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ABSTRACT

In this paper, we propose enhancing feature reuse for fully convolutional one-stage
object detection (EFR-FCOS) to aim at backbone, neck and head, which are three main
components of object detection. For the backbone, we build a global attention network
(GANet) using the block with global attention connections to extract prominent
features and acquire global information from feature maps. For the neck, we design
an aggregate feature fusion pyramid network (AFF-FPN) to fuse the information of
feature maps with different receptive fields, which uses the attention module to extract
aggregated features and reduce the decay of information in process of the feature
fusion. For the head, we construct a feature reuse head (EnHead) to detect objects,
which adopts the cascade detection by the refined bounding box regression to improve
the confidence of the classification and regression. The experiments conducted on the
COCO dataset show that the proposed approaches are extensive usability and achieve
significant performance for object detection.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision, Neural
Networks
Keywords EFR-FCOS, GANet, AFF-FPN, EnHead, Object detection

INTRODUCTION

According to the framework of current object detection algorithms, which includes two
categories: convolutional neural network (CNN) based (Krizhevsky, Sutskever ¢» Hinton,
2012; He et al., 2016) and Transformer-based (Vaswani et al., 2017) detection algorithms.
DERT (Carion et al., 2020) constructs a fully end-to-end object detection framework
based on transformer, but DERT requires the longer time to train and higher resource
consumption than CNN-based Faster R-CNN (Ren et al., 2015). In particular, ViT-
FRCNN (Beal et al., 2020) replaces the convolutional neural network with transformer as
the backbone for feature extraction. Although the Transformer-based detection algorithms
achieve certain advantages in accuracy, they require significant computational resources
and time to train. Therefore, it is still too early to completely replace the convolutional
neural network with transformer.

One-stage object detection (Tian et al.,, 2019) is a representative CNN-based
methodology, which is generally designed to recognize the object classification and
location directly through the backbone network. It includes the anchor-based methods
such as single-shot detector (SSD) (Liu et al., 2016), RetinaNet (Lin et al., 2017b), Cascade
RetinaNet (Zhang et al., 2019a), etc., and the anchor-free methods (Tian et al., 2020) such
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as DenseBox (Huang et al., 2015), YOLO (Hussain, 2024), CornerNet (Law ¢ Deng, 2020),
fully convolutional one-stage object detection (FCOS) (Tian et al., 2019), RepPoints (Yang
et al., 2019), etc. Moreover, the anchor-free methods avoid the complicated computations
caused by using extensive anchor boxes and reduce the design of hyper-parameters and
have become the popular method.

The structure of one-stage object detector consists of backbone, neck and head. The
popular backbone networks include VGG (Simonyan & Zisserman, 2015), ResNet (He et al.,
2016), Transformer (Vaswani et al., 2017), etc. In particular, ResNet is the most widely used
due to its simple structure and less parameters, which introduces an identity skip connection
to alleviate vanishing gradient and allows network to learn deep feature representations
effectively. From the bottleneck block of ResNet, the information transmitted directly from
the previous layer to the next layer usually experiences a certain attenuation. Therefore, we
design a global attention network (GANet), which refines the information and gain global
features from feature maps.

The neck is used to gather multi-scale features from various stages of the backbone
network, such as feature pyramind network (FPN) (Lin et al., 2017a), Adaptively Spatial
Feature Fusion (ASFF) (Liu, Huang ¢ Wang, 2019), Receptive Field Block (RFB) (Liu,
Huang ¢ Wang, 2018), spatial pyramid pooling (SPP) (He et al., 2015), etc. However, the
current FPN-based methods may drop features when fusing multi-scale features directly.
Therefore, we propose an aggregate feature fusion pyramid network (AFF-FPN) for
fusing the feature from feature maps with different receptive fields, which can extract
global context and reduce the decay of information to learn more comprehensive feature
representation.

The head is used to detect the locations and classify the objects, which generally is
composed of a detection network, bounding boxes and loss. In particular, the FCOS-
based point-wise prediction introduces the branch of center-ness to suppress low-quality
predicted bounding boxes for improving the performance of the detector. In addition, the
cascade detection is verified by Cascade R-CNN (Cuai ¢ Vasconcelos, 2018) and Cascade
RetinaNet (Zhang et al., 2019a), which are an effective mechanism. Inspired by this, we
propose the EnHead of cascade detection mechanism to improve the detection performance
remarkably.

In summary, the performance of object detection benefits from enhancing feature
extraction, improvement of tiny targets, refines the information and gain global features.
We use multi-scale feature extraction and feature fusion to improve the performance of the
detector, and cascade detection to improve the detection for tiny targets. In this paper, we
design a global attention network (GANet) to enhance the capability of feature extraction,
which can gain global information to strengthen feature extraction. To reduce the decay of
information, we design an aggregate feature fusion pyramid network (AFF-FPN) to fuse
multi-scale feature information from feature maps. Motivated by the cascade detection, to
achieve the refinement of bounding boxes, we design the feature reuse head (EnHead) for
improving the confidence of regression.

The main contributions of our work are summarized as follows:
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- We propose a novel global attention network as the backbone of object detector
(denoted as GANet), which aims to collect salient information for improving the
extraction capability of multi-scale features.

- We propose an aggregate feature fusion pyramid network as the neck of object detector
(denoted as AFF-FPN), which aims to fuse multi-scale feature information by extracting
global context.

- We propose a novel feature reuse head as the head of object detector (denoted as
EnHead) for the anchor-free one-stage method, which aims to improve the confidence
of regression by refining the bounding boxes.

