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ABSTRACT
The rise of the Internet of Things (IoT) and Industry 2.0 has spurred a growing
need for extensive data computing, and Spark emerged as a promising Big Data
platform, attributed to its distributed in-memory computing capabilities. However,
practical heavy workloads often lead tomemory bottleneck issues in the Spark platform.
This results in resilient distributed datasets (RDD) eviction and, in extreme cases,
violent memory contentions, causing a significant degradation in Spark computational
efficiency. To tackle this issue, we propose an adaptive memory reservation (AMR)
strategy in this article, specifically designed for heavy workloads in the Spark envi-
ronment. Specifically, we model optimal task parallelism by minimizing the disparity
between the number of tasks completed without blocking and the number completed
in regular rounds. Optimal memory for task parallelism is determined to establish
an efficient execution memory space for computational parallelism. Subsequently,
through adaptive execution memory reservation and dynamic adjustments, such as
compression or expansion based on task progress, the strategy ensures dynamic task
parallelism in the Spark parallel computing process. Considering the cost of RDD
cache location and real-time memory space usage, we select suitable storage locations
for different RDD types to alleviate execution memory pressure. Finally, we conduct
extensive laboratory experiments to validate the effectiveness of AMR. Results indicate
that, compared to existingmemorymanagement solutions, AMR reduces the execution
time by approximately 46.8%.

Subjects Algorithms and Analysis of Algorithms, Computer Architecture, Internet of Things
Keywords Adaptive memory reservation, Task parallelism, Storage location selection, Spark
environment

INTRODUCTION
As the volume of data on the Internet continues to rise, coupled with the demand for
real-time big data processing, Spark is experiencing exponential growth in the amount
of processed data. Effective management and suitable data analysis tools are imperative
for harnessing the potential benefits of big data in various organizational and industrial
domains (Adinew, Shijie & Liao, 2020; He et al., 2022). Spark, a widely adopted open-
source distributed big data processing framework. Leveraging in-memory computing,
it enhances real-time data processing in the big data environment, ensuring both high
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fault tolerance and scalability (Cheng et al., 2021; Feng & Wang, 2020; Yoon & Kim, 2020).
It is characterized by speed, user-friendly features, versatility, and compatibility (Yang,
Wang & Fu, 2021; Hoseinyfarahabady et al., 2020). Spark employs a directed acyclic graph
(DAG) for job scheduling, breaking down diverse jobs into numerous subtasks based on
dependency relationships. This approach minimizes the transfer process between different
jobs. The DAG is constructed from the relationships established by RDD operators and
resilient distributed datasets (RDD) (Sidhanta, Golab & Mukhopadhyay, 2019; Tang et al.,
2018). RDD, a pivotal abstraction in Spark, represents a collection of objects distributed
across nodes in the Spark cluster. By storing these RDDs in memory, the need for frequent
data read and write operations from external storage media is eliminated.

The growing volume and complexity of big data have led to an increase in the
size and number of RDDs, resulting in significant memory pressures in the Spark
environment. Efficient memory management has become a crucial research challenge
for Spark, aiming to utilize memory resources effectively (Shi et al., 2020; Tang et al.,
2020). Initially, Spark employs a static memory management mechanism, fixing the
size of storage memory, execution memory, and other memory throughout the Spark
application’s duration (Apache, 2024). The static memory mechanism lacks a method
for dynamic space allocation, leading to unbalanced space allocation in the presence of
varying memory occupancy (Wang, 2021). Furthermore, unified memory management
has been introduced since Spark version 1.6 (Zaharia et al., 2016; Apache, 2019). The
unified memory management mechanism in Spark has enhanced the utilization of both
in-heap and out-of-heap memory resources to a certain extent, reducing the challenges for
developers in managing Spark memory (Wang, 2021).

However, Spark’s memory management continues to encounter challenges in
computational efficiency for heavy workloads scenarios. Task blocking and garbage
collection in memory management significantly affect computational efficiency in the
Spark environment. Figure 1 presents experimental tests demonstrating the computational
efficiency of Spark for default persistence strategies: only_memory, memory_and_disk,
and only_disk (Zhang et al., 2018; Zhao et al., 2019; Wang et al., 2018). The experimental
tests use the PageRank workload. Computational efficiency is illustrated based on the
choice of RDD persistence strategy for various workloads. Figures 1A and 1B depict
the impact of RDD persistence strategy choice on task completion time and garbage
collection percentage. It results in additional time wastage due to garbage collection and
re-computation of RDDs that are evicted from the cache. Hence, exploring advanced
memory management strategies for heavy workloads scenarios is crucial for enhancing the
computational efficiency of Spark.

Previous studies have explored memory management to enhance Spark’s computational
efficiency. BothDMATS andDMAOM strategies are advanced optimization approaches for
enhancing Spark’s computational efficiency in scenarios with large data volumes deployed
on physical multi-node servers. Tang et al. (2020) proposed a dynamic Spark memory-
aware task scheduler (DMATS). Dynamically adjust task scheduling based on memory
usage, changing task parallelism in memory, and improve task execution efficiency. Wang
et al. (2019b) introduced the on-demand memory allocation strategy DMAOM. It allocates
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Figure 1 Experiments comparing three default persistence strategies for Spark.
Full-size DOI: 10.7717/peerjcs.2460/fig-1

