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ABSTRACT
High-quality coal emits a smaller amount of harmful substances during the
combustion process, which greatly reduces the environmental hazard. The sulfur
content of coal is one of the important indicators that determine coal quality. The
world’s demand for high-quality coal is increasing. This is challenging for the coal
mining industry. Therefore, how to quickly determine the sulfur content of coal in
coal mining areas has always been a research difficulty. This study is the first to map
the distribution of sulfur content in opencast coal mines using field-remote sensing
data, and propose a novel method for evaluating coal mine composition. We
collected remote sensing, field visible and near-infrared (Vis-NIR) spectroscopy data
and built analytical models based on a tiny neural network based on the
convolutional neural network. The experimental results show that the proposed
method can effectively analyze the coal sulfur content. The coal recognition accuracy
is 99.65%, the root-mean-square error is 0.073 and the R is 0.87, and is better than
support vector machines and partial least squares methods. Compared with
traditional methods, the proposed method shows many advantages and superior
performance.

Subjects Algorithms and Analysis of Algorithms, Data Mining and Machine Learning, Spatial and
Geographic Information Systems, Neural Networks
Keywords Neural network, Remote sensing, Coal, Vis-NIR spectroscopy

INTRODUCTION
Coal has always been the world’s main energy source. The world’s demand for high-quality
coal is increasing. High-quality coal emits a smaller amount of harmful substances during
the combustion process, which greatly reduces the environmental hazard. How to quickly
determine the quality of coal in coal mining areas has always been an important research
issue. This is of great significance for improving mining speed, reducing costs and
protecting the environment. In recent years, computers, remote sensing and spectroscopy
have developed rapidly. Therefore, we need to combine these technologies to solve the
problem of quickly determining coal quality.

Remote sensing plays an important role in coal exploration and monitoring
(Thiruchittampalam et al., 2024; Tan & Qiao, 2020; Biswal, Raval & Gorai, 2019; Le et al.,
2019). In the process of coal mining and production, real-time division and identification
of coal mines have important guiding significance for production planning and resource
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assessment. Remote sensing can overcome the complex and steep terrain of mining areas,
and it can monitor and evaluate coal mining areas quickly, low-cost, and large-scale (He
et al., 2019). Zeng et al. (2017) mapped the opencast coal mining areas based on remote
sensing images and machine learning algorithms, and the recognition accuracy was
97.07%. Madhuanand et al. (2021) used satellite imagery and a deep neural network to
determine the surface distribution of coal mining areas with an overall accuracy of 95%.
Ma et al. (2021) conducted a comprehensive assessment of the Mongolian Plateau
opencast coal mine based on remote sensing and in situ data. Their findings show that over
the past 40 years, the number of opencast coal mines in the region has increased 21-fold
and the area 33-fold. Luther et al. (2022) made observations of methane emissions from
Polish coal mines using ground and remote sensing data. This study shows that the
methane emissions are higher than the European Pollutant Release and Transfer Register
(E-PRTR). Ali et al. (2022) monitored the mining and reclamation of open pit coal mines
in Pakistan based on the Landsat remote sensing data. This study facilitates the monitoring
of land cover change in coal mines and demonstrates that remote sensing can be used to
monitor activity in coal mining areas.

Spectroscopy has played an important role in coal composition analysis due to its low
cost and rapid detection (Sheta et al., 2019; Chen, Tang & Guo, 2022; Begum et al., 2021).
Song et al. (2022) performed coal gangue composition analysis using thermal infrared
spectroscopy and a spatial attention network. The effectiveness of the proposed method is
demonstrated by comparing multiple models. This provides a low-cost, efficient and
reliable method for coal gangue analysis. Xiao et al. (2022) proposed a coal identification
method based on visible-infrared spectroscopy and deep learning. They first converted the
1D spectra to 2D data. Then use convolutional neural network to extract high-level
features of the data. Finally, a machine learning method is used to classify the features. The
results show that their proposed method achieves 97.6% accuracy. Petrovic et al. (2022)
used laser-induced breakdown spectroscopy for quantitative analysis of coal. The results
help control the coal combustion process in power plants. Hou et al. (2022) rapid
measurement of coking coal characteristics based on laser-induced breakdown
spectroscopy. In the experiment they measured two parameters including cohesion index
and maximum plastic layer thickness. The results show that their proposed method can
quickly measure the two parameters of coking coal.