The organization of this paper is as follows. We start our discussion with a brief review
of improving on the object detection in ‘Related Work’. ‘Methodologies’ presents our
approaches. ‘Experiments’ evaluates the methodologies. ‘Conclusion’ concludes the paper.

RELATED WORK

As our work focuses on improving feature learning for object detection, we investigate
representative works of improvements on backbone, neck and head of object detector.

Improvements on ResNet

As a component of the object detectors, the backbone network is used to extract features,
and designing a neural network architecture is a fundamental task of computer vision.
The representative works of deep neural network includes (Simonyan ¢ Zisserman, 2015),
ResNet (He et al., 2016), Dilated Convolution (Yu ¢~ Koltun, 2015), EfficientNet (Tan ¢
Le, 2019) and ViT (Dosovitskiy ef al., 2021) based on transformer. In particular, ResNet is
the common neural network in the tasks of computer vision, which uses skip connections
to alleviate the vanishing-gradient problem when constructing the deep network. Because
it has few parameters, simple structure and can be easily used as a backbone for other visual
tasks, and has become one of the most popular architecture. At present, the improved
versions of ResNet focus on improving the trunk of the residual block and adding the
attention module to residual block, such as DenseNet (Huang et al., 2017), ResNeXt (Xie
etal., 2017), Res2Net (Gao et al., 2021), SENet (Hu, Shen ¢ Sun, 2017), GCNet (Cao et
al., 2019), TripleNet (Misra, Nalamada ¢ Landskape, 2020). DenseNet proposes a dense
convolutional networks, where skip connections pass the feature maps of the former layers
to each latter layer. adopt group convolution to increase cardinality. Res2Net constructs
hierarchical residual-like connections within one single residual block for stronger multi-
scale representation ability. SENet adopts channel-wise rescaling to explicitly model
dependency among channels, which presents an effective mechanism to learn channel
attention and achieves promising performance. GCNet maintain the accuracy of NLNet
while significantly reducing computational complexity. TripleNet proposes triplet attention
of three-branch structure, which builds inter-dimensional dependencies by the rotation
operation followed by residual transformations and encodes inter-channel and spatial
information. Unlike these networks focus on the trunk of the residual block, we focus on
skip connections and propose a global attention network (GANet), which can be plugin
into residual block for extracting salient information from feature maps.

Liao et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2470 3/23


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2470

PeerJ Computer Science

Improvement on FPN

Generally, the neck of object detector is used to fuse the feature from multi-scale feature
maps, the popular network is FPN (Lin et al., 2017a), PANet (Liu et al., 2018), etc. In
particular, FPN has been the most effective and important structure to extract multi-
scale features for object detector, and all levels of feature maps contain strong semantic
information. PANet adds a bottom-up channel on the basic of FPN, which by using the
accurate low-level positioning signals to enhance the feature representation for shortening
the path of information between the low-level and top-level features. By improving
multi-scale features with strong semantics, the performance of object detection has been
substantially improved, such as BFPN (Wu er al., 2018), Bi-FPN (Tan, Pang & Le, 2020),
PEPN (Wang et al., 2020a), AugFPN (Guo et al., 2020), iFPN (Wang, Zhang ¢ Sun, 2021),
etc. Bi-FPN adds a cross-scale connection (residual connection) on the basis of PANet to
obtain a more advanced feature fusion. CE-FPN (Luo et al., 2020) proposes a sub-pixel
skip fusion method to perform both channel enhancement and up-sampling. However,
FPN-based methods suffer from the inherent defects of channel reduction, which leads
to the loss of semantic information and information decay during fusion. Therefore, we
propose enhanced feature pyramid network (AFF-FPN) to fuse the feature of local and
global receptive fields for improving feature representation.

Improvements on Head

In the terms of head, for classification and regression of object detection, which is generally
composed of detection network, bounding boxes and loss. Compare with the anchor-based
method, the anchor-free method avert the complicated computation of using anchor boxes
and reduce the hyper-parameters. In anchor-free keypoint-based approaches of using
Hourglass as the backbone, CornerNet (Law ¢» Deng, 2020) uses a pair of the top-left corner
and the bottom-right corner of keypoints to detect bounding boxes. ExtremeNet (Zho,
Zhuo & Krahenb, 2019) uses a standard keypoint estimation network to detect four extreme
points of top-most, left-most, bottom-most, right-most, and one center point of objects.
CenterNet (Zhou, Wang ¢ Krahenb, 2019) uses a triple of keypoints of the top-left corner,
the bottom-right corner, and a center point to detect bounding box, which enriching
information collected by both top-left and bottom-right corners, and providing more
recognizable information at the central regions. Moreover, the anchor-free approach
FSAF (Zhu, He & Savvides, 2019) utilizes ResNet as backbone, the proposed FSAF module
involves the online feature selection applied to the training of multi-level anchor-free
branches, which is attached to each level of the feature pyramid. Free-Anchor (Zhang et
al., 2019b) modifies the loss function to avoid manually assign anchors, which can learn
anchors matching with the objects. FoveaBox (Kong et al., 2020) based on ReintaNet,
multi-scale objects are assigned to different feature layers for classification and regression
on pixels directly. FCOS (Tian et al., 2019) introduces the branch of center-ness to suppress
low-quality predicted bounding boxes for improving the performance of the detector. FCOS
v2 (Tian et al., 2020) moves the branch of Center-ness from classification to regression
for prediction. In particular, the improvement of FCOS such as NAS-FCOS (Wang et al.,
2020b), TPS-FCOS (Sun et al., 2020) etc., they all use single detection head. In addition,
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the detection network of the head can be divided into single detection for classification
and bounding box regression such as Faster R-CNN (Ren et al., 2015), SSD(Liu et al.,
2016), RetinaNet (Lin et al., 2017b), FCOS (Tian et al., 2019), etc., and cascaded detection
utilizes feature sharing to ensemble multi-stage outputs such as Cascade R-CNN (Cai
& Vasconcelos, 2018), ConRetinaNet (Kong et al., 2019), Cascade RetinaNet (Zhang et al.,
2019a), etc. Motivated by the cascade detection, we propose a feature reuse head (EnHead)
to improve the confidence of regression for the refined bounding boxes.