memory proportionally from the resource pool based on the task’s requested memory
size. Nevertheless, it does not quantify the minimum memory resources required for task
operations. Therefore, further research on memory management is necessary to enhance
Spark’s computational efficiency for heavyworkloads scenarios. In this article, we present an
adaptive memory reservation (AMR) strategy aimed at enhancing computational efficiency
for heavy workloads in the Spark environment. The core idea is to dynamically adjust the
execution memory space by compressing or expanding it, ensuring a designated amount
of storage memory space is reserved while maximizing task parallelism. Simultaneously,
the disk is utilized as supplementary storage for RDDs, ensuring a high persistence hit rate.
Experimental validation has demonstrated that utilizing the disk can mitigate contention
between execution memory and storage memory, reduce memory pressure, optimize
garbage collection percentages, and enhance computational efficiency (Wang et al., 2019a;
Li et al., 2018; Bae et al., 2017; Singer et al., 2011; Xu et al., 2016; Song et al., 2023). The
AMR strategy comprises three main steps. Firstly, it assesses whether the memory space
meets the conditions for task parallelism optimal memory (TPOM) execution. If a task is
identified as blocked, execution memory is reallocated with a priority on maintaining task
parallelism. Secondly, the memory adaptive adjustment algorithm is activated, and excess
memory is reclaimed when tasks in memory are running normally. Thirdly, the RDD
is controlled to select a low-cost computation location based on the allocated memory
space, ensuring sufficient room to prioritize the space reserved for execution memory. The
primary contributions of this paper can be summarized as follows:
• We formulate an optimal task parallelism problem aimed at minimizing the disparity
between the number of tasks completed without blocking and those completed in regular
rounds. The proposed optimal task parallelism strategy aims to allocate memory space
based on the characteristics of Spark tasks, ensuring computational parallelism and
enhancing resource utilization efficiency.
• We dynamically ensure task parallelism by applying adaptive execution memory
reservation, choosing to compress or expand the allocated execution memory space
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based on task execution dynamics. We recommend selecting suitable storage locations
for various RDD types to alleviate execution memory pressure, considering the cost of
RDD cache location and real-time memory space usage.

The following sections of this article are structured as follows: Section ‘Related works’
reviews related work, Section ‘Spark model and problem descriptions’ introduces models
and optimization goals, Section ‘Adaptive memory reservation strategy’ outlines the data
scheduling strategy for adaptive memory, Section ‘Experimental evaluation’ details the
experimental results. Finally, Section ‘Conclusion’ concludes the paper.

Related works
With the increasing impact of the Spark distributed computing framework, there has been
a gradual emergence of research on memory management strategies in parallel computing
frameworks (Tang et al., 2020; Swain, Paikaray & Swain, 2011; Duan et al., 2016; Meng
et al., 2017; Yun & Yuchen, 2020; Chen et al., 2016; Wang et al., 2019b; Song YX, 2022).
Various strategies aim to enhance operational efficiency through memory optimization:
Swain, Paikaray & Swain (2011) introduced the concept of weighted memory replacement
and proposed the AWRP algorithm based on weights, but did not specifically optimize it for
Spark. Meanwhile, Duan et al. (2016) suggested a diversified weighted cache replacement
method that selects partitions by comprehensively considering computational cost, usage
frequency, and size.

Meng et al. (2017) considered additional RDD characteristics in weighted replacement
algorithms, achieving positive outcomes when sufficient memory and network bandwidth
were available. However, partition selection involves network communication, and the
algorithm places high demands on memory and network performance, leading to relatively
lower when dealing with large data volumes and insufficient cluster performance.

The ERAC algorithm proposed by Wei et al. (Yun & Yuchen, 2020) prevents memory
leaks by optimizing the weighted model and replacement strategy, calculating the size of
each RDD in advance, and defining a Boolean value to exclude incomplete RDD partitions.
However, the drawback is that the algorithm itself occupies too much memory. Song,
(2022) proposed a new concept of utility entropy, which can better measure the degree of
match between checkpoint caching and memory. By finding the best match and selecting
the appropriate time to perform checkpoint cleaning, it improves both memory utilization
and fault tolerance efficiency. Li et al. (2023) based on the weight relationship established
by the sample lineage graph of RDD, further improve computing efficiency by increasing
the complexity of the weights. However, it inevitably runs into a severe memory shortage,
which leads to garbage collection. They also focused on optimizing the checkpoint caching
and cleaning process in Spark.

Some experts recommend utilizing I/O transfers to enhance CPU utilization (Song et al.,
2022a; Tang et al., 2021). Nevertheless, optimization is constrained by network bandwidth
and cannot exceed. Song et al. (2023) introduced MCM, an optimization for persistent
acceleration at the application level.

Chen et al. (2016) conducted an analysis, comparing the similarity of extensive historical
task feature data. They predicted the most suitable parameters for the Spark job before
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submission, determining the optimal values. However, its limitations are apparent, as it
necessitates optimization for the same type or even the same Spark task that has been
previously executed. SP-LRP proposed by Huang (2020) predicts the size of reduce task
partitions, this approach uses the skew detection algorithm to identify skewed partitions
and adjusts task resource allocation based on the fine-grained resource allocation algorithm.
However, these predictions demand additional computing resources.

Other optimization strategies for Spark include those based on parameter tuning.
SMBSP proposed by Rahman, Hossen & Venkataseshaiah (2018)) is a machine learning-
based optimization strategy for Spark with remarkable performance improvements. Its
strategy fundamentally differs from cache strategies based on the Spark framework,
placing it in a different optimization category. Moreover, SMBSP exhibits consistent
performance improvements across different data sizes, suggesting its compatibility with
other framework optimization strategies. MLAT, proposed by Nikitopoulou et al. (2021), is
an automatic parameter optimization driver. It does not compete in the same area as cache
strategies based on the Spark framework, and combining the two is likely to yield greater
improvements. We will continue to monitor research in this direction.

Zhu et al. (2017) proposed a memory-constraint strategy to reduce frequent cache
eviction and substantial garbage collection time. It alleviates memory pressure to a certain
extent, but the execution performance for larger data volumes has not been verified,
and the paper does not demonstrate the memory usage. Xu et al. (2016) abstracted the
task execution memory and RDD cache space as a memory contention issue, proposing
dynamic adjustments to their ratio to improve execution efficiency. This method is only
applicable to memory contention issues with relatively small data volumes, as indicated by
the memory usage in the paper; the experimental data used do not lead to severe memory
overflow. DSMM (Chae & Chung, 2019), through testing various strategies for different
data sizes, derives an algorithm that selects different caching strategies based on data size,
adapting to some extent to computations for varying data volumes. However, this method
is relatively rigid; for example, it cannot fully leverage memory space for heavy workloads.
It is not a universally applicable approach.

Currently, optimization approaches for Spark memory are relatively limited, lacking
broad optimization for various data volumes. They always focus on large data volumes
without fully leveraging the remaining memory space. The AMR strategy consistently
ensures the optimal utilization of the reserved space, regardless of the data volume.

