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ABSTRACT
Human behavior refers to the way humans act and interact. Understanding human
behavior is a cornerstone of observational practice, especially in psychotherapy. An
important cue of behavior analysis is the dynamical changes of emotions during the
conversation. Domain experts integrate emotional information in a highly nonlinear
manner; thus, it is challenging to explicitly quantify the relationship between emotions
and behaviors. In this work, we employ deep transfer learning to analyze their inferential
capacity and contextual importance. We first train a network to quantify emotions
from acoustic signals and then use information from the emotion recognition network
as features for behavior recognition. We treat this emotion-related information as
behavioral primitives and further train higher level layers towards behavior quantifica-
tion. Through our analysis, we find that emotion-related information is an important
cue for behavior recognition. Further, we investigate the importance of emotional-
context in the expression of behavior by constraining (or not) the neural networks’
contextual view of the data. This demonstrates that the sequence of emotions is critical
in behavior expression. To achieve these frameworks we employ hybrid architectures
of convolutional networks and recurrent networks to extract emotion-related behavior
primitives and facilitate automatic behavior recognition from speech.

Subjects Emerging Technologies, Natural Language and Speech, Social Computing
Keywords Behavior quantification, Emotion, Affective computing, Neural networks, Couples
therapy

INTRODUCTION
Human communication includes a range of cues from lexical, acoustic and prosodic,
turn taking and emotions to complex behaviors. Behaviors encode many domain-specific
aspects of the internal user state, from highly complex interaction dynamics to expressed
emotions. These are encoded at multiple resolutions, time scales, and with different levels
of complexity. For example, a short speech signal or a single uttered word can convey
basic emotions (Ekman, 1992a; Ekman, 1992b). More complex behaviors require domain
specific knowledge and longer observation windows for recognition. This is especially true
in task specific behaviors of interest in observational treatment for psychotherapy such
as in couples’ therapy (Christensen et al., 2004) and suicide risk assessment (Cummins et
al., 2015). Behaviors encompass a rich set of information that includes the dynamics of
interlocutors and their emotional states, and can often be domain specific. The evaluation
and identification of domain specific behaviors (e.g., blame, suicide ideation) can facilitate

How to cite this article Li H, Baucom B, Georgiou P. 2020. Linking emotions to behaviors through deep transfer learning. PeerJ Comput.
Sci. 6:e246 http://doi.org/10.7717/peerj-cs.246

https://peerj.com/computer-science
mailto:haoqili@usc.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.246
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.246


effective and specific treatments by psychologists. During the observational treatment,
annotation of human behavior is a time consuming and complex task. Thus, there have
been efforts on automatically recognizing human emotion and behavior states, which
resulted in vibrant research topics such as affective computing (Tao & Tan, 2005; Picard,
2003; Sander & Scherer, 2014), social signal processing (Vinciarelli, Pantic & Bourlard,
2009), and behavioral signal processing (BSP) (Narayanan & Georgiou, 2013; Georgiou,
Black & Narayanan, 2011). In the task of speech emotion recognition (SER), researchers
are combiningmachine learning techniques to build reliable and accurate affect recognition
systems (Schuller, 2018). In the BSP domain, through domain-specific focus on areas such
as human communication, mental health and psychology, research targets advances of
understanding of higher complexity constructs and helps psychologists to observe and
evaluate domain-specific behaviors.

However, despite these efforts on automatic emotion and behavior recognition (see
‘Related Work’), there has been less work on examining the relationship between these
two. In fact, many domain specific annotation manuals and instruments (Heavey, Gill &
Christensen, 2002; Jones & Christensen, 1998; Heyman, 2004) have clear descriptions that
state specific basic emotions can be indicators of certain behaviors. Such descriptions are
also congruent with how humans process information. For example, when domain experts
attempt to quantify complex behaviors, they often employ affective information within the
context of the interaction at varying timescales to estimate behaviors of interest (Narayanan
& Georgiou, 2013; Tseng et al., 2016).

Moreover, the relationship between behavior and emotion provides an opportunity for
(i) transfer learning by employing emotion data, that is easier to obtain, annotate, and
less subjective, as the initial modeling task; and (ii) employing emotional information as
building blocks, or primitive features, that can describe behavior.

The purpose of this work is to explore the relationship between emotion and behavior
through deep neural networks, and further the employ emotion-related information
towards behavior quantification. There are many notions of what an ‘‘emotion’’ is. For
the purpose of this paper and most research in the field (El Ayadi, Kamel & Karray,
2011; Schuller, 2018), the focus is on basic emotions, which are defined as cross-culturally
recognizable. One commonly used discrete categorization is by Ekman (1992a); Ekman
(1992b), in which six basic emotions are identified as anger, disgust, fear, happiness,
sadness, and surprise. According to theories (Schacter, Gilbert & Wegner, 2011; Scherer,
2005), emotions are states of feeling that result in physical and psychological changes that
influence our behaviors.

Behavior, on the other hand, encodes many more layers of complexity: the dynamics of
the interlocutors, their perception, appraisal, and expression of emotion, their thinking and
problem-solving intents, skills and creativity, the context and knowledge of interlocutors,
and their abilities towards emotion regulation (Baumeister et al., 2007; Baumeister et al.,
2010). Behaviors are also domain dependent. In addiction (Baer et al., 2009), for example,
a therapist will mostly be interested in the language which reflects changes of addictive
habits. In suicide prevention (Cummins et al., 2015), reasons for living and emotional bond
are more relevant. In doctor-patient interactions, empathy or bedside manners are more
applicable.

Li et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.246 2/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.246


In this paper, we will first address the task of basic emotion recognition from speech.
Thus we will discuss literature on the notion of emotion (see ‘Emotions’) and prior work on
emotion recognition (see ‘Emotion quantification from speech’). We will then, as our first
scientific contribution, describe a system that can label emotional speech (see ‘Emotion
recognition’).

The focus of this paper, however, is to address the more complex task of behavior
analysis. Given behavior is very related to the dynamics, perception, and expression of
emotions (Schacter, Gilbert & Wegner, 2011), we believe a study is overdue in establishing
the degree to which emotions can predict behavior. We will therefore introduce more
analytically the notion of behavior (see ‘Behaviour’) and describe prior work in behavior
recognition (see ‘Behavior quantification from speech’), mainly from speech signals. The
second task of this paper will be in establishing a model that can predict behaviors from
basic emotions. We will investigate the emotion-to-behavior aspects in two ways: we
will first assume that the discrete emotional labels directly affect behavior (see ‘Context-
dependent behavior recognition from emotion labels’). We will further investigate if
an embedding from the emotion system, representing behaviors but encompassing a
wider range of information, can better encode behaviorally meaningful information (see
‘Context-dependent behavior recognition from emotion-embeddings’).

In addition, the notion that behavior is highly dependent on emotional expression also
raises the question of how important the sequence of emotional content is in defining
behavior. We will investigate this through progressively removing the context from the
sequence of emotions in the emotion-to-behavior system (see ‘Reduced context-dependent
behavior recognition from emotion-informed embeddings’) and study how this affects the
automatic behavior classification performance.

BACKGROUND
Emotions
There is no consensus in the literature on a specific definition of emotion. An ‘‘emotion’’
is often taken for granted in itself and, most often, is defined with reference to a list of
descriptors such as anger, disgust, happiness, and sadness etc. (Cabanac, 2002). Oatley &
Jenkins (1996) distinguish emotion from mood or preference by the duration of each kind
of state. Two emotion representationmodels are commonly employed in practice (Schuller,
2018). One is based on the discrete emotion theory, where six basic emotions are isolated
from each other, and researchers assume that any emotion can be represented as a
mixture of the basic emotions (Cowie et al., 2001). The other model defines emotions via
continuous values corresponding to different dimensions which assumes emotions change
in a continuous manner and have strong internal connections but blurred boundaries
between each other. The twomost common dimensions are arousal and valence (Schlosberg,
1954).

In our work, following related literature, we will refer to basic emotions as emotions
that are expressed and perceived through a short observation window. Annotations of such
emotions take place without context to ensure that time-scales, back-and-forth interaction
dynamics, and domain-specificity is not captured.
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Behavior
Behavior is the output of information and signals including but not limited to those: (i)
manifested in both overt and covert multimodal cues (‘‘expressions’’); and (ii) processed
and used by humans explicitly or implicitly (‘‘experience’’ and ‘‘judgment’’) (Narayanan
& Georgiou, 2013; Baumeister et al., 2010). Behaviors encompass significant degrees of
emotional perception, facilitation, thinking, understanding and regulation, and are
functions of dynamic interactions (Baumeister et al., 2007). Further, such complex
behaviors are increasingly domain specific and subjective.

Link between emotions and behavior
Emotions can change frequently and quickly in a short time period (Ekman, 1992a;Mower
& Narayanan, 2011). They are internal states that we perceive or express (e.g., through
voice or gesture) but are not interactive and actionable. Behaviors, on the other hand,
include highly complex dynamics, information from explicit and implicit aspects, are
exhibited over longer time scales, and are highly domain specific.

For instance, ‘‘happiness’’, as one of the emotional states, is brought about by generally
positive feelings. While within couples therapy domain, behavior ‘‘positivity’’ is defined
in (Heavey, Gill & Christensen, 2002; Jones & Christensen, 1998) as ‘‘Overtly expresses
warmth, support, acceptance, affection, positive negotiation’’.

Those differences apply to both human cognition and machine learning aspects of
speech capture, emotion recognition and behavior understanding as shown in Fig. 1 (Soken
& Pick, 1999; Hoff, 2009). The increased complexity and contextualization of behavior can
be seen both in humans as well as machines. For example, babies start to develop basic
emotion perception at the age of seven months (Soken & Pick, 1999). However, it takes
emotionally mature and emotionally intelligent humans and often trained domain experts
to perceive domain-specific behaviors. In Fig. 1, we illustrate the complexity for machine
processing along with the age-of-acquisition for humans. We see a parallel in the increase
in demands of identifying behavior in both cases.

Motivations and goals of this work
The relationship between emotion and behavior is usually implicit and highly nonlinear.
Investigating explicit and quantitative associations between behavior and emotions is thus
challenging.