METHODOLOGIES

We introduce the architecture of EFR-FCOS in this section. The GANet is presented
subsequently, followed by AFF-FPN and EnHead.

EFR-FCOS

In one-stage methods of object detection, anchor-based methods generate dense anchor
boxes to increase the recall of objects, which bring out redundant boxes and require to
set extensive hyper-parameters such as the scale of the box, aspect ratio of the box, and
IOU threshold. In comparison to the anchor-based method, the anchor-free method
circumvents the complicated computation caused by using extensive anchor boxes and
reduces the design of hyper-parameters, which further towards real-time and high precision
of object detection. In addition, keypoints-based methods need to predict multiple
keypoints will lead to complex computations such as CornerNet (Law & Deng, 2020),
CenterNet (Zhou, Wang & Krahenb, 2019), etc., while the pixel-wise prediction methods
take advantages of all points in a ground truth bounding box to predict the bounding
boxes and can provide comparable recall with anchor-based detectors such as FCOS (Tian
et al., 2019), RepPoints (Yang et al., 2019), etc. Whether the keypoints-based method or the
pixel-wise prediction method, is essentially dense prediction. The vast solution space leads
to excessive false positive, which obtains the results of high recall and low precision. For
the improvement of anchor-free methods, on the one hand, further improving head with
re-weight detection output through various ways. On the other hand, using FPN (Lin et
al., 2017a) to alleviate the impact of high coincidence. Therefore, we propose an enhancing
feature reuse for anchor-free one-stage object detection (name as EFR-FCOS), which
makes improvements from the three components of the models for object detection.
Intuitively, as shown in Fig. 1, based on FCOS v2 (Tian et al., 2020) due to its simple and
effective structure, we propose an enhancing feature reuse for anchor-free object detection,
named as EFR-FCOS, consists of three components, i.e., GANet (global attention network),
AFF-FPN (aggregate feature fusion for feature pyramid network), and EnHead(enhancing
feature reuse for detection head). In terms of the components of the object detector, we
propose GANet as the backbone for extracting features, which is similar to the structure
of ResNet. It will select layers of conv2, conv3, conv4, and conv5, denoted as {C2, C3, C4,
C5}, the strides is {4, 8, 16, 32}, and feed into the subsequent neck network for feature
fusion. AFF-FPN as the neck for fusing feature from multi-layer feature maps, which will
fuse {C2, C3, C4, C5} and output them as {P2, P3, P4, P5}. EnHead is used to detect the
objectds from fused features, which adopts two groups of subnetworks consisting of four
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Figure 1 The structure of EFR-FCOS.
Full-size G DOI: 10.7717/peerjcs.2470/fig-1

3% 3 convolutions for cascade detection. In addition, similar to FCOS v2, the loss functions
adopt FocalLoss, GIoULoss and CrossEntropy for classification, regression and center-ness
avoiding a lot of false detection, respectively. The detail will be presented in the following
section.

GANet: global attention network

At present, the prevalent backbone network includes ResNet and Transformer. The
Transformer-based network requires huge computational resources and offers slight
advantage over ResNet when used for feature extraction. On the contrary, ResNet (He
et al., 2016) has a simple structure, less parameters, and widely application because it
consists of multiple residual modules, i.e., the bottleneck module. In addition, we find
that the information transmitted directly from the previous layer to the next layer usually
experiences a certain attenuation. Therefore, we develop a global attention network(GANet)
module, which can refine the transmitted feature information to capture global features
and replace the bottleneck in ResNet.

Intuitively, as shown in Fig. 2, we design the structure of GANet module, which is
similar to the residual module of ResNet and consists of a trunk and attention connection.
The trunk consists of two 1x 1 convolutions, a 3x3 convolution group, and the global
context module (GCB) (Cuao et al., 2019). The attention connection concatenates the
average pooling and the max pooling of features from the former layer, followed by a
1x1 convolution, ReLU operation, and Softmax operation, finally fuse with the feature
from the trunk. When constructing the backbone network, the method is the same as
ResNet. Specifically, we use a set of small 3 x 3 filters to substitute the 3x3 convolution of
the bottleneck in ResNet. After a 1x1 convolution, feature maps are split into groups of
subsets, denoted as xi, each subset has the same size, i.e., 1/n. In addition, F;(-) denotes
small 3x 3 filters. Therefore, the 3x3 convolution group can be denoted as:

Fiy1 =Fi(xi+Fi_1) (1)
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Figure 2 The structure of GANet.
Full-size tal DOI: 10.7717/peerjcs.2470/fig-2

where x; denotes the feature map. X denotes the imput image, which will through the
trunk of GANet module:

F(X) =Y Fi(f(x))/n) + Fy(x:) (2)
1

where the f(.) denotes 1x1 convolution, F, denotes the global context block, F denotes
the output features of the trunk.