SPARK MODEL AND PROBLEM DESCRIPTIONS
Insufficient memory can lead to various issues, including memory contention, garbage
collection, and task blocking. Section ‘Spark task flow and memory’ displays the Glossary
of symbols and terms in Table 1, illustrating the relationship between Spark task flow and
memory. In Section ‘Optimal task parallelism’, we model the optimization goals of Spark
task flow and derive the optimization objective function. Finally, in Section ‘Adaptive
memory reservation’, we present a data dispatching model based on adaptive reserved
memory, along with a formal description of the adaptive reservation strategy.
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Table 1 Glossary of symbols and terms.

Variable name Description

RT Target RDD
fRi Parent RDD of the i-th RDD
ff Ri Parent RDD of the i-th parent RDD
Rsize Current RDD size
fRsize Parent RDD size of RDD
ρc () Reading cost
χc () Calculation cost
8n Active task number
persistState Current persistence state
Vmemo Memory transfer speed
Vdisk Hard disk transfer speed
T Time cost for task calculation
T ′ Time cost for target RDD calculation
TG Time cost of garbage collection
MU Size of memory usage
MS Size of storage memory usage
MP The amount of memory space that needs to be satisfied for

the task to run
ME Size of execution memory space
MM Maximum available memory space
ND Number of tasks actually completed during normal

execution rounds
NE Number of executors
NC Number of executor cores
N Number of tasks completed without blocking in normal

execution rounds
n Number of execution rounds
τ Running tasks in the current execution memory
3 spark.storage.storageFraction, which controls the size of

Storage memory
9 Probability of RDD being replaced out in memory
κ Learning rate
σ Threshold to measure memory usage

Spark task flow and memory
The Spark task execution process primarily involves four steps: First, building the directed
acyclic graph (DAG) by calling methods on RDDs. In Spark, the entire execution process
logically forms a DAG, and after the Action operator is triggered, all the accumulated
operators are formed into a DAG based on the lineage of the RDD. Second, the
DAGScheduler divides the DAG into stages based on Shuffle and sends the generated
tasks in each stage to the TaskScheduler in the form of a TaskSet. Subsequently, the
TaskScheduler schedules tasks. Finally, the Executor of eachWorker node receives tasks and
puts them into a thread pool for execution. Figure 2 illustrates that RDDs are transformed
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Figure 2 The execution process of Spark tasks (RDDs are stored in local memory as RDD partitions,
i.e., P1, P2).

Full-size DOI: 10.7717/peerjcs.2460/fig-2

based on their dependencies, and the resulting RDD partitions are stored in memory after
the transformation. If the submitted data is excessively large, tasks may be blocked due to
insufficient memory or RDD eviction. Thus, our optimize based on the characteristics of
the task runtime state and the DAG graph to ensure tasks can be executed while maximizing
the RDD persistence rate.
To address the problem of uneven memory space allocation, Spark introduced Unified

Memory Management after version 1.6. Leveraging the Unified Memory Management
mechanism has enhanced the utilization of both heap and off-heap memory resources,
reducing the complexity for developers inmaintaining Sparkmemory.However, developers
still need to allocate memory space reasonably. For example, if the storage memory space
is too large, Spark will frequently perform full garbage collection, thereby reducing
performance during task execution. Cached RDD data typically resides in memory for
an extended period. To fully leverage Spark’s performance, further optimization of the
memory allocation strategy is necessary.

Optimal task parallelism
Computation in memory cannot proceed as intended when the memory is flooded with
data. Insufficient memory can lead to severe memory contention. Memory contention can
result in full garbage collection, leading to task suspension. Severe memory contention can
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lead to task blocking. In this section, we formally describe the task blocking problem and
present the objective function.

Tasks running in execution memory share execution memory, in Spark, the HashMap
structure holds the mapping of tasks to memory consumption. The range of execution
memory size that each task can occupy is 1

28n
∼

1
8n

, where 8n is the number of tasks
currently running in the execution memory. When each task starts, it needs to request the
memory manager to apply for a minimum execution memory of MP =

ME
2×8n

size, if the
requirements cannot be met, the task is blocked until other tasks release enough execution
memory, and the task can be reawakened.

When there are tasks blocked, the number of tasks executed in this round is reduced
compared with the number of tasks executed in the normal round, and additional rounds
are required to execute these unfinished tasks. In the actual operation process, it is
unavoidable that tasks are blocked due to insufficient execution memory. Let {τ1, τ2, τ3,
. . . , τ8n} be a set of active task, the number of tasks actually completed in a normal round
is shown in Eq. (1).

ND= n×8n (1)

whereND represents the number of tasks actually completed in a normal round. n represents
the number of execution rounds and 8n is the number of tasks currently running in the
execution memory. We set N to be the number of tasks that should have been executed if
the task did not block when the memory is sufficient. The original number of tasks that
should be completed without blocking is shown in Eq. (2).

N = n× (NE×NC) (2)

where N represents the number of tasks completed without blocking, NE represents the
number of executors, and NC represents the number of cpu cores in a single executor. For
the default configuration of Spark, when the execution memory is crowded and cannot
meet the minimum memory requirements of the current execution task, the task will be
blocked and the corresponding number of tasks cannot be completed in the normal round,
so, ND will be less than N . The additional time to complete these blocked tasks is a waste
of time caused by insufficient memory. Based on the above description, we give a formal
description of the task blocking problem caused by insufficient memory, and establish the
optimization objective function of the problem as shown in Eq. (3).

min(N −ND),(N >ND) (3)

Where N represents the number of tasks completed without blocking and ND represents
the number of tasks actually completed in normal rounds, and the optimal task parallelism
is achieved when the value of the difference between the two is minimum. min represents
the minimum value. We minimize the absolute value of the difference between the number
of tasks completed in the non-blocking case and the number of tasks actually completed
in a normal round as the optimal solution.
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Adaptive memory reservation
To optimize the objective function (Eq. (3)), we introduce an adaptive memory reservation
data dispatching strategy. This strategy ensures task execution parallelism and actively
reduces the overall task execution time by overflowing RDDs and reserving memory space.
In this section, we provide a formal description of this strategy model.