In this work, based on the deep neural networks’ (DNNs) underlying representative
capability (Bengio, Courville & Vincent, 2013; Bengio, 2012), we try to analyze and interpret
the relationship between emotion and behavior information through data-driven methods.
We investigate the possibility of using transfer learning by employing emotion data as
emotional related building blocks, or primitive features, that can describe behavior. Further,
we design a deep learning framework that employs a hybrid network structure containing
context dependent and reduced contextualization causalitymodels to quantitatively analyze
the relationship between basic emotions and complex behaviors.
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Figure 1 Illustration of task complexity or age of acquisition for machines and humans.
Full-size DOI: 10.7717/peerjcs.246/fig-1

RELATED WORK
Researchers are combining machine learning techniques to build reliable and accurate
emotion and behavior recognition systems. Speech emotion recognition (SER) systems, of
importance in human-computer interactions, enable agents and dialogue systems to act in
a more human-like manner as conversational partners (Schuller, 2018). On the other hand,
in the domain of behavior signal processing (BSP), efforts have been made in quantitatively
understanding and modeling typical, atypical, and distressed human behavior with a
specific focus on verbal and non-verbal communicative, affective, and social behaviors
(Narayanan & Georgiou, 2013). We will briefly review the related work in the following
aspects.

Emotion quantification from speech
A dominant modality for emotion expression is speech (Cowie & Cornelius, 2003).
Significant efforts (El Ayadi, Kamel & Karray, 2011; Beale & Peter, 2008; Schuller et al.,
2011) have focused on automatic speech emotion recognition. Traditional emotion
recognition systems usually rely on a two-stage approach, in which the feature extraction
and classifier training are conducted separately. Recently, deep learning has demonstrated
promise in emotion classification tasks (Han, Yu & Tashev, 2014; Le & Provost, 2013).
Convolutional neural networks (CNNs) have been shown to be particularly effective in
learning affective representations directly from speech spectral features (Mao et al., 2014;
Anand & Verma, 2015; Huang & Narayanan, 2017a; Zheng, Yu & Zou, 2015; Aldeneh &
Provost, 2017). Mao et al. (2014) proposed to learn CNN filters on spectrally whitened
spectrograms by an auto-encoder through unsupervised manners. Aldeneh & Provost
(2017) showed that CNNs can be directly applied to temporal low-level acoustic features
to identify emotionally salient regions. Anand & Verma (2015) and Huang & Narayanan
(2017a) compared multiple kinds of convolutional kernel operations, and showed that
the full-spectrum temporal convolution is more favorable for speech emotion recognition
tasks. In addition, models with hidden Markov model (HMM) (Schuller, Rigoll & Lang,
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2003), recurrent neural networks (RNNs) (Wöllmer et al., 2010;Metallinou et al., 2012; Lee
& Tashev, 2015) and the hybrid neural network combining CNNs and RNNs (Lim, Jang &
Lee, 2016; Huang & Narayanan, 2017b) have also been employed to model emotion affect.

Behavior quantification from speech
Behavioral signal processing (BSP) (Narayanan & Georgiou, 2013; Georgiou, Black &
Narayanan, 2011) can play a central role in informing human assessment and decision
making, especially in assisting domain specialists to observe, evaluate and identify
domain-specific human behaviors exhibited over longer time scales. For example, in
couples therapy (Black et al., 2013; Nasir et al., 2017b), depression (Gupta et al., 2014;
Nasir et al., 2016; Stasak et al., 2016; Tanaka, Yamamoto & Haruno, 2017) and suicide
risk assessment (Cummins et al., 2015; Venek et al., 2017; Nasir et al., 2018; Nasir et al.,
2017a), behavior analysis systems help psychologists observe and evaluate domain-specific
behaviors during interactions. Li, Baucom & Georgiou (2016) proposed sparsely connected
and disjointly trained deep neural networks to deal with the low-resource data issue in
behavior understanding. Unsupervised (Li, Baucom & Georgiou, 2017) and out-of-domain
transfer learning (Tseng, Baucom & Georgiou, 2018) have also been employed on behavior
understanding tasks. Despite these important and encouraging steps towards behavior
quantification, obstacles still remain. Due to the end-to-end nature of recent efforts, low-
resource data becomes a dominant limitation (Li, Baucom & Georgiou, 2016; Collobert et
al., 2011; Soltau, Liao & Sak, 2017;Heyman et al., 2001). This is exacerbated in BSP scenario
by the difficulty of obtaining data due to privacy constraints (Lustgarten, 2015; Narayanan
& Georgiou, 2013). Challenges with subjectivity and low interannotator agreement (Busso &
Narayanan, 2008; Tseng et al., 2016), especially in micro and macro annotation complicate
the learning task. Further, and importantly such end-to-end systems reduce interpretability
generalizability and domain transfer (Sculley et al., 2015).

Linking emotion and behavior quantification
As mentioned before, domain experts employ information within the context of the
interaction at varying timescales to estimate the behaviors of interest (Narayanan &
Georgiou, 2013; Tseng et al., 2016). Specific short-term affect, e.g., certain basic emotions,
can be indicators of some complex long-term behaviors during manual annotation process
(Heavey, Gill & Christensen, 2002; Jones & Christensen, 1998; Heyman, 2004). These vary
according to the behavior; for example, negativity is often associated with localized cues
(Carney, Colvin & Hall, 2007), demand and withdrawal require more context (Heavey,
Christensen & Malamuth, 1995), and coercion requires a much longer context beyond
a single interaction (Feinberg, Kan & Hetherington, 2007). Chakravarthula et al. (2019)
analyzed behaviors, such as ‘‘anger’’ and ‘‘satisfaction’’, and found that negative behaviors
could be quantified using short observation length whereas positive and problem solving
behaviors required much longer observation.

In addition, Baumeister et al. (2007) and Baumeister et al. (2010) discussed two kinds of
theories: the direct causality model and inner feedback model. Both models emphasize the
existence of a relationship between basic emotion and complex behavior. Literature from
psychology (Dunlop, Wakefield & Kashima, 2008; Burum & Goldfried, 2007) and social
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science (Spector & Fox, 2002) also showed that emotion can have impacts and further shape
certain complex human behaviors. To connect basic emotion with more complex affective
states, Carrillo et al. (2016) identified a relationship between emotional intensity and mood
through lexical modality. Khorram et al. (2018) verified the significant correlation between
predicted emotion and mood state for individuals with bipolar disorder on acoustic
modality. All these indicate that the aggregation and link between basic emotions and
complex behaviors is of interest and should be examined.

PROPOSED WORK: BEHAVIORAL PRIMITIVES
Our work consists of three studies for estimation of behavior through emotion information
as follows:
1. Context-dependent behavior from emotion labels: Basic emotion affect labels are

directly used to predict long-term behavior labels through a recurrent neural network.
This model is used to investigate whether the basic emotion states can be sufficient to
infer behaviors.

2. Context-dependent behavior from emotion-informed embeddings: Instead of
directly using the basic emotion affect labels, we utilize emotion-informed embeddings
towards the prediction of behaviors.

3. Reduced context-dependent behavior from emotion-informed embeddings: Similar
to (2) above, we employ emotion-informed embeddings. In this case, however, we
investigate the importance of context, by progressively reducing the context provided
to the neural network in predicting behavior.
For all three methods, we utilize a hybrid model of convolution and recurrent neural

networks that we will describe in more detail below.
Through our work, both emotion labels and emotionally informed embeddings will be

regarded as a type of behavior primitive, that we call Basic Affect Behavioral Primitive
Information (or Behavioral Primitives for short, BP).

An important step in obtaining the above BP is the underlying emotion recognition
system. We thus first propose and train a robustMulti-Emotion Regression Network (ER)
using convolutional neural network (CNN), which is described in detail in the following
subsection.

Emotion recognition
In order to extract emotionally informed embeddings and labels, we propose a CNN
based Multi-Emotion Regression Network (ER). The ER model has a similar architecture
as (Aldeneh & Provost, 2017), except that we use one-dimensional (1D) CNN kernels and
train the network through a regression task. The CNN kernel filter should include entire
spectrum information per scan, and shift along the temporal axis, which performs better
than other kernel structures according to Huang & Narayanan (2017a).

Our model has three components: (1) stacked 1D convolutional layers; (2) an adaptive
max pooling layer; (3) stacked dense layers. The input acoustic features are first processed
by multiple stacked 1D convolution layers. Filters with different weights are employed to
extract different information from the same input sample. Then, one adaptive max pooling
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layer is employed to further propagate 1D CNN outputs with the largest value. This is
further processed through dense layers to generate the emotional ratings at short-term
segment level. The adaptive max pooling layer over time is one of the key components of
this and all following models: first, it can cope with variable length signals and produce
fixed size embeddings for subsequent dense layers; Second, it only returns the maximum
feature within the sample to ensure only the more relevant emotionally salient information
is propagated through training.

We train this model as one regression model which predicts the annotation ratings of all
emotions jointly. Analogous to the continuous emotion representation model (Schlosberg,
1954), this multi-emotion joint training framework can utilize strong bonds but blurred
boundaries within emotions to learn the embeddings. Through this joint training process,
the model can integrate the relationship across different emotions, and hopefully obtain
an affective-rich embedding.

In addition, to evaluate the performance of proposed ER , we also build multiple binary,
single-emotion, classification models (Single-Emotion Classification Network (EC)). The
EC model is modified based on pre-trained ER by replacing the last linear layer with new
fully connected layers to classify each single emotion independently. During training, the
back propagation only updates the newly added linear layers without changing the weights
of pre-trained ER model. In this case, the loss from different emotions is not entangled and
the weights will be optimized towards each emotion separately. More details of experiments
and results comparison are described in ‘Experiments and Results Discussion’.

Asmentioned before, we employ two kinds of behavioral primitives in order to investigate
the relationship between emotions and behaviors, and the selection of these two kinds of
BP arises through the discrete, EC, and continuous, ER, emotion representation models.
The two kinds of BP are: (1) The discrete vector representation of predicted emotion labels,
denoted as B-BP_k, from the Single-Emotion Classification Network (EC), where k means
kth basic emotion; and (2) The output embeddings of the CNN layers, denoted as E-BP_ l ,
from the Multi-Emotion Regression Network system (ER), where l represents the output
from l th CNN layer. All these are illustrated in Fig. 2.