The sulfur content in coal includes both organic and inorganic sulfur, which is
collectively called total sulfur. Sulfur is a harmful element, and sulfur dioxide emitted after
coal combustion will cause air pollution and damage the ecological environment.
Therefore, sulfur content is an important parameter to identify coal quality (Cai et al.,
2021; Tang et al., 2020). Many studies have shown that the Vis-NIR spectroscopy can be
used to quickly detect sulfur content in coal (Le et al., 2018a; Yan et al., 2017). Song et al.
(2021) developed an online system for analyzing sulfur content in coal, which was
evaluated in an actual power plant and obtained objective results. Sarıhan et al. (2021)
studied the combustibility and non-combustibility of sulfur in coal and proposed a new
method to determine it.
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As for mapping coal quality using remote sensing, the low resolution and band
characteristics of satellite remote sensing images increase the difficulty of analyzing coal
quality. Deep learning has developed rapidly in remote sensing, but most of the research is
only theoretical results (Cheng et al., 2020; Albarakati et al., 2024; Su et al., 2024). In
solving practical problems, deep learning in remote sensing will face many problems such
as label noise, the combination of space and ground samples, etc. This study will discuss
the application of deep learning to a practical problem and propose a method for mapping
sulfur in coal. Firstly, we acquire field Vis-NIR spectroscopy and remote sensing data.
Secondly, through spatial transformation and data augmentation methods, we transform
field Vis-NIR spectroscopy data into spatial-spectral data, and this data can be processed
using deep learning. Thirdly, we propose a tiny deep neural network and establish a coal
analysis model. Coal and non-coal areas can be classified by the model. Finally, we
construct a model for mapping sulfur content in coal and verify the effectiveness of the
proposed method through experiments.

DATA AND METHODS
Data
Research area
The research area is the Baorixile opencast coal mine. The mining area is high in the north
and low in the south, and the coal seam structure is relatively simple. The maximum and
minimummineable thickness of the coal seam are 28 and 7 m respectively, with an average
thickness of 22 m. The reserves of coal resources are about 4.2 billion tons, and the calorific
value of coal is 3,700–4,300 kcal/kg. Coal has the characteristics of low ash, high volatile
content, low sulfur, low phosphorus, and low harmful components.

Field Vis-NIR spectroscopy data
Coal and non-coal samples collected at the Baorixile opencast coal mine. Spectral data of
the samples were measured using the SVC HR-1024 ground object spectrometer. The
experiment was carried out outdoors, using solar radiation as the light source, the
observation time was selected between 10:00–14:00 h, and the sky was clear. The coal
sample surface was kept horizontal, and the spectrometer lens and the observation surface
were kept vertical. Data errors caused by interference from other light sources should be
minimized. Since the sun’s radiation values are different at different times, we need to
calibrate the spectrometer with a whiteboard every 10 min in the experiment.

Remote sensing data
This research uses Landsat eight remote sensing imagery as the data source. Coal mine
remote sensing data were collected in 2018 and 2021. Before using the remote sensing data,
it needs to be preprocessed accordingly, mainly including radiometric calibration,
atmospheric correction and image fusion (Le et al., 2019). The preprocessed remote
sensing data is closer to the field Vis-NIR spectroscopy data. Finally, the field Vis-NIR
spectroscopy data and remote sensing data need to be matched to ensure that the two data
sources are compatible and facilitate subsequent processing.
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Basic knowledge
Convolutional neural network
Convolutional neural network is mainly composed of input layer, convolution layer,
pooling layer and fully connected layer (Albarakati et al., 2024; Su et al., 2024). By stacking
these layers together, a deep network can be constructed. The convolutional and fully
connected layers perform transformation operations on the data and contain most of the
parameters of the network. The pooling layer is generally a fixed function.

Double layer extreme learning machine
Double extreme learning machine (DELM) training process is demonstrated as follows.

fELM�LðxÞ ¼
XL

j¼1

bjgðwj � xi þ bjÞ ¼ ti; bj;bj 2 R (1)

where xi ¼ ½xi1; xi2; � � �; xin�T 2 Rn, ti ¼ ½ti1; ti2; � � �; tim�T 2 Rm, wj ¼ ½wj1;wj2; � � �;wjn�T
2 Rn is the input weight, L is the hidden layer nodes, gð.Þ is the activation function, bj is
the output weight.

