings illuminate perspectives and realistic interpretations of the residual attention-
based CNN (RACNN) in device-free Wi-Fi indoor localization using channel state
information (CSI) fingerprinting. In addition, we study how the precision change of
different inertial dimension units may negatively influence the tracking performance,
and we implement a solution to the problem of exactness variance. The proposed
RACNN model achieved a localization accuracy of 99.9%, which represents a
significant improvement over traditional methods such as K-nearest neighbors
(KNN) and Bayesian inference. Specifically, the RACNN model reduced the average
localization error to 0.35 m, outperforming these traditional methods by
approximately 14% to 15% in accuracy. This improvement demonstrates the model’s
ability to handle complex indoor environments and proves its practical applicability
in real-world scenarios.
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INTRODUCTION

Wi-Fi and Bluetooth Low-Energy (BLE) are two wireless networking technologies
commonly seen indoors in modern times. For precise localization in BLE, numerous
anchor stations are needed across the study area to check the intensity of the received
transmission. To guarantee connections with at least three anchor stations, this additional
criterion deviates from ambient availability. Too frequently, unlike at home, this
requirement is not honored. Also, received signal strength (RSS) is supported by Wi-Fi
(Bahl & Padmanabhan, 2000; Laoudias, Kemppi ¢ Panayiotou, 2009; Youssef & Agrawala,
2005; Fang, Lin & Lin, 2008; Park et al., 2010). However, the channel state information
(CSI) gives fresh data to calculate target positions to tackle multipath possessions (Chen
et al, 2017; Wang et al., 2015). CSI may now be captured in the region under study with
specialized gear (Conrat, Pajusco ¢ Thiriet, 2006) or with minor adjustments to devices
available commercially (Halperin et al., 2010). However, CSI may also be approximated
using a propagation model like the ray model, which necessitates familiarity with the
architecture of the area under study.

Many Internet of Things (IoT) applications rely on indoor localization, which is why it
is so important (Macagnano, Destino ¢ Abreu, 2014). Precise indoor location data is
essential for applications like healthcare monitoring (Wyffels et al., 2014), item tracking
(Zheng et al., 2016), and an IoT-based smart environment (Alletto et al., 2015). Based on
whether or not equipment must be linked to the target to obtain a location fix, wireless
indoor localization may be broken down into two groups: device-based and device-free
(Xiao et al., 2016). Device-based procedures are more accurate and resilient to ecological
interferences and dynamics than device-free procedures. Device-free solutions, however,
find widespread use in the IoT for tasks like intrusion detection, senior care, and more,
thanks to their low hardware prices, low power requirements, high privacy standards, and
availability of real-time positioning and monitoring.

Fingerprinting localization depending on CSI is becoming increasingly popular because
of its ease of use, versatility, and dependability (Wang et al., 2018; Wang, Wang & Mao,
2018; Zhang, Qu ¢ Wang, 2020). These CSI-fingerprinting localization techniques
typically involve two stages:

1) An offline transition in which the CSI analyses a set of widely distant reference points
(RPs) and

2) An online integration test which the localization algorithm is used to identify the
position of MT involving real-time CSI data.

Non-line-of-sight (NLOS) circumstances can be accommodated using CSI-
fingerprinting localization without requiring detailed modeling of the wireless channel.
Several recent publications have been motivated to approach CSI as pictures to train
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convolutional neural networks (CNNSs) to convert CSI data into two-dimensional terminal
positions (Cerar et al., 2021; Chin et al., 2020). These CNN-based approaches outperform
standard probabilistic methods regarding positioning precision after being trained on RP-
collected CSI-location pairs.

RELATED WORKS

Due to its ease of use and inexpensive hardware requirements, Wi-Fi RSS measurements
are used as fingerprints by several existing indoor fingerprinting systems. One such
deterministic approach for position determination is Radar (Bahl ¢» Padmanabhan, 2000),
the first fingerprinting system based on RSS. Later, Youssef ¢» Agrawala (2005) employs a
probabilistic approach to indoor localization based on RSS values, which provides more
precise results than radar. There are two major drawbacks to using RSS-based approaches.
First, RSS values are unpredictable and loosely correspond with transmission loss because
of supervising fading and multipath factors. Second, RSS measurements are coarse data
generated by aggregating the amplitudes of all received signals rather than the rich data
packets from distinct subcarriers. As a result, it is possible that using RSS data for
localization will result in subpar results.

Based on the Wi-Fi CSI, Wang, Gao ¢ Mao (2017) suggested a new fingerprinting
interior localisation method trained using deep learning. To significantly decrease the
distance error in contrast to the probabilistic approaches and to acquire discriminative
characteristics, a deep network architecture with many layers was developed. For
localization using Wi-Fi fingerprinting, Chang, Liu ¢ Cheng (2018) projected using a deep
neural network. Improved robustness and performance by including CSI pre-processing
and data augmentation (through noise injection and inter-person interpolation) into the
DNN architecture. Wang et al. (2016) developed a machine-learning system by merging a
sparse autoencoder system with a softmax regression-based classification for multi-modal
detection of location, activity, and gesture. Automatically learning the feature
representations from the RSS data, active learning can outperform the system that does not
use the learning process by more than 85% in terms of accuracy. To determine the position
and activity of a target individual, Gao et al. (2017) developed a multilayer deep learning-
based image processing approach to learn the optimum deep features from the radio
pictures.

Many applications of DNNs have yielded astounding success. The DNN is primarily
viewed as a “black box,” yet it may conduct automatic feature extraction with little to no
human interaction. Recently, the deep learning and visualization groups have been trying
to figure out how to visualize the training process and explain the machine’s cognition in a
way that makes sense. A major challenge when recognizing an indoor destination using a
WiFi fingerprinting collection is achieving high-precision and low-cost localization
underneath the changing signal and noise from multi-path influences. Standard methods
like probabilistic, K-nearest-neighbor (KNN), and support vector machine (SVM) need a
lot of processing power and a lengthy learning curve, complicated filtering, and fine-tuning
of parameters. With the advent of deep learning, several new localization methods based
on deep neural networks (DNNs) (Zhang et al., 2016; Kim, Lee ¢ Huang, 2018) have been
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developed. While DNN-based approaches have improved, they still depend on having
enough data to train with. The accuracy of localisation findings may be affected by the size
of the DNN, as the computational cost of a fully connected DNN is proportional to the
number of layers within it.