RDD serves as Spark’s foundational data abstraction, comprising a collection of
partitioned records. It can generate new RDDs on stable physical storage or apply
transformations to existing RDDs. The transformed RDDs retain dependencies on the
original RDDs, forming a lineage. Records the lineage series that created the RDD,
enabling the recovery of lost partitions. The RDD’s lineage records metadata information
and transformation behavior. If a partition data of this RDD is lost, it can recompute and
recover the lost data partition using this information. The RDD generation process begins
by reading its parent RDD first. Each RDD is created along the directed acyclic graph path
through a series of conversion operations. We refer to the parent RDD of an RDD as fR.
Due to wide and narrow dependencies between RDDs, an RDD may have multiple fR
simultaneously, and the persistence status of different fRs may vary. The calculation cost
of an RDD is represented by Eq. (4).

χc(RT )=
u∑

k=1

ρc(fRk)+λ (4)

where χc(RT ) denotes the calculation cost of the target RDD, fR denotes the data set of
a parent RDD, the

∑u
k=1ρc(fRk) denotes the reading cost of all fRs, and the λ denotes

the calculation cost of all fRs transformation to the target RDD. u denotes the number of
parent nodes of the target RDD, and k denotes each parent node.

The actual reading cost is not only the cost of transmission. Memory contention caused
by insufficient memory can lead to frequent garbage collection, and the impact of garbage
collection time on the overall task execution time cannot be ignored. Moreover, RDDs that
are evicted from memory need to be re-read from their parent RDDs and transformed.
We set there have w RDDs in N tasks. Based on the objective function (Eq. (3)) and the
calculation cost of the target RDD (Eq. (4)), we can formalize the total task cost T as shown
in Eq. (5).

T =
w∑
s=1

χc(RTs) (5)

where χc(RT ) is the calculation cost of the target RDD, s denotes each target RDD.
When a task reads a partition at the beginning of startup, it will first determine whether

the partition has been persisted. If not, it needs to check the checkpoint or recalculate
according to the lineage. if multiple actions are to be performed on an RDD, this RDD
can be persisted in memory or on disk using persist or cache methods in the first action.
If fR is persisted, ρc(fR) is equivalent to data transfer cost. Let ff R be the parent RDD of

fR, the χc(fR)=
∑u

′

k ′=1ρc(ff Rk ′ )+λ
′

. If fR is not persisted, then ρc(fR) is equivalent to
the calculation cost of fR. Each RDD has a variety of dependencies with its parent RDD.
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For comprehensive consideration, we maintain the possibility of different RDDs based
on persist state. There is still a parent RDD that needs to be recalculated, so the ρc(fR) is
shown in Eq. (6).

ρc(fR)=


χc(fR), persistState= false
fRsize

vmemo
, persistState=memory

fRsize

vdisk
, persistState= disk

(6)

Where persistState denotes the persistence state of fR,fRsize denotes the size of fR,
vmemo denotes the transfer speed of memory and vdisk denotes the transfer speed
of disk. When persistState = false, it means the RDD unpersist, ρc(fR) = χc(fR).
When persistState =memory the RDD persisted in memory, ρc(fR)=

fRsize
vmemo

. When

persistState= disk the RDD persisted in disk, ρc(fR)=
fRsize
vdisk

.

RDD location selection
We have designed a cache location selection model to proactively and dynamically select
the cache location of RDDs (Eq. (10)). From the experiments mentioned above (Fig. 1),
we can see that persisting RDDs continuously in memory or on disk can eventually lead to
unilateral performance degradation. We can further specify χc(RT ) as shown in Eq. (7).

χc(RT )=
u−P−Q∑
r=1

χc(fRr )+
P∑

p=1

fRpsize

vmemo
+TG+

Q∑
q=1

fRqsize

vdisk
+λ (7)

where u represents the number of fRs, P represents the number of fRs which persisted in
memory, Q represents the number of fRs which persisted in disk and the TG represents the
cost of garbage collection caused by fR persisted in memory. Therefore, we can make full
use of the space in memory and on disk. When the speed of memory persistence is faster,
we persist RDDs in memory, and vice versa, we persist them on disk. Combining the cost
of ρc(fR) (Eq. (6)), we can expand the extra task cost formula (Eq. (5)) as a sub-problem
shown in Eq. (8).

T
′

=min(χc(RT ),
RT size

vmemo
+TG,

RT size

vdisk
). (8)

The sub-problem is solved when the current RDD selected storage location. The T
′

represents the cost of target RDD when choose different persistState, where χc(RT )
represents the cost when target RDD unperist (Eq. (2)), RT size

vdisk
represents the time cost when

target RDD persisted in disk (Eq. (2)), RT size
vmemo
+TG represents the time cost when target RDD

persisted in memory (Eq. (2)), and TG is the garbage collection cost caused by RDD which
persisted in memory.

ADAPTIVE MEMORY RESERVATION STRATEGY
In summary, our algorithm accounts for the effects of execution memory on task blocking,
the influence of garbage collection due to cache contention, and the repercussions of
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Figure 3 Settings for executionmemory in different situations.
Full-size DOI: 10.7717/peerjcs.2460/fig-3

different cache media transfer rates on the cost of RDD reads when altering the cache
strategy. We design the AMR algorithm to replace Spark’s default dynamic caching
mechanism, aiming to minimize cache contention while ensuring task parallelism (Fig. 3).
Simultaneously, we alleviate the burden on storage memory by dynamically adjusting the
cache location strategy to store less crucial RDDs on the disk, thereby reducing garbage
collection costs and the likelihood of more vital RDDs being evicted from the cache (Fig. 4).

In Fig. 3, we determine whether tasks in all executionmemories have achievedmaximum
parallelism. If the tasks reach this threshold, and there is available space in the execution
memory, we allocate memory to satisfy the minimum requirement for all tasks. At this
point, the storage memory space increases, allowing for the persistence of more RDD
partitions. If the running tasks do not reach maximum parallelism, it signals inadequate
space in the execution memory. We calculate the minimum memory required for a single
task (MP) and the execution memory size needed for the task at maximum parallelism.
This calculation is based on the number of running tasks (8n) and the current execution
memory size (NE×NC). The RDD partition is populated to reserve storage memory space
of the corresponding size, expanding the execution memory to meet the size required for
the task at maximum parallelism. As expressed in Eq. (9).