In addtion, the another connection, i.e., global attention connection, is used to refine the
transmitted feature information except skip-connection of ResNet bypassing the non-linear
transformations. Without loss of generality, the output of the global attention connection
G(X) is as follows:

G(X) =Y S(f (max(x;) +avg(x;))) (3)
1
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where avg(.) denotes the average pooling, max(.) denotes max function, Relu denotes the
rectified linear units, and S(.) denotes Softmax.

In summary, the output of GANet module by integrating the output of the trunk, skip
connection, and the global attention connection, which is defined as follows:

y=F(X)+X+G(X) (4)

where y denotes the output feature maps.

The GANet module in Fig. 2 is the basic unit that makes up GANet, which is similar
to the bottleneck in ResNet. Therefore, the constructed backbone network is similar to
ResNet. For example, the network of 50 layers includes conv2 consisting of 3 modules,
conv3 consisting of 4 modules, conv4 consisting of 6 modules, and conv5 consisting of 3
modules. The network of 101 layers is the same. In particular, conv2, conv3, conv4, and
conv5 denoted as C2, C3, C4, C5, the strides is 4, 8, 16, 32, will feed into the subsequent
neck network for feature fusion.

AFF-FPN: aggregate feature fusion for FPN

In terms of the neck, FPN (Lin et al., 2017a) can fuse multi-scale features to achieve
strong semantic information. By improving multi-scale features with strong semantics, the
performance of object detection has been improved significantly, such as Bi-FPN (Tan, Pang
& Le, 2020), AugFPN (Guo ef al., 2020), iFPN (Wang, Zhang ¢» Sun, 2021), etc. However,
FPN-based methods suffer from the inherent defect of channel reduction, which leads
to the loss of semantic information and information decay during fusion. Therefore, we
propose an enhanced feature pyramid network (AFF-FPN) to fuse the feature information
of local and global receptive fields for improving feature representation, as shown in Fig. 3.
The number of feature maps output by the neck network determines the number of
detection heads, but this may not be applicable to various object detectors. FCOS uses
various sizes of detection heads to detect objects of different scales and burden is dispersed
across multiple feature maps at different levels. In object detectors, FPN will fuse the feature
maps of different scales, which generated at different stages from the backbone network
(denoted as C), and the output features denote as P. Therefore, the input of FPN can be
denoted as C2 ~C5 and output as P2 ~P5 in the process of feature fusion. The formula is
expressed as follows:

Pi=H(C;+Ciy1) (5)

where H is the feature fusion process.

In AFF-FPN, we introduce three dilated convolutions before feature fusion to reduce
the loss of semantic information, and attention module with global context block (GCB)
to enhance feature representation for relieving the information decay during fusion.
Intuitively, as shown in Fig. 3, following the setting of AFF-FPN, which generates a 4-level
feature pyramid. The C2 ~C5 of the backbone output will go through the process of feature
fusion. The input image’s stride is set to {8, 16, 32, 64}, and the number of channels is
{256, 512, 1024, 2048}, respectively. According to the same settings as FPN, {F2, F3, F4, F5}
are feature maps with the same number of channels after the global context block (GCB).

Liao et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2470 8/23


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2470

PeerJ Computer Science

Figure 3 The structure of AFF-FPN.
Full-size Gal DOI: 10.7717/peerjcs.2470/fig-3

The feature pyramids {P2, P3, P4, P5} are generated using a top-down path with dilated
convolution modules. P6 is obtained directly through the GCB module operation by C5.
P7 is obtained through ReLU and a 1x 1 convolution on the basis of P6.

Formally, given a list of multi-scale features, AFF-FPN sampling at four different scales
of the extracted features from the backbone network. AFF-FPN generates a 4-level feature
pyramid {P2, P3, P4, P5} from the output of the backbone {C2, C3, C4, C5}. In top-down
feature fusion, the top-down integrates up-sampling features from the latter layer, while
GCB extracts global feature information from the C of the backbone. In the bottom-up
process, which combines the 3x3 convolution sampling information of this layer, the
down-sampling of the previous layer and DCM extracting features at different receptive
fields from C. The formula of AFF-FPN is defined as follows:

F" = G(C™) +ups(FI"))
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p¢" = F"+D(C") +downs(pi ) o

where F? denotes the output of the ith layer, Cii” denotes the input of ith layer, and p?*'
denotes the final output. The ups denotes the up-sampling operation, the downs denotes
down-sampling operation.

Therefore, the structure of AFF-FPN in Fig. 3 is similar to FPN, which selects C2 C5
from the bakcbone network and outputs P2 P5 through feature fusion. It will be feed into

the subsequent head network for detecting objects.

EnHead: Enhancing feature reuse for detection head

The cascade detection is firstly proposed by Cascade R-CNN (Cai ¢ Vasconcelos, 2018),
which uses cascade regression as a resampling mechanism to increase IoU value stage
by stage, so that the resampled proposals from the previous stage can adapt to the next
stage with a higher threshold. Cascade RPN (Vi et al., 2019) improves the quality of
region-proposals and detection performance by systematically addressing the limitation
of the conventional RPN that heuristically defines anchors and aligns the feature to the
anchor. For one-stage object detection, ConRetinaNet (Kong ef al., 2019) adopts consistent
optimization to match the training hypotheses and the inference quality by utilizing the
refined anchor during training. Cascade RetinaNet (Zhang et al., 2019a) adopts the idea
of cascade for reducing the misalignments of classification and localization. From above
mentioned, we find that cascade detection can improve the performance of object detector,
which can be applied to EFR-FCOS. Therefore, we design a cascade detecting head for the
anchor-free object detection, named as EnHead, which produces high-quality bounding
boxes.