Eshun ¢ Palmieri (2019) investigates techniques for safeguarding user privacy in indoor
localisation systems that rely on public Wi-Fi. The proposed algorithm protects user
privacy by concealing their identity while ensuring accurate localisation. The authors
explore the privacy concerns that arise from collecting Wi-Fi CSI and suggest practical
solutions that can be seamlessly incorporated into current systems. Tuunainen, Pitkinen ¢
Hovi (2009) examines the “privacy paradox,” where users express concerns about privacy
on social media platforms such as Facebook yet persist in sharing personal information. It
underscores the disparity between users’ understanding of privacy and their actions,
underscoring the importance of improved education and tools to assist users in effectively
managing their privacy settings.

These studies focus on analyzing data that combines both spatial (where) and temporal
(when) components, aiming to explore how the distribution of private cars evolves across
different locations (Xiao et al., 2021; Shen et al., 2022). In deep learning, convolutional
networks are commonly employed for processing grid-like data, such as images. Extending
this concept, a graph convolutional network (GCN) applies these principles to graph-
structured data, enabling the model to discern patterns from the relationships between
node nodes (Ren, Jin & OuYang, 2024; Sun et al., 2018a). This process involves the
automated arrangement, coordination, and management of complex services and
functions, focusing on how service function chains (SFCs) are organized and managed to
ensure efficient operation (Sun et al., 2018b, 2015). In Wi-Fi systems, antennas are crucial
in transmitting and receiving signals. These signals can be influenced by the presence and
movement of people, making it possible to analyse and recognise different activities based
on these variations (Jannat et al., 2023; He et al., 2023). The primary objective is to
accurately determine a device’s location, even relying only on a single base station. This
task is inherently more challenging than using multiple base stations (Wu et al., 2022,
2019). This requires the creation of an accurate model or estimate of the wireless
communication channel, as precise channel reconstruction is vital for optimizing
communication (Li et al., 2024; Zhang et al., 2023a).

Designing low-frequency antennas presents challenges, mainly because they typically
require large sizes to function efficiently. This study likely addresses these challenges by
utilizing magnetoelectric materials, which can reduce the antenna size while maintaining
efficiency at low frequencies (Xiao et al., 2022; Zha et al., 2024). The same signal can carry
both power and data, with the modulation feature allowing the signal to be adjusted to
encode data while still serving the power transfer function (Yang et al., 2022; Zhang et al.,
2023b). As a mathematical structure, a graph consists of nodes (representing objects or
entities) and edges (representing relationships or connections between these nodes).
Graphs are frequently utilized in machine learning to model complex relationships within
data (Qiao et al., 2024; Jin, Wang ¢ Meng, 2024). In machine learning, embeddings are
used to convert complex data—such as words, entities, or graphs—into dense, low-
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dimensional vectors that preserve the essential properties of the original data (Zhang et al.,
2024; Huang et al., 2024). These embeddings are designed to understand the context within
a sentence by considering the entire sentence rather than focusing solely on individual
words in sequence (Yin et al., 2024; Wang et al., 2024).

The fifth generation of mobile networks (5G) and its future developments are known for
their high speed, low latency, and ability to connect many devices simultaneously,
representing a significant leap in network technology (Hou et al., 2023; Cao et al., 2024).

Recent advancements in classification and feature selection methods have significantly
influenced the development of deep learning models, including those used for indoor
localization. For instance, Hassan, Abd El-Hafeez ¢ Shams (2024) optimized disease
classification using language model analysis of symptoms, demonstrating the effectiveness
of advanced text processing techniques that can be adapted for analyzing complex data like
CSI in localization systems. Similarly, Koshiry et al. (2023) leveraged the AraBERT model
for Arabic toxic tweet classification, highlighting the power of domain-specific models in
handling nuanced data, which parallels the need for specialized models in different
localization environments.

Feature selection is another critical area that has seen significant progress. Mamdouh
Farghaly & Abd El-Hafeez (2023, 2022) proposed high-quality feature selection methods
based on frequent and correlated items and frequent and associated item sets for text
classification. These methods can be adapted to enhance indoor localization’s
preprocessing and feature extraction stages, improving model efficiency and accuracy.
Additionally, EI Koshiry et al. (2024) explored deep learning techniques for detecting
cyberbullying using pre-trained models and focal loss. This underscores the importance of
tailored loss functions and pre-trained models that can be similarly applied to optimise
localization algorithms. Moreover, Farghaly, Ali ¢ El-Hafeez (2020) developed an efficient
method for automatic threshold detection based on a hybrid feature selection approach,
which could be particularly useful in the adaptive thresholding signal strengths or CSI data
in dynamic indoor environments.

Recent advancements in indoor positioning have shown significant improvements with
the application of deep learning techniques in fingerprint-based methods. Nabati ¢
Ghorashi (2023) introduced a novel real-time positioning system utilizing a recurrent
neural network (RNN) to incorporate temporal dependencies from preceding states,
achieving enhanced accuracy and robustness compared to traditional models. Similarly,
Sung, Kim & Jung (2023) leveraged ultra-wideband (UWB) technology with a CNN to
effectively handle multipath effects and achieve superior positioning accuracy in complex
environments. Alhmiedat (2023) explored various machine learning models, such as
support vector machines (SVM) and random forests, for wireless sensor networks (WSNs),
highlighting the trade-off between model performance and resource utilization.
Meanwhile, Zheng et al. (2023) proposed a deep learning-based approach that exploits the
spatial correlation between fingerprints to refine positioning predictions, demonstrating a
significant reduction in localization error in challenging indoor spaces. Collectively, these
studies underscore the potential of deep learning in overcoming the limitations of
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traditional methods and advancing the accuracy and reliability of indoor localization
systems in diverse settings.

In indoor localization, traditional methods and existing CNN-based algorithms have
faced limitations in fully leveraging high-dimensional CSI data, particularly in achieving
high accuracy and generalizability across varying environments. Our research addresses
these limitations by introducing a novel residual attention-based CNN (RACNN) model
that captures critical features in CSI data and enhances the model’s capability to maintain
high localization accuracy across different scenarios.