ME =


(MU −MS)(8n+1)

28n
, MU −MS<ME ,8n=NE×NC

(MU −MS)(NE×NC+1)
8n

, 8n<NE×NC

(9)

The fundamental concept of LCLS is as follows. As shown in Fig. 3, the disk is used
as storage space for various types of RDDs to prevent redundant RDD computations.
When changing the cache strategy, factors such as the effect of execution memory on task
blocking, the impact of garbage collection due to cache contention, and the influence of
different cache media transfer rates on the cost of RDD reads are taken into account. The
AMR replaces Spark’s default dynamic caching mechanism to minimize cache contention
and ensure task parallelism. Simultaneously, the burden on storage memory is reduced by
dynamically adjusting the cache location strategy. Persist less critical RDDs on the disk to
decrease garbage collection time and the likelihood of more crucial RDDs being evicted
from the cache.
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Figure 4 Spark persists and reads RDDs in different locations.
Full-size DOI: 10.7717/peerjcs.2460/fig-4

Adaptive memory reservation
This section provides details about the Adaptive Memory Reservation (AMR) algorithm.
Algorithm 1 presents the AMR algorithm, outlining its collaboration with other algorithms
and the calling relationships between the Task Parallelism Optimal Memory (TPOM)
algorithm, the Adaptive Memory Tuning (AMT) algorithm, and the Low-Cost Location
Selection (LCLS) algorithm. Algorithm 2 provides the implementation details of TPOM,
which is utilized to allocate an appropriate amount of execution memory space to ensure
sufficient space for tasks. Algorithm 3 presents the AMT algorithm, responsible for
managing the reserved memory space and dynamically adjusting memory usage based
on real-time assessments of memory consumption. Algorithm 4 describes the LCLS
algorithm, which allocates RDD storage locations and selects the storage location for RDDs
by comparing the costs associated with different storage locations.

Algorithm 1: AMR Algorithm
Input:8n, NE , NC ,MU ,MS,MM .

1 while State of the process is running do
2 if8n< (NE×NC) or (8n+1)MU−MS

8n
>MM then

3 do TPOM
4 else (8n+2)MU−2MS

8n
<MM

5 do AMT
6 end
7 do LCLS
8 end

Algorithm 1 gives the architecture of the adaptive memory reservation algorithm, which
internally consists of TPOM, AMT and LCLS. When a task is found to be blocking, the first
condition is satisfied and the free memory area is satisfied, TPOM is executed. Else, if there
is no blocking and sufficient space left, AMT is executed, and finally, LCLS is executed
to select the storage location for the RDD to reduce the memory pressure. The specific
algorithm is discussed below.
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Task parallelism optimal memory
According to the properties of Spark’s Executor memory (Eq. (2)), we can know the
maximum number of tasks running, and by comparing the number of currently running
tasks with the maximum number of tasks, we can find out if the tasks are blocking (Eq.
(1)). If there are fewer tasks blocking, the value of N −ND converges to zero according
to Eq. (3), and therefore the less time is wasted. The Spark port allows us to monitor the
performance of Spark by obtaining real-time values of different parameters.

Algorithm 2: TPOM Algorithm
Input:8n, NE , NC ,MM ,MS,ME ,3.

1 if8n< (NE×NC) and MM −MS > (NE×NC)× ME
2×8n

then
2 MP =

MM×(1−3)
8n

3 MinExeMemory =MP× (NE×NC)
4 3= 1− MinExeMemory

MM

5 end

Algorithm 2 shows the specific algorithm for TPOM. First we determine if the task is
blocking and needs to be reallocated by line 1 and check if the remaining space meets the
condition. Then sets MP to the minimum size of memory needed for execution (line 2),
and then proceeds to calculate the size of memory needed for actual executionmemory and
the size of space to be allocated and executed (lines 3-4). We define Storage.storageFraction
as 3, so the product of 3 andMM gives us the size of storage memory, and conversely the
product of (1 - 3) andMM is the size of execution memory.

Adaptive memory tuning

Algorithm 3 shows the core of our algorithm for adaptive memory reservation. This
part mainly adjusts the memory space by judging the memory operation in real-time.
Equations (6) and (8) show that the storage location of the RDD can better improve the
computational efficiency by choosing the disk as the storage location when the memory
space is insufficient, so we can free up more space for the task by changing the persistence
location of the RDD. During operation, the memory required for a task is not constant
(Singer et al., 2011), so space reservation for execution memory is required. First, we
determine whether the current task needs space reservation or rather space reallocation
(line 1), if space reservation is needed, we calculate the actual size of memory required
by a single task (line 2) and then determine whether the remaining memory space meets
the size of reserving a task (line 3), if it is less than the reserved space size, we perform
space release(lines 5-8), if the remaining space is greater than or equal to the reserved space
size (line 10), we perform a compression operation on the remaining space (lines 12-15).
Our memory adaptive adjustment algorithm (AMT) ensures that the memory space is
used reasonably and that not too much space is reserved for tasks. Finally, we select the
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Algorithm 3: AMT Algorithm
Input:8n, NE , NC ,MM ,MS,MU ,ME ,3.

1 if8n= (NE×NC) then
2 PerTaskMem= MU−MS

8n

3 ifMM −MU < PerTaskMem then
4 MemorySize= PerTaskMem+MU −MM

5 while cacheList .FindMinFre().size<MemorySize do
6 cacheList .findMinFre().unpersist ()
7 cacheList .findMinFre().deQueue()
8 MemorySize=MemorySize− cacheList .FindMinFre().size
9 end

10 elseMM −MU ≥ PerTaskMem
11 MemorySize=MM −MU

12 whileMemorySize> 0 do
13 cacheList .findMinFre().persist ()
14 cacheList .findMinFre().Queue()
15 MemorySize=MM −MU

16 end
17 end
18 end

persistence location for RDDs that have been evicted from memory or not yet stored in
memory by the LCLS algorithm, which is shown below.