Behavior recognition through emotion-based behavior primitives
We now describe three architectures for estimating behavior through Basic Affect
Behavioral Primitive Information (or Behavioral Primitives for short, BP). The three
methods employ full context of the emotion labels from the Single-Emotion Classification
Network (EC), the full context from the embeddings of the Multi-Emotion Regression
Network (ER) system, and increasingly reduced context from the Multi-Emotion
Regression Network system (ER).

Context-dependent behavior recognition from emotion labels
In this approach, the binarized predicted labels from the EC system are employed to
predict long-term behaviors via sequential models in order to investigate relationships
between emotions and behaviors. Such a design can inform the degree to which short-term
emotion can influence behaviors. It can also provide some interpretability of the employed
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information for decision making, over end-to-end systems that generate predictions
directly from the audio features.

We utilize the Single-Emotion Classification Network (EC) described in the previous
section to obtain the predicted Binarized Emotion-Vector Behavior Primitives (B-BP) on
shorter speech segment windows as behavioral primitives. These are extracted from the
longer signals that describe the behavioral corpus and are utilized, preserving sequence,
hence context, within a recurrent neural network for predicting the behavior labels. Figure 3
illustrates the network architecture and B-BP_* means the concatenation of all B-BP_k,
where k ranges from 1 to 6.

In short, the B-BP vectors are fed into a stack of gated recurrent units (GRUs), followed
by a densely connected layer which maps the last hidden state of the top recurrent layer
to behavior label outputs. GRUs were introduced in Chung et al. (2014) as one attempt
to alleviate the issue of vanishing gradient in standard vanilla recurrent neural networks
and to reduce the number of parameters over long short-term memory (LSTM) neurons.
GRUs have a linear shortcut through timesteps which avoids the decay and thus promotes
gradient flow. In this model, only the sequential GRU components and subsequent dense
layers are trainable, while the EC networks remain fixed.
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Context-dependent behavior recognition from emotion-embeddings
It is widely understood that information closer to the output layer is more tied to the
output labels while closer to the input layer information is less constrained and contains
more information about the input signals. In our ER network, the closer we are to the
output, the more raw information included in the signal is removed and the more we are
constrained to the basic emotions. Given that we are not directly interested in the emotion
labels, but in employing such relevant information for behavior, it makes sense to employ
layers below the last output layer to capture more behavior-relevant information closer to
its raw form. Thus, instead of using the binary values representing the absence or existence
of the basic emotions, we can instead employ Emotion-Embedding Behavior Primitives
(E-EBP) as the input representation.

The structure of the system is illustrated in Fig. 4. After pretraining the ER , we keep
some layers of that system fixed, and employ their embeddings as the Emotion-Embedding
Behavior Primitives. We will discuss the number of fixed layers in the experiments section.
This E-BP serves as the input of the subsequent, trainable, convolutional and recurrent
networks.
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The overall system is trained to predict the longer-term behavior states. By varying the
number of layers that remain unchanged in the ER system and using different embeddings
from different layers for the behavior recognition task we can identify the best embeddings
under the same overall number of parameters and network architecture.

Themotivation of the above is that the fixed ER encodingmodule is focusing on learning
emotional affect information, which can be related but not directly linked with behaviors.
By not using the final layer, we are employing a more raw form of the emotion-related
information, without extreme information reduction, that allows for more flexibility
in learning by the subsequent behavior recognition network. This allows for transfer
learning (Torrey & Shavlik, 2010) from one domain (emotions) to another related domain
(behaviors). Thus, this model investigates the possibility of using transfer learning by
employing emotional information as ‘‘building blocks’’ to describe behavior.

Reduced context-dependent behavior recognition from emotion-informed
embeddings
In the above work, we assume that the sequence of the behavior indicators (embeddings
or emotions) is important. To verify the need for such an assumption, in this section,
we propose varying the degree of employed context. Through quantification, we analyze
the time-scales at which the amount of sequential context affects the estimation of the
underlying behavioral states.

In this proposed model, we design a network that can only preserve local context. The
overall order of the embeddings extracted from the different local segments is purposefully
ignored so we can better identify the impact of de-contextualizing information as shown
in Fig. 5.

In practice, this reduced-context model is built upon the existing CNN layers as in
the E-BP case. We will create this reduced context system by employing only the E-BP
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embeddings. The E-BP embeddings are extracted from the same emotion system as before.
In this case, however, instead of being fed to a recursive layer with full-session view, we
eliminate the recursive layer and incorporate a variable number of CNN layers and local
average pooling functions in between to adjust context view. Since the final max-pooling
layer ignores the order of the input, the largest context is determined by the receptive field
view of the last layer before this max-pooling. We can thus investigate the impact of context
by varying the length of the CNN receptive field.

Figure 6 illustrates the model architecture. We extract the optimal E-BP based on the
results of previous model, and then employ more CNN layers with different receptive field
sizes to extract high-dimensional representation embeddings, and finally input them to the
adaptive max-pooling along the time axis to eliminate the sequential information. Within
each CNN receptive field, shown as red triangles in the figure, the model still has access to
the full receptive field context. The max pooling layer removes context across the different
receptive windows.

Furthermore, the receptive field can be large enough to enable the model to capture
behavioral information encoded over longer timescales. In contrast a very small receptive
area, e.g., at timescale of phoneme or word, sensing behaviors should be extremely
difficult (Baumeister et al., 2010) and can even be challenging to detect emotions (Mower &
Narayanan, 2011). The size of the receptive field is decided by the number of CNN layers,
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corresponding stride size, and the number of local average pooling layers in between. In our
model, we adjust the size of the receptive field by setting different number of local average
pooling layers under which the overall number of network parameters is unchanged.

DATASETS
Emotion dataset: CMU-MOSEI dataset
The CMU Multimodal Opinion Sentiment and Emotion Intensity (CMU-MOSEI)
(Zadeh et al., 2018) contains video files carefully chosen from YouTube. Each sample
is a monologue with verified quality video and transcript. This database includes 1000
distinct speakers with 1000 kinds of topics, and are gender balanced with an average length
of 7.28 seconds. Speech segments are already filtered during the data collection process,
thus all speech segments are monologues of verified audio quality.

For each speech segment, six emotions (Happiness, Sadness, Anger, Fear, Disgust,
Surprise) are annotated on a [0,3] Likert scale for the presence of each emotion. (0: no
evidence; 1: weak evidence; 2: evidence; and 3: high evidence of emotion). This, after
averaging ratings from 3 annotators, results in a 6-dimensional emotional rating vector per
speech segment. CMU-MOSEI ratings can also be binarized for each emotion: if a rating
is greater than 0 it is considered that there is some presence of emotion, hence it is given a
true presence label, while a zero results in a false presence of the emotion.

The original dataset has 23,453 speech segments and each speech segment may contain
more than one emotion presence label. Through our experiments, we use the segments
with available emotion annotations and standard speaker independent split from dataset
SDK (Zadeh, 2019): overall we have true presence in 12,465 segments for happiness, 5,998
for sadness, 4,997 for anger, 2,320 for surprise, 4,097 for disgust and 1,913 for fear. Due
to the imbalance, accurate estimation of some emotions will be challenging. The training
set consists of 16,331 speech segments, while the validation set and test set consist of 1,871
and 4,662 sentences respectively.

Behavior dataset: couples therapy corpus
The Couples Therapy dataset is employed to evaluate complex human behaviors. The
corpus was collected by researchers from the University of California, Los Angeles and
the University of Washington for the Couple Therapy Research Project (Christensen et al.,
2004). It includes a longitudinal study of 2 years of 134 real distressed couples. Each couple
has been recorded at multiple instances over the 2 years. At the beginning of each session, a
relationship-related topic (e.g., ‘‘why can’t you leave my stuff alone?’’) was selected and the
couple interacted about this topic for 10 minutes. Each participant’s behaviors were rated
by multiple well-trained human annotators based on the Couples Interaction (Heavey, Gill
& Christensen, 2002) and Social Support Interaction (Jones & Christensen, 1998) Rating
Systems. 31 behavioral codes were rated on a Likert scale of 1 to 9, where 1 refers absence
of the given behavior and 9 indicates a strong presence. Most of the sessions have 3 to
4 annotators, and annotator ratings were averaged to obtain the final 33-dimensional
behavioral rating vector. The employed part of the dataset includes 569 coded sessions,
totaling 95.8 h of data across 117 unique couples.
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AUDIO PROCESSING AND FEATURE EXTRACTION
Behavioral dataset pre-processing
For preprocessing the couples therapy corpus we employ the procedure described in (Black
et al., 2013). The main steps are Speech Activity Detection (SAD) and diarization. Since
we only focus on acoustic features extracted for speech regions, we extract the speech parts
using the SAD system described in Ghosh, Tsiartas & Narayanan (2011), and only keep
sessions with an average SNR greater than 5 dB (72.9% of original dataset). Since labels
of behavior are provided per-speaker, accurate diarization is important in this task. Thus,
for diarization we employ the manually-transcribed sessions and a forced aligner in order
to achieve high quality interlocutor-to-audio alignment. This is done using the recursive
ASR-based procedure of alignment of the transcripts with audio by SailAlign (Katsamanis
et al., 2011).

Speech segments from each session for the same speaker are then used to analyze
behaviors. During testing phase, a leave-test-couples-out process is employed to ensure
separation of speaker, dyad, and interaction topics. More details of the preprocessing steps
can be found in (Black et al., 2013).

After the processing procedure above, the resulting corpus has a total of 48.5 h of audio
data across 103 unique couples and a total of 366 sessions.

Feature extraction
In this work, we focus only on the acoustic features of speech.We utilize Log-Mel filterbank
energies (Log-MFBs) and MFCCs as spectrogram features. Further, we employ pitch and
energy. These have been shown in past work to be the most important features in emotion
and behavior related tasks. These features are extracted using Kaldi (Povey et al., 2011)
toolkit with a 25 ms analysis window and a window shift of 10 ms. The number of
Mel-frequency filterbanks and MFCCS are both set to 40. For pitch, we use the extraction
method in Ghahremani et al. (2014), in which 3 features, normalized cross correlation
function (NCCF), pitch (f0), the delta of pitch, are included for each frame.

After feature extraction, we obtain an 84-dimensional feature per frame (40 log-MFB’s,
40 MFCC’s, energy, f0, delta of f0, and NCFF).

EXPERIMENTS AND RESULTS DISCUSSION
General settings
For emotion-related tasks, we utilize the CMU-MOSEI dataset with the given standard
train, validation, test data split from Zadeh (2019).