The output weight of the first layer is b1 and the output weight of the second layer is b2,
the calculation method for these two matrices is derived from the study (Qu et al., 2016).

b1 ¼ Hþ
1 T (2)

b2 ¼ Hþ
2 T: (3)

Proposed method
Data augmentation
Deep learning is sensitive to spatial-spectral information, so deep learning is highly
recognized in remote sensing. Field Vis-NIR spectroscopy data is purely spectral data
without spatial information, and remote sensing data contains spectral and spatial
information. Therefore, we need to convert field Vis-NIR spectroscopy data into spatial-
spectral data, so that field Vis-NIR spectroscopy data can be combined with remote
sensing data, and deep learning algorithms can be used for data analysis (Xiao et al., 2023).
This study uses a multidimensional random generation method to transform field Vis-NIR
spectroscopy data into spatial-spectral data. Each field spectral data is regarded as a pixel,
and a multidimensional matrix is generated according to a certain proportion of each class.
This matrix satisfies the data input form required by deep learning, and solves the problem
of combining field Vis-NIR spectroscopy data and remote sensing data.

Multilayer integrated DELM
The multilayer integrated (MI) algorithm design inspired by multi-layer neural network
and random forest algorithms (Elhaki & Shojaei, 2022; Bai et al., 2022). The algorithm
structure can be divided into multiple layers and multiple nodes. There are multiple
branches at each node. In the MI algorithm structure, the initial layer contains multiple
intelligent algorithms. We assume that the number of layers is K, and each node has m
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branches, then the number of nodes Si of the i-th layer and the number of nodes S of the
entire algorithm are represented by Eqs. (4) and (5), here (i = 1, 2,…, K).

Si ¼ mi�1 (4)

S ¼ m0 þm1 þ…þmK�1: (5)

We assume a classification problem with C class, ct 2 ð1; 2;…;CÞ; the true attribute for
a sample xtest is c, the probability of xtest ¼ q ðq 2 ð1; 2;…CÞÞ is Pj;m

i ðqjxtestÞ, then
Pj;m
i ðqjxtestÞ is represented by Eq. (6).

Pj;m
i ðqjxtestÞ ¼ Summ;xtestðqÞ

m
: (6)

Here, Summ;xtestðqÞ is the classification result of xtest in branch j-th; j ¼ 1;…; Si.
If Pjðiþ1Þ;m

iþ1 ðcjxtestÞ > maxðPjðiþ1Þ;m
iþ1 ðctjxtestÞÞ; c 6¼ ct , then there exists an e > 0 such that

inequality Eq. (7) holds:

Pjðiþ1Þ;m
iþ1 ðcjxtestÞ � Pjðiþ1Þ;m

iþ1 ðc1jxtestÞ > e (7)

For a sufficiently large m, we can expect Eqs. (8), (9) to hold.

lim
m!1 Pj;m

i ðqjxtestÞ ¼ Pjðiþ1Þ;m
iþ1 ðqjxtestÞ (8)

X

q¼1;…;C

Pj;m
i ðqjxtestÞ ¼ 1: (9)

From the definition of the limit (Cao et al., 2012), for each class of q, any given positive
scalar

1
C
e � d > 0 can be obtained, and there is a positive integer m0q, when mq � m0q is

true, inequality Eq. (10) holds.

jPj;mq

i ðqjxtestÞ � P
jðiþ1Þ;mq

iþ1 ðqjxtestÞj < d: (10)

For all mq, let m ¼ Maxfmqg, then inequality Eq. (11) holds.

jPj;m
i ðqjxtestÞ � Pjðiþ1Þ;m

iþ1 ðqjxtestÞj < d: (11)

When q = c, inequality Eq. (12) can be obtained.

Pjðiþ1Þ;m
iþ1 ðcjxtestÞ � d < Pj;m

i ðcjxtestÞ < Pjðiþ1Þ;m
iþ1 ðcjxtestÞ þ d: (12)

For any ct 2 ð1; 2;…;CÞ and ct 6¼ c, we have Eq. (13).

Pj;m
i ðctjxtestÞ ¼ 1� Pj;m

i ðcjxtestÞ �
X

q 6¼c;ct

Pj;m
i ðqjxtestÞ: (13)

Equations (14) and (15) can be obtained by Eqs. (11) and (12).
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Pj;m
i ðctjxtestÞ < 1� Pjðiþ1Þ;m

iþ1 ðcjxtestÞ þ d�
X

q 6¼c;ct

Pj;m
i ðqjxtestÞ (14)

Pj;m
i ðctjxtestÞ < Pjðiþ1Þ;m

iþ1 ðctjxtestÞ þ ðC�1Þd: (15)

The inequality Eq. (16) can be obtained through inequalities Eqs. (7), (12) and (15):

Pj;m
i ðcjxtestÞ > Pjðiþ1Þ;m

iþ1 ðc1jxtestÞ þ e� d � Pjðiþ1Þ;m
iþ1 ðctjxtestÞ þ ðC � 1Þd

> Pj;m
i ðctjxtestÞ:

(16)

It can be seen from the inequality Eq. (16) that when m is large enough, the probability
that the predicted sample xtest belongs to class c is the largest. Therefore, the MI algorithm
adopts the method of majority voting and can make a correct prediction with a probability
of 1. We combine this algorithm with DELM, and DELM serves as the initial layer of MI
algorithm, called MI-DELM algorithm. The algorithm implementation process is as
follows:

Build analytical model

Since the remote sensing images contain many different objects, the sulfur content in coal
cannot be predicted directly using regression models. Therefore, we first extracted coal
regions using a classification model, and then used a regression model to measure sulfur
content. We propose a coal classification model based on CNN and MI-DELM algorithms.
For the regression model, we built a prediction model of coal content based on the DELM

Algorithm 1 MI-DELM algorithm.

1. Input data;

2. Initialize the MI algorithm and determine KMI and m;

3. Initialize multiple DELM algorithms;

4. DELM:

for i ¼ 1 : 1 : m:ðKTR�1Þ

T ( Ti ( DELMs

end

5.IM:

kk ¼ KMI � 1

while (kk > 0)

for i1 = 1:1:q

for i2 = 1:1:p

C ( Eq. (6)

end for

end for

kk = kk - 1

Liu and Le (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2458 6/14

http://dx.doi.org/10.7717/peerj-cs.2458
https://peerj.com/computer-science/


algorithm. However, because the field Vis-NIR spectroscopy data is limited, the regression
effect is not very good. Therefore, we propose an ensemble DELM algorithm to improve
the predictive ability of the regression model. Previous studies have demonstrated that
ensemble systems can effectively enhance model generalization (Le et al., 2018b). Since the
weight and bias of DELM are randomly given, a set of multiple DELM models are
randomly generated for training. Euclidean distance is then used to determine the weights
and biases of the best models. Finally, we combine these best models into a large model.
The final result is the average of the summed results of each best model.

Figure 1 is the structure of our proposed model, including five convolutional layers, four
normalization layers and two pooling layers, and ReLU function as activation function.
The convolutional kernel size of the first convolutional layer is 1 × 1, and the remaining
convolutional layers have a convolutional kernel size of 3 × 3. The fifth layer in the model is
the residual layer, which is used to prevent problems such as model degradation and
gradient disappearance. The second and fourth convolutional layers are followed by a
pooling layer with a pooling kernel size of 2 × 2. After the features are extracted by each
CNN layer, the output features are classified using the MI-DELM algorithm and the coal
area is obtained. Finally, the ensemble DELM algorithm is used to predict the sulfur
content of the coal area, and the distribution of the coal mining area is obtained.

RESULTS AND DISCUSSION
Classification performance
The training samples are divided into coal and non-coal. We generated 6,000 samples as
training set, 1,500 samples as validation set and 1,500 samples as test set by data
augmentation method. We use MATLAB 2019b as a simulation tool under Windows 10
system. In the training process, we choose epochs to be 50, and the initial learning rate is
1e−3. After the model is trained, the classification accuracy of the test set is 99.65%.
Applying the model to remote sensing images, Fig. 2 shows the semantic segmentation
results of the classification model on remote sensing images. In Fig. 2, 2019A and 2021A
are the original RGB remote sensing images; 2019A was taken on March 10, 2019, and
2021A was taken on August 22, 2021; 2019B and 2021B are semantic segmentation
renderings, and the red part in these two figures represents the coal area. Through
observation, we can see that the segmentation effect is good, almost all coal areas are
extracted, and only a few buildings and coal gangue are marked as coal. Due to the small
spectral difference between coal and coal gangue, there will be wrong identification areas.

Figure 1 Coal sulfur content measurement model. Full-size DOI: 10.7717/peerj-cs.2458/fig-1
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However, the model has good identification results for coal and coal gangue, which proves
the effectiveness of the proposed method. We use deep network as a feature extractor and
combine them with machine learning to make a classifier to further improve classification
result. Deep network can effectively extract the characteristics of coal mine and help
improve the classification accuracy of classifier. Therefore, the actual situation of opencast
coal mines can be quickly understood through this model.

Figure 3 shows the distribution of coal areas in different years. The red area represents
the overlap of coal areas in 2019 and 2021, the blue area represents 2019, and the green
area represents 2021. We can see that the coal area changes greatly in different years, and
the mining area has the trend of mining to the East. The distribution of coal area is
basically consistent with the field investigation. This result can provide a rapid method for
coal resource estimation, and lay a foundation for mine monitoring, environmental
protection, etc.