RetinaNet (Lin et al., 2017b) attaches a small fully convolutional network that consists
of four convolutional layers for feature extraction and a single convolutional layer for
prediction in different branches. The prediction of each position on the feature map
contains classification and regression for various anchor shapes. FCOS (Tian et al., 2019)
also uses two subnets, which use point-wise to predict boxes and introduce a branch
of center-ness to suppress low-quality predicted bounding boxes for improving the
performance of detectors. FCOS v2 (Tian et al., 2020) moves the branch of center-ness
from the branch of classification to the branch of regression for prediction (the following
EnHead refers to FCOS v2). In summary, in the head of FCOS, one subnet is used to output
the confidence of predicted classification, another for predicting the distance between the
center point and the four sides, and the branch of the center-ness for filtering out the
point of the low-quality detections. To effectively learn qualified and distributed bounding
boxes, we design the EnHead for EFR-FCOS as shown in Fig. 4, which also is used to the
improved model based on FCOS.

Intuitively, as shown in Fig. 4, the EnHead based on the cascade mechanism, we refine
the bounding boxes, which can obtain high-qualified boxes for improving the performance
of detector. The same as FCOS, EnHead includes two subnets, a classification subnet and a
box regression subnet for regression and to suppress low-quality boxes. The classification
subnet uses only 3x 3 convolutions to output classifications and features for boxes, and
does not share parameters with the box regression subnet. In parallel with the classification
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Figure 4 The structure of EnHead.
Full-size &l DOI: 10.7717/peerjcs.2470/fig-4

subnet, we attach four 3x3 convolutions to each pyramid level for regressing the offset
from each point to a nearby ground-truth object. In particular, the design of the box
regression subnet is different from the classification subnet, which will use the features of
location from classification subnet. Since the output is the same as FCOS, the losses will
not be changed.

From the mentioned above, we predict the classification scores and regression offsets
based on the backbone feature x;. Formally, at the output feature x; from AFF-FPN,
the output feature is the shape of H/4 xW/4 xC, where H and W are the input image’s
height and width. The head performs classification and localization on each grid point of the
feature map H/4 x W/4 by two parallel convolutional layers. The classification layer predicts
the probability of object presence at each grid point for K object categories. The location
layer predicts the offset from each grid point to four boundaries of the ground-truth box.
The classification subnet can be expressed as:

Ci =S(Fi(xi.)) (7)

where x; . indicates the classification of ith layer, C indicates the output classification, S
indicates Softmax, F indicates convolutions, and the box regression subnet ca be expressed

as:
Rj = Ti(L(xi,r), L(xic)) (8)

where x; , indicates the box regression of i-th layer, L indicates the outputting location
of boxes, Ty indicates the filtering out k boxes, R indicates the final outputting boxes. It
should be noted that the refined offsets are to improve the location representation. From
the experiments, we prove that our proposed EnHead can steadily improve the detection
performance in different settings.

EXPERIMENTS

In this section, we will evaluate the proposed GANet, AFF-FPN and EnHead for
object detection. The experimental results show that the proposed methods have better

performance.

Dataset and evaluation metrics
We will evaluate the proposed methodologies on the popular MS COCO 2017 (Tian et al.,
2020) benchmark, which has 80 objects categories and contains about 118k images in the
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training set, 5k images in the validation set (i.e., minival), 20k images in test set without
the published labels. The average number of objects in a single image of COCO is about
three times than VOC (Ren et al., 2015), and small objects is majority. In particular, the

small objects(less than 32x32) account for 41% approximately, the large objects(greater
than 96x96 account for 24% approximately, and the medium objects(range from 32 x32
to 96x96 account for 34% approximately. We will train models on the training set and

evaluate them on the validation set. In terms of threshold setting, COCO divides it into

10 values, starting with 0.5 and ending with 0.95, with an interval of 0.05. The standard

metrics of COCO include AP, APsy, AP75,APs, APy, APy, The AP defaults to mAP.

Implementation details

Training details. All models are implemented on the mmDetection wthin PyTorch 1.3
and above. All experiments perform training with an SGD optimizer on four GPUs and
two images per GPU, using an initial learning rate of 0.01, a weight decay of 0.0001 and
the momentum of 0.9, and using the simplest data augmentation techniques of random
cropping, flipping and d stretching. In ablations, most experiments follow the 1 xsettings
where 12 epochs with single-scale training of [800,1333] are used, the learning rate decayed
by 10xafter epoch 8 and 11. Most of the ablations use ResNet-50 or ResNet-101 as the
backbone pretrained on ImageNet. We also use the multi-scale ([480,960]) and longer
training (2 x settings with 24 epochs in total and the learning rate decay at the epoch of 16
and 22) to test the proposed approaches on stronger backbones, to observe whether the
benefits can be maintained on these stronger baselines. In addition, the training schedule
is 36 epochs, where the initial learning rate is set to 2.5 x 107, divided by 10 at epoch 27
and 33, respectively.

Inference details. The inference process is quite similar to FCOS (Tian et al., 2019).
Given an input image, EFR-FCOS directly predicts 100 bounding boxes associated
with their scores. The scores indicate the probability of boxes containing an object. For
evaluation, we directly use these 100 boxes without any post-processing. Unless specified,
we conduct multi-scale testing on the backbone for comparison with the state-of-the-art
approaches.Following (Tian et al., 2019; Tian et al., 2020), we choose the location with
Py, > 0.05 as positive samples to obtain the predicted bounding boxes. IoU sets 0.5, 0.6,
and 0.7 to select boxes.