For the behavior related tasks, we employ the couple therapy corpus and use leave-4-
couples-out cross-validation. Note that this results in 26 distinct neural-network training-
evaluation cycles for each experiment. During each fold training, we randomly split 10
couples out as a validation dataset to guide the selection of the best trained model and
prevent overfitting. All these settings ensure that the behaviormodel is speaker independent
and will not be biased by speaker characteristics or recording and channel conditions.

In our experiments, we employ five behavioral codes: Acceptance, Blame, Positivity,
Negativity and Sadness, each describing a single interlocutor in each interaction of the
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1Full definitions are too long to insert in
this manuscript and reader is encouraged
to look into (Heavey, Gill & Christensen,
2002; Jones & Christensen, 1998)

Table 1 Description of behaviors.

Behavior Description

Acceptance Indicates understanding, acceptance, respect for partner’s
views, feelings and behaviors

Blame Blames, accuses, criticizes partner and uses critical sarcasm
and character assassinations

Positivity Overtly expresses warmth, support, acceptance, affection,
positive negotiation

Negativity Overtly expresses rejection, defensiveness, blaming, and
anger

Sadness Cries, sighs, speaks in a soft or low tone, expresses
unhappiness and disappointment

couples therapy corpus. Table 1 lists a brief description1 of these behaviors from the
annotation manuals (Heavey, Gill & Christensen, 2002; Jones & Christensen, 1998).

Following the same setting of (Black et al., 2010) to reduce effects of interannotator
disagreement, we model the task as a binary classification task of low- and high- presence
of each behavior. This also enables balancing for each behavior resulting in equal-sized
classes. This is especially useful as some of the classes, e.g., Sadness, have an extremely
skewed distribution towards low ratings. More information on the distribution of the
data and impact on classification can be found in (Georgiou et al., 2011). Thus, for each
behavior code and each gender, we filter out 70 sessions on one extreme of the code (e.g.,
high blame) and 70 sessions at the other extreme (e.g., low blame).

Since due to the data cleaning process, some sessions may be missing some of the
behavior codes, we use a mask and train only for the available behaviors. Moreover, the
models are trained to predict the binary behavior labels for all behaviors together. The loss
is calculated by averaging 5 behavioral classification loss with masked labels. Thus, this
loss is not optimizing for any specific behavior but it is focusing on the general, latent, link
between emotions and behaviors.

ER and EC for emotion recognition
Both the Multi-Emotion Regression Network (ER) and the Single-Emotion Classification
Network (EC) are trained using the CMU-MOSEI dataset.

The Multi-Emotion Regression Network (ER) system consists of 4 layers of 1D CNN
layers, adaptive max-pooling layer and followed by 3 fully connected layers with ReLU
activation function. During the training, we randomly choose a segment from each
utterance and represent the label of the segment using the utterance label. In our work, we
employ a segment length of 1 s.

The model is trained jointly with all six emotions by optimizing the mean square error
(MSE) regression loss for all emotions ratings together using Adam optimizer (Kingma &
Ba, 2014).

In a stand-alone emotion regression task, a separate network that can optimize per-
emotion may be needed (through higher-level disconnected network branches), however
in our work, as hypothesized above, this is not necessary. Our goal is to extract as much
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Table 2 Weighted classification accuracy (WA) in percentage for emotion recognition on the CMU-
MOSEI dataset. Bold numbers represent the best performing system.

Emotions Anger Disgust Fear Happy Sad Surprise

Methods in CMU-MOSEI
Zadeh et al. (2018) 56.4 60.9 62.7 61.5 62.0 54.3
Proposed EC 61.2 64.9 57.0 63.1 62.5 56.2

information as possible from the signal relating to any and all available emotions. We will,
however, investigate optimizing per emotion in the EC case.

Further to the ER system, we can optimize per emotion through the Single-Emotion
Classification Network (EC). This is trained for each emotion separately by replacing the
pre-trained ER ’s last linear layer with three emotion-specific fully connected layers. We use
the same binary labeling setting as described in Zadeh et al. (2018): within each emotion,
for samples with original rating value larger than zero, we assign the label 1 by considering
the presence of that emotion; for samples with rating 0, we assign label 0. During training,
we randomly choose 1-second segments as before. During evaluation, we segment each
utterance into one-second segments and the final utterance emotion label is obtained via
majority voting. In addition, the CMU-MOSEI dataset has a significant data imbalance
issue: the true label in each emotion is highly under-represented. To alleviate this, during
training, we balance the two classes by subsampling the 0 label esence class in every batch.

In our experiments, in order to correctly classify most of the relevant samples, the model
is optimized and selected based on average weighted accuracy (WA) as used in Zadeh et al.
(2018). WA is defined in Tong et al. (2017): Weighted Accuracy = (TP×N/P+TN )/2N ,
where TP (resp. TN ) is true positive (resp. true negative) predictions, and P (resp. N ) is
the total number of positive (resp. negative) examples. As shown in Table 2, we present
WA of each EC system and compare them with the state-of-art results from Zadeh et al.
(2018).

Compared with Zadeh et al. (2018), our proposed 1D CNN based emotion recognition
system achieves comparable results and thus the predicted binary emotion labels can be
considered satisfactory for further experiments. More importantly, our results indicate
that the pre-trained ER embedding captures sufficient emotion related information and
can thus be employed as a behavior primitive.

Context-dependent behavior recognition
Themain purpose of the experiments in this subsection is to verify the relationship between
emotion-related primitives and behavioral constructs. We employ both B-BP and E-BP as
described below. Before that, we first use examples to illustrate the importance of context
information in behavior understanding.

Importance of context information in behavior understanding
Prior to presenting the behavior classification results, we use two sessions from
couple therapy corpus to illustrate the importance of context information in behavior
understanding. Once the Single-Emotion Classification Network (EC) systems are trained,
a sequence of emotion label vectors can be generated by applying the EC systems on each
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Figure 7 Sessions with similar percentage of emotions presence but different behavior label.
Full-size DOI: 10.7717/peerjcs.246/fig-7

speech session. We choose two sessions and plot those sequences of emotion presence
vectors of the first 100 seconds as an example in Fig. 7, in which each dot represents
the emotion presence (i.e., predicted label equals to 1) at the corresponding time. For
each emotion, the percentage of emotion presence segments is calculated by dividing the
number of emotion presence segments by the total number of segments.
These two sessions are selected as an example since they have similar audio stream length
and percentage of emotion presence segments but different behavior labels: the red
represents one session with ‘‘strong presence of negativity’’ while blue represents another
session with ‘‘absence of negativity’’. This example reveals the fact that, as we expected,
the behaviors are determined not only by the percentage of affective constructs but also
the contextual information. As shown in the left (Figs. 7A–7F), the emotion presence
vectors exhibit different sequential patterns within two sessions, even though no significant
distribution difference can be observed in Fig. 7G.

B-BP based context-dependent behavior recognition
Binarized Emotion-Vector Behavior Primitives are generated by applying the Single-
Emotion Classification Network (EC) systems on the couple therapy data: For each session,
a sequence of emotion label vectors is generated as E = [e1,e2,...,eT ], where each element
ei is the 6 dimensional B-BP binary label vector at time i. That means that eij represents the
presence, through a binary label 0 or 1, of emotion j at time i. Such B-BP are the input of
the context-dependent behavior recognition model that has two layers of GRUs followed
by two linear layers as illustrated in Fig. 3.

As shown in Table 3, the average binary classification accuracy of these five behaviors
is 60.43%. Considering that the classification accuracy can reach up to 50% by chance
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2Which isn’t necessarily perfectly aligning
with the basic emotion ‘‘sad’’ but follows
the SSIRS manual.

Table 3 Behavior binary classification accuracy in percentage for context-dependent behavior recog-
nition model from emotion labels.

Average Acceptance Blame Positivity Negativity Sadness

60.43 61.07 63.21 59.64 59.29 58.93

with balanced data, our results show that behavioral states can be weakly inferred from the
emotion label vector sequences. Further, we perform the McNemar test, and the results
above and throughout the paper are statistically significant with p< 0.01. Despite the low
accuracy of the behavior positivity, these results suggest a relationship between emotions
and behaviors that we investigate further below.

E-BP based context-dependent behavior recognition
The simple binary emotion vectors (as B-BP) indeed link emotions and behaviors. However,
they also demonstrate that the binarized form of B-BP limits the provided information
bandwidth to higher layers in the network, and as such limits the ability to predict the
much more complex behaviors. These are reflected in the low accuracies in Table 3 .

This further motivates the use of the Emotion-Embedding Behavior Primitives. As
described in Fig. 4, we construct input of the E-BP context-dependent behavior recognition
system using the pretrained Multi-Emotion Regression Network (ER). These E-BP
embeddings capturemore information than just the binary emotion labels. They potentially
capture a higher abstraction of emotional content, richer paralinguistic information,
conveyed through a non-binarized version that doesn’t limit the information bandwidth,
and may further capture other information such as speaker characteristics or even channel
information.

We employ embeddings from different layers of the ER network. The layers before the
employed embedding are in each case frozen and only the subsequent layers are trained as
denoted in Fig. 4. The trainable part of the network includes several CNN layers with max
pooling and subsequent GRU networks. The GRU part of the network is identical to the
ones used by the context-dependent behavior recognition from E-BP.

The use of different depth embeddings can help identify where information loss becomes
too specific to the ER loss objective versus where there is too much unrelated information
to the behavior task.

In Table 4, the none-E-BP model, as the baseline, means all parameters are trained from
random initialization instead of using the pretrained E-BP input. While E-BP_ l model
means the first l layers of the pretrained ER network are fixed and their output is used as
the embedding E-BP for the subsequent system. As seen in the second column of the table,
all of E-BP based models perform significantly better than the B-BP based model, which
achieves an improvement of 8.57% on average and up to 16.78% for Negativity.

These results, further support the use of basic emotions as constructs of behavior. In
general, for all behaviors, the higher-level E-BP s, which are closer to the ER loss function,
can capture affective information and obtain better performance in behavior quantification
compared with lower-level embeddings. From the description in Table 1, some behaviors
are closely related to emotions. For example, negativity is defined in part as ‘‘Overtly
expresses rejection, defensiveness, blaming, and anger’’, and sadness2 is defined in part as
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311,875 samples from commit:
https://github.com/A2Zadeh/
CMU-MultimodalSDK/commit/
f0159144f528380898df8093381c8d83fd7cc475.