Low-cost location selection
With our persistence location selection algorithm, RDDs are persisted in memory or disk,
and the relationship between (RT size

vmemo
+TG) and (

RT size
vdisk

) is a zero-sum game problem (Eq. (8)).
We need a specific parameter to determine when to choose the disk or memory. For this
purpose, we set 9 as the probability of being replaced out of the persistence into memory
at this time, and by calculating9 and combining the read speed of current device memory
and disk, we can know the calculation cost of persisting different locations. The probability
of being replaced out of the RDD storage cache for different memory occupancy is 9. The
relationship between 9 and memory utilization, garbage collection factor and RDD size
can be obtained from the experimental results as follows.

9 = sigmoid(κ×
MS+σ

3×MM ×Rsize
+κ

′

) (10)

Where MS is the storage memory usage size, MM is the maximum available heap memory
space,3 is the spark.storage.storageFraction parameter, where σ is the threhold to measure
memory usage, κ is a learning rate and κ

′

is offset variable.When there is more freememory
space, the value of9 is closer to 0.When there is not enoughmemory space, the probability
of RDD being replaced out of memory is infinitely close to 1.
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Algorithm 4: LCLS Algorithm
Input:MM ,MS, Rsize , Vmemo, Vdisk ,3, RT .

1 for RDD: RDDList do
2 Rsize =RDD.count ()
3 9 = sigmoid(κ× MS+σ

3×MM×Rsize
)

4 if9×χc(RT )+ (1−9) Rsize
Vmemo
≥

Rsize
Vdisk

then
5 RDD.persist (Disk_location)
6 else
7 RDD.persist (Memory_location)
8 end
9 end

The pseudo-code of the low-cost location selection algorithm (LSLC) is shown in
Algorithm 4. First, adds the RDD to the persistence queue (lines 1-2), and we know from
Eq. (8) as well as Fig. 1B that selecting memory as the storage location for the RDD when
there is not enough memory space will cause the recovery time of GC to rise linearly. To
avoid the time wastage caused by the garbage collection mechanism, we select the location
for storage according to equation Eqs. (5), (8), (10) to choose the location with lower
storage cost for storage. Set9 to be the probability of an RDD being evicted from memory
(line 3). When the memory space is infinite, we can see that 9 is converging to zero,
because all RDDs can be stored in memory at this time. When there is not enough memory
space to store an RDD, the probability 9 of being evicted from memory converges to 1.
Accordingly, compares the cost of storing in memory with the cost of storing on the disk
(line 4), and if the cost of storing in memory is higher (line 5), the disk is chosen as the
storage location. If the cost of depositing to the disk is higher (line 6), memory is selected
as the storage location (line 7). This has the advantage of avoiding memory contention
while significantly reducing the calculation cost of the RDD (Eq. (4)). The combination of
Algorithm 3 and Algorithm 4 makes the parallelism of the tasks fully guaranteed.

EXPERIMENTAL EVALUATION
In this section, we describe the experimental environment, benchmark load and analysis
of experimental results. The experimental indicators are program execution time, garbage
collection time, persistence hit rate and energy consumption.

Experimental setup
Given that the Spark cluster is an actual cluster, generating significant data is necessary
to induce memory contention. For optimal efficiency and clarity in our experiments,
we carefully chose algorithms that more accurately represent Spark memory contention
for comparison, as depicted in Fig. 5A. We chose five representative built-in Spark
strategies: memory_and_disk_ser, memory_only_ser, memory_and_disk, only_disk
and only_memory. Additionally, we compared these with other algorithms, including
DMAOM, DMATS, DSMM, and MCM. Figure 5B indicates that for the WordCount
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Figure 5 Execution time.
Full-size DOI: 10.7717/peerjcs.2460/fig-5

algorithm, a data size of 900GB already results in severe memory contention. Therefore, we
can conclude that this experiment is sufficient to demonstrate the computational outcomes
for heavy workloads conditions. In Fig. 5A, memory_and_disk_ser and memory_only_ser
fail to effectively save memory space for severe memory contention conditions, and
their serialization incurs a decrease in computational efficiency due to CPU resource
utilization. The MCM approach utilizes an in-memory acceleration utility algorithm,
which is optimized based on the algorithm code. Unlike the independent controller of
AMR, it consume computational resources for memory scheduling. Furthermore, MCM is
an in-memory acceleration utility algorithm, which differs from the active spilling memory
strategy aimed at enhancing computational efficiency and does not belong to the same
optimization concept.DSMM innovatively takes into account the efficiency of memory
compared to disk for heavy workloads. DSMM simply selects different cache locations for
varying data sizes, failing to fully leverage memory acceleration and lacking consideration
for RDD computation efficiency for various conditions. Therefore, it can be considered a
straightforward strategy selection algorithm.

To verify the effectiveness of AMR during job execution, this section implements
AMR on the Spark cluster. A variety of jobs are selected for experimentation at different
data sizes to fall into memory contention to varying degrees. We define different excess
data sizes according to different experimental environments and different algorithms.As
shown in Fig. 6D, PageRank, K-means, and Apriori experience severe memory contention
when dealing with data sizes of 80GB, 60GB, and 80GB. With the K-means algorithm,
the execution time of only_memory and memory_and_disk strategies converge to the
execution time of only_disk for this cluster when it is larger than 40GB. At this time,
the pressure of data on memory makes Spark cluster cannot reflect the advantages of
in-memory acceleration, and workload larger than this amount of data is overloaded.
Similarly, with PageRank and Apriori algorithm, the execution time of only_memory and
memory_and_disk strategy is converged to the execution time of only_disk for excess data
when it is larger than 50GB.

Li et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2460 16/28

https://peerj.com
https://doi.org/10.7717/peerjcs.2460/fig-5
http://dx.doi.org/10.7717/peerj-cs.2460


Figure 6 Execution time.
Full-size DOI: 10.7717/peerjcs.2460/fig-6

Execution time
The experiment started with three worknode, and each work node start the same executor
configuration. The node server configuration of the experimental environment and the
Executors configuration of the node server is shown in Table 2. The experimental workloads
are shown in Table 3. The experimental data are preprocessed to obtain a uniform
distribution. In order to verify the execution time of different persistence locations, we set
three default persistence strategies of Spark as a comparison reference in our experiments
to demonstrate the effectiveness of AMR (Figs. 6A, 6B and 6C): The only_memory strategy
means that all persistent RDDs are stored in the memory region. The only_disk strategy
means that all persistent RDDs are stored in the disk. Thememory_and_disk strategymeans
that persistent RDDSs are stored in memory first and overflowed to the disk when memory
space is insufficient. The DMAOM strategy is to filter RDDs according to their usage, then
construct an RDD structure tree and prune them, and finally choose whether to replace
them according to their weights and remaining memory space. The DMATS strategy is
dynamically adjust task scheduling based on memory usage, change task parallelism in
memory, and improve task execution efficiency.
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Table 2 Node server configuration information.