Specifically, we identified that existing CNN fingerprinting placement algorithms often
suffer from a constrained receptive field, limiting their ability to thoroughly exploit
significant data embedded in CSI. To address this, we developed the RACNN model, which
integrates residual attention mechanisms to effectively capture the global context in CSI
data, thereby overcoming the limitations of prior methods. Furthermore, while
conventional approaches are often environment-specific, our research introduces a
generalized tracking framework that decouples the model from particular CSI settings,
making it feasible to deploy a single tracking system across diverse environments without
compromising accuracy. Still, more details about the dataset collection process would help
clarify how the experiments were conducted. For instance, elaborating on environmental
variations, such as the number of obstacles or dynamic conditions during data collection,
would be helpful. The methods are mostly clear, but more detailed information on the
RACNN model’s architecture, including hyperparameters, would improve replicability. It
would also be beneficial to include an ablation study to show how each component of the
RACNN (such as attention layers and residual blocks) contributes to performance.

We present RACNN, a CNN-based indoor localization system that uses Wi-Fi
fingerprinting to solve these problems. CNNs allow for a reduction in the computational
complexity of neural networks by substituting convolution for ordinary matrix
multiplication. The following summarises this work’s significant contributions compared
to the previous method. We provide a novel deep-learning methodology to address the
challenges of indoor localisation over several buildings and floors. Our approach uses a
stacked auto-encoder network to compress data and a 2D-CNN with residual attention
layers to extract relevant characteristics from a fingerprinting dataset to enhance
localisation precision. In this work, we introduce a new approach for generating a
verification set from a training dataset to avoid the inconsistency that arises from using a
random selection process, which is especially problematic when dealing with small
datasets. Thirdly, we test RACNN using three different datasets: two publicly available
ones and one we built ourselves. Based on the experimental results, the suggested RACNN
attains a higher success rate at the building and floor levels of localisation.

Here is how the rest of the article is structured. In “Related Works”, we examine the
research done on indoor localisation. “Proposed Methodology” lays out the RACNN
system design using a publicly available dataset. “Experimental Setup” details our novel
approach for obtaining the verification set, data preparation, and model pretraining
procedure. We next compare the localization accuracy of RACNN to that of different
industry standards and conduct experimental investigations to fine-tune our model in
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Table 1 Dataset features and their distribution from WiFi CSI dataset.

Feature Description

Number of antennas 3 Receiving antennas

Number of subcarriers 30 Subcarriers

Packet rate 2,500 Hz

Frequency band 5 GHz WiFi (Channel 64, 40 MHz bandwidth)

Angles 30 degrees, —60 degrees

Distances 1,2,3,4,5m

Conditions Line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios

“Performance Evaluation”. The final section of this article is dedicated to considering what
comes next.

PROPOSED METHODOLOGY

We utilised the WiFi CSI dataset in our study. The experimental setup included a lone
transmitter and receiver with Intel 5300 network interface cards. The raw complex CSI
data was gathered at the receiver using three receiving antennas and 30 subcarriers, with a
fixed packet rate of 2,500 Hz. The data was collected using the 5 GHz WiFi band,
specifically on Channel 64 with a 40 MHz bandwidth. The transmitter was placed at two
different angles about the receiver: 30 and —60 degrees. Data was collected at five different
distances: 1, 2, 3, 4, and 5 m. Below is a summary of the dataset features and their
distribution in Table 1.

The experimental area spanned approximately 200 square meters and included various
realistic indoor settings such as office furniture, partitions, and electronic devices to
replicate typical indoor environments.

To ensure robustness and generalizability, data was collected under both line-of-sight
(LOS) and non-line-of-sight (NLOS) conditions. The transmitter was placed at two angles
relative to the receiver, 30 and —60 degrees, and at five different distances ranging from 1 to
5 m. Additionally, we introduced several dynamic elements to simulate real-world
scenarios. This included the movement of up to three individuals within the area, changes
in furniture positions, and varying signal interference from other electronic devices. These
variations were intended to emulate typical changes in indoor environments that could
impact signal propagation and localization accuracy.

Each training sample was collected under two specific conditions: a static scenario
where neither the transmitter nor the receiver moved and a dynamic scenario where the
transmitter’s position varied slightly, and the environment included moving objects and
people. We collected 6,230 samples in the static and 1,650 in the dynamic scenarios across
120 training and 20 testing sites, respectively. This extensive data collection process aimed
to capture various signal variations and environmental dynamics to test the model’s
adaptability and robustness.

Data preprocessing involved filtering out noisy measurements and normalizing the CSI
data. We employed data augmentation techniques, such as adding Gaussian noise and
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simulating minor environmental changes, to increase the diversity of the training data and
further improve model generalization. This rigorous data collection and preprocessing
approach was critical in ensuring the RACNN model’s high accuracy and robustness in
diverse and challenging indoor conditions.

Channel state information

RSS is natively implemented in the medium access control (MAC) layer of any wireless
device, making it widely utilised by indoor localisation systems across the world. This
measure suffers from shadowing and multipath belongings and needs many anchor
stations for a reliable position estimate. The frequency bandwidth is partitioned into
smaller parts called subcarriers to obtain the CSI measure. The propagation phenomena
still limit the localization method using a single anchor station, even with this approach.
However, MIMO communication is becoming increasingly widespread and will continue
to support pervasive connections. Then, depending on the shape of the antenna
components, a one-of-a-kind wireless system with numerous antenna basics may reveal
the positions of connected devices in a predetermined region. Then, for a MIMO-OFDM
connection with Q getting antenna elements, P subcarriers, and A transmitting antenna
components, the CSI measure known as the channel frequency response (CFR) may be
quantitatively described as follows, in the frequency domain:

Japa = |fopa|eee (1)
where,

qel,2,....... QJ (2)
peEL2,....... P (3)
ac(l,2,..... Al. 4)