Table 4 Behavior binary classification accuracy in percentage for context-dependent behavior recog-
nition model from emotion-embeddings. Bold numbers represent the best performing system.

Average Acceptance Blame Positivity Negativity Sadness

None-E-BP model
(Baseline)

58.86 62.86 62.50 57.86 60.00 51.07

E-BP_1 model 59.79 64.29 62.86 60.00 61.07 50.71
E-BP_2 model 60.79 61.79 63.93 62.86 63.57 51.79
E-BP_3 model 65.00 66.07 69.29 65.36 69.29 55.00
E-BP_4 model 69.00 72.50 71.79 65.36 76.07 59.29

‘‘expresses unhappiness and disappointment’’. This shows that these behaviors are very
related to emotions such as anger and sad, thus it’s expected that an embedding closer to
the ER loss function will behave better. Note that these are not at all the same though: a
negative behavior may mean that somewhere within the 10 min interaction or through
unlocalized gestalt information the expert annotators perceived negativity; in contrast a
negative emotion has short-term information (on average 7s segment) that is negative.

An interesting experiment is what happens if we use a lower-ratio of emotion (out-of-
domain) vs. behavior (couples-in-domain) data. To perform this experiment we use only
half of the CMU-MOSEI data3 to train another ER system, and use this less robust ER
system and corresponding E-BP representations to reproduce the behavior quantification
as in Table 4. What we observe is that the reduced learning taking place on emotional data
requires the in-domain system to have prefer embeddings closer to the feature. Specifically
Negativity performs equally well with layers 3 or 4 at 71.43%. Positivity performs best with
layer 3 at 64.64%, Blame and Acceptance perform best with layer 2 at 71.07% and 72.86%
respectively while Sadness performs best through layer 1 at 56.07%.

In the reduced data case we observe that best performing layer is not consistently layer
4. Employing the full dataset as in Table 4 provides better performance than using less data
and in that case layer 4 (E-BP_4) is always the best performing layer, thus showing that
more emotion data provides better ability of transfer learning.

Reduced context-dependent behavior recognition
In the previous two sections we demonstrate that there is a benefit to transfer emotion-
related knowledge to behavior tasks. We show that the wider bandwidth information
transfer through an embedding E-BP is beneficial to a binarized B-BP representation. We
also show that depending on the degree of relationship of the desired behavior to the signal
or to the basic emotion, different layers that are closer to the input signal or closer to the
output loss, may be more or less appropriate. However, in all the above cases we assume
that the sequence and contextualization of the extracted emotion information was needed.
That is captured and encoded through the recursive GRU layers.

We conduct an alternative investigation into how much contextual information is
needed. As discussed in section Reduced context-dependent behavior recognition from
emotion-informed embeddings and shown on Fig. 6 we can reduce context through
changing the receptive field of our network prior to removing sequential information via
max pooling.
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Table 5 Behavior binary classification accuracy in percentage for reduced context-dependent behavior
recognition from emotion-informed embeddings. Bold numbers represent the best performing system.

Average Acceptance Blame Positivity Negativity Sadness

Receptive_field_ 4s 63.43 65.00 70.00 58.92 67.50 55.71
Receptive_field_ 8s 62.71 65.00 69.64 56.79 66.07 56.07
Receptive_field_ 16s 63.36 63.57 69.64 60.71 66.42 56.43
Receptive_field_ 32s 66.36 68.21 73.21 63.21 71.43 55.71
Receptive_field_ 64s 65.57 66.43 72.86 62.50 71.79 54.29

In this section we select the best E-BP based on average results in Table 4, i.e., E-BP-4,
as the input of the reduced context-dependent behavior recognition model. Based on
E-BP-4 embeddings, the reduced context-dependent model employs 4 more CNN layers
with optional local average pooling layers in between, and is followed by an adaptive max
pooling layer and three fully connected layers to predict the session level label directly
without sequential modules.

Since the number of parameters of this model is largely increased, dropout (Srivastava
et al., 2014) layers are also utilized to prevent overfitting. Local average pooling layers
with kernel size 2 and stride 2 are optionally added between newly added CNN layers to
adjust the final size of the receptive field: the more average pooling layers we use, the larger
temporal receptive field can be obtained for the same number of network parameters.
We endure that the overall number of trainable parameters is the same for the different
receptive field settings, which provides a fair comparison of the resulting systems. The
output of these CNN/local pooling layers is passed to an adaptive max pooling before the
fully connected layers as in Fig. 6.

In Table 5, each model has a different temporal receptive window ranging from 4
seconds to 1 min. For most behaviors, we observe a better classification as the receptive
field size increases, especially in the range from 4 seconds to 32 s, demonstrating a need for
longer observations for behaviors.

Furthermore, the results suggest different behaviors require different observation
window length to be quantified, which is also observed by Chakravarthula et al. (2019)
using lexical analysis. By comparing results with different receptive window sizes, we can
indirectly obtain the appropriate behavior analysis window size for each behavior code. As
shown in Table 5, sadness has a smaller optimal receptive field size than behaviors such as
acceptance, positivity and blame. This is in good agreement with the behavior descriptions.
For example, behaviors of acceptance, positivity and blame often require relatively longer
observations since they relate to understanding and respect for partner’s views, positive
negotiation, and accusation respectively, which often require multiple turns in a dialog and
context to be captured. On the other hand, sadness which can be expressed via emitting a
long, deep, audible breath, and is also related to short-term expression of unhappy affect,
can be captured with shorter windows.

Moreover, we find the classification of negativity reaches high accuracy when using a
large receptive field. This might be contributed by the fact that the negative behavior in
the couple therapy domain is complex, which is not only revealed by short term negative

Li et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.246 20/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.246


4Note that this does not make any claims
on interlocutor dynamics, talk time, turn-
taking etc., but just single person acoustics.

affect but also related to context based negotiation and hostility, and is captured through
gestalt perception of the interaction.

In addition, the conclusion that most of the behaviors do not benefit much from longer
than 30 s4 windows matched existing literature on thin slices (Ambady & Rosenthal, 1992),
which refer to excerpts of an interaction that can be used to arrive at a similar judgment of
behavior to as if the entire interaction had been used.

Analysis on behavior prediction uncertainty reduction
Besides the verification of the improvement from B-BP based model to E-BP based
models, in this section, we further analyze the importance of context information for
each behavior by comparing results between E-BP based context-dependent and reduced
context-dependent models. This analysis calls into question that which behavior is more
context involved and to what degree.

Classification accuracy is used as the evaluation criterion in previous experiments. More
generally, this number can be regarded as a probability of correct classification when a new
session comes to measure. Inspired by entropy from information theory, we define one
metric named Prediction Uncertainty Reduction (PUR) and use it to indicate the relative
behavior prediction and interpretation improvement among different models for each
behavior.

Suppose pm(x) ∈ [0,1] is the probability of correct classification for behavior x with
model m. We define the uncertainty of behavior prediction as:

Im(x)=−pm(x)log2(pm(x))− (1−pm(x))log2(1−pm(x))

if pm(x) is equal to 1, Im(x)= 0 there is no improvement possibility; if pm(x) is equal to
0.5, same as random prediction accuracy, the uncertainty is the largest. We further define
the Prediction Uncertainty Reduction (PUR) value of behavior x from model m to model
n as:

Rm→n(x)= Im(x)− In(x).

We use this value to indicate improvements between different models.
We use PUR to sense the relative improvement from E-BP based context-dependent

and E-BP based reduced context-dependent models respectively, to the baseline B-BP
based context-dependent model. The larger value of PUR suggests the clear improvement
of behavior prediction. For each behavior, for each E-BP based model, we choose the best
performance model (the bold number from Tables 4 and 5) to calculate PUR value from
baseline B-BP context-dependent model.

In Fig. 8, as expected, for most behaviors the positive PUR values verify the improvement
from using informative E-BP to simple binary B-BP. In addition, the results support the
hypothesis that the sequential order of affective states is one non-negligible factor of
behavior analysis since the PRU of context-dependent (blue color) model is better than
that of reduced context one (red color) for most behaviors.

More interestingly, for each behavior, the difference between two bars (i.e., PUR
difference) can imply the necessity and importance of the sequential and contextual factor
of quantifying that behavior. We notice that for ‘‘positive’’ or more ‘‘complex problem
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Figure 8 PUR optimal value of E-BP based context-dependent and reduced context-dependent mod-
els across behaviors.
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solving’’ related behaviors (e.g., Acceptance, Positivity), the context based model can
achieve better performance than the reduced context model. While the PUR differences
from ‘‘negative’’ related behaviors (e.g., Blame, Negativity) varies from different behaviors.
For example, the behavior of acceptance, with a large PUR difference, it is more related
to ‘‘understanding, respect for partner’s views, feelings and behaviors’’, which could
involve more turns in a dialog and context information. In addition, positivity requires the
monitoring of consistent positive behavior, since a single negative instance within a long
positive time interval would still reduce positivity to a very low rating.

In contrast, we see that although blame can still benefit from a larger contextual window,
there is no benefit to employing the full context. This may infer that blame expression is
more localized.

Furthermore, our findings are also congruent with many domain annotation processes:
some behaviors are potentially dominated by salient information with short range, and
one short duration appearance can have a significant impact on the whole behavior rating,
while some behaviors need longer context to analyze (Heavey, Gill & Christensen, 2002;
Jones & Christensen, 1998).

However, among all behaviors, ‘‘sadness’’ is always the hardest one to predict with high
accuracy, and there is little improvement after introducing different BPs. This could be
resulting from the extremely skewed distribution towards low ratings as mentioned in
above and (Georgiou et al., 2011; Black et al., 2013), which leads to a very blurred binary
classification boundary compared to other behaviors. The detailed network architecture
and training parameters are shown in the appendix from Tables A1–A5.
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CONCLUSION AND FUTURE WORK
In this work, we explored the relationship between emotion and behavior states, and
further employed emotions as behavioral primitives in behavior classification. In our
designed systems, we first verified the existing connection between basic emotions and
behaviors, then further verified the effectiveness of utilizing emotions as behavior primitive
embeddings for behavior quantification through transfer learning. Moreover, we designed
a reduced context model to investigate the importance of context information in behavior
quantification.