Regression performance
We use coefficient of determination (R) and root-mean-square error (RMSE) (Le et al.,
2018a) to evaluate the performance of regression model, lower RMSE value and higher R
value mean better model. Table 1 demonstrates the performance with different number of
ensembles. The results are averaged over 10 experiments. Ten DELMmodels are randomly
generated each time for selection. It can be seen from Table 1 that the larger the number of
ensembles, the better the model performance. When the number of ensembles is 1, then
the RMSE = 0.09, and R = 0.79. When the number of ensembles is 20, then the RMSE =
0.069, this value is reduced by 23%; the R = 0.88, this value is increased by 11%. The results
show that the proposed method can improve the measurement performance of coal sulfur
content. When the number of ensembles is from 1 to 5, the performance of the model

Figure 2 Semantic segmentation results of coal area. Full-size DOI: 10.7717/peerj-cs.2458/fig-2
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improves rapidly, and after the number of ensembles is 10, the performance of the model
does not improve significantly. As the number of DELMs increases, so does the training
time. When the number of ensembles is 1, the training time is 0.16 s, and when the number
of ensembles is 20, the training time is 2.84 s. The training time was increased by a factor of
17. Based on model performance and training time, we can conclude that 10 is a reasonable
number of ensembles.

Figure 4 shows the effect of the proposed model for mapping sulfur content in the
Baorixile coal mining area. We can see that the sulfur content in this mining area is
relatively small, mainly in the range of 0.1–0.3%, indicating that the coal quality is good.
Sulphur levels in 2021 are generally higher than in 2019. The results demonstrate the
feasibility of the proposed method and provide a rapid method for evaluating sulfur

Figure 3 Coal area distribution in different years. Full-size DOI: 10.7717/peerj-cs.2458/fig-3

Table 1 Performance of the model with different numbers of DELMs.

Number of ensembles RMSE R Training time (s)

1 0.090 0.79 0.16

2 0.088 0.80 0.31

5 0.081 0.84 0.73

7 0.080 0.84 0.97

10 0.073 0.87 1.41

15 0.071 0.87 2.11

20 0.069 0.88 2.84
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content in field coal mining areas, and it provides a reliable basis for coal mining guidance
and environmental protection policies.

Comparison of different methods
This section compares several common coal analysis methods, including support vector
machines (SVM) (Le et al., 2018a), partial least squares (PLS) (Liu et al., 2021). From
Table 2, we can see that compared with other methods, the performance of PLS is worse;
the performance of SVM and DELMmethods are equal; the performance of our method is
better than that of other methods. Specifically, the RMSE value of our method is 20% lower
than that of SVM and DELMmethods, and 25% lower than that of PLS. The R value of our
method is much higher than other methods. The experimental results show that our
method can effectively improve the prediction ability of coal sulfur content. This provides
a fast and efficient method for coal content measurement.

Mao et al. (2014), proposed a coal extraction method by analyzing the reflectance
spectral characteristics of coal. They built a coal classification model based on the
difference between the 4th and 5th bands of Landsat, and obtained a classification accuracy
of about 80%, which is much lower than our proposed method. Some physical and
chemical analysis methods (Le et al., 2018a; Song et al., 2021; Liu et al., 2021) may exceed
our proposed method in accuracy, but the time and cost of these methods are much higher
than our method. Additionally, these methods can only assess one or a few locations in
large coal mining areas. The method proposed by us can quickly, economically and large-
scale map the distribution of sulfur content in coal mining areas, and the accuracy also
meets the requirements of engineering. Overall, the proposed method can be applied to
assess sulfur content and provide a reliable basis for real-time monitoring and production
guidance in coal mining areas.

Figure 4 Mapping of sulfur content in the Baorixile coal mining area. Full-size DOI: 10.7717/peerj-cs.2458/fig-4
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Although this study has achieved a series of results, it is difficult to further improve the
accuracy of the regression model due to the limitation of satellite image resolution. On the
other hand, the deep learning and machine learning parts of our model are carried out
separately. Therefore, there are still many problems to be explored in future work.

CONCLUSION
This study proposes a method to rapidly map sulfur content in coal mining areas. The
method combines field and remote sensing data and builds an analytical model based on
deep neural networks. The results show that the proposed method outperforms typical
machine learning methods and some physical and chemical analysis methods. The RMSE
value of our method is 20% lower than that of SVM and DELM methods, and 25% lower
than that of PLS. Based on the results obtained, the proposed method can be applied to
assess sulfur content and provide a reliable basis for real-time monitoring and production
guidance in coal mining areas.
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