Parameter Configuration

CPU Intel®Xeon®Platinum 8160CPU @2.10 GHz
RAM 80GB
Disk 20TB
Digital meter 2500W 10A
OS CentOS 7.0
Spark Cloudera spark 2.4.0-cdh6.2.1
Cloudera manager CDH 6.2.1
Yarn Yarn-3.0.0
JDK JDK 8.0
Executor cores 24
Executor memory 5GB
WorkNode number 3

Table 3 Benchmark workloads.

Workloads Data size

PageRank 30GB, 40GB, 50GB, 60GB, 70GB, 80GB
K-means 10GB, 20GB, 30GB, 40GB, 50GB, 60GB
Apriori 30GB, 40GB, 50GB, 60GB, 70GB, 80GB

PageRank is an algorithm that determines webpage importance based on interlinking,
assigning weights that depend on the number and quality of links from other pages. It is a
core part of the Google search engine, helping rank pages in search results (Gabdullin et al.,
2024; Priyadarshini & Rodda, 2022). K-means is a clustering algorithm that partitions data
into K clusters by optimizing centroids to minimize the sum of squared distances between
data points and centroids, widely used in market segmentation, image compression,
and SEO (Ashkouti et al., 2022; Ikotun et al., 2023). Apriori is an association rule learning
algorithm that identifies frequent itemsets and interesting associations in large datasets, used
in market basket analysis, retail, e-commerce, and recommendation systems (Dhinakaran
& Prathap, 2022; Yan et al., 2022).

We conducted experiments on PageRank, K-means, and Apriori algorithms with
datasets of varying sizes. For PageRank, we used data sets ranging from 30GB to 80GB,
with 10GB intervals (Fig. 6A). The choice of intervals allowed us to assess the efficiency
of different strategies for Spark tasks and the impact of garbage collection. At 30GB, the
strategy of storing data solely on the disk had the longest execution time due to sufficient
memory resources, making memory a better choice for persistent storage. Our AMR
strategy maintained similar execution efficiency compared to other strategies. As the
data sets increased to 40GB, 50GB, and 60GB, the execution time for strategies involving
only memory or memory_and_disk constantly increased at a higher rate compared to
AMR, DMAOM, DMATS, and even disks. This indicated the emergence of a memory
bottleneck. While the AMR strategy had slightly higher execution time, the focus of AMR
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optimization was not this scale of data volume. For 70GB and 80GB data sets (Fig. 6), AMR
was 41.4% more efficient than the only_memory strategy. The execution time of DMAOM
changed from being lower than the only_disk strategy to higher than the only_disk strategy
from 70GB to 80GB, while AMR remained 22.7% more efficient than DMAOM. AMR
outperformed other strategies for large data volume pressure by effectively using memory
for job acceleration without relying solely on memory.

For K-means, we used datasets from 10GB to 60GB with 10GB intervals (Fig. 6B). At
10GB, 20GB, and 30GB, the execution time for only_disk was much higher than other
strategies. Although the execution time formemory_and_disk and only_memory surpassed
AMR at this point, it still did not exceed only_disk, indicating the higher utility of memory
acceleration over the disk. At 40GB, the execution time for only_memory and only_disk
strategies was similar, while DMAOM andDMATS showed significant optimization effects.
However, for data sets larger than 50GB, the execution time of the AMR strategy surpassed
other strategies, demonstrating its stable execution efficiency for the pressure of large data
volumes. At 60GB, the execution time of DMAOM and DMATS even exceeded that of
only_disk. AMR had the shortest execution time, with notable improvements compared
to other strategies.

For Apriori, datasets of the same order of magnitude as PageRank were used (Fig.
6C). At 30GB and 40GB, the execution time for memory_and_disk was lower than that
of only_memory. At 50GB and 60GB, the advantage of the memory_and_disk strategy
gradually decreased, and the execution efficiency of AMR was similar to DMAOM and
DMATS. With 70GB and 80GB data sets, the execution time of DMAOM and DMATS
became similar to only_disk or longer, while AMR exhibited significantly lower execution
time compared to other strategies, improving efficiency by up to 30.1% compared to
memory_and_disk. These results indicate that as the dataset scales, memory contention
increases and cache acceleration decreases. The disk persistence method effectively reduces
execution time by avoiding memory contention. AMR performs well in situations with
large datasets resulting in insufficient memory and inefficiency.

Garbage collection percentage & persistence hit rate
To assess the impact of garbage collection on various algorithms and datasets, we performed
comparative experiments and tracked garbage collection percentages using the Spark Web
UI. The garbage collection percentage represents the duration of garbage collection as a
percentage of task runtime. The execution results of PageRank, K-means, and Apriori jobs
are depicted in Figs. 7A, 7B, 7C.

PageRank, being computation-intensive with iterative calculations, tends to have high
garbage collection percentages when using the memory_and_disk strategy by default.
At 30GB, the garbage collection ratios are similar, except for a slightly higher ratio for
the memory_and_disk strategy, which is still within the memory capacity limit. From
40GB onwards, the garbage collection percentages for only_memory, memory_and_disk,
only_disk, DMAOM, and DMATS increase proportionally, with a slowdown at 70GB.
The AMR algorithm shows minimal growth in garbage collection percentage, except for a
slight increase from 30GB to 40GB. At 80GB, the garbage collection percentage of AMR
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Figure 7 Garbage collection percentage & Persistence hit rate.
Full-size DOI: 10.7717/peerjcs.2460/fig-7

is 13.6% lower than memory_and_disk due to the effective avoidance of cache contention
and garbage collection as the data size grows.