Through our models, we additionally investigated the empirical analysis window size
for speech behavior understanding, and verified the hypothesis that the order of affective
states is an important factor for behavior analysis. We provided experimental evidence and
systematic analyses for behavior understanding via emotion information.

To summarized, we investigated three questions and we concluded:
1. Can the basic emotion states infer behaviors? The answer is yes. Behavioral states can be

weakly inferred from emotions states. However behavior requires richer information
than just binary emotions.

2. Can emotion-informed embeddings be employed in the prediction of behaviors? The
answer is yes. The rich emotion involved embedding representation helps the prediction
of behaviors. They also do so much better than the information-bottlenecked binary
emotions.

3. Is the contextual (sequential) information important in defining behaviors? The answer
is yes. We verify the importance of context of behavior indicators for all behaviors.
Some behaviors benefit from incorporating the full interaction (10 minutes) length
while others require as little as 16 seconds of information, but all perform best when
given contextual information.
Moreover, the proposed neural network systems are not limited to the datasets and

domains of this work, but potentially provides a path for investigating a range of problems,
such as local versus global, sequential versus non-sequential comparisons in many related
areas. In addition to the relationship of emotions to behaviors, a range of other cues can
also be incorporated towards behavior quantification. Moreover, many other aspects of
behavior, such as entrainment, turn-taking duration, pauses, non-verbal vocalizations, and
influence between interlocutors, can be incorporated. Many such additional features can be
similarly developed on different data and employed as primitives; for example entrainment
measures can be trained through unlabeled data (Nasir et al., 2018).

Furthermore, we expect that the results of behavior classification accuracy maybe be
further improved through improved architectures, parameter tuning, and data engineering
for each behavior of interest. In addition, behavior primitives, e.g., from emotions, can
also be employed via the lexical and visual modalities.
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APPENDIX A. DETAILED NETWORK ARCHITECTURE AND
TRAINING PARAMETERS

Table A1 Network architecture of ER.

Multi-Emotion Regression Network (ER) framework (Input: 84 * 100 ; Output:6)

Training details: Adam optimizer(lr = 1e–05), batch size 16, MSELoss

Conv1d(in_ch=84, out_ch=96, kernel size=10, stride=2, padding=0) ReLU
Conv1d(in_ch=96, out_ch=96, kernel size=5, stride=2, padding=0) ReLU
Conv1d(in_ch=96, out_ch=96, kernel size=5, stride=2, padding=0) ReLU
Conv1d(in_ch=96, out_ch=128, kernel size=3, stride=2, padding=0) ReLU
AdaptiveMaxPool1d(1)
Linear(in =128, out =128) ReLU
Linear(in =128, out =128) ReLU
Linear(in =128, out =6)

Table A2 Network architecture of EC.

Single-Emotion Classification Network (EC) framework (Input: 84 * 100 ; Output: 2)

Training details: Adam optimizer(lr = 1e–05), CrossEntropyLoss, batch size: 32; 64; 128

Conv1d(in_ch=84, out_ch=96, kernel size=10, stride=2, padding=0) ReLU
Conv1d(in_ch=96, out_ch=96, kernel size=5, stride=2, padding=0) ReLU
Conv1d(in_ch=96, out_ch=96, kernel size=5, stride=2, padding=0) ReLU
Conv1d(in_ch=96, out_ch=128, kernel size=3, stride=2, padding=0) ReLU
AdaptiveMaxPool1d(1)
Linear(in =128, out =128) ReLU
Linear(in =128, out =128) ReLU

Pretrained

Linear(in =128, out =64) PReLU
Linear(in =64, out =64) PReLU
Linear(in =64, out =2)

Trainable

Table A3 B-BP based context-dependent behavior recognition model framework.

E-BP based context-dependent behavior recognition model (Input: seq_len*6; Output: 5)

Training details: Adam optimizer(lr= 1e–04) + Polynomial learning rate decay,
Masked BCEWithLogitsLoss, batch size: 1

Emotion recognition framework Pretrained
GRU(in_size =6, hidden_size = 128, num_layers=2)
Linear(in =128, out =64) ReLU Trainable
Linear(in =64, out =5)
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Table A4 E-BP based context-dependent behavior recognition model framework.

E-BP based context-dependent behavior recognition model (Input: seq_len * 84 * 100 ; Output: 5)

Training details: Adam optimizer(lr = 1e–05) + Polynomial learning rate decay,
Masked BCEWithLogitsLoss, batch size: 1, epochs=300

Conv1d(in_ch=84, out_ch=96, kernel size=10, stride=2, padding=0) ReLU Partly pretrained
Partly trainable

Conv1d(in_ch=96, out_ch=96, kernel size=5, stride=2, padding=0) ReLU
Conv1d(in_ch=96, out_ch=96, kernel size=5, stride=2, padding=0) ReLU
Conv1d(in_ch=96, out_ch=128, kernel size=3, stride=2, padding=0) ReLU
AdaptiveMaxPool1d(1)
GRU(in_size =128, hidden_size = 128, num_layers=2)
Linear(in =128, out =64) ReLU
Linear(in =64, out =5)

Trainable

Table A5 E-BP based reduced context-dependent behavior recognition model framework. Those AvgPool1d layers are optional to adjust tem-
poral receptive field size.

E-BP based reduced context-dependent behavior recognition model (Input: 84 * seq_len ; Output: 5)

Training details: Adam optimizer(lr = 1 e–04) + Polynomial learning rate decay,
Masked BCEWithLogitsLoss, batch size: 48, epochs=350

Conv1d(in_ch=84, out_ch=96, kernel size=10, stride=2, padding=0) ReLU Behavior primitive
embedding (Pretrained)

Conv1d(in_ch=96, out_ch=96, kernel size=5, stride=2, padding=0) ReLU
Conv1d(in_ch=96, out_ch=96, kernel size=5, stride=2, padding=0) ReLU
Conv1d(in_ch=96, out_ch=128, kernel size=3, stride=2, padding=0) ReLU
Conv1d(in_ch=128, out_ch=96, kernel size=3, stride=2, padding=0)
AvgPool1d(kernel size=2, stride=2) ReLU
Dropout(prob=0.4)
Conv1d(in_ch=96, out_ch=96, kernel size=3, stride=2, padding=0)
AvgPool1d(kernel size=2, stride=2) ReLU
Dropout(prob=0.4)
Conv1d(in_ch=96, out_ch=96, kernel size=3, stride=1, padding=0)
AvgPool1d(kernel size=2, stride=2) ReLU
Dropout(prob=0.4)
Conv1d(in_ch=96, out_ch=128, kernel size=3, stride=1, padding=0)
AvgPool1d(kernel size=2, stride=2) ReLU
Dropout(prob=0.5)
AdaptiveMaxPool1d(1)
Linear(in =128, out =128) ReLU
Linear(in =128, out =64) ReLU
Linear(in =64, out =5)

Trainable

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was funded by the Department of Defense. The US Army Medical Research
Acquisition Activity is the awarding and administering acquisition office. This work was

Li et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.246 25/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.246


supported by the Office of the Assistant Secretary of Defense for Health Affairs through
the Psychological Health and Traumatic Brain Injury Research Program under Award No.
W81XWH-15-1-0632. There was no additional external funding received for this study.
The funders had no role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Department of Defense.
US Army Medical Research Acquisition Activity.
Office of the Assistant Secretary of Defense for Health Affairs: W81XWH-15-1-0632.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Haoqi Li conceived and designed the experiments, performed the experiments, analyzed
the data, prepared figures and/or tables, performed the computation work, authored or
reviewed drafts of the paper, approved the final draft.
• Brian Baucom analyzed the data, authored or reviewed drafts of the paper, approved the
final draft.
• Panayiotis Georgiou conceived and designed the experiments, prepared figures and/or
tables, authored or reviewed drafts of the paper, approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code used in this work is available at https://bitbucket.org/georgiou/emotions_as_
primitives_towards_behavior_understanding.

The Couples Therapy Corpus involves human subjects participating in real couple
therapy interactions and as such is protected under an Institutional Review Board (IRB).
Information on obtaining IRB clearance and access to the corpus can be obtained by
contacting the author: Haoqi Li, haoqili@usc.edu.

REFERENCES
Aldeneh Z, Provost EM. 2017. Using regional saliency for speech emotion recognition.

In: 2017 IEEE international conference on acoustics, speech and signal processing
(ICASSP). Piscataway: IEEE, 2741–2745.

Ambady N, Rosenthal R. 1992. Thin slices of expressive behavior as predictors of
interpersonal consequences: a meta-analysis. Psychological Bulletin 111(2):256–274
DOI 10.1037/0033-2909.111.2.256.

Anand N, Verma P. 2015. Convoluted feelings convolutional and recurrent nets for
detecting emotion from audio data. Technical report. Stanford University.

Li et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.246 26/32

https://peerj.com
https://bitbucket.org/georgiou/emotions_as_primitives_towards_behavior_understanding
https://bitbucket.org/georgiou/emotions_as_primitives_towards_behavior_understanding
mailto:haoqili@usc.edu
http://dx.doi.org/10.1037/0033-2909.111.2.256
http://dx.doi.org/10.7717/peerj-cs.246


Baer JS, Wells EA, Rosengren DB, Hartzler B, Beadnell B, Dunn C. 2009. Agency
context and tailored training in technology transfer: a pilot evaluation of motiva-
tional interviewing training for community counselors. Journal of Substance Abuse
Treatment 37(2):191–202 DOI 10.1016/j.jsat.2009.01.003.

Baumeister RF, DeWall CN, Vohs KD, Alquist JL. 2010. Does emotion cause behavior
(apart from making people do stupid, destructive things). In: Then a miracle occurs:
focusing on behavior in social psychological theory and research. New York: Oxford
University Press, 12–27.

Baumeister RF, Vohs KD, Nathan DeWall C, Zhang L. 2007.How emotion shapes
behavior: feedback, anticipation, and reflection, rather than direct causation. Person-
ality and Social Psychology Review 11(2):167–203 DOI 10.1177/1088868307301033.

Beale R, Peter C. 2008. Affect and emotion in human-computer interaction. Berlin/Heidel-
berg: Springer.

Bengio Y. 2012. Deep learning of representations for unsupervised and transfer learning.
In: Proceedings of ICML workshop on unsupervised and transfer learning. 17–36.