Comparison with the state-of-the-art Methods

Table 1 summarizes the performance of our proposed EFR-FCOS (refer to ‘EFR-FCOS’)
compares with the-state-of-art approaches for object detection. In particular, we select
the-state-of-art models of YOLO to compare, include YOLOVS (Zhang, Li & Gao, 2024),
YOLOV9 (Wang, Yeh ¢ Liao, 2024) and YOLOvV10 (Wang et al., 2024). Compared to the
three versions of M, L and X, our model training is more convenient than the model after
YOLOV5, because YOLOV5 uses hyperparameter evolution, freeze training, and image
weighting strategy to train. From Table 1 we have some observations: (1) EFR-FCOS
achieves the optimal performance, outperforms the recent anchor-free one-stage detector
TSP-FCOS (Sun et al., 2020) by 3.7%, YOLOv9 and YOLOvV10 by 1.3% respectively,

Liao et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2470 12/23


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2470

PeerJ Computer Science

Table 1 EFR-FCOS vs. the state-of-the-art two-stage and one-stage detectors.

Model Backbone AP APs, AP APy APy, AP;
Faster R-CNN ResNet101 39.4 60.2 43.0 22.3 43.3 49.9
CBNet ResNet-101 41.0 62.4 44.5 - - -

TridentNet ResNet-101 42.7 63.6 46.5 23.9 46.6 56.6
Cascade R-CNN ResNet-101 42.8 62.1 46.3 23.7 45.5 55.2
SNIP ResNet-101 44.4 66.2 49.9 27.3 47.4 56.9
Sparse R-CNN ResNet-101 45.6 64.6 49.5 28.3 48.3 61.6
DDQ ResNet-101 47.8 66.3 52.6 29.9 50.0 59.3
YOLOv3 DarkNet-53 33.0 57.9 34.4 18.3 354 41.9
YOLOv4 CSPDarknet53 43.0 64.9 46.5 24.3 46.1 55.2
YOLOvV5-S CSPDarknet53 37.4 56.8 - - - -

YOLOv6-S CSPDarknet53 44.3 61.2 - - - -

YOLOvV7-S CSPVoVNet-53 45.1 61.8 48.9 25.7 50.2 61.2
YOLOV8-S CSPDarkNet-53(C2f) 449 61.8 - - - -

YOLOV9-S CSPVoVNet-53 46.8 63.4 50.7 26.6 56.0 64.5
YOLOVI1O0-S CSPDarkNet-53(C2f) 46.8 — — — — —

SSD512 ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8
RetinaNet ResNet-101 39.1 59.1 42.3 21.8 4.7 50.2
RefineDet ResNet-101 41.8 62.9 45.7 25.6 45.1 54.1
ATSS ResNet-101 43.6 62.1 47.4 26.1 47.0 53.6
M2Det ResNet-101 43.9 64.4 48.0 29.6 49.6 54.3
FreeAnchor ResNet-101 40.9 59.9 43.8 21.7 43.8 53.0
RepPoints v2 ResNet-101 43.4 63.3 59.4 23.0 40.4 18.0
FCOS v2 ResNet-101 43.2 65.9 50.8 28.6 49.1 58.6
TSP-FCOS ResNet-101 44.4 63.8 48.2 27.7 48.6 57.3
EFR-FCOS GANet-50 45.7 66.4 52.3 29.9 50.3 58.8
EFR-FCOS GANet-101 48.1 66.8 53.1 30.4 50.6 60.5

Notes.

Bold denotes the maximum of each metric in the experiment.

and is comparable to the optimal two-stage detector DDQ (Zhang et al., 2020), slightly
exceeding 0.3%. This is attributed to the ability of EFR-FCOS, which constructs a new
backbone GANet to extract salient and global features from feature maps, while also
propose AFF-FPN for fusing global context, and finally design the EnHead to predict the
bounding boxes. (2) In addition, for the detection of objects with different sizes, EFR-FCOS
can achieve the optimal performance, which indicates the effectiveness of our proposed
framework. In particular, extracting the global feature from feature maps and fusing the
global context can improve the accuracy of classification and confidence of regression. (3)
In the case of the backbone network with same layers, the performance of EFR-FCOS can
outperform the current popular detectors, which indicates the effectiveness of AFF-FPN
and EnHead and will be explained in the following sections.

Evaluate the effectiveness of GANet
In Table 2, the memory reported on Titan X GPU. Our proposed GANet outperforms the
backbone of ResNet, SENet and ResNeXt, which are trained with the neck of FPN. Based on
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Table 2 Detailed comparison with popular baseline object detectors on COCO 2017.