For K-means, a clustering algorithm with an iterative process, the garbage collection
percentage also increases with increasing data size (Fig. 7A). Overall, except for only_disk,
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the AMR algorithm has consistently shown the lowest garbage collection percentage after
20GB. While only_disk has the lowest garbage collection percentage, its computation time
is too long, and the advantage of garbage collection percentage alone cannot conclude
its applicability to real-world scenarios. In summary, the AMR algorithm exhibits clear
advantages for K-means starting from a data volume of 20GB, benefiting from the efficient
utilization of memory compared to other algorithms.

Similar to PageRank and K-means, the Apriori algorithm shows similar garbage
collection patterns (Fig. 7B). From 40GB onwards, as memory pressure increases, the
garbage collection percentage of AMR gradually widens the gap with other algorithms.
For small datasets, all strategies, including only_memory, memory_and_disk, DMAOM,
DMATS, and AMR, have low garbage collection percentages. However, as the dataset size
increases, these strategies experience higher garbage collection percentages and reduced
job execution efficiency. Both AMR and only_disk strategies are less affected by dataset size
and have lower garbage collection percentages. We can conclude that the only_memory
strategy triggers more garbage collection when facing memory bottlenecks, while the
memory_and_disk strategy tends to fill up memory, leading to frequent garbage collection
and associated costs. In contrast, AMR flexibly caches RDDs in memory or on disk,
maintaining a low garbage collection percentage.

In Fig. 7D, Eq. (10) demonstrates the significance of RDD cache hit rates. The impact of
data size on persistence hit rates was analyzed by comparing DAOMA, SACM, and Spark’s
built-in only_memory, memory_and_disk, and only_disk strategies. The results for the
PageRank job are shown in the figure. As the dataset size increases, the persistence hit
rates of DAOMA, DMATS, only_memory, and memory_and_disk strategies significantly
decrease. AMR after optimization, closely approaches only_disk. To further validate this,
similar experimental results were obtained for the K-means execution in Fig. 7E and
the Apriori execution in Fig. 7F. The analysis reveals that frequent memory replacement
operations and severe contention lead to a rapid decline in hit rates. Additionally, the
only_memory and memory_and_disk strategies often trigger garbage collection, which
may result in cached data being cleared. AMR employs disk persistence to reduce cache
replacements and garbage collection, achieving the highest hit rates.

Energy consumption
With the increasing computing performance, server energy consumption has become
a critical issue that affects computing services and enterprise revenue. To investigate
energy consumption for different strategies for various algorithms, we use Power Monitor
DL333502 to monitor the energy consumption of the server cluster, measured the energy
consumption (kwh) of cluster during the total execution time of each task. The detailed
comparative experiment was carried out as shown (Figs. 8A, 8B, 8C).
At 30GB and 40GB, only_disk exhibits higher energy consumption, while other strategies

show similar energy consumption (Fig. 8A). From 50GB onwards, Spark’s default strategies
have relatively high energy consumption, whereas the improved strategies (AMR,DMAOM,
and DMATS) show lower energy consumption. However, AMR’s energy consumption
advantage becomes prominent only at a data size of 60GB. At 70GB and 80GB, energy

Li et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2460 21/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2460


Figure 8 Energy consumption.
Full-size DOI: 10.7717/peerjcs.2460/fig-8

consumption rapidly increases for other strategies with the growing data volume, while the
AMR algorithm demonstrates clear advantages with lower energy consumption compared
to other algorithms. Notably, at 80GB, AMR’s energy consumption is 44.0% lower than
that of the memory_and_disk strategy, highlighting its energy efficiency advantage for large
data volumes.

For the K-means algorithm, only_disk exhibits higher energy consumption at 10GB for
low memory pressure, while other strategies show similar consumption (Fig. 8B). At 20GB,
30GB, and 40GB, different strategies have their advantages and disadvantages, but the
improved strategies generally outperform Spark’s default strategies. At 50GB and 60GB,
AMR consumes less energy than all other strategies, with savings of up to 46.8% at 60GB.
However, as the data volume increases, the energy consumption of DMAOM and DMATS
strategies surpasses Spark’s default only_disk strategy.

Similar to PageRank, the strategies for the Apriori algorithm show comparable energy
consumption trends. AMR performs well with a large amount of data, demonstrating
excellent data carrying capacity (Fig. 8C). Energy consumption from 30GB to 60GB is
comparable to other improved algorithms. Starting from 70GB, AMR effectively utilizes
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disk space, reducing memory pressure and improving execution efficiency, resulting
in lower energy consumption. At 80GB, AMR’s energy consumption surpasses that of
DMAOM and DMATS by 22.1% and 21.2%. Notably, the energy consumption of AMR
does not increase rapidly with data volume growth.

CONCLUSION
Spark has emerged as a promising big data platform to meet the demands of large-scale
data computing. Nevertheless, Spark’s memory management encounters computational
efficiency challenges, especially for heavy workloads scenarios. This paper introduces
an adaptive memory reservation (AMR) strategy designed for heavy workloads in the
Spark environment. Specifically, we model optimal task parallelism by minimizing the
difference between the number of tasks completed without blocking and the actual
number of tasks completed in normal rounds. Task parallelism optimal memory is
determined to define an optimal execution memory space for computational parallelism.
Furthermore, task parallelism is dynamically ensured in the process of Spark parallel
computing through adaptive reservation of execution memory space. The allocation is
adjusted by choosing to compress or increase the execution memory space based on
the running tasks. Different types of RDDs are assigned appropriate storage locations to
alleviate execution memory pressure, considering the cost of RDD cache location and
real-time memory space occupation. Comprehensive experiments are carried out to assess
the proposed AMR strategy. The results demonstrate that AMR can reduce the execution
time by approximately 46.8% compared to existing memory management solutions.

Our experiments are designed to validate the experimental effects in the case of a single
real cluster with multiple servers. In order to accommodate the boosting effect of multiple
server clusters, the method of finding the initial adaptive task concurrency needs to be
changed, which we plan to do in future work so that AMR can be applied to any Spark
cluster. In addition, while better results have been achieved with high workloads, further
improvements in efficiency under low loads can also be routinely performed in future work
to further improve the results.
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