Bengio Y, Courville A, Vincent P. 2013. Representation learning: a review and new
perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence
35(8):1798–1828 DOI 10.1109/TPAMI.2013.50.

BlackM, Katsamanis A, Lee C-C, Lammert AC, Baucom BR, Christensen A, Georgiou
PG, Narayanan SS. 2010. Automatic classification of married couples’ behavior
using audio features. In: Eleventh annual conference of the international speech
communication association.

BlackMP, Katsamanis A, Baucom BR, Lee C-C, Lammert AC, Christensen A, Georgiou
PG, Narayanan SS. 2013. Toward automating a human behavioral coding system for
married couples interactions using speech acoustic features. Speech Communication
55(1):1–21 DOI 10.1016/j.specom.2011.12.003.

Burum BA, GoldfriedMR. 2007. The centrality of emotion to psychological change.
Clinical Psychology: Science and Practice 14(4):407–413.

Busso C, Narayanan SS. 2008. The expression and perception of emotions: comparing
assessments of self versus others. In: Ninth annual conference of the international
speech communication association.

CabanacM. 2002What is emotion? Behavioural Processes 60(2):69–83
DOI 10.1016/S0376-6357(02)00078-5.

Carney DR, Colvin CR, Hall JA. 2007. A thin slice perspective on the accuracy of first
impressions. Journal of Research in Personality 41(5):1054–1072
DOI 10.1016/j.jrp.2007.01.004.

Carrillo F, Mota N, Copelli M, Ribeiro S, SigmanM, Cecchi G, Slezak DF. 2016.
Emotional intensity analysis in bipolar subjects. ArXiv preprint. arXiv:1606.02231.

Chakravarthula SN, Baucom B, Narayanan S, Georgiou P. 2019. An analysis of
observation length requirements in spoken language for machine understanding of
human behaviors. ArXiv preprint. arXiv:1911.09515.

Christensen A, Atkins DC, Berns S, Wheeler J, BaucomDH, Simpson LE. 2004.
Traditional versus integrative behavioral couple therapy for significantly and

Li et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.246 27/32

https://peerj.com
http://dx.doi.org/10.1016/j.jsat.2009.01.003
http://dx.doi.org/10.1177/1088868307301033
http://dx.doi.org/10.1109/TPAMI.2013.50
http://dx.doi.org/10.1016/j.specom.2011.12.003
http://dx.doi.org/10.1016/S0376-6357(02)00078-5
http://dx.doi.org/10.1016/j.jrp.2007.01.004
http://arXiv.org/abs/1606.02231
http://arXiv.org/abs/1911.09515
http://dx.doi.org/10.7717/peerj-cs.246


chronically distressed married couples. Journal of Consulting and Clinical Psychology
72(2):176–191 DOI 10.1037/0022-006X.72.2.176.

Chung J, Gulcehre C, Cho K, Bengio Y. 2014. Empirical evaluation of gated recurrent
neural networks on sequence modeling. In: NIPS 2014 workshop on deep learning,
December 2014.

Collobert R,Weston J, Bottou L, KarlenM, Kavukcuoglu K, Kuksa P. 2011. Natural
language processing (almost) from scratch. Journal of Machine Learning Research
12(Aug):2493–2537.

Cowie R, Cornelius RR. 2003. Describing the emotional states that are expressed in
speech. Speech Communication 40(1–2):5–32 DOI 10.1016/S0167-6393(02)00071-7.

Cowie R, Douglas-Cowie E, Tsapatsoulis N, Votsis G, Kollias S, FellenzW, Taylor JG.
2001. Emotion recognition in human-computer interaction. IEEE Signal Processing
Magazine 18(1):32–80 DOI 10.1109/79.911197.

Cummins N, Scherer S, Krajewski J, Schnieder S, Epps J, Quatieri TF. 2015. A review of
depression and suicide risk assessment using speech analysis. Speech Communication
71:10–49 DOI 10.1016/j.specom.2015.03.004.

Dunlop S,Wakefield M, Kashima Y. 2008. Can you feel it? Negative emotion,
risk, and narrative in health communication.Media Psychology 11(1):52–75
DOI 10.1080/15213260701853112.

Ekman P. 1992a. Are there basic emotions? Psychological Review 99(3):550–553
DOI 10.1037/0033-295X.99.3.550.

Ekman P. 1992b. An argument for basic emotions. Cognition & Emotion 6(3–4):169–200
DOI 10.1080/02699939208411068.

El Ayadi M, Kamel MS, Karray F. 2011. Survey on speech emotion recognition: fea-
tures, classification schemes, and databases. Pattern Recognition 44(3):572–587
DOI 10.1016/j.patcog.2010.09.020.

FeinbergME, KanML, Hetherington EM. 2007. The longitudinal influence of coparent-
ing conflict on parental negativity and adolescent maladjustment. Journal of Marriage
and Family 69(3):687–702 DOI 10.1111/j.1741-3737.2007.00400.x.

Georgiou PG, BlackMP, Lammert AC, Baucom BR, Narayanan SS. 2011. ‘‘That’s aggra-
vating, very aggravating’’: is it possible to classify behaviors in couple interactions
using automatically derived lexical features? In: D’Mello S, Graesser A, Schuller
B, Martin J-C, eds. Affective computing and intelligent interaction. Berlin: Springer
Berlin, Heidelberg, 87–96.

Georgiou PG, BlackMP, Narayanan SS. 2011. Behavioral signal processing for under-
standing (distressed) dyadic interactions: some recent developments. In: Proceedings
of the 2011 joint ACM workshop on Human gesture and behavior understanding. ACM,
7–12.

Ghahremani P, BabaAli B, Povey D, Riedhammer K, Trmal J, Khudanpur S. 2014. A
pitch extraction algorithm tuned for automatic speech recognition. In: Acoustics,
speech and signal processing (ICASSP), 2014 IEEE international conference on. IEEE,
2494–2498.

Li et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.246 28/32

https://peerj.com
http://dx.doi.org/10.1037/0022-006X.72.2.176
http://dx.doi.org/10.1016/S0167-6393(02)00071-7
http://dx.doi.org/10.1109/79.911197
http://dx.doi.org/10.1016/j.specom.2015.03.004
http://dx.doi.org/10.1080/15213260701853112
http://dx.doi.org/10.1037/0033-295X.99.3.550
http://dx.doi.org/10.1080/02699939208411068
http://dx.doi.org/10.1016/j.patcog.2010.09.020
http://dx.doi.org/10.1111/j.1741-3737.2007.00400.x
http://dx.doi.org/10.7717/peerj-cs.246


Ghosh PK, Tsiartas A, Narayanan S. 2011. Robust voice activity detection using long-
term signal variability. IEEE Transactions on Audio, Speech, and Language Processing
19(3):600–613 DOI 10.1109/TASL.2010.2052803.

Gupta R, Malandrakis N, Xiao B, Guha T, Van SegbroeckM, BlackM, Potamianos A,
Narayanan S. 2014.Multimodal prediction of affective dimensions and depression
in human-computer interactions. In: Proceedings of the 4th international workshop on
audio/visual emotion challenge. ACM, 33–40.

Han K, Yu D, Tashev I. 2014. Speech emotion recognition using deep neural network
and extreme learning machine. In: Fifteenth annual conference of the international
speech communication association.

Heavey C, Gill D, Christensen A. 2002. Couples interaction rating system 2 (CIRS2). Vol.
7. Los Angeles: University of California.

Heavey CL, Christensen A, Malamuth NM. 1995. The longitudinal impact of demand
and withdrawal during marital conflict. Journal of Consulting and Clinical Psychology
63(5):797–801 DOI 10.1037/0022-006X.63.5.797.

Heyman RE. 2004. Rapid marital interaction coding system (RMICS). In: Couple
observational coding systems. Routledge, 81–108.

Heyman RE, Chaudhry BR, Treboux D, Crowell J, Lord C, Vivian D,Waters EB. 2001.
How much observational data is enough? An empirical test using marital interaction
coding. Behavior Therapy 32(1):107–122 DOI 10.1016/S0005-7894(01)80047-2.

Hoff E. 2009. Language development at an early age: learning mechanisms and outcomes
from birth to five years. In: Tremblay RE, Boivin M, Peters RDEV, Rvachew S,
eds. Encyclopedia on early childhood development. Available at http://www.child-
encyclopedia.com/ language-development-and-literacy/according-experts/ language-
development-early-age-learning .

Huang C-W, Narayanan S. 2017a. Characterizing types of convolution in deep convo-
lutional recurrent neural networks for robust speech emotion recognition. ArXiv
preprint. arXiv:1706.02901.

Huang C-W, Narayanan SS. 2017b. Deep convolutional recurrent neural network with
attention mechanism for robust speech emotion recognition. In:Multimedia and
expo (ICME), 2017 IEEE international conference on. IEEE, 583–588.

Jones J, Christensen A. 1998. Couples interaction study: social support interaction rating
system. Vol. 7. Los Angeles: University of California.

Katsamanis A, BlackM, Georgiou PG, Goldstein L, Narayanan S. 2011. SailAlign:
Robust long speech-text alignment. In: Proc. of workshop on new tools and methods
for very-large scale phonetics research.

Khorram S, Jaiswal M, Gideon J, McInnis M, Provost E-M. 2018. The PRIORI emotion
dataset: linking mood to emotion detected in-the-wild. Proc. Interspeech 2018
1903–1907.

Kingma DP, Ba J. 2014. Adam: a method for stochastic optimization. ArXiv preprint.
arXiv:1412.6980.

Li et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.246 29/32

https://peerj.com
http://dx.doi.org/10.1109/TASL.2010.2052803
http://dx.doi.org/10.1037/0022-006X.63.5.797
http://dx.doi.org/10.1016/S0005-7894(01)80047-2
http://www.child-encyclopedia.com/language-development-and-literacy/according-experts/language-development-early-age-learning
http://www.child-encyclopedia.com/language-development-and-literacy/according-experts/language-development-early-age-learning
http://www.child-encyclopedia.com/language-development-and-literacy/according-experts/language-development-early-age-learning
http://arXiv.org/abs/1706.02901
http://arXiv.org/abs/1412.6980
http://dx.doi.org/10.7717/peerj-cs.246


Le D, Provost EM. 2013. Emotion recognition from spontaneous speech using hidden
markov models with deep belief networks. In: Automatic speech recognition and
understanding (ASRU), 2013 IEEE workshop on. IEEE, 216–221.