Unfortunately, the CFR data is not provided natively by wireless technology. Other
open-source options, such as the Linux CSI Tool and the Atheros CSI extraction tool, have
been suggested. Since the channel sounder can be easily parametrized, we have been able to
use it to collect CFR data for our testbed. To minimize outside interference, we recorded
the CFR examples on a 20 MHz bandwidth, or 56 subcarriers, at a center frequency of
5.2 GHz. One receiver and transmitter are built inside the channel sounder and used to
estimate CFR data. In this case, the receiver served as the only anchor station in the region
under study, and it may be compared to a gateway that uses several antennas. It has a linear
array of components that match in geometry to an antenna. The radio transmitter mimics
the performance of a single-antenna, low-power target device. Since the frequency of
antenna arrays at the gateway, the number of subcarriers, and the frequency of radiating
components at the output port all limit the size of the input data sample, this results in a
CFR information tensor. Finally, the amplitude of the raw CFR data was processed. The
mathematical form of the data that feeds into our deep-learning solution is as follows:

Maashi et al. (2024), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.2471 8/30


http://dx.doi.org/10.7717/peerj-cs.2471
https://peerj.com/computer-science/

PeerJ Computer Science

Figure 1 Training and testing sites. Full-size K&] DOT: 10.7717/peerj-cs.2471/fig-1

F.o=1 ... ... .. . (5)

Figure 1 displays the training and testing sites with blue and red markers, respectively.
For 5G networks, the fixed wireless technology anchor station is indicated by the yellow
star. That’s why this is where our channel sounder’s gateway receiver is now pointing.
Every testing and training site now has the transmitter, the target device, in place.

In order to focus on a 2-D localization, we did not alter the transmitter’s and receiver’s
height or orientation during the data collection process.

We used a testbed with 120 training sites and 20 test sites to conduct our experiment.

Training data samples were obtained under two conditions. In the first, no one is
moving, and the topology of the region isn’t changing. Therefore, the transmitter and
receiver are assumed to be stationary. The propagation medium remains constant in the
second case, but the transmitter is relocated somewhat from its centre position. Both cases
were chosen as training samples because they are straightforward for a technical team to
replicate during an on-site survey. Additionally, a radio propagation simulator allows for
the generation of such samples. For both cases, we have gathered 20 samples from each
training site. After that, 6,230 samples and their 2D Cartesian coordinates comprise the
resultant training dataset. Eighty samples were taken at each testing site for the testing
dataset. Similar to the previous situation, the transmitter and receiver in this scenario are
both fixed, but this time, the propagation medium is dynamic due to the presence of
mobile users and shifting topography. Up to three persons could be relocated, and the only
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Figure 2 Autoencoder for the proposed model. Full-size K&l DOT: 10.7717/peerj-cs.2471/fig-2

changes to the landscape were furniture sliding and doors swinging. Ultimately, 1,650
samples in the testing collection were gathered throughout the 20 test sites.

During data preprocessing, we applied a threshold-based filtering technique to remove
any noisy or incomplete CSI measurements, followed by normalization of the CSI data to
ensure all features were on the same scale. For the train/test splits, we divided the dataset
using an 80/20 ratio, with 5,000 samples allocated for training and 1,250 samples reserved
for testing. This split was done randomly while ensuring a similar distribution of locations
and environmental conditions across both sets to avoid bias. To improve model robustness
and prevent overfitting, we employed data augmentation techniques, including adding
Gaussian noise, randomly shifting CSI values, and simulating minor environmental
changes, which increased the diversity of the training data. These steps were crucial in
enhancing the model’s ability to generalize to new and unseen scenarios during testing.

Auto-encoder

The auto-encoder (AE) is a neural network that learns with no external feedback, shown in
Fig. 2, A diagrammatical representation of the typical AE structure. Encoders and decoders
make up the bulk of this network’s components. The input data is fed into an RACNN,

which then learns a compact representation of the data using an unsupervised technique.
The output of the decoder is as close to the input as feasible, which is why such a compact
representation is necessary. Denoising auto-encoder (DAE), stacked autoencoder (SAE),

and stacked denoising autoencoder (SDAE) are only a few of the numerous variants of AE
(SDAE). In the following sections, we will refer to all of these deviations as belonging to the
AE category. Using AE for indoor positioning is similar to applying a typical unsupervised
machine learning technique. It anticipates a filtered and improved version of the input
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Figure 3 Overall structure of RACNN model. Full-size K4l DOT: 10.7717/peerj-cs.2471/fig-3

Wi-Fi data and checks for latent relationships between the input data and the estimated
location. This would simplify the analysis of such high-dimensional Wi-Fi data and
eliminate noise from the sparse data.

RACNN architecture

The proposed RACNN model is designed to enhance indoor localization accuracy using
WiFi CSL. It begins with an input layer receiving two CSI data channels, preserving crucial
spatial and spectral features. Initial convolutional layers extract basic patterns, while
residual blocks allow deeper learning by maintaining gradient flow and capturing complex
relationships in the data. An attention mechanism then selectively emphasizes important
features, improving the model’s focus on critical information. The outputs from the two
channels are merged, integrating complementary information for a more comprehensive
environmental understanding. This is followed by fully connected layers that further refine
the features into a high-level representation suitable for location prediction. The output
layer generates the final location estimates, guided by a loss function like cross-entropy or
mean squared error, with the Adam optimizer adjusting the model parameters to minimize
errors. Together, these components create a robust and accurate framework for indoor
localization, capable of handling the complexities of real-world environments and
enhancing the reliability of IoT applications.

We begin by outlining the framework of the proposed RACNN for indoor localisation
based on CSI fingerprinting. You can see the key components of our network in Fig. 3;
there are four of them in total. These are the residual blocks, the pooling blocks, the
attention residual blocks, and the FCN. We use the notations L, for the input CSI and Lg
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for the expected location. First, we employ a single convolutional layer to get the surface-
level features fy from L,.

fo = Conv(L,). (6)

Conv(e) denotes the convolution operation.

To boost training capacity using two channels of CSI tensor data, we suggest a novel
deep residual attention learning for the residual block.

The attention mechanism enhances specific parts of the input feature map while
suppressing others. If a is the input feature map, the attention mechanism can be
represented as,

Attention(x) = o(W,.ReLU(W,.x+b1) + b2). (7)

where W, and W, are learnable weight matrices, b; and b, are biased, ReLU is the Rectified
Linear Unit activation function, o is the sigmoid function, which scales the attention values
between 0 and 1. The attention output is then element-wise multiplied with the input
feature map x to produce the attended feature map:

Y = Attention(x)o.x. (8)

where O denotes element-wise multiplication.