Model Backbone GANet Mem (GB) AP AP AP APg APy, AP;
ResNet-50 3.8 37.4 56.3 40.3 22.2 40.9 49.7
ResNet-50 Vv 3.9 38.0 57.1 41.5 23.1 41.6 50.0
GC-ResNet-50 3.9 38.9 57.9 41.9 234 42.1 50.1
GC-ResNet-50 Va 4.0 39.0 58.1 42.1 22.4 42.5 50.1
RetinaNet ResNet-101 5.7 39.1 59.1 42.3 21.8 42.7 50.2
ResNet-101 Va 5.8 39.7 59.5 42.6 22.7 43.1 50.4
GC-ResNet-101 5.9 40.2 59.9 43.5 22.9 43.3 50.9
GC-ResNet-101 Vv 6.0 40.5 60.2 44.2 23.2 43.5 51.2
ResNeXt-101-64 x4d 10.0 41.0 60.7 44.7 23.4 43.5 51.9
ResNeXt-101-64 x4d N4 10.1 41.3 60.9 44.8 23.7 43.8 52.1
ResNet-50 2.6 38.9 57.5 42.2 23.1 42.7 50.2
ResNet-50 J 2.7 39.4 58.4 43.4 24.5 44.8 51.6
FCOS ResNet-101 5.5 43.2 62.4 46.8 26.1 46.2 52.8
ResNet-101 Vv 5.6 43.8 63.2 47.3 26.8 46.8 53.4
ResNeXt-101-6414d 10.0 44.8 64.4 48.5 27.7 47.4 55.0
ResNeXt-101-6414d 4 10.1 45.2 64.6 48.7 27.9 47.8 55.2
Notes.

Bold denotes the maximum of each metric in the experiment.

RetinaeNet and FCOS, we compare the different layers of backbone network to verify the
effectiveness of GANet. Table 2 and Fig. 5 summarize the performance of the approaches
for object detection, from which we have some observations: (1) The object detectors using
the GANet as the backbone network outperform ResNet, GCNet, and ResNeXt. This is
reason that GANet can collect salient information for improving the extracting ability of
multi-scale features, and verify that the global attention network can be applied to various
backbone networks. (2) GANet improves the mAP by about 0.6% to 1.3% on the ResNet. In
addition, the detection performance of GC-ResNet with GANet is superior to GC-ResNet,
which verifies that GANet can be combined with the block adding the trunk of ResNet. (3)
The GANet can improve the performance for large objects of object detectors obviously,
because the global attention network can extract global feature information from feature
maps.

Evaluate the effectiveness of AFF-FPN

Based on RetinaNet and FCOS, we compared different FPN-based methods to verify the
effectiveness of our proposed AFF-FPN in the Table 3. Among them, BiFPN represents
BiFPN-B0. All models were trained with ResNet-50 as the backbone network. Table 3
summarizes the performance of these methods, from which we can observe that: (1) The
different models such as RetinaNet and FCOS, which use AFF-FPN as neck, and outperform
the existing FPN-based methods, which shows AFF-FPN has generalization and can fuse
global semantic information extracting from the backbone network. (2) AFF-FPN is usually
superior to the existing FPN-based methods because AFF-FPN can fuse features with spatial
and channel information from different receptive fields to improve feature representation
ability. Especially in skip connections, a DCM module has been added, which utilizes dilated
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Figure 5 The result of conduct RetinaNet and FCOS with different backbones.
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convolutions of different receptive fields to capture richer global feature information. And
during the upsampling process, the fusing network replaces 1 x 1 convolutions with the GCB
module, which aggregates the features of all positions together to form a global contextual
feature for effective modeling of long-distance dependencies. (3) The performance of
AFF-FPN has significantly improved for detecting small objects. Because we introduce the
global context block(GCB) in AFF-FPN, which can enhance feature representation and
reduce information attenuation during feature fusion. Moreover, we design the dilated
convolution module with different receptive fields, which can extract abundant global
feature information from feature map. (4) For the detection of large objects, AFF-FPN
performs the existing FPN-based methods. Because we introduce the dilated convolution
module (DCM), which uses dilated convolution kernels of different receptive field, i.e, a
sampling rate of {1,3,5}. When we apply 3x 3 convolution kernels with different sampling
rates to feature maps, the sampling rate is 1, which is actually a normal 3x3 convolution.
When the sampling rates are 3 and 5, using convolution kernels of the larger sampling
rate and can capture global contextual information, which is very effective for extracting
feature information from images.

Evaluate the effectiveness of EnHead

Table 4 summarizes the performance of various object detectors, which is used to verify the
effectiveness of EnHead. All models are trained with the backbone of ResNet-101 and FPN.
In particular, FCOS-Enhead replace the head network with EnHead, from Table 4 we have
some observations: (1) 1n the case of the same backbone and neck, our proposed EnHead
is superior to the single head and Double-head of the current one-stage and two-stage
object detectors. The reason is that EnHead can improve confidence of classification
and regression for exploiting well the feature representation. (2) When the backbone is
Resnet-101 and FPN, EnHead exceeds all the latest available methods. AP increased by
1.4%, which indicates that cascade detection is more effective. (3) In addition, EnHead is
superior to object detectors with single detection and cascade detection. The reason is that
EnHead can improve the ability of detection by selecting the high-score classifications and
the top proposals from the output of cascade detection.
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Table 3 Detailed comparison with the popular baseline FPN-based object detectors.

Model Neck AP APs, APy APg APy APy
FPN 36.3 55.5 38.7 20.5 40.1 47.5
BiFPN 37.4 58.2 40.2 21.2 40.3 47.6
RetinaNet AugFPN 37.5 58.4 40.1 21.3 40.5 47.3
CE-FPN 37.8 57.4 40.1 21.3 40.8 46.8
AFF-FPN 38.6 60.6 41.2 22.8 42.1 48.5
FPN 37.0 56.6 39.4 20.8 39.8 46.4
BiFPN 37.4 57.4 40.1 21.1 40.0 47.1
FCOS AugFPN 37.9 58.4 40.4 21.2 40.5 47.9
CE-FPN 38.2 59.1 41.4 22.3 41.6 47.6
AFF-FPN 39.2 60.7 42.6 23.9 42.7 49.2
Notes.

Bold denotes the maximum of each metric in the experiment.