Lee J, Tashev I. 2015.High-level feature representation using recurrent neural network
for speech emotion recognition. In: Sixteenth annual conference of the international
speech communication association.

Li H, Baucom B, Georgiou P. 2016. Sparsely connected and disjointly trained deep
neural networks for low resource behavioral annotation: acoustic classification in
couples’ therapy. In: Proceedings of interspeech. San Francisco,.

Li H, Baucom B, Georgiou P. 2017. Unsupervised latent behavior manifold learning
from acoustic features: Audio2behavior. In: 2017 IEEE international conference on
acoustics, speech and signal processing (ICASSP). IEEE, 5620–5624.

LimW, Jang D, Lee T. 2016. Speech emotion recognition using convolutional and
recurrent neural networks. In: Signal and information processing association annual
summit and conference (APSIPA), 2016 Asia-Pacific. IEEE, 1–4.

Lustgarten SD. 2015. Emerging ethical threats to client privacy in cloud communication
and data storage. Professional Psychology: Research and Practice 46(3):154–160
DOI 10.1037/pro0000018.

MaoQ, DongM, Huang Z, Zhan Y. 2014. Learning salient features for speech emotion
recognition using convolutional neural networks. IEEE Transactions on Multimedia
16(8):2203–2213 DOI 10.1109/TMM.2014.2360798.

Metallinou A,WollmerM, Katsamanis A, Eyben F, Schuller B, Narayanan S. 2012.
Context-sensitive learning for enhanced audiovisual emotion classification. IEEE
Transactions on Affective Computing 3(2):184–198 DOI 10.1109/T-AFFC.2011.40.

Mower E, Narayanan S. 2011. A hierarchical static-dynamic framework for emotion
classification. In: Acoustics, speech and signal processing (ICASSP), 2011 IEEE
international conference on. IEEE, 2372–2375.

Narayanan S, Georgiou PG. 2013. Behavioral signal processing: deriving human
behavioral informatics from speech and language. Proceedings of the IEEE
101(5):1203–1233 DOI 10.1109/JPROC.2012.2236291.

Nasir M, Baucom B, Narayanan S, Georgiou P. 2018. Towards an unsupervised
entrainment distance in conversational speech using deep neural networks. ArXiv
preprint. arXiv:1804.08782.

Nasir M, Baucom BR, Bryan CJ, Narayanan S, Georgiou P. 2017a. Complexity in speech
and its relation to emotional bond in therapist-patient interactions during suicide
risk assessment interviews. In: Proceedings of Interspeech. Stockholm, 3296–3300.

Nasir M, Baucom BR, Georgiou P, Narayanan S. 2017b. Predicting couple ther-
apy outcomes based on speech acoustic features. PLOS ONE 12(9):e0185123
DOI 10.1371/journal.pone.0185123.

Nasir M, Jati A, Shivakumar PG, Nallan Chakravarthula S, Georgiou P. 2016.Multi-
modal and multiresolution depression detection from speech and facial landmark
features. In: Proceedings of the 6th international workshop on audio/visual emotion
challenge. ACM, 43–50.

Li et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.246 30/32

https://peerj.com
http://dx.doi.org/10.1037/pro0000018
http://dx.doi.org/10.1109/TMM.2014.2360798
http://dx.doi.org/10.1109/T-AFFC.2011.40
http://dx.doi.org/10.1109/JPROC.2012.2236291
http://arXiv.org/abs/1804.08782
http://dx.doi.org/10.1371/journal.pone.0185123
http://dx.doi.org/10.7717/peerj-cs.246


Oatley K, Jenkins JM. 1996.Understanding emotions. Hoboken: Blackwell publishing.
Picard RW. 2003. Affective computing: challenges. International Journal of Human-

Computer Studies 59(1–2):55–64 DOI 10.1016/S1071-5819(03)00052-1.
Povey D, Ghoshal A, Boulianne G, Burget L, Glembek O, Goel N, HannemannM,

Motlicek P, Qian Y, Schwarz P, Silovsky J, Stemmer G, Vesely K. 2011. The Kaldi
speech recognition toolkit. In: IEEE 2011 workshop on automatic speech recognition
and understanding, EPFL-CONF-192584. IEEE Signal Processing Society,.

Sander D, Scherer K. 2014.Oxford companion to emotion and the affective sciences.
Oxford: OUP Oxford.

Schacter D, Gilbert DT,Wegner DM. 2011. Psychology (2nd Edition). New York: Worth.
Scherer KR. 2005.What are emotions? And how can they be measured? Social Science

Information 44(4):695–729 DOI 10.1177/0539018405058216.
Schlosberg H. 1954. Three dimensions of emotion. Psychological Review 61(2):81–88

DOI 10.1037/h0054570.
Schuller B, Batliner A, Steidl S, Seppi D. 2011. Recognising realistic emotions and

affect in speech: state of the art and lessons learnt from the first challenge. Speech
Communication 53(9–10):1062–1087 DOI 10.1016/j.specom.2011.01.011.

Schuller B, Rigoll G, LangM. 2003.Hidden Markov model-based speech emotion recog-
nition. In: Acoustics, speech, and signal processing, 2003. Proceedings.(ICASSP’03).
2003 IEEE international conference on, vol. 2. IEEE, II–1.

Schuller BW. 2018. Speech emotion recognition: two decades in a nutshell, benchmarks,
and ongoing trends. Communications of the ACM 61(5):90–99.

Sculley D, Holt G, Golovin D, Davydov E, Phillips T, Ebner D, Chaudhary V, YoungM,
Crespo J-F, Dennison D. 2015. Hidden technical debt in machine learning systems.
In: Cortes C, Lawrence ND, Lee DD, Sugiyama M, Garnett R, eds. Advances in neural
information processing systems. Vol. 28. Curran Associates, Inc., 2503–2511.

Soken NH, Pick AD. 1999. Infants’ perception of dynamic affective expressions: do
infants distinguish specific expressions? Child Development 70(6):1275–1282
DOI 10.1111/1467-8624.00093.

Soltau H, Liao H, Sak H. 2017. Neural speech recognizer: acoustic-to-word LSTMModel
for large vocabulary speech recognition. In: Proc. Interspeech 2017. 3707–3711.

Spector PE, Fox S. 2002. An emotion-centered model of voluntary work behavior:
some parallels between counterproductive work behavior and organizational
citizenship behavior. Human Resource Management Review 12(2):269–292
DOI 10.1016/S1053-4822(02)00049-9.

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. 2014. Dropout:
a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research 15(1):1929–1958.

Stasak B, Epps J, Cummins N, Goecke R. 2016. An investigation of emotional speech in
depression classification. In: Proceedings of Interspeech. 485–489.

Tanaka T, Yamamoto T, HarunoM. 2017. Brain response patterns to economic
inequity predict present and future depression indices. Nature Human Behaviour
1(10):748–756 DOI 10.1038/s41562-017-0207-1.

Li et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.246 31/32

https://peerj.com
http://dx.doi.org/10.1016/S1071-5819(03)00052-1
http://dx.doi.org/10.1177/0539018405058216
http://dx.doi.org/10.1037/h0054570
http://dx.doi.org/10.1016/j.specom.2011.01.011
http://dx.doi.org/10.1111/1467-8624.00093
http://dx.doi.org/10.1016/S1053-4822(02)00049-9
http://dx.doi.org/10.1038/s41562-017-0207-1
http://dx.doi.org/10.7717/peerj-cs.246


Tao J, Tan T. 2005. Affective computing: a review. In: International conference on affective
computing and intelligent interaction. Berlin, Heidelberg: Springer Berlin Heidelberg,
981–995.

Tong E, Zadeh A, Jones C, Morency L-P. 2017. Combating human trafficking with
multimodal deep models. In: Proceedings of the 55th annual meeting of the association
for computational linguistics (Volume 1: Long Papers), vol. 1. 1547–1556.

Torrey L, Shavlik J. 2010. Transfer learning. In: Handbook of research on machine
learning applications and trends: algorithms, methods, and techniques. Hershey,
Pennsylvania: IGI Global, 242–264.

Tseng S-Y, Baucom B, Georgiou P. 2018. Unsupervised online multitask learning of
behavioral sentence embeddings. ArXiv preprint. arXiv:1807.06792.

Tseng S-Y, Chakravarthula SN, Baucom B, Georgiou P. 2016. Couples behavior
modeling and annotation using low-resource LSTM language models. In: Proceedings
of interspeech. San Francisco.

Venek V, Scherer S, Morency L-P, Rizzo A, Pestian J. 2017. Adolescent suicidal risk
assessment in clinician-patient interaction. IEEE Transactions on Affective Computing
8(2):204–215 DOI 10.1109/TAFFC.2016.2518665.

Vinciarelli A, Pantic M, Bourlard H. 2009. Social signal processing: survey of an
emerging domain. Image and Vision Computing 27(12):1743–1759
DOI 10.1016/j.imavis.2008.11.007.

WöllmerM,Metallinou A, Eyben F, Schuller B, Narayanan S. 2010. Context-sensitive
multimodal emotion recognition from speech and facial expression using bidirec-
tional lstm modeling. In: Proc. INTERSPEECH 2010, Makuhari, Japan. 2362–2365.

Zadeh AB. 2019. CMU-MultimodalSDK. GitHub. Available at https:// github.com/
A2Zadeh/CMU-MultimodalSDK (accessed on March 2019).

Zadeh AB, Liang PP, Poria S, Cambria E, Morency L-P. 2018.Multimodal language
analysis in the wild: Cmu-mosei dataset and interpretable dynamic fusion graph. In:
Proceedings of the 56th annual meeting of the association for computational linguistics
(Volume 1: Long Papers), vol. 1. 2236–2246.

ZhengW, Yu J, Zou Y. 2015. An experimental study of speech emotion recognition
based on deep convolutional neural networks. In: Affective computing and intelligent
interaction (ACII), 2015 international conference on. IEEE, 827–831.

Li et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.246 32/32

https://peerj.com
http://arXiv.org/abs/1807.06792
http://dx.doi.org/10.1109/TAFFC.2016.2518665
http://dx.doi.org/10.1016/j.imavis.2008.11.007
https://github.com/A2Zadeh/CMU-MultimodalSDK
https://github.com/A2Zadeh/CMU-MultimodalSDK
http://dx.doi.org/10.7717/peerj-cs.246