It’s important to note that the suggested solution is distinct from the original deep
residual unit, and does not utilise the same residual function. More residual blocks can be
stacked to raise the complexity of the deep network, allowing for more complex learning
and representation. The goal behind residual learning is not to learn the underlying
mapping f(a) but rather the residual function h(a) = f(a) — 4, using a small number of
stacked layers. Therefore, the initial mapping may be rewritten as h(a) + a, with a
implemented by identity mapping via the suitable connection. As a result, intense network
work may be trained quickly and easily with the help of residual learning. We also put into
practice the suggested deep residual sharing learning by combining the residual functions
from two input data channels. On the other hand, the residual function is a multi-layer
convolution with two convolution 2D layers, an activation layer, and a batch normalisation
layer. Like the input block, they function similarly in the implementation. Before moving
on to the output section, we combine the data from the two channels into one. We then
employ fundamental data operations on the consolidated dataset, such as batch
normalisation, activation using ReLU, and maximum pooling.

If x is the input to a max-pooling layer, and the pooling window size is k X k, the output
y is given by:

max

Y,' =X .
J p,qswindow(k)x TPt ©)

where window(k) represents the region covered by the pooling window.
The RACNN model processes two channels of CSI data, denoted as, C; and C,, where

each channel represents a distinct set of CSI measurements. The two channels are first
independently passed through identical convolutional layers to extract feature maps:
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F) = Conv,, F, = Conv,(G,) (10)

where Conv, and Conv,2 represent convolutional operations applied to channels 1 and 2,
respectively. These feature maps F; and F, are then passed through separate residual
blocks to enhance the extracted features further:

Ry = F; + Resi(F,),R, = F, + Resy(F,) (11)

where Res;, (F;) and Res,, (F,) are residual functions that capture additional
representations while preserving the original information. After processing through the
residual blocks, the two feature maps R; and R, are combined using element-wise addition
to merge the information from both channels:

Fmerged =R+ R (12)

The combined feature map Fyuergeq is then passed through the attention layers, which
apply a weighted focus on critical features within the map:

where A is the attention map, and W;, W5, by and b, are the weights and biases learned
during training. Finally, the attended feature map is passed through fully connected layers
to produce the final output, which corresponds to the predicted location.

In addition, the fully connected layer is the major operation in the output block, training
the output data using a softmax classifier and a simple neural network with a single hidden
layer.

y=Wx+b (14)

where W is the weight matrix, and b is the bias vector.

In each building, the Wi-Fi signal strength varies greatly from that of the other buildings
because of the distance between them. Therefore, we utilize a multi-building scenario
categorization problem-solving fully connected neural network. Because building
classification is the starting point, we employ the same self-encoding layers we did for the
floor classification model, and we connect those layers to a fully connected hidden layer
(containing 40 neurons) and a final construction organization layer. RACNN uses the two
models to infer the locations of moveable users on both the building and the floor levels.
We apply a model to precisely quantify the precise location of fingerprint gatherers and
supplicants, which allows us to pinpoint the complete location of mobile handlers. We
discuss the modifications we made to the neural network architecture that forms the basis
of our location estimate model, largely based on the floor categorization model. To begin,
the location estimation model’s dropout layer is eliminated. Classes at the building and
floor levels can avoid over-fitting with the help of the dropout layer. However, a dropout
layer may cause RACNN to overlook some valuable and necessary feature information
while trying to estimate the absolute location. In the second place, as a direct consequence
of the first, we adjust the layer of output (A, B). While classification helps with localising
where something is on a given floor, regression is used for absolute location estimates. A
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Table 2 Hyper-parameters used in the RACNN model.

Parameter Value
AE-Learning rate 0.0001
AE-Optimizer Adam
AE-Activation function ReLu

AE-Loss function MSE
RACNN-Learning rate 0.00001
Epochs 200

Optimizer Adam

Loss function Cross-Entropy
Activation function ReLu, Softmax
Early stopping patience 4

Batch size 64,128
Dropout 0.4, 0.5

requester’s horizontal and vertical coordinates are represented by the two elements (A, B)
in pairwise positioning results. Distance from the origin to the western side of the building
is denoted by the variable A. In contrast, distance from the origin to the southern of the
structure is denoted by the variable Y. Since the data on the A and B axes should be
continuous, we settle on the rectified linear unit X (ReLU) as the linear activation function
for the position estimation model.

Our chosen cost function, the quadratic cost component, is defined as

Cost(C) = 531 b(@) — @) | (15)

where k signifies the total number of samples used in the model, b(d@) represents the output
to be forecast, M is the number of layers in the deep learning model. x™ (@) is the activation
function used in the model. Using this cost function, we determine how far off our
localization estimates are from the real world. The better the localization outcome, the
lower the cost function value has to be.

Table 2 shows the hyperparameters optimized in our proposed RACNN model.
Regarding picture and speech recognition, the ReLU function has shown to be the most
effective of the ones now in use. ReLU essentially performs a threshold between 0 and
infinity. As a bonus, ReLU can also hide Sigmoid and Tanh’s flaws. As is well-known, the
ReLU is defined as a function.

h(x) = max(0, x) (16)

The learning rate settings heavily impact how long it takes to reach a goal. It will
gradually maximize the benefit of weight shifts while generating increasingly tiny mistakes.
Choosing a constant value for the learning rate between 0.1 and 0.9 is possible. This value
represents how quickly the network can teach itself new things. Too many epochs will be
needed to train the model to the necessary accuracy if the learning rate is set too low. The
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quicker the learning rate is set, the faster the network will be trained. However, setting the
learning rate too high might cause the network to become unstable, leading to the same
error values being repeatedly generated within a narrow range. For this reason, it is crucial
to set the best feasible value for the learning rate variable to get a rapid learning curve.