Table 4 Comparisons of object detectors results for different algorithms.

Model AP APs, APys APg APy, AP,

RetinaNet 39.1 59.1 42.3 21.8 42.7 50.2

ConRetinaNet 40.1 59.6 43.5 23.4 44.2 53.3

Cascade RetinaNet 41.1 60.7 45.0 23.7 44.4 52.9

FCOS v2 43.2 62.4 46.8 26.1 46.2 52.8

FCOS-EnHead 45.1 63.8 47.6 27.9 47.8 59.7
Notes.

Bold denotes the maximum of each metric in the experiment.

The ROC curve is suitable for evaluating the overall performance of classifiers due to its
balance between positive and negative examples, while the PR curve completely focuses on
positive example. To validate the loss function and evaluate the recall of object detection
methods, we compare the recall curves of RetinaNet, FCOS, and EFR-FCOS. Figure 6
shows the recall curves at IOU thresholds of 0.50, 0.75, and 0.90, respectively. From which
we can observe that: (1) EFR-FCOS can achieve better performance than the anchor-based
counterpart RetinaNet and the anchor-free counterpart FCOS. The reason is that EnHead
can achieve high-quality bounding boxes by refining the bounding boxes. (2) It is worth
noting that through stricter IoU thresholds, EFR-FCOS has a greater improvement than
RetinaNet and FCOS, indicating that EFR-FCOS has better bounding box regression and
can detect objects more accurately. The reason is that EFR-FCOS has the ability to use the
massive positive examples (3) As shown in all precision—recall curves, the best recalls of
these detectors in the precision—recall curves are between 95% and 99.5%.

Ablation experiments

Table 5 compares the detection performance on COCO datasets with different IoU
thresholds set in the second stage. From the Table 5, it can be seen that simply adding a
new stage with the same IoU setting will not improve detection accuracy. For EFR-FCOS
with an IoU threshold of 0.5, the AP remains unchanged. We believe that the main reason
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Figure 6 (A-C) Precision of recall curves on RetinaNet, FCOS and EFR-FCOS.
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Table 5 Alation study for different IoU threshods on COCO 2017.

Model ToU AP APy, AP;s AP APy, AP,

FCOS-EnHead 0.5 43.6 63.0 47.0 26.7 46.9 53.4

FCOS-EnHead 0.6 45.2 64.5 48.6 27.7 47.6 58.7

FCOS-EnHead 0.7 44.3 63.2 46.9 26.3 46.1 56.9
Notes.

Bold denotes the maximum of each metric in the experiment.

Table 6 The comparisons of computational resource and runtime.

Model FLOPs (G) Params (M) AP

FCOS v2 234.3 50.9 43.2

NAS-FCOS 254 57.3 43

TSP-FCOS 255 57.5 44.4

EFR-FCOS 258 58 48.1
Notes.

Bold denotes the maximum of each metric in the experiment.

is that the sampling method has not changed. When the threshold increased to 0.6 in the
second stage, we observed an increase in AP from 43.2% to 45.2%. In addition, a higher
IoU threshold of 0.7 was attempted in the second stage, but AP slightly decreased. Perhaps
the higher the IoU threshold, the higher the quality of the training samples, while the
smaller the quantity.

Table 6 shows the comparisons of computational resource and runtime, all models adopt
the backbone network with 101 layers. From that we can observe that the proposed model
greatly improves the performance of the detector with slight increasing in computational
resource, which indicates the effectiveness of the proposed methods for object detection.

Qualitative examples

Figure 7 show the visualization of examples with various detectors training on COCO 2017,
EFR-FCOS uses the 101 layers of GANet-GCB, the other detectors use ResNet-101. From
which we can observer that the proposed EFR-FCOS (refer to ‘EFR-FCOS’) is superior to
the popular detectors at detecting different objects such as humans and animals, etc. This is
reason that EFR-FCOS uses the proposed networks, i.e., GANet, AFF-FPN and EnHead to
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(a) RetinaNet (b) RepPoint V2 (c) FCOS v2 (d) EFR-FCOS

Figure 7 (A-D) Visualization of the examples from training some methods on the COCO.
Full-size Gl DOI: 10.7717/peerjcs.2470/fig-7

improve stably the performance of detection. In particular, GANet can achieve abundant
global features from images, AFF-FPN uses the dilated convolution modules with different
receptive fields to fuse the features of the current layer, 3x3 convolution features, and the
downsampling features of the previous layer. In addition, EnHead eliminates many false
positives and regresses more accurate box boundaries to improve the accuracy of detection
effectively.

CONCLUSION

In this paper, we propose an enhancing feature reuse for fully convolutional one-stage
object detection to make improvements on the three components of object detector. In
the terms of backbone, we build a global attention network to collect salient information
and gain global features from feature maps for performance. In the terms of neck, we build
an aggregate feature fusion pyramid network to fuse multi-scale feature information by
extracting global context from feature maps, which can reduce information attenuation
during feature fusion. In the terms of head, we build an enhancing feature reuse head for
the anchor-free one-stage detector, which uses refining the bounding boxes to improve
the confidence of regression. In particular, the proposed GANet can be further researched,
i.e., enhancing the feature extraction capability of the backbone network by strengthening
skip connections, and with adding a few number of parameters, can be applied to real-time
object detection. In addition, AFF-FPN can increase feature fusion by extracting global
context from feature map internally, which is also a new approach to feature fusion. The
comprehensive experimental results conducted on benchmark models and datasets show
that EFR-FCOS outperforms the state-of-the-art methods and achieves better performance
in object detection.
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