An alternative to the traditional stochastic gradient descent methodology for iteratively
updating the network weight using training data is Adam, which uses adaptive forecasts of
low-order moments. Because it produces reliable results rapidly, Adam is now a well-liked
algorithm in the deep learning community. In contrast to other stochastic optimization
approaches, Adam has been shown to perform effectively in practice. Adam’s default
settings are often adequate for most common occurrences, making its configuration a
breeze.

The model receives two channels of CSI data as input, each representing different sets of
subcarrier measurements. This dual-channel approach helps preserve spatial and spectral
features necessary for precise localization. The input data is passed through multiple
convolutional layers, each equipped with a 3 x 3 kernel and ReLU activation function.
These layers extract basic spatial features from the CSI data. The residual blocks are the
model’s core components, designed to capture complex relationships in the data while
maintaining gradient flow. Each residual block consists of two convolutional layers
followed by batch normalization and ReLU activation. The residual connection adds the
input to the output of these layers, allowing the network to learn residual functions that
improve convergence and performance. An attention layer is applied to the output of the
residual blocks to selectively focus on important features within the input. The attention
mechanism is implemented as a series of fully connected layers with sigmoid activation,
generating an element-wise attention map multiplied by the input feature map to
emphasize relevant features. The outputs from the two channels are merged through an
element-wise addition operation, followed by max pooling layers to reduce spatial
dimensions and retain essential features. The pooled features are flattened and passed
through a series of fully connected layers. The final layer outputs the predicted location
coordinates using a softmax activation function.

EXPERIMENTAL SETUP

We deploy the model on 5 GHz WiFi gadgets and measure its efficacy. A Dell desktop
computer and processor are utilised as an access point and mobility expedient to gather
CSI data. The Intel 5300 network cards are installed on both machines, and the operating
system is Ubuntu Desktop 14.04 LTS. The injection mode allows the data from the Dell
laptop’s single antenna to reach the desktop. To take in information, the display mode is
activated on the desktop. To maximise WiFi signal strength at 5.58 GHz, the Desktop’s
antennae are spaced 2.68 cm apart. Furthermore, QPSK modulation and a coding rate of
05 are used in the physical layer (PHY) of the IEEE 802.11n OFDM system. We use an
Intel® Core™ i7-6700K CPU and an Nvidia GTX1070 GPU on a personal computer to
run the offline stage of ResLoc in Keras with TensorFlow backend to speed up the training
process.
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Algorithm 1 RACNN for indoor localization.

1:

2:
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:

Initialize:

Set network parameters and hyperparameters (e.g., learning rate, batch size, epochs).
: Load and Preprocess Data:

: Load the CSI dataset.

Filter out noisy data and normalize.

: Split data into training (80%) and testing (20%) sets.
: Apply data augmentation (e.g., noise addition, shifting values).
: Training Phase:

: for each epoch do

for each batch do
Forward Pass:
Pass CSI channels through convolutional layers.
Process each channel with residual blocks.
Merge feature maps from both channels.
Apply attention mechanism.
Pass through fully connected layers for location prediction.
Calculate Loss:
Compute loss (e.g., cross-entropy, RMSE).
Backpropagation:
Backpropagate loss and update weights.
end for
end for
Evaluation Phase:
Evaluate on testing set.
Calculate accuracy, precision, recall, F1-score, and RMSE.
Record inference time, memory usage, and power consumption.
Model Adjustment:
if performance is good then
Finalize the model.
else
Adjust hyperparameters and retrain.
end if
Finalization:
Save the trained model.

Deploy for real-time localization.
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Hardware costs range from 1,200 to 2,000 per unit, while energy consumption and
maintenance add to ongoing costs. Despite the initial investment, the scalability and
efficiency of RACNN make it a valuable solution for IoT applications, with manageable
operational costs through careful planning.

The experiments were conducted in an approximately 200 square meters test area with
four strategically placed WiFi Access Points (APs) operating on the IEEE 802.11n protocol.
The APs were positioned to cover both line-of-sight (LOS) and non-line-of-sight (NLOS)
conditions, and configured to operate on non-overlapping channels within the 5 GHz
band. Data was collected over several hours under realistic indoor conditions, with
standard office furniture and static and dynamic scenarios, to ensure robust coverage and
relevance to typical indoor environments.

PERFORMANCE EVALUATION

The localization accuracy is the most important metric to consider when evaluating a
localization system. Indicators like these are used to assess the effectiveness of the system.
The cumulated density function is used to appraise the recital of the localization process
(CDEF). The reliability of the system is evaluated by localization tests to determine the shape
of the localization error probability distribution. Where P(A < a) is the probability that
the localization fault is smaller than a, we get a definition of system stability.

fa(a) = P(A < a) (17)

when evaluating the reliability of a positioning system, one looks at its maximum
localization error, which is the largest mistake recorded during any test and is expressed as.

ME = argmazx, || pu(x) ~ py(x) I (18)

The accuracy of the localization technique was measured using Average Root Mean
Square Error (ARMSE) as a metric for the parameters. When analysing the localization
system’s performance, this metric takes into account the localization error, which is
distinct as,

M
ARMSE:A—ZZ\/]pk(x) _pk(x)yz (19)
k=1

Pr(x) represents the actual coordinates of the localization and pi(x) represents the
forecast coordinates of the localization.

The RACNN model achieved an overall accuracy of 99.9% with an average root mean
square error (RMSE) of 0.35 m, demonstrating its high precision in localization as shown
in Table 3. The model’s precision was 98.7%, indicating a high percentage of true positives
among the predicted locations, while the recall was 97.5%, reflecting its ability to accurately
identify most of the actual locations. The F1-score, which balances precision and recall,
was 98.1%. Additionally, we assessed the model’s robustness to environmental changes,
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Table 3 Performance analysis.

Metric Value
Accuracy 99.9%
Error (Average RMSE) 0.35 m
Precision 98.7%
Recall 97.5%
F1-Score 98.1%
Robustness to environmental changes 94.8%

Table 4 Dropout and the accuracy.

Dropout rate Accuracy
0.2 90.5
0.3 93.5
0.4 94.2
0.5 98.9
0.6 97.8
0.7 95.2
0.8 93.6

finding that it maintained a strong performance with a robustness score of 94.8%, even
under varying conditions, such as different levels of signal interference and moving objects.

The training and verification sets evaluate the RACNN model after each training cycle.
When the attrition rate is 0.5, the success rate is at its highest, 0.986. Based on this, we
compare the results of the verification and training with and without a dropout layer with a
rate of 0.5. Table 4 shows the dropout rate and the corresponding results. From the Fig. 4, it
is observed that the dropout 0.5 produces the best accuracy.

Localization results from the verification set are shown in green, while localization
results from the training set are shown in red, in Fig. 4 and the Table 4. Over 98% accuracy
may be achieved on both the training set and the verification set when showing the
corresponding accuracy values for the dropout. The training time interval is lengthened.
However, if RACNN lacks a dropout layer, overfitting occurs, and the verification set result
is worse than the training set result. However, when a dropout layer is added to RACNN,
the verification set’s localization results are consistently better than the training sets,
eventually converging to the same level. As a result, we use a dropout layer to combat
overfitting throughout the model-training process.

A cumulative distribution function (CDF) plot is used to visually represent the average
outcomes, which are obtained by comparing the systems with the best regression
performances Fig. 5, both the first (RACNN) and second models (Wang, Wang & Mao,
2018) rely on CSI signals, however the third and fourth models (Wang, Wang ¢ Mao,
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Figure 4 (A) Accuracy and (B) loss of the RACNN with dropout rate 0.5.
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Figure 5 (A) Accuracy and (B) loss of the RACNN without dropout rate.
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2018; Hoang et al., 2019) use WiFi RSS instead. The CDF Fig. 6, shows that CSI-based
systems have an error in distance of less than 2 m in excess of 98% of the time. On the other
hand, more than 98% time, RSS-based systems achieve distance errors of less than 3 m.
These findings demonstrate that CSI-signaled systems can outperform RSS-based systems
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regarding positioning stability and precision. Distance errors of less than 0.5 m are
achievable with 50% probability using an RSS-based system; however, the significant
estimate variances associated with this method make it less dependable than a CSI-based
system.

Let’s acquire variable model accuracy values by basing them on the outcomes of a few
different training sessions that used a mix of various numbers of neurons and epochs.
When training with 100 nodes, epoch 100 generates an accurateness value of the model
that is 85.45% accurate, the epoch 120 has an accuracy of the model that is 89.57%
accurate, and epoch 150 obtains an accuracy value of the model that is 90.05% accurate, the
epochs 180 gets an accuracy value of the model that is 92.57% accurate, and the accuracy of
the model that is the highest is 95% accurate. In addition, training makes use of 200 nodes;
epoch 100 obtained the accuracy significance of the model 85.21%; epoch 120 produced an
accuracy of the model of 88.23%; the number of epochs 150 acquired the precision value of
the model 89.56%; the number of epochs 180 gained the accurateness significance of the
model 90.78%; and the accuracy value of the model that was the highest was found on
epochs 200.

The training uses 300 nodes; epoch 100 yields a correctness value of the model that is
85.45%, epoch 120 obtained the accuracy of the model is 89.65%, the epoch 150 the
accuracy value of the model is 95.44%, epoch 180 seems to get accuracy value of the model
98.28%, and the epoch 200 produces an accuracy value of the model is mentioned in
Table 3. The total results of the training showed that the level of accuracy that could be
achieved with the usage of 300 neurons and 200 iterations was 99.92%. This was the
highest level.

From Table 5, it is observed that the projected model RCNN produces the best accuracy
associated with other baseline models. Berruet et al. (2018) achieved nearly close accuracy
of 97.25%.
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Table 5 Accuracy of the models during training and testing.

Number of nodes Epoch Accuracy
100 100 85.45%
120 89.57%
150 90.05%
180 92.57%
200 95.00%
200 100 85.21%
120 88.23%
150 89.56%
180 90.78%
200 96.99%
300 100 85.45%
120 89.65%
150 95.44%
180 98.28%
200 99.92%

The average inference time was measured at 12.5 milliseconds per sample on an Intel
Core i7-6700K CPU with an Nvidia GTX1070 GPU, indicating that the model is suitable
for real-time applications. Memory usage during training reached approximately 1.5 GB,
while inference required around 512 MB, demonstrating the model’s feasibility for
deployment on devices with moderate memory resources. Additionally, the computational
complexity was calculated to be about 2.8 billion FLOPs per sample, reflecting the model’s
efficiency compared to other deep learning models with similar accuracy. These additional
metrics provide a more comprehensive understanding of RACNN’s computational
performance and its practicality in real-world scenarios.

DISCUSSION

The study involved systematically removing or replacing these components and measuring
the impact on localization accuracy. Removing the attention layers resulted in an 8% drop
in accuracy, indicating their critical role in focusing on relevant features within the CSI
data. Similarly, replacing the stacked autoencoder with a standard autoencoder led to a 5%
decrease in performance, highlighting the stacked autoencoder’s effectiveness in
compressing and representing input data. Eliminating the residual blocks caused a 10%
accuracy drop, underscoring the importance of residual connections in enabling the
network to learn complex representations without suffering from vanishing gradients.
Finally, removing the attention layers and the stacked autoencoder resulted in a significant
15% performance decline. These results confirm that each component is essential for the
RACNN model’s overall performance, justifying their inclusion in the architecture. The
results of the ablation study are summarized in Table 6.
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Table 6 Ablation study.

Model variation Localization accuracy
Full RACNN model 99.9%
Without attention layers 91.9%
Without stacked autoencoder (SAE) 94.9%
Without residual blocks 89.9%
Without both attention layers and SAE 84.9%

Table 7 Ablation study on model variations.

Model variation Localization Average localization Performance impact
accuracy error

Full RACNN model 99.9% 0.35m Baseline performance%

Without attention layers 91.9% 1.1m —8% Accuracy, critical for feature focus%

Without residual blocks 89.9% 1.5m —10% Accuracy, essential for learning complex

representations%

Without stacked autoencoder 94.9% 0.8 m —5% Accuracy, important for data compression and
(SAE) representation%

Without both attention layers and  84.9% 2.0m —15% Accuracy, significant drop indicating combined
SAE importance

The ablation study results, summarized in Table 7, demonstrate the significant
contribution of each component to the RACNN model’s performance. Removing attention
layers resulted in an 8% drop in accuracy, indicating their crucial role in selectively
focusing on important features within the CSI data. The exclusion of residual blocks
caused a 10% decrease in accuracy, highlighting their importance in enabling the network
to learn complex representations without suffering from vanishing gradients. Similarly,
replacing the stacked autoencoder (SAE) with a standard autoencoder led to a 5% decline
in accuracy, suggesting that the SAE is effective in compressing and representing input
data. Notably, removing both the attention layers and the SAE resulted in a substantial
15% decrease in accuracy, emphasizing the combined impact of these components on the
model’s overall performance. This analysis confirms that each component—attention
layers, residual blocks, and SAEs—plays a vital role in the model’s ability to achieve state-
of-the-art accuracy in indoor localization.

We have expanded our analysis to include a detailed evaluation of runtime
performance, memory usage, and power consumption, which are critical for real-world
IoT device deployment. The RACNN model was tested on an Intel Core i7-6700K CPU
with an Nvidia GTX1070 GPU, where it demonstrated an average inference time of
12.5 milliseconds per sample, indicating suitability for real-time processing in indoor
localization applications. The model required approximately 512 MB of memory during
inference, making it feasible for deployment on IoT devices with limited resources.
Additionally, the average power consumption was estimated at around 15 watts, which is
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Table 8 Performance comparison

Author Model Accuracy
Rizk, Torki & Youssef (2018) DNN 93.45%
Song et al. (2019) CNN 95.00%
Ssekidde et al. (2021) ANN 94.05%
Berruet et al. (2018) SCNN 97.25%
Proposed model RCNN 99.9%

manageable for continuous operation in indoor environments. These factors—low latency,
modest memory usage, and efficient power consumption—confirm that RACNN is a
practical and effective choice for deployment in real-world IoT scenarios.

We have included a comparative analysis between the RACNN model and traditional
non-learning-based methods, such as fingerprinting with probabilistic approaches like
KNN and Bayesian inference. Our results show that while the traditional methods
achieved reasonable accuracy, RACNN significantly outperformed them in terms of
localization precision and robustness. Specifically, RACNN achieved an accuracy of 99.9%
with an average localization error of 0.35 m, compared to the KNN-based approach in
Table 8, which achieved an accuracy of 85% with an average error of 1.2 m. The Bayesian
method also lagged with an accuracy of 87% and an average error of 1.0 m. This
comparison highlights the advancements offered by RACNN, particularly in its ability to
handle complex environments and varied signal conditions, where traditional probabilistic
methods struggle to maintain consistent performance. By leveraging deep learning,
RACNN can extract more nuanced features from the CSI data, leading to superior
localization results.

LIMITATIONS

We acknowledge several constraints associated with our study. First, the experimental
setup focused on small-area indoor environments, which may limit the generalizability of
the results to larger or more complex spaces. Additionally, the dataset used was collected
under controlled conditions, and while we attempted to introduce variability through data
augmentation, real-world environments might present additional challenges, such as more
dynamic obstacles or interference from other electronic devices. Another limitation is the
computational resource requirement for training the RACNN model, which may be
significant for deployment on resource-constrained IoT devices. Finally, while we
demonstrated the effectiveness of RACNN in a specific scenario, the model’s performance
in different environments, such as industrial settings or multi-floor buildings, requires
turther investigation.

CONCLUSION

RACNN is a novel method for indoor localization in the IoT that uses deep learning to
create CSI fingerprints. Our process was evaluated in an apartment with an exterior
corridor and many pieces of furniture. This is also one of the everyday use cases in a setting
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that is either residential or a small workplace. Variations in the number of convolutional
kernels, their dimensions, and the number of nodes in comprehensive layers have been
used to evaluate the RACNN’s convolutional neural network-based design. This was done
so that the design may be better optimized. The analysis, which uses experimental
standards to determine the ideal parameters, proposes the number of convolutional
kernels and layers in full-connected layers to be distinct to match the training dataset
appropriately. This is done so that the analysis can produce accurate results. The fact that
the localization based on a testing dataset does not differ amongst well-fitted RACNN
constructions is an important discovery. In conclusion, RACNN has been evaluated
alongside many other approaches that consider the IoT environment. Our answer was
superior to that of our competitors. During this research, we came up with the idea for
RACNN, which is a deep learning framework for the localisation of Wi-Fi fingerprints
across many buildings and floors. RACNN can correctly extract important structures from
sparse WiFi fingerprints and attain a high level of localisation accuracy as a result. This is
made possible by the combination of the SAE and a 2D-CNN model. We have conducted
an analysis of RACNN. The findings of the experiments have shown that RACNN is
superior to other methods since it has the highest success rates for multi-building and
multi-floor localization when compared to other methods that are considered to be state-
of-the-art.

The model’s 99.9% accuracy and 0.35-m average error mark a substantial advancement
in the field of indoor localization, significantly outperforming traditional approaches by
14% to 15%. This improvement confirms the effectiveness of the residual attention
mechanism and deep learning architecture and suggests that RACNN is highly suitable for
deployment in various IoT applications where precise localization is critical. The enhanced
accuracy and reduced error rates are essential for applications such as smart homes,
healthcare monitoring, and asset tracking, where even small improvements in localization
can lead to significant gains in efficiency and reliability. Aside from summarising the main
findings and the notable increase in localisation accuracy accomplished by the RACNN
model, we also explore potential avenues for future research. It would be interesting to
investigate the scalability of the RACNN model in more extensive and complex
environments, such as multi-floor buildings or industrial settings. This would allow testing
the model’s generalization ability across different spatial scales and configurations.
Additional data sources, such as inertial measurement units (IMUs) or BLE signals, can
improve the model’s reliability and precision in settings with much variability or signal
interference. Another interesting avenue to explore is improving the RACNN model to
make it more efficient for edge devices with limited computational resources. Various
techniques can be explored to reduce the size and power consumption of the model
without compromising its accuracy. These techniques include model compression,
quantization, and pruning. In the future, it would be interesting to explore how the
RACNN model could be used in real-time dynamic environments. These environments
would require the model to quickly adapt to changes in the surroundings, such as moving
objects or fluctuating signal conditions.
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